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Abstract— In this paper, we propose a route-based approach
to improve the flow and density estimation methods for the case
of urban traffic networks. For this proposal, a traffic assignment
problem is solved at first, whose outputs are used to estimate
the turning ratios for all intersections. Such information is
not usually available at each node of the network. Second,
the estimated turning ratios are used to better reconstruct the
dynamic state of the network: the flow and density. To validate
the proposed methods, we use real traffic data collected in the
city of Grenoble in France, which include the measurement of
Origin-Destination matrices, some turning ratios for validation,
mean speeds of road sections and traffic flows at the boundaries
of the network.

I. INTRODUCTION

Actually, the development of vehicle mobility in smart
cities in one of the main problems in transportation research.
Methods to estimate the flow and density of roads in urban
networks is of great importance to promote such progress in
this area. The widespread use of novel heterogeneous data
sources such as Floating Car Data (FCD), Bluetooth (BT)
and Wifi vehicle identifiers, among others, has helped in
the development of data-based estimation approaches that
provide more accurate estimates of traffic states, i.e. speed,
flow, and density, in each road of a traffic network [1].
Then, the estimates are used by city operators to implement
strategies for congestion reduction or by users to decide
about the fastest route to take to reach the destination.

Currently, many of the state-of-the-art methods for traffic
states estimation require the knowledge of the Turning Ratios
(TRs), which model how flow split at intersection from the
inbound to outbound roads. For instance, in [2] the authors
use the TRs with data from connected vehicles to estimate
the flow propagation in an urban network. Similarly, in [3],
the authors propose a data-based density and flow estimation
method, using heterogeneous data sources (flow and TR
sensors with FCD) which are suitable for applications in
large-scale networks.

In practice, as the number of intersections in a network
can become very large, the TRs are quite hard to know
everywhere, then to circumvent this problem, the interest
is focused on their estimation based on some observed
variables. For instance, node-based approaches use the lo-
cal characteristics of the road adjacent to an intersection
to calculate the TRs. The authors in [4] use geometrical
properties of roads to identify the most likely turns, [5] uses
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the connectivity of each outgoing road (dead-ends are less-
likely to be taken than an artery), and [3] uses the Functional
Road Classification (FRC) [6] which assigns importance to
each road according to its function [7]. Although node-based
approaches provide an inexpensive way to estimate the TRs,
they can introduce biases as they do not take into account the
behavior of drivers that travel from Origins to Destinations.

To solve this problem, the Traffic Assignment (TA) can be
used as an alternative approach for the estimation of TRs.
Such method considers the flow of vehicles in an Origin-
Destination (OD) pair, and distributes it into the possible
routes that make this connection according to some criteria
(e.g. minimize the total traveling time of each driver) [8]. In
the literature, TA receives a lot of attention, in the case of
traffic and infrastructure planning [9], and the prediction of
congestion patterns [10]. Although TA is a powerful tool
to understand path selection and congestion formation, it
is computationally intensive, specially for large-scale traffic
networks as the number of paths to consider grows exponen-
tially. Some works in the literature propose more efficient
algorithms to solve TA problem [11], [12], but they are
restricted to specific networks and may not applicable for
general networks. Thus, to the best knowledge of the authors,
TA is typically unsuited for real-time flow and density
estimation applications in large-scale traffic networks.

In this paper, we propose a new method to estimate the
TRs using a route-based TA approach, and use this infor-
mation later to estimate, in real-time, the flow and density
of traffic in a large-scale network of city. The proposed
TA solution takes as inputs measured OD matrices and
boundary flows of the network. As an optional input, few
measured TRs can be included to provide more accurate
results, if available. At this step, the calculation is done
offline which better reduce the cost computation. Once all
TRs are obtained, the real-time flow and density estimator
proposed in [3] is used, which consists in using speed
measurements from FCD in conjunction with the current
density estimates to calculate road outflows. We validate
the proposed methods using real traffic data collected in the
downtown of Grenoble city, in France. The results show that
the proposed method produces more accurate estimates when
compared to node-based approaches.

The paper is organized as follows: Section II presents
the main notions and definitions used throughout the paper.
Section III describes the proposed methods and the sub-
processes needed for its implementation. Section IV presents
the study case and real traffic data used for validation of the
method, and Section V discusses the obtained results. Finally,
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Fig. 1: Flow exchange at an intersection.

Section VI presents some conclusions.

II. DEFINITIONS, PRELIMINARIES AND MODELS

We define a traffic network as a set {N,E, T } where N =
{1, 2, . . . , N} are the nodes corresponding to intersections
(or nodes), E = {1, 2, . . . , E} are edges corresponding to the
roads (or links), and T ⊂ E×E is a set of road pairs (i, j) that
correspond to turns from i to j that can legally be made at
an intersection. Each road i ∈ E is characterized by physical
properties such as length ℓi, free-flow speed vmax

i , number
of lanes, etc. The state of road i refers to the values of the
inflow φin

i (t), outflow φout
i (t), and density ρi(t). The entire

traffic state is the collection of these quantities in vector form
φin(t),φout(t),ρ(t) ∈ RE , respectively, which are linked by
the conservation equation

ρ̇(t) = L−1(φin(t)−φout(t)) (1)
where L is the matrix of road lengths, Li,i = ℓi, and the i-th
element of ρ(t) is ρi(t) (analogously for φin(t) and φout(t)).
Denote by Ein ⊂ E the sets of roads at the boundaries from
which cars enter the network (flow origins), and by Eout ⊂ E

the set of roads at the boundaries from which cars exit the
network (flow destinations), respectively.

To describe how flows split at intersections, we assume
the existence of the TR parameters, which apply locally at
each intersection. A TR ri,j ∈ [0, 1] is the proportion of
vehicles that turn from road i to road j, such that (i, j) ∈ T .
A simple intersection is shown in Fig. 1. Thus, the incoming
flow for each road can be expressed in terms of the outflows
of the upstream roads

φin
j (t) =

∑
i|(i,j)∈T

ri,jφ
out
i (t) , ∀j ∈ E \ Ein. (2)

Note: The super-indexes in and out for the flows correspond
to roads and not intersections. Thus, φout

i is the outflow of
road i (that then enters an intersection), and φin

i is the inflow
to road i (that comes from an intersection).

To estimate the TRs, we use a route-based approach which
is based on a traffic assignment problem using the OD matrix
of the network. A route (or path) for a given OD pair (o, d) ∈
Ein × Eout, is an ordered set P of adjacent roads that begins
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Fig. 2: Example network. Boundary roads are Ein = {1, 4}
and Eout = {8, 9, 10}.

with o and ends with d, i.e., P = (o, i1, i2, . . . , d), where
ik ∈ E. Multiple paths may exist for each OD pair. Consider
the example shown in Fig. 2, and the OD pair (4, 8), for
which two possible paths are P1 = (4, 3, 2, 8) and P2 =
(4, 6, 7, 8). We denote by P the set of all considered paths
for all OD pairs.

Assume that there is an indexing p = 1, 2, . . . , |P| of the
paths. Each path Pp ∈ P has an associated steady-state flow
fp, and let f ∈ R|P| be the concatenated vector of path flows.
These flows are constrained by the given OD flows: define
ψ(o,d) as the steady-state OD flow between the pair (o, d),
then, the sum of all path-flows connecting o to d must be
equal to ψ(o,d),

ψ(o,d) =

|P|∑
p=1

Ω(o,d)
p fp (3)

where Ω
(o,d)
p = 1 if path p connects the OD pair (o, d), and

is 0 else. Written in matrix form, this becomes
ψ = Ωf (4)

where ψ is the concatenated vector of all OD flows, and Ω
is called the path-OD incidence matrix.

Similarly, each road i ∈ E has a unique steady-state flow
φin
i = φout

i = φi, which are given by the path flows: the
flow in road i is the sum of all the path-flows that contain
road i,

φi =

|P|∑
p=1

Li,pfp (5)

where

Li,p =

{
1 if i ∈ Pp

0 else . (6)

In matrix form, this is written as
φ = Lf (7)

where L is the link-path incidence matrix and maps the path-
flows f to link flows φ.

III. ROUTE-BASED ESTIMATION METHOD

We propose to use a route-based method to estimate
the TRs, which can be done offline using average OD
flows during a long aggregation period (e.g. daily). As an

1. Path creation

2. Traffic Assignment

3. TR calculation

4. Flow and density
estimation
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Input demands φext(t)
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Fig. 3: Overview of the proposed methodology.



application, the TR estimates are used as an input to a flow
and density reconstruction method. The overall diagram of
the proposed methodology is shown in Fig. 3 where the main
steps are

1) Create a list of paths that connect each origin to each
destination.

2) Taking as input the OD flows, solve the TA problem to
determine the flow in each path. If available, TR data
from measured intersections can be included.

3) Use the computed path flows to estimate the TRs for
each intersection.

4) Use the TR values with boundary inflow and speed
measurements to estimate the road flows and densities.

The details of each step are described below.

A. Path creation

Route-based methods require first the creation of a set of
considered paths P between each OD pair. To construct this
set, we select the paths with the smallest traveling time in
free-flow,

c(P) =
∑
i∈P

ℓi/v
max
i . (8)

This problem is solved by the well-known Dijkstra’s algo-
rithm [13], which gives a set of K shortest (or in this case
fastest) paths for a given (o, d) pair. In practice, this calcu-
lations can be time consuming, so we introduce a slightly
modified version of the algorithm to speed-up computations.
A new condition is added such that if the new found paths
are too slow in comparison to the fastest path, the algorithm
stops.

Our version will find at least Kmin paths between o and
d, and after Kmin paths have been found, the algorithm
will continue to look for paths until the new path is ϵ times
slower than the fastest path. If Kmax paths are found, the
algorithm stops regardless of the length-tolerance condition.
This modification allows to have a variable number of paths
for each pair, so the total number of iterations is reduced
while keeping relevant (not too slow) paths.

Algorithm 1. K-fastest paths
Inputs:
• Road graph {E, T }
• Origin link o ∈ Ein.
• Destination link d ∈ Eout.
• Minimum number of paths Kmin

• Maximum number of paths Kmax

• Length tolerance ϵ > 1

Initialize:
• Set of optimal paths P = ∅.
• Number of paths found to each link ni = 0,∀i ∈ E.
• Stack of paths B = {{o}}
Steps:
• While B ̸= ∅ and nt < Kmax

– Find P ∈ B such that c(P) ≤ c(P′) ∀P ′ ∈ B
– Let i be the final link in P.
– ni ← ni + 1

– B ← B \ {P}.
– if i = d

∗ P← P ∪ {P}
∗ if cd ≥ Kmin and c(P)/min(c(P)) > ϵ

· Return P.
– if ci ≤ Kmax

∗ For each j such that (i, j) ∈ T
· B ← B ∪ {P ∪ {j}}

• Return P.

B. Traffic assignment

The TA problem consists in determining the flows in each
path of a considered set P, given a vector of OD flows
ψ. We assume that drivers choose their route such that
it minimizes total travel time. This is referred to as User
Equilibrium (UE), whose solutions are constrained by the
Wardrop criteria [14]. In the literature, TA problems under
UE are commonly written as the following non-linear convex
optimization problem [15],

min
f

∑
i∈E

∫ φi

0

ti(x)dx

s.t. φ = Lf , Ωf = ψ
φ ≤ φmax , f ≥ 0

(9)

where φmax is a vector of road capacities, and ti(φ) is the
travel time in road i for a given flow. In this work, we use
the commonly used BPR function [16] defined as

ti(φ) =
ℓi

vmax
i

(
1 + β

(
φ

φmax
i

)α)
(10)

where α and β are tuning parameters. This function was first
proposed by the Bureau of Public Roads, now the Federal
Highway Administration (FHA) in the United States [16].
Common choices for the parameters are α = 4, β = 0.15.

This TA problem formulation can be modified to include
additional TR information. Suppose some intersections are
equipped with sensors such that measured TRs r̂i,j are
available for turns (i, j) in a set T ∗ ⊂ T (see Section IV-
B). We can modify (9) by including this data to obtain a
new optimization problem. From the TR definition, for each
measured ratio there is an equation of the form

φi,j − r̂i,jφi = 0 (11)
where φi,j is the flow on turn (i, j) ∈ T ∗. These flows can
be written in terms of the path flows,

|P|∑
p=1

Li,pLj,pfp − r̂i,j
|P|∑
p=1

Li,pfp = 0, (12)

where the first term is the sum of flows in all paths that
contain both roads i and j, and the second term is the sum
of flow in paths that contain road i. This set of equations
can be written in matrix form as Q(T ∗)f = 0, with

Qk,p = Lik,p(Ljk,p − r̂ik,jk) (13)
where (ik, jk) is the k-th element of T ∗. We introduce this
condition as a soft constraint in the objective function of (9),

min
f

∑
i∈E

∫ φi

0

ti(x)dx+ γ||Q(T ∗)f ||2 (14)



under the same constraints, where γ is a tuning parameter
to control how relative important the satisfaction of the TR
measures are in comparison to the regular TA cost.

C. Turning ratio calculation

The resulting vector of path flows f can be used to estimate
the TR values for each intersection. Consider an arbitrary
turn (i, j) ∈ T , whose corresponding TR is calculated by

ri,j =

 |P|∑
p=1

Li,pLj,pfp

/ |P|∑
p=1

Li,pfp. (15)

This is the ratio of the total flow of paths containing both
roads i, j, and those containing road i. As the former set of
paths is always a subset of the latter, this ratio is in [0, 1],
unless all the incoming flows are zero.

D. Flow and density estimation

In a previous work [3], we proposed a data-based method
to estimate flows and densities for all roads, using speed,
turning ratio and external input demand data from sensors. In
the previous section, (2) allows to write road inflows in terms
of the turning ratios, except for the roads at the boundaries
of the network Ein. For these roads,we have

φin
i (t) = φext

i (t) ∀i ∈ Ein (16)
where φext

i (t) is the external input demand for road i, and are
assumed to be measured. Define the TR matrix R ∈ RE×E

whose elements Ri,j are the TRs if (i, j) ∈ T or are 0 else.
Then (2) and (16) can be written in vector form as

φin(t) = R⊤φout(t) +φext(t) (17)
where φext(t) is a vector whose i-th entry is φext

i (t) if i ∈
Ein, or is 0 else.

We assume that the speed of each road vi(t) is known, and
let V (t) be a diagonal matrix with Vi,i(t) = vi(t). Consider
the hydrodynamic relation

φout(t) = V (t)ρ(t). (18)
Substitution of (17) and (18) into (1) yields the following
open-loop density estimator,

˙̂ρ(t) = L−1(R⊤ − I)V (t)ρ̂(t) + L−1φext(t). (19)
In [3], we proved that under error-free measurements and if
the rate of change of the mean speed V (t) is slow enough,
this estimator converges asymptotically.

IV. EXPERIMENTAL SETUP

In this paper, we use data provided by the GTL-Ville1,
which is an experimental platform developed by the ERC
Scale-Freeback project [17] for the real-time collection of
traffic data coming from a network of installed sensors in
the city of Grenoble in France. It covers an area of 1.4
Km by 1 Km in the city center, which is composed of
463 intersections, 804 road sections, and 1234 turns. The
information collected using heterogeneous data sources are:

1http://gtlville.inrialpes.fr/

Fig. 4: Location of flow and turning ratio sensors. Flow
sensors in color with text corresponding to the identifier in
the database. TR sensor in gray with labeling numbers from
1 to 12.

A. Flow sensors

Two sensor technologies are currently being used to mea-
sure the vehicular flow (number of vehicle passages during
a period of time) in a selection of roads: magnetic induction
loops, and microwave radars. There are 40 flow sensors
inside the region of interest as shown in blue, red, and green
in Fig. 4. These colors correspond to the classification of the
data provided by the sensors:

• In blue, sensors that provide boundary inflow data,
located in roads in Ein.

• In red, sensors that provide boundary outflow data,
located in roads in Eout.

• In green, sensors that provide data for cross-validation,
located in roads on the network’s interior.

Flow data is available in real-time with sampling rate of
1 min.

B. Turning Ratio sensors

To measure the TR parameters for a selection of 12
intersections, Bluetooth (BT) reader devices were located at
the adjacent roads. These sensors detect the unique identifiers
(IDs) of vehicles equipped with other BT devices and match
these IDs with the other sensors to obtain the inbound and
outbound road for each detected vehicle. To protect user
privacy, only the total number of detected vehicles making
each turn during a period of 1 hour is available. The selected
intersections where TR sensors were installed are shown as
gray circles in Fig. 4 with corresponding label numbers from
1 to 12.

TR data was collected during measuring campaigns, where
data for each intersection was collected during a week,
between September 21 and October 28, 2020. The TR values
are computed as

r̂i,j = Counts(i, j)
/∑

k

Counts(i, k) (20)

where Counts(i, j) is the number of detected vehicles that



Fig. 5: Location of sensors for measurement of oD matrices,
and the total measured OD ratios, normalized with respect to
each origin. The two lines connecting each OD pair follow
the right-hand rule to specify direction.

enter the intersection through road i and left via road j,
during the total duration of the campaign.

C. Origin-Destination matrix sensors

BT sensors placed in specific locations were used to
measure the OD matrices. In total, 11 sensors were located
around the boundaries of the network, at the most important
roads. OD data was collected during a two-weeks measuring
campaign from February 24 to March 11, 2021. As BT
devices only detect a sample of the population, only the OD
rates can be estimated, using an analogous equation to (20).
The location of sensors are shown as gray circles labeled
from 1 to 11 in Fig. 5.

In the figure, the colored lines show the computed OD
rates between each OD pair. The line color and thickness
represents the percentage of vehicles going from each origin
to all destinations. The ratios are normalized with respect
to the origins, i.e., the sum of rates from one origin to all
destinations is 1. As OD pairs are bidirectional (roads can
have both directions), the right-hand driving rule is used
to separate direction, i.e., for a vertical pair, the north-to-
south direction is to the left, and for an horizontal pair, the
east-to-west direction is on top. The data agrees with the
expected behavior, as roads with high importance receive a
much higher rate than least important ones. For instance, the
OD pairs (1,5) and (5,1) are connected by the most important
artery in this zone which sees very high flows, and have the
highest OD rates in the figure. A similar behavior is seen for
pairs (2,9) and (5,8).

D. Floating car data

Floating Car Data (FCD) refers to vehicle traces that are
collected for a subset of drivers, usually obtained from GPS
devices. For the region of interest, data is obtained through
a third party, Tomtom2, a well-known company for assisted
navigation. Due to privacy protection regulations, we do not
have access to direct GPS traces. Instead, this information

2https://www.tomtom.com/

Fig. 6: Speed data in the GTL-Ville. Top: Colored lines
correspond to the roads with speed data in real time. Bottom:
Time plot of a selected road for one day.

is aggregated and only the average speed of all reporting
vehicles in a road section during a time period is available,
for a subset of roads in the network. This data is obtained
in real-time with a frequency of 1 min.

Figures 6 shows the available speed in the GTL-Ville
platform. In the map representation, the colored lines show
the speed data for each road in real time (green are high
speed values and red are low speed values). The bottom of
the figure shows a time plot of the speed of one road for one
day.

V. RESULTS

For validation purposes, we consider the flow and speed
data collected during February 8th, 2021. First, we use
Algorithm 1 to calculate the paths between each OD pair,
using Kmin = 2, Kmax = 10, and ϵ = 1.2. This resulted in
a total of 3437 paths.

The OD flow vector ψ was computed using the OD
rates as described in Section IV-C, in conjunction with the
boundary flows from Section IV-A, averaged during the
entire day. As there are more roads at the boundaries than
OD rate measurement sites, each road was mapped to the
closest OD measure.

We consider three methods for calculating the TR values:
a) Method 1: Using regular TA: With the set of paths

P and the OD flow vector ψ as input, (9) is solved to
calculate the path flow vector f , and then (15) to estimate the
TRs. For this, we used the well-known open-source convex
optimization solver CVX in Matlab [18], [19].

b) Method 2: Using TA with TR measures: This follows
an analogous procedure as the Method 1 but uses the
modified cost function (14) with the TR data described in
Section IV-B. The heuristic value γ = 1/|T ∗| = 1/142 was
used.



c) Method 3: Using FRC: For comparison purposes,
we also used the TR values produced by the node-based
approach we proposed in [3], which makes use of the FRC.
In this case, we consider 7 different classes, going from 1
(most important, e.g. Highways) to 7 (least important, e.g.
local residential roads). To each class c, a weight θc is given,
and each TR rFRC

i,j is computed as

rFRC
i,j = θcj

/ ∑
k|(i,k)∈T

θck , (21)

where ci is the FRC of road i, and the superindex is to specify
the TR estimation method. The weights θ are computed
through a flow-matching optimization problem using the
measured boundary flows and imposing the measured TRs
as constraints (see [3] for details). This method assumes that
vehicles tend to turn to the most important road in each
intersection, independent from destination.

A. Turning ratio estimation

TABLE I: Error distribution of TRs using route-based
approaches

Method Mean Std. Deviation
Regular TA 0.7% 24.9%
TA with TR measures 0.7% 23.8%

The measured TR values were compared with the esti-
mates provided by the TA based methods. The resulting er-
rors followed a Gaussian distribution with parameters shown
in Table I. The route-based TR estimates are seen to be close
to the measured values. As expected, the inclusion of TR
data in the TA problem decreases the standard deviation of
the errors by 4.4%. The errors can be further decreased by
increasing the value of γ, although too high values could
produce unrealistic results by artificially increasing the total
travel time of routes chosen by vehicles.

B. Flow and density estimation

The TR estimates using the three methods previously
described were used to estimate the dynamic flow and density
in each road of the network using (18) and (19). For valida-
tion, we used the flow measurements for the roads equipped
with validation sensors. Figure 7 shows the measured flow
values as ground truth, and the dynamic flow estimates using
the TR values estimated using the three methods.

In general, the three approaches provide close estimates of
the ground truth flow values. Note that for sensors R15 EW
and R16 NS, the use of the TA approach (both with and
without TR measures) significantly improves the estimation
accuracy, especially when TR measures are included. As
error metrics, we use the Relative Mean Error (RME)

RMEi =

∣∣∣∣∣
∫ T

0

(φout
i (t)− φ̂out

i (t))dt

∣∣∣∣∣
/∫ T

0

φout
i (t)dt,

(22)
and the Relative Absolute Error (RAE)

RAEi =

∫ T

0

∣∣φout
i (t)− φ̂out

i (t)
∣∣dt/∫ T

0

φout
i (t)dt (23)

Fig. 7: Time series of the real and estimated flows using
different TR values.

where φout
i (t) and φ̂out

i (t) are the real and estimated flows
in road i, respectively. To take into account the data from all
cross-validation sensors, we use the Cumulative Distribution
Function (CDF) for each metric: y = CDF(x) is the fraction
of roads y which have an error value less than or equal to
x. Figure 8 shows the resulting CDF for both error metrics
for all the validation sensor locations.

In general, the TR values obtained using route-based TA
approaches outperform the node-based approach, and the
inclusion of TR measures in the TA approach improves the
accuracy even more: 80% of the roads have an RME below
38%, 29%, and 21%, for Methods 3, 1 and 2, respectively.
Comparing the TR estimates from Methods 1 and 3, both
have very similar behavior up to an RME of 28% and RAE
of 35%. From this point on, the estimates from Method 3
start producing higher errors, except for one location, where
Method 1 produces a high jump in RME from 33% to
72%. However, this outlier is not present in the results of
Method 2. This is because the high-error location in Method
1 corresponds to a sensor in the interior of the network
R16 NS, whose real behavior is not correctly captured by
only minimizing traveling time. By inclusion of the local
TR information in the optimization problem, more detailed



Fig. 8: Relative error CDF for flow estimation using different
methods for TR computation.

user route selection can be recovered increasing the accuracy,
as seen in the Method 2 results.

VI. CONCLUSIONS

In this paper, we have explored the use of route-based traf-
fic assignment methods under user equilibrium, to estimate
turning ratios at intersections. These estimates are then used
in a computationally efficient and scalable dynamic flow and
density estimator. We also consider a slight modification of
the Assignment problem such that direct measurements of a
set of Turning Ratios can be used when available. To validate
these methods, we use real traffic data collected in the city
of Grenoble and then compared it against a local node-based
approach to estimate Turning Ratios, which we proposed in
a previous work.

The results show that in general, the route-based ap-
proaches outperform the accuracy of the flow estimates com-
pared to the considered node-based method. Furthermore, the
case where Turning Ratio measurements are added to the
classical methods provided the best reconstruction, greatly
surpassing the other methods. The price to pay for the
increased accuracy of route-based methods is the increase
in computational cost, as the listing of paths between all
Origin-Destination pairs and the TA optimization problems
can incur a lot of computations. However, these computations
can be performed offline with low-frequency average inputs.
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