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VP-GO: A ‘Light’ Action-Conditioned Visual Prediction Model for
Grasping Objects

Anji Ma!?t, Yoann Fleytoux?, Jean-Baptiste Mouret?, and Serena Ivaldi?

Abstract— Visual prediction models are promising solutions
for visual-based robotic grasping of cluttered, unknown soft ob-
jects. Previous models from the literature are computationally
greedy, which limits reproducibility; although some consider
stochasticity in the prediction model, it is often too weak to
catch the reality of robotics experiments involving grasping such
objects. Furthermore, previous work focused on elementary
movements that are not efficient to reason in terms of more
complex semantic actions. To address these limitations, we
propose VP-GO, a “light” stochastic action-conditioned visual
prediction model. We propose a hierarchical decomposition of
semantic grasping and manipulation actions into elementary
end-effector movements, to ensure compatibility with existing
models and datasets for visual prediction of robotic actions such
as RoboNet. We also record and release a new open dataset
for visual prediction of object grasping, called PandaGrasp.
QOur model can be pre-trained on RoboNet and fine-tuned on
PandaGrasp, and performs similarly to more complex models in
terms of signal prediction metrics. Qualitatively, it outperforms
when predicting the outcome of complex grasps performed by
our robot.

I. INTRODUCTION

There are several industrial scenarios where robots have
to grasp or manipulate a variety of objects from uncluttered
heaps, without relying on objects models (unknown or un-
available), nor tactile/force sensing [1]. A typical scenario is
in waste sorting [2], where human experts plan appropriate
sequences of actions to interact with complex objects. It
would be desirable to automatize the process, i.e., to auto-
matically find the sequence of actions that enable the robot
to pick objects, even to grasp all the objects in the heap.

In the absence of robot sensing other than a camera and
without prior knowledge on the objects, a promising method
to address this problem is visual Model Predictive Control
(MPC) or visual foresight [3]. Such a technique requires a
visual prediction model, i.e., a model that predicts the visual
outcome (i.e., the future camera images) of the robot’s action.
Because of the high dimensionality of images, visual MPC
was considered unfeasible until few years ago, when video
prediction models based on deep neural networks started
to show very promising results in computer vision [4] and
also in robotics [5]. The first video prediction models were
deterministic [6]; to deal with the uncertainty caused by the
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Fig. 1: VP-GO contains a ‘light’ video prediction model
and is able to integrated use open large-scale datasets and
local datasets with semantic actions for the anticipating in
grasping-based tasks.

interaction of the robot with the real world, several studies
proposed stochastic models [7], where learned prior networks
catch the “stochasticity” . Computationally, these methods
are very greedy in terms of computation and training data.

For robotics applications, the seminal demonstration of
visual MPC was done in [8], showing that visual predictions
could be used to plan the robot’s end-effector towards desired
goals. In that work and the follow-up [3] the robot’s actions
were basically differential displacements of the end-effector,
which was coherent with the babbling-like exploration of
the robot’s workspace (similar to what has been done in
the last decades in developmental robotics [9]). However,
for industrial applications involving repetitive grasping this
action representation is not appropriate: on the one side it
increases the complexity in sample-based planning to execute
a complex goal-driven sequence of actions, on the other
side it does not carry the semantic description of high-level
actions such as grasping or picking.

To address these limitations, we propose Visual Prediction
Model for Grasping Objects (VP-GO), a “light” stochastic
action-conditioned visual prediction model. Our model is
based on SVG-LP [7], a groundbreaking work that proposed
to use a learned prior model to deal with the time-varying
stochasticity. In VP-GO we leverage the learned prior to
catch the stochasticity of the real world grasping actions.
SVG’ [10] and GHVAE [11], both follow-ups of SVG-LP,
scaled up SVG-LP in complexity to deal with large datasets,
but are very greedy in computational resources. Here, we
revisit the principle of SVG-LP. Compared to SVG-LP, our
model introduces action conditioning, uses convolutional
Long-Short-Term Memory networks (LSTM) instead of a
simple LSTM and has a deeper architecture. Compared to
SVG’, which also uses convolutional LSTM, our networks
have a “deeper” encoder, while significantly reducing at the
same time the number of parameters (5 times less than



the state-of-the-art models, hence the “light” adjective). Our
model can compete with the existing models while being
computationally efficient to train on a relatively small cluster.

Our target is grasping objects efficiently, ultimately by
planning sequences of high-level grasps. To this end, we
propose a hierarchical decomposition of semantic grasping
and manipulation actions into elementary low-level actions
(i.e., end-effector displacements). This is frequently done
in developmental learning to scaffold complex actions into
elementary actions, especially for learning manipulation
[12]. This kind of representation has the key advantage of
producing predictive models that can be used for down-
stream planning of sequences of high-level grasping and
manipulation actions. Our model does not acquire semantic
information explicitly (i.e., it is not an input of the network),
but implicitly during the training process. In order to train
the model with rich semantic information, we acquire a new
dataset (PandaGrasp) with sequences of semantic actions
defined per our hierarchy, executed by a Franka robot. This
design enables us to compare with state-of-the-art models
and reuse large-scale datasets for visual prediction of robotic
actions such as RoboNet [5] to pre-train our model.

In addition to providing the source code of VP-GO, we
release PandaGrasp, the dataset recorded with our Franka
setup. Differently from RoboNet, it is focused on meaningful
grasping actions, and therefore can greatly help the commu-
nity to study visual prediction models specific for grasping.

II. RELATED WORK

Robot grasping and manipulation have been widely
studied for many years. Traditionally, grasping has been
studied under the umbrella of dynamic modeling and control,
considering contact force and wrenches [13], which require
the object model or force/tactile sensing. Recent visual-
based approaches are more focused on data-driven methods,
using either prior knowledge like 3D models [14] or points
cloud [15] to learn objects model. These approaches are very
interesting, but require the knowledge of the objects models.
Manipulation actions such as push-pulls are medium/low-
level actions used to bring the environment to a more
convenient configuration to solve the robot’s task [16], [17].
Planning the sequence of appropriate actions to solve a task
is a difficult decision problem per se, and combining grasping
and pushing-pulling to pick cluttered objects is a challenge
[18], [19], [20] . Several works learn the policy using model-
free optimization [21], [22], [23], [24], with the issue of
exploring a large space. To grasp an object that is partially
occluded, or bring the objects in the workspace into a specific
configuration that is more favorable to grasp an object of
interest, a promising approach is to leverage visual prediction
models [3] to inform a visual MPC method. The principle
consists in predicting the visual output of the robot camera
after executing an action or a sequence of actions, and to use
this prediction to inform a an optimal controller or decision
planner.

Visual Model Predictive Control (MPC) is an appealing
method to address visual-based manipulation. Traditionally,

model predictive control (MPC) relies on known or learned
dynamics robot models, and it is used to generate advanced
motor controls. Once the model of the effect of the robot’s
actions on its environment (e.g., workspace with objects)
is known or learned, it can be used to plan a sequence
of optimal actions to fulfill a task: this can be done with
MPC, often with a receding horizon approach, but also
with reinforcement learning [25], [26], [27]. For planning
sequence of manipulation actions, this was often done with
reduced visual models computing features of the objects
in the scene, to lower the dimensionality of the problem.
With the increased availability and capabilities of computing
clusters, data-driven methods and deep learning technolo-
gies [28] can now be used to build models directly from
high dimensional input such as images. Visual models that
leverage deep learning have been used to address visually
dominant tasks such as manipulation and navigation, to learn
models used for planning and decision: a visual MPC is
therefore possible. The main difficulty of dealing with visual
models lies in the bigger state space, with discontinuities that
make planning actions more challenging. This is particularly
challenging for grasping: for example, objects disappearing
from the workspace cause visual discontinuities. In [3],
sample-based planning based on CEM [29] was used for
visual model predictive control.

Video prediction model went through a significant de-
velopment in the last years. Initial video/visual prediction
model were based on deterministic models [30], [6], [31],
[32], [33], [34], [35], [36]. Their main limit is dealing with
uncertainty, more precisely with the uncertain or stochastic
outcomes. Probabilistic models [37] were further proposed
to carry the “stochasticity” information, in particular VAE-
based [38] stochastic video prediction models [39], [7],
[40], [11]. [7] proposed to use a learned prior to model
time-variational stochasticity; [11] used a hierarchical latent
variational to model the stochasticity. [10] investigated im-
proving performance by increasing model size. Some other
works use discrete represent of pixels [41], [42] to optimize
the likelihood directly through autoregressive models [43]
and transformers [44], [45]. Autoregressive models have the
advantage of producing higher quality images; the models
using transformers structures can be trained in parallel and
faster, although the pixel-level prediction that needs pixel by
pixel reconstruction usually takes a long time and limits its
use in online control tasks.

III. MATERIALS & METHODS

Robot setup: We use a Franka Panda robot equipped with
a gripper to manipulate rigid and deformable/soft objects
organized in unstructured heaps inside a plastic gray box.
A Intel RealSense camera in front of the robot is used to
capture the workspace and the robot’s terminal part.

Datasets: In this paper, we use two main datasets. 1)
RoboNet: this is a large scale dataset with more than
150K trajectories executed by 7 different robots, for a
total of 15 million frames [5]. 2) PandaGrasp: this is
our “smaller” dataset recorded with our setup, with the
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Fig. 2: The hierarchical structure of decomposition semantic
actions. A semantic action like sorting objects by grasping
contains five element actions: (middle) (a) moving the grip-
per to a top position of the grasp point, (b) falling the gripper
grasps the object, (c) lifting the gripper back to the top
position, (d) moving the gripper to the top of the target point,
(e) opening the gripper to drop the object. (bottom) Each
action element is decomposed into several action movements
to a sequence of images and actions.

Panda robot executing 5K trajectories for a total of 150K
image frames. This is a new dataset that we are releas-
ing as open: https://gitlab.inria.fr/sivaldi/
PandaGrasp_dataset. As in RoboNet, PandaGrasp was
acquired via autonomous exploration. However, our explo-
ration strategy was more “efficient” for acquiring more grasp-
ing samples. Indeed, exploration through random actions or
babbling in a large space lead to datasets with a majority
of non-successful and non-purposive actions that have little
to no effect on the visual appearance of the workspace. In
contrast, we are interested into visual sequences where the
environment significantly changes as a result of grasping
actions and manipulations. Finn et al. [46] used a “reflex”
primitive that automatically closes the gripper when it is
lower than a threshold to make meaningful actions more
frequent. Since we are interested into grasping, we defined an
heuristic such that the robot only attempts to grasp random
points sampled from the surface of the heap, extracted from
the 3D point cloud: in this way, there is a small possibility
of grasping in an empty area.

Our method: Action conditional stochastic Visual
Prediction for Grasping Objects (VP-GO)
We propose a VP-GO: a VAE-based, action conditional
stochastic visual prediction model that is specific to deal
with high stochasticity such as in robotic grasping unknown
objects in a heap. Our model is inspired by SVG-LP [7]
and its successors SVG’ and GHVAE, but it is “lighter”
than those, in that it only contains simple convolutional and
recurrent networks and has a smaller number of parameters
to train. Furthermore, it is an action conditional model
that can deal with semantic action description. We propose
a hierarchical structure to decompose high-level semantic
actions into more elementary robot movements, compatible
with existing models and datasets. Our model can be pre-
trained with large-scale datasets such as RoboNet and then
fine-tuned on specific smaller-scale datasets such as our
PandaGrasp dataset. The code is available here: https:
//gitlab.inria.fr/sivaldi/HEAP-VP-GO.

In the following, we detail the two main parts of VP-GO:

1) Action decomposition — from semantic actions to ele-

mentary movements:
The action conditional visual prediction model is a deep
neural network model that inputs the current and past images
and generates a sequence of predicted images of the future.
In general, the data used to train the model is organized
into a sequence of pairs of images (xXo,X1,...,X7_1,XT)
and actions (ag,a;,...,ar_1). In [3] the action a € R" is
defined as a A-displacement of the end-effector, where n is
the degree of freedom of the end-effector. This representation
fits for describing push-pull and simple gripper movements
or babbling actions. However, it is very limited to describe
more complex manipulations. In contrast, in our application
the robot should purposefully interact with objects, executing
many grasps: our ultimate goal is to find sequences of
grasping actions to execute on the objects in the heap. For
this reason, we use not only low-level displacement actions
but also high-level semantic actions such as grasping and
picking. In order to integrate semantic actions into a generic
prediction model, while being compatible with previous
video prediction models and corresponding datasets (e.g.,
RoboNet), we propose a hierarchical structure of high-level
semantic robot actions. High-level actions such as “grasp”
can be decomposed into several elementary movements that
can directly be trained in a general model, as shown in Fig.
2. We split a semantic grasping action into several action
elements: moving the gripper to a top position over the grasp
point, lowering the gripper to the grasp point and closing
it, lifting the gripper back to the top position, moving the
gripper to the top of the target point, and opening the gripper
to drop the object. Finally, we decompose each elementary
action into several elementary movements that are defined as
a displacement of the end effector’s elements.

2) Action conditioned stochastic visual prediction model:
As shown in the left part of Fig. 3, the stochastic pre-
diction model takes c visible frames xg,X1,...,X. and an
action sequence ag,aj,...,ar—; to predict several futures
Xet1s- - - X7—1, X7. To deal with the stochastic nature of the
real world, the VAE-based prediction model introduces latent
variables z ~ p(z) that carries the stochastic information.
We can generate the image x; at time ¢ from a prediction
model pg(X¢|X0.¢—1, A0:t—1, Z1.¢) conditioned on the previous
images Xg.;—1, actions ag.;—; and the latent variables z.;.
Since pg(x:) can not be directly maximized over the
distribution of p(z;), the VAE-based method approx-
imates the posterior p(z;|Xg.t—1,20:t—1,%1.t+—1) Dy an
inference network that is parametrized as a condi-
tional Gaussian distribution gy (2¢|X0:¢, 20:¢—1,21:¢—1) =
N(/w(xo:u ag:t—1, Zl:t71)7 U¢(Xo;t, ap:¢—1; Z1:t71))~

Previous work [39] assumed that p(z;) is a fixed
Gaussian distribution A(0,I). In contrast, to catch the
rich stochasticity that is caused in our application by
the robot’s grasping action, we assume that the learned-
prior p(z;) as in [7] varies across time, conditioned
on actions and previous images. Specifically, the
learned prior is also parameterized as a conditional
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Fig. 3: Left: Probabilistic model of VP-GO. Blue, yellow and red lines indicate the prediction, posterior an prior models
respectively. Right: Detailed structure of VP-GO. Each network contains deep convolutional layers as the encoder for images,
feed forward network for actions and LSTM layers to condition the previous input. Prior network and posterior network
contain a feed forward network which outputs the mean and variance of the latent variables after the LSTM layers. In the
prediction network, deep convolutional layers (decoders) are used to generate prediction images.

Gaussian distribution as py(2¢|Xo:t—1,@0:¢—1,Z1:4—1) =
N(Nw(XO:tfl, ag:t—1,21:4-1), Jw(XO:tfla ag:—1,%1:4-1))-
We train the entire model by maximizing the variational
lower bound of the log-likelihood as in the variational
autoencoders:

T T
Loy (Xer1.1) = Z ELP—- Z Drr(QP||PP) (1)
t=c+1 t=c+1

where £ = EQd)(Zt|xU:t,aO:t—laz1:t—1)’
LP =log pg(x¢|Xo:t—1,@0:t—1, Z1:t),
QP = q4(z¢[X0:t,20:4—1,Z1:4-1)s
PP = py(z¢|X0:t—1,20:t—1, Z1:4—1)-

We  parametrize the prediction network  with
a  fixed-variance  Laplace  distribution X ~
Laplace(bg(xq.t—1,a0:t—1,%1:t),0); in other words, we
reduce the first term on the right hand side to ¢; loss instead
of ¢5 loss between X and x to help generate sharper images
[10]. During training, the latent variables z, are sampled
from posterior g4(z,) that inputs the ground truth x;14, and
the second term on the right hand side is a KL-divergence
that fits the posterior g4(z;) to the learned-prior py(z:).
During testing, since the ground truth is unavailable, we
directly sample z; from the learned prior py(z;).

Network Stucture: As shown in Fig. 3 (right), we use
deep encoder with 16 vgg layers to decrease the spatial
size and increase the channel dimensions of images from
48x64x48 pixels to 3x4x512, and a single dense feed for-
ward network to encode actions and reshape it to 3x4x2. The
encoded actions and latent variables are appended to encoded
images along the channel dimension. The dependency with
previous inputs is achieved by the recurrent layers. For the
prediction network, we use 2 convolutional LSTM layers.
For prior and posterior networks, we use one convolutional
LSTM layer. The latent variables are output from a dense
layer following the LSTM and the predicted image finally
can be generated through a decoder that has similar structure

as the encoder.

Metrics for evaluation: As done in prior work [39], [7],
[10], [47], [11], we evaluate video prediction models across
4 metrics: Structural Similarity Index Measure (SSIM) [48],
Peak Signal-to-noise Ratio (PSNR)) [49], Learned Perceptual
Image Patch Similarity (LPIPS) [50] and Fréchet Video
Distance (FVD) [51]. To compare PSNR, SSIM, LPIPS, [39],
[7] sample 100 rollouts for each sample and select the best
trajectory. FVD uses instead all the 100 samples [10]. In
contrast with prior work only reporting the best score among
the 100 samples, we also report the average score: the reason
is that we want a better idea of the real performance of the
model that will be used for downstream planning (where only
one sample is used, if we refer to [3]) to take decisions on
the next action to perform. We adopted the specific settings
of [11]: we generate predictions conditioned on 2 context
frames and a sequence of actions and evaluate on a 10 rollout
horizon; since FVD metric can be significantly disturbed by
the different batch sizes, we use batch size of 256 for FVD.

IV. EXPERIMENTS

The experiments are designed to answer to the questions:
Q1: Can we achieve state-of-the-art performance with our
“lighter” model VP-GO?

Q2: Can we improve the prediction performance by using a
deeper network?

Q3: Can we improve the prediction performance by consid-
ering the robot’s state (precisely, the end-effector position)
as additional input in the network and actions?

Q4: Can the movement segments decomposed from the
semantic actions be directly trained in the general video
prediction model?

QS5: Can we improve the performance with fine-tuning, i.e.,
by leveraging a pre-trained model, instead of training a model
from scratch, since we only have a small dataset?

Al: Comparing our “lighter” model VP-GO with
GHVAE and SVG’ We compare our “lighter” model VP-



TABLE I: Al: Comparison with state-of-the-art models
(mean + standard error)

Video Prediction Performance (Test)

Dataset Model

FVD | PSNR 1  SSIM ¢ LPIPS |
GHVAEs 952426 247402 891404  0.03620.001
RoboNet SVG’ 1232426  23940.1  87.8403  0.06040.008
Ours 1115513 26.9+0.2  89.1x0.3  0.030£0.001

TABLE II: A2: Ablation study of the encoder and decoder
networks depth (mean =+ standard error)

Video Prediction Performance (Test)

Layer config.

Dataset EVD | PSNR{+  SSIM 1 LPIPS |
VGG16
layer conv33  232.84£1.9  24.5+03  86.8+03  0.078+0.001
VGG16
RoboNet  layer convd3 1293415  26.6+02  88.7+0.3  0.035£0.001
VGG19
layer conv44 1115413  26.9+0.2  89.1:0.3  0.030+0.001

GO with the “heavier” GHVAE [11] and SVG’ [10]. GHVAE
is a hierarchical model; SVG’ is similar to our model but
with shallow convolutional layers for encoder and decoder.
Both have a larger number of parameters than ours: 599
million for GHVAE, 298 million for SVG’, and 129 million
for ours. Since their code is not available, to compare the
performance on RoboNet we directly use the results reported
in [11]. For fair comparison, we use the default random seed
in RoboNet to split train/test set and no additional states
information while testing our model. The states information
is only given in the ablation study A3 for contribution of
the robot’s state. Table I shows the performance of the
video prediction model on the RoboNet dataset. Our model
outperforms SVG’ vastly and achieves a comparable perfor-
mance to GHVAE; specifically, we exceed GHVAE on both
structured metric PSNR and human perceptual metric LPIPS
and get similar performance on SSIM but behind on FVD.
The video attachment shows more examples of RoboNet,
with several rollouts predicted by ours and the other models
[11]. Our results suggest that a lighter model can have
substantial improvement of performance by adjusting the
internal structure, e.g., using deeper convolutional layers.
Also, the drastic reduction of the number of parameters (from
599 to 129 million) did not lower the performance and at the
same time enabled us to run the training on a smaller cluster.
1

A2: Ablation study of the encoder and decoder net-
works depth Compared with SVG’ [10], one notable dif-
ference is that we use a deeper network configuration for
encoder and decoder networks. In this section experiment,
we report an ablation study to show whether using a deeper
VGG [52] layer configuration helps. As shown in Table II, we
train our models in three different configurations: VGG16 up
to layer conv3_3, VGG16 up to layer conv4_3, and VGG19
up to layer conv4_4 which is the default of our model. The

! Training our model for 400k steps on a 11GB GPU cluster (4 x GeForce
RTX 2080 Ti) takes 4.7 days. We could not re-implement and re-train
GHVAE as reported in [11] since the paper reports using 24GB/48GB GPU
machines.

deeper model VGG19 outperforms the others. The results
confirm the observation of [52] that “deeper models might
be beneficial for larger datasets” and support the hypothesis
in [11] that deep models with compressed height and width
reduce the spatial correlations.

A3: Ablation study: Contribution of the robot’s state
A large part of the stochasticity comes from estimating the
position of the robot in the real world through images.
However, the robot’s state, in particularly the position of the
end-effector in its workspace is easily accessible. > We posit
that it could help that estimation. In this experiment, we do an
ablation study to show whether adding the robot’s state to the
action conditional model helps. We evaluate the contribution
of the robot’s state on both the best performing model and
on the average score from 100 samples models. Results are
shown in Table III. In both cases, using the robot state
as an additional input improves the model’s performance.
Furthermore, using the robot state as an additional input can
improve much more in the average score than in the best
score. PSNR improves 1.1 in average score case than 0.5 in
the best score; SSIM improves 2.0 in average score than 0.8
in the best score, LPIPS improves 0.003 in one shot case
than 0.001 in the best score. These results also confirm the
intuition from [11] that a large part of the uncertainty comes
from estimating the robot’s position from images.

A4: Our visual prediction model with semantic actions
We investigate the performance of using our VP-GO for
different semantic actions in Fig. 5 and 6 and Table IV. Fig. 5
shows an example of prediction of an entire trajectory after
the robot picks and moves an orange soft object. We can
successfully predict the object’s movement, compared to the
ground truth. However, when the robot is approaching the
target object, the metrics in Fig. 6 and Table IV show that
there is almost no performance loss in the predicted frames;
when the robot begins to grasp and interacts with the objects,
the performance decreases, and then keep decreasing linearly
with the number of frames we look ahead in the future. This
is likely due both to the higher stochasticity given by the
grasping action, and the intrinsic higher uncertainty about
predicting an action in the far future and may be alleviated
by reducing the prediction horizon in semantic action-based
planning. With such results, VP-GO shows promising poten-
tial to be used for planning sequences of robot manipulation
actions in the semantic action space, which is much more
efficient than using sample-based planning in the movement
action space. Still, we observe that a precise visual prediction
of a moving soft object is still challenging.

AS: Finetuning with PandaGrasp Recording large scale
datasets such as RoboNet [5] is very expensive in terms of
time and resources. Our dataset PandaGrasp is “smaller” in
comparison, yet for many practical applications we want our
models to work with datasets of this size. Hence, we want
to investigate if a model trained with a “smaller” dataset
is performing as well as a model trained with a “bigger”

’In the offline test, we use the ground truth robot states as robot states
and actions are implemented by a low-level closed-loop position controller
and easy to make assumption as s¢1 = St41 = St + at.



TABLE III: A3: Contribution of the robot’s state (mean =+ standard error)

Conditional Input

Video Prediction Performance (Test)

Dataset FVD | PSNR 1 SSIM 1 LPIPS |
Action State Best Average Best Average Best Average
. 111.5+1.3 26.9+0.2 25.0£0.2 89.1+0.3 85.9+0.4 0.030+0.001 0.039+0.001
RoboNet . . 116.8£1.0 274402  26.1+0.2 89.9+0.3 87.9+04  0.029+0.001  0.0360.001
Improvement 1 - - +0.5 +1.1 +0.8 +2.0 +0.001 +0.003

TABLE IV: A4, 5: The comparison between models trained from scratch and fine-tuning by FVD and averaged scores of
PSNR, SSIM, and LPIPS on the test set of semantic action. (mean =+ standard error)

Video Prediction Performance (Test)

Dataset Stage PSNR 1 SSIM 1 LPIPS | FVD |
from scratch  fine-tuning  from scratch  fine-tuning from scratch fine-tuning from scratch  fine-tuning
Approaching 34.2+0.2 33.940.2 98.7+0.1 98.6£0.1 0.004£0.001  0.004+£0.001
Grasping 31.0+0.2 31.0+0.2 97.1£0.1 97.0£0.1 0.009+£0.001  0.009+0.001
PandaGrasp Moving 25.3£0.2 25.9+0.2 90.8+0.1 91.3+0.1 0.034£0.002  0.032+0.002 110.943.9 110.9+4.0
Average 30.1+0.2 30.1+0.2 95.54£0.2 95.6+0.2 0.016+£0.001  0.015+0.001
Final Goal 23.7+£0.4 23.9+0.3 87.0+0.7 87.7£0.6 0.050£0.004  0.047+0.004

dataset and fine-tuned on the ‘“smaller”. Also, PandaGrasp
is more purposeful for semantic grasping actions compared
to the low-level actions (for babbling-like exploration) in
RoboNet. Our experiment also verifies whether our method
can let prior low-level action knowledge benefits the training
on more purposeful data with semantic actions. Specifically,
we compare our model VP-GO trained on PandaGrasp from
scratch with a VP-GO pre-trained on RoboNet then fine-
tuned on PandaGrasp. As shown in Fig. 4 and Table IV,
the two models are performing in the same way, from the
point of view of the metrics FVD, PSNR, SSLM and LPIPS.
However, qualitative inspection of the visual predictions
performed by the two models actually shows that the fine-
tuned model can correctly predict missing and misplaced
objects after, while the scratch model fails. One typical
problem is failing at predicting objects that move from the
background and leave empty space: Fig. 4 shows an example
where an object is grasped and moved from the initial
location: the object is still in the same place in the prediction
of the first model learned from scratch, while the fine-tuned
model correctly predicts that the object is moved away. Fig. 7
shows the corresponding performance metrics. Our intuition
is that training on a big dataset such as RoboNet produces a
more “expert” model, and fine-tuning on our smaller dataset
PandaGrasp just makes sure that the predicted frames are
more coherent with our specific setup.

V. CONCLUSION

We proposed VP-GO, a stochastic action-conditioned vi-
sual prediction model that can be used to predict future
visual outcomes after grasping and manipulating irregular
cluttered objects. Our model is inspired by SVG-LP [7],
but it introduces action conditioning, uses convolutional
LSTM and has a deeper structure. With respect to the state-
of-the-art models [10], [11], VP-GO is lighter in that it
has considerably less parameters; still it has comparable
performance. This is promising, since lighter models are

manipulation
»

Fig. 4: AS: Visual comparison of our model VP-GO trained
on PandaGrasp from scratch with a VP-GO pre-trained on
RoboNet then fine-tuned on PandaGrasp.
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Grasp Lifting Moving
Fig. 5: A4: Visual inspection of future frames predicted by
VP-GO from semantic actions. The model correctly predicts

the orange plush toy being grasped and moved.

more sustainable and reproducible. We also contributed with
a new open dataset “PandaGrasp” that contains 5K sequences
of robot grasping trajectories, executed by a Franka Panda
robot, according to a proposed hierarchical decomposition
of semantic actions into elementary movements. In our
experiments, we found that pre-training our model with a
large-scale dataset (RoboNet) then fine-tuning the model
with our smaller dataset PandaGrasp, specific to our robotics
setup, gave better results in terms of predicting future frames
after grasping and moving objects.

The next step is to use our visual prediction model in a RL
framework to plan a sequence of grasps to selectively remove
some objects of interests from a heap of cluttered objects.
Interestingly, our model can benefit of high-level semantic
actions, reducing the complexity of downstream planning.
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Fig. 6: A4, 5: The comparison between models trained from
scratch and fine-tuning by averaged scores of PSNR, SSIM,
and LPIPS on the test set of semantic action.
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-GO does not yet explicitly uses the semantic action label,
leverages the implicit semantic information carried out by
PandGrasp dataset during training. In the future, we plan

to explicitly condition the model on the additional semantic
information.
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