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ABSTRACT

Context. Statistical properties of the cosmic density fields are to a large extent encoded in the shape of the one-point density probability
distribution functions (PDF) as measured in surveys. In order to successfully exploit such observables, a detailed functional form of
the covariance matrix of the one-point PDF is needed.
Aims. The objectives are to model the properties of this covariance for general stochastic density fields and for stochastic fields that
reproduce the properties expected in cosmology. The accuracy of the proposed forms is evaluated in specific cases.
Methods. The study was conducted in a cosmological context and determined whether the density is defined absolutely or relatively
to the sample mean density. Leading and subleading contributions were identified within a large class of models, the so-called hierar-
chical models. They come from either large or short separation contributions. The validity of the proposed forms for the covariance
matrix was assessed with the help of a toy model, the minimum tree model, for which a corpus of exact results could be obtained
(forms of the one- and two-point PDF, large-scale density-bias functions, and full covariance matrix of the one-point PDF).
Results. It is first shown that the covariance matrix elements are directly related to the spatial average of the two-point density PDF
within the sample. The dominant contribution to this average is explicitly given for hierarchical models (coming from large scale
contribution), which leads to the construction of specific density-bias functions. However, this contribution alone cannot be used to
construct an operational likelihood function. Subdominant large-scale effects are found to provide corrective terms, but also a priori
lead to limited information on the covariance matrix. Short distance effects are found to be more important but more difficult to derive
as they depend more on the details of the model. However, a simple and generic form of these contributions is proposed. Detailed
comparisons in the context of the Rayleigh-Levy flight model show that the large-scale effects capture the bulk of the supersample
effects and that, by adding the short-distance contributions, a qualitatively correct model of the likelihood function can be obtained.
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1. Introduction

In the context of cosmological studies, the concept of counts-
in-cells statistics has been put forward for a long time as a
unique way to quantify the statistical properties of the cosmolog-
ical fields (White 1979; Colombi et al. 1995; Balian & Schaeffer
1989; Bernardeau & Schaeffer 1999). It was then shown in par-
ticular that counts-in-cells statistics, which represents a discrete
representation of the local density probability distribution func-
tion (PDF), could be directly related to the correlation hierarchy
of the density field.

Interest in these types of observables was recently renewed
for several reasons. The size of the surveys makes accurately
measuring these quantities more realistic. This is already the
case for surveys such as the Dark Energy Survey (DES col-
laboration; Abbott et al. 2018), the Kilo-Degree Survey (KIDS;
Heymans et al. 2021), and the Hyper Suprime Cam (HSC;
Hikage et al. 2019). The future promises even larger and
more powerful surveys such as Euclid (Laureijs et al. 2011;
Amendola et al. 2018) and the Rubin Observatory (Ivezić et al.
2019). Moreover, the theoretical foundations for these construc-
tions (at least in the cosmological context) has been considerably
strengthen with the realization that the large-deviation theory
(LDT; for a general review, see Touchette 2011) could success-

fully be invoked, as shown in Bernardeau & Reimberg (2016).
It clarifies the applicability of the theory to the cosmological
density field and places previous works on a much more solid
foundation (Valageas 2002; Bernardeau et al. 2014). The abil-
ity of density PDF to constrain cosmology was emphasized in
Codis et al. (2016b) and completed in Friedrich et al. (2020) and
in Uhlemann et al. (2020), who showed that these observable
could efficiently constrain the neutrino mass or primordial non-
Gaussianities. Finally, although the matter PDF is not a direct
observable, as is matter density, it can be closely approached
with the help of luminous tracer statistics (Repp & Szapudi
2020), more convincingly in weak-lensing fields, as advo-
cated in numerous recent papers (Barthelemy et al. 2021;
Bernardeau & Valageas 2000), or with combined approaches
such as density-split statistics (Gruen et al. 2018; Friedrich et al.
2018; Brouwer et al. 2018), which proved to be particularly
promising.

The construction of a full theory of these observable requires
a detailed analysis of its global error budget, however, due
to finite-size surveys, imperfect tracers, and so on. Some of
these aspects have been explored in early studies such as
Szapudi & Colombi (1996) and Szapudi et al. (1999), but a full
theory is still lacking. The developments presented in this paper
are made in this context. More precisely, the purpose of this
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study is to explore what determines the expression of the covari-
ance of data vectors whose elements are local quantities, such
as the density contrast and density profiles, in cosmological con-
texts, that is, in classical random fields with long-range corre-
lations. Derivations were made furthermore assuming statistical
homogeneity and isotropy. The domain of application encom-
passes both counts-in-cells statistics, basically 2D or 3D counts
of density tracers, or proxies to projected densities such as mass
maps for weak-lensing tomographic observations.

In order to gain insights into the different contributions and
the effects that might contribute to the covariance, we rely on the
use of the hierarchical models to derive results we think rather
general. The immense advantage of using such models is that
they naturally incorporate many of the features expected in den-
sity cosmological fields (e.g., the magnitude of the high-order
correlation functions), and there are also models for which many
exact results can be obtained in particular for counts-in-cells
statistics. The goal of these constructions is to eventually infer
precisely what the performance of PDF measurements would be
on the determination of cosmological parameters, taking advan-
tage of results such as those found in Boyle et al. (2021), which
give the response function of these observable to various cosmo-
logical parameters

Section 2 is devoted to the presentation of the general frame-
work. The subsequent section explores different contributions,
from large-scale effects with the derivation of several bias func-
tions to short-distance contributions. Results are derived in a
framework as general as possible, including discrete noise asso-
ciated with the use of a finite number of tracers. Section 4
presents the general hierarchical models, and more specifically,
the Rayleigh-Levy flight model that we use as a toy model to
evaluate the performances of approximate schemes. In Sect. 5,
simplified models for the covariance matrix are presented and
evaluated with the help of a set of numerical experiments.
Section 6 summarizes the results that have be found and spec-
ifies their expected range of application.

The text is complemented by appendices that contain a large
amount of material. They present the hierarchical models, their
mathematical description, and the mean-field approximation that
is used throughout for explicit computations. Appendix C is
more specifically devoted to the minimal tree model and the con-
struction of the exact mean-field covariance matrix.

2. General framework. Construction of covariance
matrices

The purpose of this section is to show how the elements of the
covariance matrix are related to the joint density PDFs within a
given survey. We first formalize this relation in a general frame-
work before we explore its consequence in the context we are
interested in. We assume we are interested in the PDF of some
local quantity, µ, that can be evaluated within a survey, thus
defining a field µ(x) throughout the survey. The a priori typi-
cal example of this quantity is the density (see below for a more
precise illustration of what this quantity could be). The value of
µ is assumed to lie in some ensembleM (that can be simply the
real numbers), and the data vector we are interested in consists
of the probabilities pi that µ lie within the subsets Mi (which
are a priori nonzero withinM). The one-point PDF of µ is then
given by

pi(x) =

∫
Mi

dµ P(µ, x), (1)

if P(µ, x)dµ is the PDF of µ at location x. pi(x) is then assumed
to be independent of x in the context we are interested in, for
which statistical homogeneity is assumed. More formally, we
can define the characteristic function χi(x), which takes the
value 1 where µ(x) ∈ Mi and 0 otherwise.

An estimation of pi would then be given by the volume frac-
tion of the survey where µ(x) ∈ Mi. We note this estimate as
Pi

1,

Pi =
1
V

∫
dx χi(x), (2)

which is then itself a random variable, the properties of which
we are interested in. More precisely, we would like to derive an
operational form for the likelihood function of a set of Pi vari-
able. We limit our investigation here to the construction of the
likelihood from the covariance matrix, assuming that the likeli-
hood of Pi is close enough to a Gaussian distribution2.

The ensemble average of Pi is

〈Pi〉 =
1
V

∫
dx 〈χi(x)〉 =

1
V

∫
dx pi(x) = pi. (3)

We can further define a joint PDF of the same field,
P(µ, x; µ′, x′), which is the joint PDF of µ and µ′ in locations
x and x′. Defining pi j(x, x′) as the joint ensemble average of
P(µ, x; µ′, x′), we have

pi j(x, x′) =

∫
Mi

dµ
∫
M j

dµ′ P(µ, x; µ′, x′). (4)

The elements of the covariance matrix of Pi are then formally

〈PiP j〉 =
1

V2

∫
dx

∫
dx′ 〈χi(x)χ j(x′)〉

=
1

V2

∫
dx

∫
dx′ pi j(x, x′) ≡ pi j. (5)

This gives the relation between the covariances and joint PDF. If
pi j(x, x′) depends only on the relative distance between x and x′,
this expression can be recast in terms of the distribution of such
distances, Ps(rd), in the form

〈PiP j〉 =

∫
drd Ps(rd)pi j(rd). (6)

The precise form of Ps(rd) depends on the detail of the survey.
Explicit forms can be given in case of simple regular surveys
such as square surveys3. In the context of statistically homoge-
neous and isotropic random fields, this latter expression is used.

1 This is an ideal estimate in the sense that µ is evaluated in an infinite
number of locations. We therefore neglect here the impact of measuring
µ on a finite number of locations when evaluating Pi. Regarding this
aspect, a specific derivation that takes a finite number of measurements
into account can be found in Codis et al. (2016a).
2 Whether this is a correct assumption is difficult to assess in general.
It probably depends on the detailed properties of the setting. The Con-
clusion section contains further comments on this aspect.
3 For a square survey of unit size (with nonperiodic boundary condi-
tions), the distance distribution function Ps(rd) is given by

Ps(rd) =


2rd((rd − 4)rd + π) 0 < rd < 1

−2rd

(
2d + r2

d − 4
√

r2
d − 1

−2 sec−1

(
rd√
r2
d−1

)
+ 2 sec−1(rd)

)
1 < rd <

√
2,

as can be obtained after integrating over three of four of the position
coordinates.
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In particular, we wish to determine the configurations that con-
tribute most to pi j. They obviously depend on both the random
processes we consider and on the definition of Mi and M j. In
order to be more specific, we assume in the following that µ is
a local density assigned to be in bins (i) centered on ρi and with
width dρi (assumed a priori to be arbitrarily small), so that

Pi = P(ρi)dρi. (7)

If necessary, local densities could be obtained after the field µ(x)
has been convolved with a window function WR(x), associated
with a scale R that is

ρ(x) =

∫
dx′ µ(x − x′)WR(x′). (8)

It is then assumed R is small compared to the sample size in
order to identify what the leading contributions to the joint PDFs
might be. In practice, WR might also be a simple top-hat window
function, but this is not necessarily the case. It could be more
elaborated filters, such as compensated filters (of zero average),
such as those introduced for cosmic shear analysis (Schneider
1996; Kaiser 1998; Bernardeau & Valageas 2000).

We furthermore allow the estimated densities ρi to be defined
with respect the overall density of the sample ρs,

ρs =
1
V

∫
dx µ(x). (9)

For instance, we could be interested in ρ̂i ≡ ρi/ρs or ρi ≡

ρi−(ρs−1),which are frequently encountered situations in praxis.
Then ρs is itself a random variable whose correlation with ρ(x)
ought to be taken into account. We then need to explore the prop-
erties of either P(ρi, ρ j; x, x′) or P(ρs, ρi, ρ j; x, x′) from which
functions of interest can be built, that is,

P(ρ̂, ρ̂′) =

∫
dρs ρ

2
s P(ρs, ρ̂ρs, ρ̂

′ρs; x, x′) (10)

P(ρ, ρ′) =

∫
dρs P(ρs, ρi − 1 + ρ′, ρ′ − 1 + ρs; x, x′), (11)

from which the covariance elements such as

Cov(ρi, ρ j)dρidρ j =

∫
drd Ps(rd)P(ρi, ρ j; rd)dρidρ j

− P(ρi)P(ρ j)dρidρ j (12)

can be derived and whose properties we wish to explore. We
wish in particular to build a model of the likelihood function
from such a covariance, requiring full knowledge of its eigen-
values and eigendirections. In this respect, it is implicit that the
number of bins (i) to be used is finite. We nonetheless present at
least in this first section the results in the continuous limit for ρi.
It is finally to be noted that as stated before, we restrict our anal-
ysis to covariance matrices, but higher-order correllators might
also be considered by generalizing the relation (5) to a higher
number of variables.

3. PDF covariances in the context of cosmological
models

3.1. Modeling the joint PDF

To make progress, we need to make further assumptions about
the mathematical structure of the joint PDF. In the following, we
assume in particular that joint PDFs can be obtained from their

cumulant generating functions (CGF)4, ϕ(λi, λ j; rd). The latter is
defined as

exp
(
ϕ(λi, λ j; rd)

)
= 〈exp

(
λiρi + λ jρ j

)
〉

=

∫
dρidρ j P(ρi, ρ j; rd) exp

(
λiρi + λ jρ j

)
, (13)

and it is assumed that this relation can be inverted to give the
joint PDF from Laplace inverse transformations,

P(ρi, ρ j; rd) =

∫
dλi

2πi
dλ j

2πi
e−λiρi−λ jρ j+ϕ(λi,λ j;rd), (14)

where the integrations are made a priori along the imaginary
axis. The CGFs themselves are closely related to the averaged
correlation functions of the underlying field. In the following,
we develop models for which these correlation functions can be
computed precisely.

3.2. Large-distance contributions to the joint density PDF

We start by assuming that covariances are dominated by long-
range correlation and not by proximity effects (e.g., densities
taken in nearby regions). Whether this assumption is correct
obviously depends on the particular model and setting we
consider, as we detail below. There are large sets of mod-
els for which general expressions can be given in this regime.
They are the so-called hierarchical models, originally intro-
duced in Peebles (1980), discussed in more detail in Fry
(1984a,b), Balian & Schaeffer (1989), Bernardeau & Schaeffer
(1992), and further formalized in Bernardeau & Schaeffer
(1999) as described below; it is also true in the quasilinear
regime as originally pointed out in Bernardeau (1996) and
derived in more detail in Codis et al. (2016a). In these regimes,
we obtain the following functional form (see previous references
and the detailed derivation in Appendix B):

ϕ(λs, λi, λ j) = λs + ϕ0(λi) + ϕ0(λ j)

+
λ2

s

2

∫
dxsdx′s ξ(xs, x′s) + λs

∫
dxs ξ(xs, x1)ϕ1(λi)

+ λs

∫
dxs ξ(xs, x2)ϕ1(λ j) + ϕ1(λi) ξ(x1, x2)ϕ1(λ j), (15)

where ξ(x, x′) is the two-point correlation function of the den-
sity field at positions x and x′, and ϕ0(λ) and ϕ1(λ) are specific
functions of λ that depend on the details of the model.

Then, setting λs to zero, we can easily obtain the expression
of the joint PDF at leading order in ξ(rd),

P(ρi, ρ j; rd) = P(ρi)P(ρ j)
(
1 + b(ρi)ξ(rd) b(ρ j)

)
. (16)

Here P(ρi) is the one-point density PDF (i.e., implicitly at scale
R), and b(ρi) is the density-bias function (to be distinguished
from the standard halo-bias function). It also depends on ρi (and
on the scale R) so that in the previous expression, the dependence
on ρi, ρ j, and rd can be factorized out.

To be more precise, P(ρi) is given by the inverse Laplace
transform of the CGF (see, e.g., Balian & Schaeffer 1989 and
Bernardeau 2013 for a detailed derivation of this inversion),

P(ρi) =

∫
dλ
2πi

exp (−iλρi + ϕ0(λ)), (17)

4 This is not necessarily so, as exemplified in Carron (2011),
Carron & Neyrinck (2012).
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where ϕ0(λ) is the CGF of the density taken at scale R (i.e., for
the filter WR). The function b(ρi) is defined through a similar
relation,

b(ρi)P(ρi) =

∫
dλ
2πi

ϕ1(λ) exp (−iλρi + ϕ0(λ)). (18)

The function ϕ1(λ) can be explicitly computed in the context
of perturbation theory calculations (Codis et al. 2016a). This is
the case also for models in the so-called hierarchical models (see
appendices). In the latter case, these calculations can be extended
to higher order, as we describe below, providing ways to better
assess the domain of validity of this expansion.

According to the previous relation, this implies that this form
translates into the expression of the covariance coefficients for
the density PDF. More precisely, we expect

Cov(ρi, ρ j) = b(ρi)P(ρi) ξs b(ρ j)P(ρ j), (19)

where ξs is the average value of the two-point correlation func-
tion ξ(rd) within the sample.

It is to be noted, however, that this is true if
– The term in ξs is indeed the leading contribution of the

expansion (15). This is obviously not the case for samples
with periodic boundary conditions, for which ξs vanishes by
construction;

– The density is defined regardless of the density of the sample.
Its expectation value therefore does not coincide with ρs for
a given sample.

It can also be noted that in the Gaussian limit, we have b(ρi) =
δi/ξ. Applying the relation (16) to the density within one cell
and to the sample density ρs = 1 + δs leads then to the following
expression for the conditional expression of density PDF,

P(ρi|ρs) = P(ρi) (1 + δs b(ρi)) . (20)

This leads to the interpretation of the function b(ρi) as the
response function of the density PDF to the sample density. This
means that although the density-bias function cannot be derived
from the density PDF alone, we should be able to derive it if
we are in possession of an operational method to compute the
density PDF for arbitrary cosmological parameters (in a way
similar to the derivation of halo-bias function as pioneered in
Mo & White 1996). Undoubtedly, this result is closely related
to the so-called supersample effects (as described for the power
spectra covariance in Takada & Hu 2013), that is, the impact of
modes of scale comparable to or larger than the sample size.
This is not necessarily their only contribution (because subdom-
inant large-scale contributions can also contribute to the covari-
ance), however, but likely to be the most important contribution,
as described below.

The density-bias function obeys the following consistency
relations:∫

dρ b(ρ)P(ρ) = 0, (21)∫
dρ ρ b(ρ)P(ρ) = 1, (22)

as initially pointed out in Bernardeau & Schaeffer (1992).

3.3. Case of relative densities

The previous formula applies to the local densities, evaluated
regardless of the sample density. It does not apply in particular to

standard settings (e.g., densities measured out of galaxy counts)
where the density is defined with respect to the mean density of
the sample. To address this case in particular, we should consider

ρ̂i =
ρi

ρs
(23)

as the observable for which the covariance is to be computed. In
this case, the formal derivation of the PDFs is presented in the
appendix, and it leads to

P(ρ̂i) =

∫
dλi

2πi

[
∂ϕ

∂λs

]∣∣∣
λs=−λi ρ̂i

exp
[
ϕ(−λiρ̂i, λi)

]
(24)

P(ρ̂i, ρ̂ j) =

∫
dλi

2πi
dλ j

2πi

( ∂ϕ∂λs

)2

+
∂2ϕ

∂λ2
s

∣∣∣
λs=−λi ρ̂i−λ j ρ̂ j

× exp
[
ϕ(−λiρ̂i − λ jρ̂ j, λi, λ j)

]
. (25)

We then use relation (15) to compute the form of this func-
tion. At this stage, it is to be noted that the expressions∫

dx0dx′0 ξ(x0, x′0),
∫

dx0 ξ(x0, x1) and ξ12 all take the same aver-
aged value when integrated over the sample. We note here this
common value as ξs . Inserting the resulting expressions of the
CGF in both the expressions of P(ρ̂i) and P(ρ̂i, ρ̂ j) and expanding
all terms at linear oder in ξs, we obtain

P(ρ̂i, ρ̂ j) − P(ρ̂i) P(ρ̂ j) = ξs

∫
dλi

2πi
dλ j

2πi

× (1 + ϕ1(λi) − λiρ̂i)
(
1 + ϕ1(λ j) − λ jρ̂ j

)
× exp

[
−λiρ̂i − λ jρ̂ j + ϕ0(λi) + ϕ0(λ j)

]
. (26)

This leads to the definition of the first sample-bias function,

bs1(ρ̂i)=
1

P(ρ̂i)

∫
dλ
2πi

(1 + ϕ1(λ) − λρ̂i) exp
[
−λρ̂i + ϕ0(λ)

]
, (27)

which can be re-expressed in terms of the density-bias function
defined in Eq. (18) and the derivative of P(ρ̂i) with respect to ρ̂i

bs1(ρ̂i) = b(ρ̂i) + 1 +
∂ log(P(ρ̂i))
∂ log ρ̂i

. (28)

In this case, the covariance matrix elements are then expected to
be given by

Cov(ρ̂i, ρ̂ j) = bs1(ρ̂i)P(ρ̂i) ξs bs1(ρ̂ j)P(ρ̂ j). (29)

Remarkably, bs1(ρ) can entirely be expressed in terms of b(ρ).
For the sake of completeness, we also consider the case of ρi =
ρi − (ρs − 1). In this case, it is easy to show that

P(ρi) =

∫
dλi

2πi
exp

[
−λiρi + ϕ(−λi, λi)

]
(30)

P(ρi, ρ j) =

∫
dλi

2πi
dλ j

2πi

× exp
[
−λiρi − λ jρ j + ϕ(−λi − λ j, λi, λ j)

]
. (31)

Following the same approach as for the previous case, the
leading-order expression in ξs of the connected joint PDF is

P(ρi, ρ j) − P(ρi) P(ρ j) = ξs

∫
dλi

2πi
dλ j

2πi

× (ϕ1(λi) − λi)
(
ϕ1(λ j) − λ j

)
× exp

[
−λiρi − λ jρ j + ϕ0(λi) + ϕ0(λ j)

]
. (32)
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It leads to the definition of the second sample-bias function,

bs2(ρi) = b(ρi) +
∂ log(P(ρi))

∂ρi
, (33)

so that

Cov(ρi, ρ j) = bs2(ρi)P(ρi) ξs bs2(ρ j)P(ρ j). (34)

The three bias functions are therefore closely related. Although
the density-bias function b(ρ) cannot be derived from the shape
of P(ρ) alone, as mentioned before, the relations between b(ρ)
and either bs1(ρ) and bs2(ρ) depend on the PDF alone. Further-
more, the two relative density bias functions obey the following
consistency relations:∫

dρi bs#(ρi)P(ρi) = 0 (35)∫
dρi ρi bs#(ρi)P(ρi) = 0. (36)

The second relation is at variance with the corresponding rela-
tion (22) for the density-bias function. It indicates that for typical
values of ρP(ρ), the sample bias functions, bs#(ρ), are likely to
be smaller than the density-bias function b(ρ).

3.4. Structure of the covariance matrix

The consequences of these formulae on the structure of the
covariance matrix are illustrated below with the help of the
Rayleigh-Levy flight model. Figure 3 compares the results from
exact derivations of the covariance matrix with these prescrip-
tions. The diagonal parts of the covariance matrices are well
accounted for by these formulae. The root mean square of the
measured local density PDF in particular exhibits the expected
density dependence, at least for mild values of the density.

In all the formulae (19), (29), and (34), the expression of
the covariance exhibits a simple structure, as it is factorizable
in the two densities. This implies, for instance, that the reduced
covariance matrix

Covreduced(ρi, ρ j) =
Cov(ρi, ρ j)√

Cov(ρi, ρi)Cov(ρ j, ρ j)
(37)

has an extremely simple structure: it is given by the sign
of the product of the bias functions (i.e., sign[b(ρi)b(ρ j)],
sign[bs1(ρi)bs1(ρ j)], and sign[bs2(ρi)bs2(ρ j)] for the three dif-
ferent measurement strategies). This leads to the butterfly-like
structure in the plotted matrices, as illustrated in Fig. 4. This
simple form betrays the fact that the density covariance is only
poorly known. To be more specific, formulae (19), (29), and
(34) give only a single eigendirection of the covariance matrix
(namely b(ρi)P(ρi)) and the amplitude of a single eigenvalue
associated with it. The numerical calculations suggest that it is
the leading one when ξs does not vanish, as illustrated on Fig. 7.
These formulae do not offer any indication of the amplitude of
the covariance in orthogonal directions, however. Taken at face
value, they imply that the other eigenvalues all vanish, prevent-
ing the covariance matrix from being invertible. These formu-
lae therefore cannot be used alone to model the covariance for
practical purposes, and complementary contributions have to be
derived from other (and a priori subdominant) effects.

3.5. Beyond leading-order effects

In the previous subsection, we identified the long-distance lead-
ing contributions. As mentioned before, this leads to only lim-
ited information of the covariance structure. This difficulty is
even more acute for covariances evaluated in numerical exper-
iments consisting of a collection of independent samples, each
of them with periodic boundary conditions (this does not have
to be so, but it is often the case in practice). By construction,
the mean correlation function within the sample then vanishes,
ξs → 0, making the term we have computed identically zero.
All these considerations indicate that further contributions need
to be identified. The identification of the next-to-leading order
effects in Eq. (16) is difficult to do a priori, however:

– One natural next-to-leading contribution is obtained by tak-
ing into account second-order terms in ξ(d) in Eq. (16),
that is, by considering doubles lines between cells in a
diagrammatic representation. This would induce a term of
about ξ(d)2, whose average never vanishes5. As shown in the
appendix, these contributions can be formally derived in the
context of the hierarchical models. This leads to correction
terms that can be organized in a sum of factorized terms.
Therefore, although it can indeed provide corrective terms to
the covariance matrix, only a limited number of eigendirec-
tions can be generated.

– Other contributions naturally come from proximity effects
due to the fact that cells are finite, and could even overlap,
which makes the expansion in ξ(d) ineffective. In a diagram-
matic point of view, they are due to the fact that many more
diagrams contributed when cells are too close. This has dra-
matic effects for overlapping cells. For hierarchical models,
an approximate form can be used to help model these effects,
which we use below.

– Finally, effects due to the fact that discrete tracers are used
in count-in-cells statistics might also play a role at short dis-
tances. They are also tentatively modeled below.

In the following, we propose some modeling of these effects and
explore how they depend on the properties of the survey.

3.5.1. Joint PDF at short distances

There are no general forms for the joint PDF at close distance.
The hierarchical models suggest the following form (derived
from the saddle point approximation, which is valid for mod-
erate values of ξ and of the density contrast), however:

Pshort dist.(ρi, ρ j)dρidρ j = P(ρm)

× exp

− δ2
ρ

ραm∆ξ(d)

 dρmdδρ√
πραm∆ξ(d)

, (38)

where ρm = (ρi + ρ j)/2 and δρ = (ρi − ρ j)/2, and where
α is model-dependent parameter. In other words, the PDF of
the difference between ρi and ρ j can be described by a sim-
ple Gaussian with a known width driven by the expression of
∆ξ(d) ≡ ξ − ξ12(d), provided it is small compared to ξ. We note
that ∆ξ(d) obviously vanishes at d = 0, it then leads to a Kro-
necker δ function at zero separation as expected, and generically
scales like d2 at short distances6. Interestingly, for the minimal
5 In the minimal tree model, it is possible to compute these terms in
the so-called mean-field approximation (see appendix), but they do not
lead to a positive definite covariance matrix and therefore cannot be the
sole, or dominant, contribution to the covariances.
6 This limited form would induce a minimum contribution to
Cov(ρi, ρi) given by ∆ρi/P(ρi), where ∆ρi is the bin size in density.
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tree model the form (38) is exact for α = 1 (see appendix). In
general, this is also the expected form based on the saddle point
approximation (valid when ξ is small) for generic hierarchical
tree models. The value of α can be identified from small-order
cumulants,

α =
2
3

S 3, (39)

where S 3 is the reduced third-order cumulant,

S 3 =
〈δ3〉

〈δ2〉2
. (40)

This form is probably not very accurate in general. It can be used
to model the impact of close distances to the covariance matrix,
however, as shown below.

3.5.2. Poisson noise and minimum separation

A further contribution to this joint PDF can come from dis-
crete effects that arise because the density is evaluated from the
counting of discrete tracers (as explored in Szapudi & Colombi
1996 or more recently in Repp & Szapudi 2021). In this sub-
section, we assume that the density corresponds to the density
obtained after application of a top-hat filter and that tracers are
Poisson realizations of continuous fields (although it is possi-
ble to encounter sub- or over-Poissonnian noises; Friedrich et al.
2018). The use of other filters can be explored but would require
specific developments that we do not pursue here. Within such
hypotheses then, the joint distribution of counts-in-cells Ni is
given by the convolution of the joint density PDF, P({ρi}), in
the continuous limit convolved by Poisson counts-in-cells as

P({Ni}) =

∫
Πidρi PPoisson(Ni; N iρi)P({ρi}), (41)

where PPoisson(N; N) is more precisely the probability of having
N tracers in a cell where the mean density of tracers is N. In
practice, N i is given by nVi, where n is the number density of
tracers and Vi is the volume of the cell Vi.

Discrete effects would then induce further scatter between
the estimated values of ρi and ρ j. The latter are given by Poisson
noise induced by the nonoverlapping parts of the cells, as shown
in Szapudi & Colombi (1996), further contributing to the scatter.
The scatter in the difference in the number of points is

σ2
Poisson =

2

N
ρm fe(d). (42)

It can be incorporated as a contribution to the variance of the
PDF of δρ of the form

σ2
Poisson =

1

2N
ρm fe(d), (43)

where fe(d) is the fraction of the volume of each cell that does
not overlap with the other as a function of the cell distance. For
short distances (i.e., for about d . R), it is in the 2D case given
by

fe(d) =
2d
πR

. (44)

The expression (43) is then a priori to be added to the variance
term that appears in Eq. (38) so that the total variance for the
density difference reads

σ2
δρ

(d) =
1
2
ραi ∆ξ(d) +

1

2N
ρi fe(d). (45)

Equation (38) then fully encodes the fact that nearby cells
are likely to have similar densities. This encodes, for instance,
that nearby cells are within the same haloes. This contribution
is expected to enhance the covariance terms. It shows that the
amount of information is limited at small scales: there is there-
fore a minimum separation between cells smaller than which no
gain in precision is expected of PDF measurements. The mini-
mum distance depends on the bin size: dmin is the distance such
that the densities in two cells separated by less than dmin are
almost certainly in the sale density bin. dmin therefore depends
on the bin width ∆i. From Eq. (45), it is possible to infer this
value. We desire

σ2
δρ

(dmin) � ∆2
i . (46)

This suggests that a minimum distance between cells can be
adopted, given by

dmin Poisson =
π∆2

i

N
R. (47)

The other upper limit comes on d from the expression of ∆ξ as a
function of d. The latter depends on both the shape of the power
spectrum and on the filter that is used. In general (e.g., for a
Gaussian filter), ∆ξ(d) scales like d2/R2, where R is the filtering
radius, with a coefficient cns that depends on the power spectrum
index ns and is proportional to its amplitude. Top-hat filters have
different analytical properties. We give here the formal expres-
sion of ∆ξ(d) at 2D for a power-law spectrum of index ns,

∆ξ(d)

ξ
= −

2ns−1Γ
(
1− ns

2

)
Γ
(
2− ns

2

)
Γ
(

1
2 (ns−1)

)
√
πΓ

(
1
2−

ns
2

)
Γ
(

3
2−

ns
2

)
Γ
(

ns
2 + 1

) (
d
R

)1−ns

≈ 0.72
d3/2

R3/2 for ns = 0.5. (48)

This is the situation we encounter below in the numerical exper-
iments we perform. This leads to the following form:

dmin halo =

 ∆2
i

0.72 ξ

2/3

R. (49)

It is to be noted that it can be in practice a rather short distance,
shorter than the filtering scale R. For instance, for a bin width of
1/4, a variance of about unity, dmin halo is about R/5.

Equation (38), together with the expressions of the bias func-
tions described above, is the main results of this paper. We illus-
trate below how they can be used to compute the covariance
matrices.

4. Hierarchical models

In order to illustrate the previous findings, we make use of toy
models for which explicit computations can be made.

4.1. General formalism

Hierarchical models are a class of non-Gaussian fields whose
correlation functions follow the so-called hierarchical ansatz,

ξp(r1, . . . , rp) =
∑

t∈trees

Qp(t)
∏

lines∈t

ξ(ri, r j), (50)

where the sum is made over all possible trees that join the p
points (diagram without loops), and the tree value is obtained
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by the product of a fixed weight (that depends only on the tree
topology) and the product of the two-point correlation functions
for all pairs that are connected together in the given tree. This
construction ensures that the average p-point function, ξp, scales

like the ξ
p−2

, where ξ is the averaged two-point function. More
precisely, there are S p parameters such that

ξp = S p ξ
p−2
. (51)

The precise value of the S p parameters depend on the Qp param-
eters and on the averages of the product of ξ(ri j) functions. A
very good approximation is to assume that the average of the
products of this function is given by the product of these aver-
ages. Then the S p coefficients depend solely on Qp,

S p =
∑

t

Qp(t). (52)

4.2. The (minimal) tree model

The tree models are based on a further assumption on the Qp
parameters. It is basically assumed that tree expressions can be
computed locally7, that is,

Q(t) =
∏

vertices∈t

νp, (53)

where νp is a weight attributed to all vertices with p incoming
lines (ν0 = ν1 = 1 for completion). In this formalism, the vertex
generating function is generally introduced,

ζ(τ) =
∑

p

νp

p!
τp. (54)

The minimal tree model is a model in which ν2 alone does not
vanish. In the minimal model8, its value is fixed and is given by
ν2 = 1/2, so that

ζRL(τ) = (1 + τ/2)2. (55)

Together with the Gaussian case (which corresponds to ζ(τ) =
1 + τ), this is the only case for which we are sure that it can be
effectively built (in the sense that other models may be unphysi-
cal).

In this model, it is possible to build the cumulant generating
function of the local density. For the one-point case, assuming
the mean-field approximation, the CGF is given by

ϕ(λ) = λ

[
ζ(τ) −

1
2
τζ′(τ)

]
(56)

with

τ = λ ξ ζ′(τ). (57)

This is not the result of large deviation principle calculations,
but of mere combinatorics, although it leads to the same formal

7 Perturbation theory results do not exactly follow this construction
as vertices are then dependent on the geometry of the incoming lines.
However, in this case, Qp values are indeed obtained from a product of
vertices.
8 it is minimal in the sense that it can be shown that ν2 cannot be
smaller than 1/2 in the strongly nonlinear regime (Peebles 1980).

transformation between the CGF and the vertex-generating func-
tion. In case of the minimal model, Eq. (57) takes a simple form
that can be easily solved. We finally have

ϕ(λ) =
τ(λ)

ξ
, τ(λ) =

λξ

1 − λξ/2
. (58)

The one-point PDF of the density can then be computed explic-
itly (see appendix),

P(ρ) =
4

ξ
2 exp

[
−

2

ξ
(1 + ρ)

]
0F1

(
2,

4ρ

ξ

)
, (59)

as can the density-bias function,

b(ρ) =
0F1

(
1, 4ρ

ξ

)
0F1

(
2, 4ρ

ξ

) − 2

ξ
, (60)

where ξ is the averaged two-point correlation function within the
cell.

4.3. Rayleigh-Levy flight model

The minimal tree model can be implemented with Rayleigh-
Levy random walks (or rather Rayleigh-Levy flights, as
described in Peebles 1980). This is a Markov random walk
where the PDF of the step length ` follows a power law,

P(`) ∼
1
`α
, (61)

with a regularizing cutoff at small separation, and where α satis-
fies

0 < α < 2. (62)

The sample points are then all the step points reached by the
walker.

More precisely, the cumulative distribution function of step
of length ` is

P(> `0) = 1, (63)

P(> `) =

(
`0

`

)α
for ` > `0, (64)

where `0 is a small-scale parameter. The two- and higher-order
correlation functions can then be explicitly computed. Starting
with a first point at position r0, the density of the subsequent
point (first descendant) at position r is given by

f1(r) =
α

2π
`α0

|r − r0|
2+α

in 2D space; (65)

f1(r) =
α

4π
`α0

|r − r0|
3+α

in 3D space. (66)

In the following, the dimension of space is denoted D. The den-
sity of the descendants, assuming there are an infinity of them,
of a point at position r0 is then given by a series of convolutions,

f (r0, r) = f1(r) +

∫
dDr1 f1(r − r1) f1(r1 − r0) + . . . , (67)
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with subsequent convolutions and where the integral is
done in the whole space. Defining the Fourier transform of
f1(r) as ψ(k),

ψ(k) =

∫
dDr f1(r) e−ik.r, (68)

which is then a function of k only, it is easy to see that

f (r0, r) =

∫
dDk

(2π)D eik.(r−r0)
[
ψ(k) + ψ2(k) + . . .

]
=

∫
dDk

(2π)D eik.(r−r0) 1
1 − ψ(k)

, (69)

where we take advantage of the expression of convolutions in
Fourier space and their resummations. The two-point correlation
function is then given by two possible configurations: a neighbor
can either be an ascendant or a descendant, so that the two-point
correlation functions between positions r1 and r2 are given by

ξ2(r1, r2) =
1
n

[
f (r1, r2) + f (r2, r1)

]
=

1
n

∫
dDk

(2π)D eik.(r2−r1) 2
1 − ψ(k)

, (70)

where n is the number density of points in the sample that can be
associated with a typical length `n,

n =
1
`D

n
. (71)

At large scale, this expression causes the power spectra to
be power laws. They scale like k−α, and the resulting two-point
correlation function then takes the form in the large separation
limit,

ξα, 2D(r) =
α

π
rα−2`−α0 `2

n (72)

ξα, 3D(r) =

(
1 − α2

)
tan

(
πα
2

)
π2 rα−3`−α0 `3

n. (73)

It is to be noted, however, that this expression does not take
into account the boundary conditions, in particular if they are
assumed to be periodic. This case is examined in some detail in
the next paragraph. It is to be noted, however, that in this case,
the function ξ(r) has a more complex form. It is in particular no
more isotropic.

Higher-order correlation functions can also be computed in
this model: n points are correlated when they are embedded in
a chronological sequence that can be run in one direction or the
other. Thus the three-point function is simply given by

ξα(r1, r2, r3) =
1
n2

[
f (r1, r2) f (r2, r3) + · · ·

]
, (74)

with five other terms obtained by all combinations of the indices.
Expressing the result in terms of the two-point function, we have

ξα(r1, r2, r3) =
1
2

[
ξα(r1, r2)ξα(r2, r3)+

ξα(r2, r3)ξα(r3, r1) + ξα(r3, r1)ξα(r1, r2)
]
, (75)

corresponding to a tree structure with ν2 = 1/2.
Higher-order correlation functions can be computed sim-

ilarly. They follow a tree structure in the sense above, with
ν2 = 1/2 and νp = 0 for p ≥ 3.

4.4. Periodic boundary conditions

We briefly explore here the case of periodic boundary conditions.
Then the multipoint density field gPBC(ri) for periodic boundary
conditions can be expressed in terms of the former density field
g(ri) as sums of all copies of the sample, that is,

gPBC({ri}) =
∑

ni

g({ri + niL}), (76)

where ni are vectors whose components are integers, ni =
(nx

i , n
y
i , n

z
i ) and the sums run over all integer values for all i;

L is the size of the sample (assumed to be the same in all
directions).

When it is applied in this context, we can construct the n-
point density function out of the density function f computed
previously. Thus the two-point density function is given by

gPBC(r1, r2) = nPBC
∑
n12

f (r1, r2 − r1 + n12L), (77)

where n12 = n2 − n1 and nPBC is the resulting one-point (and
therefore homogeneous) density in the sample. This expression
is therefore written in terms of the function

f PBC(r0, r) =
∑

n
f (r0, r − r0 + nL). (78)

We can now compute its expression in terms of the power
spectra, or more specifically, the function ψ(k) defined previ-
ously. We have

f PBC(r0, r) =

∫
dDk

(2π)D eik.(r−r0)
∑

n
ein.k L 1

1 − ψ(k)
, (79)

and the latter sum ensures that the contributing wave modes k
are only those that are periodic in all three directions, that is,
those whose components are multiples of 2π/L so that

f PBC(r0, r) =
∑
n∗

1
LD e2πi n.(r−r0)/L 1

1 − ψ(kn)
, (80)

with

kn = (n.n)1/2 2π
L
, (81)

and where the sum is all over possible integer triplets but n =
(0, 0, 0). The two-point correlation function is now given by

ξPBC
α (r1, r2) =

1
nPBC

[
f PBC(r1, r2) + f (r2, r1)

]
. (82)

A similar result can be obtained for the three-point correlation
function with

ξPBC
α (r1, r2, r3)=

1
(nPBC)2

[
f PBC(r1, r2) f PBC(r2, r3) + · · ·

]
. (83)

As a consequence, the functional relation between the three-
point correlation function and the two-point correlation function
is left unchanged. This is also the case at all orders.
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4.5. Covariance matrix of the minimal tree model

Remarkably, in case of the minimal tree model, the derivation of
the CGF can also be made for multiple cells, and in particular,
for two cells. Its expression is derived in the appendix. It takes
the form

ϕ(λ1, λ2) =
λ1 + λ2 + (ξ12 − ξ)λ1λ2

1 − (λ1 + λ2) ξ/2 − λ1λ2 (ξ2
12 − ξ

2
)/4

. (84)

In this case, it is then possible to expand its expression in powers
of ξ12 for distant cells or in powers of (ξ − ξ12) for close cells,
and in both cases, closed forms can be obtained to any order. It
leads to the possibility of computing the joint PDF for any con-
figuration (see the appendix for details) and finally to evaluate
the covariance matrix directly. This is even possible for any of
the thre sets of variables we consider, {ρi}, {ρ̂i}, or {ρi}.

We performed these computations for the minimal tree
model with a power-law behavior ξ(r) ∼ r−1.5 (α = 0.5), a
2D survey with a size of 2002 pixels, and a top-hat smoothing
radius of 4.25 pixels. The amplitude of the correlation func-
tion was fixed to give ξ = 1.09 at the smoothing scale. It pre-
cisely corresponds to the setting of the numerical simulations
of Rayleigh-Levy flights we also performed, as described in
the next section. It allows us to compare the two approaches.
These analytic results have two limitations: the results are based
on the mean-field approximation for the computation of the
two-variable GCF, and the covariance elements are computed
ignoring the bin sizes (i.e., by evaluating the expression of the
covariance for their central values). Although in most cases this
should not be an issue, it still might have a non-negligible impact
when the PDF varies rapidly with the density.

5. Simplified models of the covariance matrix

The purpose of this section is then to propose two levels of mod-
eling of the covariance matrix based on the previous results and
to compare these propositions with results of either the full ana-
lytic results presented before or with the results of numerical
experiments based on Rayleigh-Levy flights.

5.1. Modeling the covariance matrix

More specifically, we considered two approximate forms for
the full covariance. The first approximation is fully analytic. It
makes use of the large-scale contributions and those from the
short distance expression (38). It reads as the sum of the two
contributions

Cov(ρi, ρ j) = b#(ρi)P(ρi)ξsb#(ρ j)P(ρ j)

+

∫ rmax

0
drd Ps(rd) Pshort dist.(ρi, ρ j, rd). (85)

In this expression, the only free parameter is rmax. This is indeed
a crucial parameter as it determines to a large extent the ampli-
tude of the short-distance effects. In the following, we take
rmax = R, that is, the filtering scale. It is found to give a good
result for the 2D case and for ns = −1/2, but this choice is likely
to depend on the shape of the power spectrum. In general, this
formula is intended to give a good account of the general prop-
erties of the covariance matrix, it cannot provide reliable quanti-
tative results a priori.

The other form we propose is intended to be much more pre-
cise quantitatively. Is is given by the following expression:

Cov(ρi, ρ j) = b#(ρi)P(ρi)ξsb#(ρ j)P(ρ j) + CovPBC(ρi, ρ j), (86)

0 200 400 600 800 1000
0

200

400

600

800

1000

Fig. 1. Example of a realization of a Rayleigh-Levy walk. Points mark
the end point of each displacement. They are clearly correlated.

where CovPBC(ρi, ρ j) is the expression of the covariant matrix
for periodic boundary conditions. It is obtained here simply
by replacing P(ρi, ρ j, ξ, ξ12(rd)) by P(ρi, ρ j, ξ − ξs, ξ12(rd) − ξs)
before integrating over rd so that the averaged joint correla-
tions vanish identically. The rationale for this proposition is
that CovPBC(ρi, ρ j) could be more easily estimated from specific
numerical experiments. In both cases, the short-distance contri-
butions are the same for the three types of observables ρi, ρ̂i, and
ρi. These forms are then compared to numerical results.

5.2. Numerical experiments with the Rayleigh-Levy flight
model

A series of experiments of 2D walks with a large number of sam-
ples were performed as described below. We restricted our anal-
ysis to α = 0.5 with l0 = 0.003 pixel size (the dependence on
l0 was tested as illustrated on Fig. 2, where l0 = .006 was also
used, but the analyses were made for a fixed value of l0). Figure 1
illustrates how points are distributed in these samples. The point
distribution does not show the filamentary structure of realistic
cosmological simulations. It exhibits the presence of concen-
trated halos surrounded by empty regions, however, which are
reminiscent of the structure of the largest matter concentrations
of the cosmic web.

Two different setting were employed to explore different
aspects of the results that were found:

– SetA: 1600 samples extracted from a single numerical real-
ization (with periodic boundary conditions) with a size of
8000 × 8000 pixels2 containing 64 × 106 points. Each sam-
ple then has 200× 200 pixels2 containing an average of 2002

points each. For this set of samples, the average and covari-
ance of the PDF were extracted following the three proce-
dures mentioned before: either the density was taken with
respect to the mean density of the realization, with respect
to the density of each sample, or by subtracting the sample
density. It therefore corresponds to an evaluation of the mean
and covariance of the PDF of ρi, ρ̂i, and ρi, respectively.

– Set B: 1600 samples, each with periodic boundary condi-
tions, with a size of 200×200 pixels2 containing 2002 points
each. By construction, the average two-point function in the
sample, ξs, vanishes in this case, and covariance is entirely
due to proximity effects.
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Fig. 2. One-point density PDF obtained with top-hat filters compared
with the theoretical predictions, Eq. (59). The values of ξ are 0.8 and
1.09 for the blue and red curves, respectively, corresponding to two
different values of l0. The bottom panel shows the residuals. Depar-
ture from theory might be due to binning and/or to the finite number of
samples.

In each case, the local density was obtained after a filtering pro-
cedure. The point positions were first pixelized, that is, each
point was attributed to a pixel so that the mean number of points
per pixel was one. The field was then filtered by a (quasi) circular
top-hat functions. In practice, the number of pixels in the win-
dow function was 57. This makes the effective smoothing radius
about 4.25 in pixel units. The resulting density was then mea-
sured at each pixel location. Their histograms were then com-
puted after density binning. To avoid large undue discrete effects,
the bin width was chosen to be a multiple of 1/57, and in order
to ensure that the requirement (49) was met at the pixel distance,
we chose a bin width of about 1/4, more precisely, of 14/57.

Figure 2 shows the resulting PDF as measured in the simula-
tions and how it compares to the theoretical prediction, Eq. (59),
for two different choices of l0. The expected scaling for ξ is
recovered. The measured PDF also follows theoretical predic-
tions for a wide range of probabilities remarkably well. It gives
us confidence in the whole procedure and in the approaches used
to compute PDFs in this model. The detailed comparisons were
made for l0 = 0.003, leading to ξ = 1.09, and a sample density
variance in setsA given by ξs = 0.09.

The measured variance of the density PDF is obtained from
1600 samples in each case. The resulting shapes are presented
in Figs. 3–5 for the different cases, density in a supersample
realization, and in samples with periodic boundary conditions.
The results show the comparison between results obtained in the
numerical simulations with yellow symbols, and results derived
from the analytic prescriptions as blue dots, based on the mean-
field approximation. The agreement between the two is very
good. The overall shape of the variance and its dependence on
the density is well reproduced. Discrepancies can be observed

for densities above 4 or 5, however, where the theoretical pre-
dictions are seen to underestimate the results. The reasons for
these discrepancies are not clear at this stage. A possible expla-
nation might be the finite number of samples that is used to infer
the variances9. The variance of the density PDF is also compared
with the large-scale contributions (19), (29), and (34) for set A
depending on the cases (at this order, the covariance vanishes for
set B). It shows that this formula captures some features of the
variance (especially at low and moderate densities), but does not
account for all. This is also illustrated in Fig. 4, which shows the
reduced covariance. The fact that the covariance is determined to
a large extent by its leading large-scale contribution leads to val-
ues of the reduced covariance close to 1 or −1, leading to these
butterfly patterns. Proximity effects, not captured in these forms,
also contribute to the covariances at a significant level, however.
This is already apparent in Fig. 3.

5.3. Testing models of covariance matrices

Expressions (85) and (86) are precise propositions to show how
the large-scale contributions can be completed to account for the
full form of the covariance. The comparisons between the pre-
dicted form and those obtained from the numerical experiments
are explored in detail at different levels and using the following
criteria:

– Amplitude of the PDF variance,
– Density dependence of the first eigenvalue of the covariance

matrix,
– Amplitude of the eigenvalues of the covariance matrix, and
– Resulting χ2 distribution of a set of data vectors drawn from

the original covariance.
These comparisons are shown in Figs. 6–8. For model (86), the
term CovPBC(ρi, ρ j) is taken from the measured covariance of
set B. Figures 6 and 7 show that these two prescriptions give a
good account of the leading behavior of the covariance matrix.
The conclusion is quite sensitive for the choice of rmax for pre-
scription (85). On the other hand, there is no free parameter that
can be adjusted for model (86). Interestingly, Fig. 7 shows that
the PDF variance also departs significantly from the large-scale
term. The first eigenvector reproduces the functional form of the
large-scale density-bias functions very faithfully.

The last two criteria are designed to verify that the recon-
structed covariances also capture the subleading behavior of the
matrix and can eventually be safely inverted and used as a model
of likelihood. To avoid numerical uncertainties and make the
comparison tractable, we chose to reduce the binning to six
bins (through a rebinning of the histograms and densities rang-
ing from 0.5 to 6.5). The resulting eigenvalues are shown in
the top panel of Fig. 8. It shows that the eigenvalues decrease
rapidly in amplitude, suggesting that the eigendirections are well
sequenced and that the approximate form captures their val-
ues rather accurately. Form (86) in particular reproduces all six
eigenvalues almost exactly.

Finally, χ2 distributions were computed from a set of ran-
dom values Pex

i drawn in each case from a Gaussian likelihood
built from the measured covariance (with six bins). The val-
ues of χ2(Pex

i ) were then computed for each data vector, and
their histogram was computed from each of the proposed models

9 Although the number of samples is large, the number of haloes con-
tained in each sample is finite leading to discretization errors in the esti-
mate of the covariance. Estimate of the minimal number of realizations
required to make such estimates is beyond the scope of this paper.
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Fig. 3. Measured variance of the density PDF, i.e., diagonal elements of the covariance matrix, in sets A for α = 0.5 and different prescription
of the measured density. From left to right, raw density ρi, scaled density ρ̂i, and scaled density ρi. The blue dots and solid lines are from the
mean-field analytical expressions, and the large gold symbols are from the numerical simulations. The dashed black lines are what is expected
from the large-scale leading contribution. The variance at cell scale is about 1.09, and the variance at sample scale, ξs, is about 0.09.
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Fig. 4. Resulting reduced covariance matrix for the three types of observables for set A. The covariance matrix is dominated by its leading
eigenvalue and direction, leading to this typical butterfly shape of the reduced covariance matrix.

(including the original model for reference),

χ2
model(P

ex
i ) =

1
2

∑
i j

N
i j
modelP

ex
i Pex

j , (87)

whereN i j
model is the inverse of the covariance matrix, either com-

puted from Eq. (85) or from Eq. (86). For the original model,
the expected distribution of the χ2 values is then expected to be
precisely that of a χ2 distribution with six degrees of freedom.
This is indeed what is almost exactly obtained for model (86).
Results obtained from prescription (85) are not quite as good.
This is expected as the short-distance effects are estimated rather
crudely in Eq. (85). The performance of this prescription deteri-
orates when the dimension of the data vector (i.e., the number of
bins) increases.

6. Conclusions and lessons

We presented key relations that give the large-scale behavior of
the joint PDF, and hence the leading behavior of the covariance
matrix of the density PDF. These contributing terms do not give
the expression of a covariance matrix that can be used to build a
likelihood function, however, as it is not invertible. Further sig-
nificant contributions are found to be due to small separation
effects, and an approximate form is proposed in Eq. (38). The
latter is found to encapsulate most of the proximity effects, that
is, it informs on the fact that nearby regions are likely to be cor-
related. They also give an indication on the minimal grid size
that can be used the maximum bin size that can be used without
information loss for a given bin width.
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Fig. 5. Measured variance of the density PDF obtained for set B). Sym-
bols are the same as in Fig. 3.

We then used a toy model for which numerical experiments
can easily be performed and for which the exact PDF and large-
scale covariance can be derived. It allows us to evaluate the effi-
ciency of approximate schemes precisely. The conclusions of
these comparisons are listed below.

– The theoretical forms Eqs. (19), (29), and (34) give the
leading-order expression of the covariance elements when
supersample effects are taken into account. It gives an accu-
rate prediction of the leading eigenvalue and eigendirection
of the covariance matrix.

– Whether subdominant effects can be accounted for by subse-
quent terms depends on the behavior of the two-point func-
tion: if the rms of the two-point function is dominated by
large separations, then next-to-leading-order effect need to
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Fig. 6. Measured variance of the density PDF, i.e., diagonal elements of the covariance matrix, in setsA and comparisons with proposed approxi-
mate forms. The yellow line and symbols are the results obtained in the numerical experiments. The dot-dashed line is the prediction derived from
relation (86), and the dashed gray line shows the prediction from Eq. (85). The dot-dashed black lines correspond to the large-scale contributions.

0 1 2 3 4 5 6 7

-0.3

-0.2

-0.1

0.0

0.1

0.2

0.3

ρ

v
fi
rs
t(
ρ
)

0 1 2 3 4 5 6 7

0.0

0.1

0.2

0.3

0.4

0.5

ρ

v
fi
rs
t(
ρ
)

0 1 2 3 4 5 6 7

-0.4

-0.3

-0.2

-0.1

0.0

0.1

ρ

v
fi
rs
t(
ρ
)

Fig. 7. Behavior of the first eigenvector with the same color-coding as in Fig. 6. The dashed black lines are the large-scale prediction, b#(ρi)P(ρi)
appropriately normalized. The size of the data vector is 30.
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Fig. 8. Performances of the approximate forms of the covariance matrix in terms of rigenvalues and χ2-distributions. Top panel: eigenvalues of the
covariance matrices (rebinned into six bins) compared to what can be obtained from the proposed approximate forms; same color-coding as for
Fig. 6. The χ2 distributions are shown in the bottom panel. Model (86) reproduces the very same χ2 distributions. Model (85), in gray, is not as
accurate and tends to slightly overestimate the χ2. This latter behavior is amplified when a larger number of bins is used.

be taken into account; otherwise, short-distance effects will
be the dominant contributor.

– In case short-distance effects dominate, the covariance
matrix can be accessed from small simulations pro-
vided the relevant dominant large-scale contributions are
added.

– This suggests that in realistic situations, the supersample
effects, that is, the effects due to modes whose wavelength
is larger than the size of the survey, have limited impact on
the structure of the covariance matrix and that they can be
captured by the only leading large-scale contribution. This

is supported by a further analysis of the behavior of ξ(rd)
in realistic cosmological settings. For the standard model of
cosmology (as derived from cosmic microwave background
observations, Planck Collaboration VI 2020), the behavior
of the matter correlation function can be derived. This
is illustrated in Fig. 9, which illustrates the scales that
are the main contributors to the first two moments of the
two-point correlation function. Whether in 2D or in 3D,
the first moment is dominated by large-scale contributions,
whereas the second moment is dominated by small-scale
contributions.
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Fig. 9. Scale dependence of the matter correlation functions for a
realistic cosmological model (cosmological parameters derived from
Plank, Planck Collaboration VI 2020) for the 3D density and the pro-
jected density (for a uniformly sampled survey with a depth of about
800 h−1Mpc between z = 0.75 and z = 1.25). The top panel shows
r3

dξ(rd) (solid blue line) and r3
dξ

2(rd) (dashed red line) for the 3D den-
sity field, and the bottom panel shows θ2

dξ(θd) and θ2
dξ

2(θd) for the pro-
jected density. In both cases, the average value of the first moment of
the two-point correlation function is dominated by large-distance con-
tributions, whereas short-distance contributions dominate the second
moment, assuming survey sizes of about 100 h−1 Mpc or above.

– In the context of this study, we assumed that the mea-
sured Pi were Gaussian distributed. Although it is diffi-
cult to assess the accuracy of this hypothesis, the structure
uncovered in Sect. 3 can be used to make such an attempt.
In tree models, higher-order expressions of the joint den-
sity PDFs are expected to preserve the tree structure; see
Bernardeau & Schaeffer (1999). The connected part of the
three-point joint density PDF is then expected to take the
form

Cov(ρi, ρ j, ρk)

= b2(ρi)P(ρi) ξs b(ρ j)P(ρ j) ξs b(ρk)P(ρk) + sym., (88)

where b2(ρ) is the two-line bias function of amplitude
similar to b2(ρ). This implies in particular that the third-
order cumulant is about b(ρ)4P(ρ)3ξ

2
s , much smaller than[

b(ρ)2P(ρ)2ξs

]3/2
, making the distribution of the measured

values of P(ρ) (quasi-) Gaussian distributed. There might be
some combination of ρi and values of ξs, however, for which
a higher-order term could play a role in the expression of the
likelihood function.
For the application of these formulae in practical cases, some

limitations have to be noted. We list them below.
– In the proposed form, the fact that in practice, PDFs are gen-

erally measured on a grid, that is, on a finite set of loca-
tions, is not taken into account. For instance, the exclusion
of nonoverlapping cells is not considered. this is expected to
introduce additional noise in the PDF estimates. The covari-
ance matrix for these constructions cannot then be derived

from general formulae (6) even when the integral in rd is
restricted above a given threshold.

– Relation (38) has been derived in a specific regime (using
saddle point approximations) for tree hierarchical models.
They are expected to capture the phenomenon at play for
“typical” values of the densities, but they may not perform
so well in the rare event tails (the exception being the min-
imum model, for which it is exact). Further checks of the
validity of (38) should therefore certainly be done.

– The general formulae (19), (29), and (34) are valid for any
type of filtering schemes, even for a compensated filter. This
is not the case for relation (38). The proximity effects for
compensated filters ought to be considered specifically.

– Prescription (86) is found to give a very precise account
of the properties of the covariance matrix. It is based on
the proposition that large-scale (supersample) effects can be
added separately from the proximity effects and that the latter
can be evaluated with small-scale mocks in which supersam-
ple effects are absent (with periodic boundary conditions).
This is not an exact result, however,. It relies in particular on
the fact that the r.m.s. of the ξs is dominated by scales much
smaller than the sample size.

– Prescription (85) is less solid. It can be used for a quick
assessment of the different contributing terms, or to build
fully invertible covariance matrices, but it is unlikely to give
reliable predictions at the χ2 level.

In all cases, prescriptions (85) and (86) can be the starting point
of a more precise evaluation of the covariance from specific
numerical experiments that can complement its evaluation fol-
lowing the approach presented in Friedrich & Eifler (2018), for
instance. The authors also showed that some strategies could be
adopted to limit the number of realizations required to reach a
specific precision. This point is not discussed here.
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Appendix A: Hierarchical tree models

In hierarchical tree models, the p-point matter correlation func-
tions are assumed to follow tree structures in the sense described
in the main text. They are thus entirely defined by the two-point
functions ξ(r) and the vertex-generating function ζ(τ). The exact
generating function of multiple cell correlation functions can be
built through simple transforms. We therefore consider a set of
n cells Vi. These cells can overlap. The joint cumulants we con-
sider are those of the average densities in cells Vi that can be
expressed in terms of spatial averages10 of correlation functions,

〈ρ
p1
1 . . . ρ

pn
n 〉c =

∫
V1

dx1,1

V1
. . .

∫
V1

dx1,p1

V1
. . .

...

∫
Vn

dxn,1

Vn
. . .

∫
Vn

dxn,pn

Vn

× ξp(x1,1, . . . , x1,p1 , . . . xn,1, . . . , xn,pn ). (A.1)

We then wish to build the cumulant-generating function,

ϕ(λ1, . . . , λn) =
∑

p1,...,pn

〈ρ
p1
1 . . . ρ

pn
n 〉c

λ
p1
1

p1!
. . .

λn

pn!
. (A.2)

This function represents the generating function of (averaged)
tree diagrams where λi counts the number of points in each cells.
As shown in Bernardeau & Schaeffer (1999), this is obtained
with the help of the intermediate function τ(x) solution of the
consistency equation11,

τ(x) =
∑

j

λ j

∫
V j

dx
V j

ξ(x, x′) ζ′(τ(x′)), (A.3)

and then

ϕ(λ1, . . . , λn) =
∑

j

λ j

∫
V j

dx
V j
ζ(τ(x))

−
1
2

∑
j

λ j

∫
V j

dx
V j
τ(x)ζ′(τ(x)). (A.4)

This is an exact result based on pure combinatorics.
For cases of interest, it is possible to do a mean-field approxi-

mation that consists of assuming that τ(x) is constant within each
cell. We then have the system of equations for τi,

τi =
∑

j

λ jξi jζ
′(τ j), (A.5)

where

ξi j =

∫
Vi

dxi

Vi

∫
Vi

dxi

Vi
ξ(xi, x j) (A.6)

and

ϕ(λ1, . . . , λn) =
∑

j

λ j

[
ζ(τ j) −

1
2
τ jζ
′(τ j)

]
. (A.7)

Bernardeau & Schaeffer (1999) found this to be very accurate,
and we extensively use this approximation in the following, in
particular for the minimal tree model.

10 The formulae are written here for a top-hat profile, but can be
extended to arbitrary profiles.
11 It takes the very same form as the stationary equation in the context of
the large deviation principle, although the results here do not correspond
to this regime.

Appendix B: Joint PDF, density-bias function in PT,
and hierarchical tree models

Here we consider the joint distribution of densities in two cells
whose centers are at distance d. The calculation is based on the
inverse Laplace transform of the joint cumulant-generating func-
tion ϕ(λ1, λ2),

ϕ(λ1, λ2) =
∑
p,q

〈ρ
p
1ρ

q
2〉c

λ
p
1

p!
λ

q
2

q!
, (B.1)

where 〈ρp
1ρ

q
2〉c are the cumulants of the local density fields. They

depend on the size and distance d between the cells. We assume
in particular that the density correlation function between cells
ξ(d) is small compared to unity and can serve as a small
parameter.

B.1. Leading order in the mean-field approximation

Expanding with respect to ξ(d) then leads to the following
form:

ϕ(λ1, λ2) = ϕ0(λ1) + ϕ0(λ2) + ξ(d)ϕ1(λ1)ϕ1(λ2), (B.2)

that is, a factorization of the linear term in ξ(d). This can explic-
itly be shown in case of tree models (as described in the main
text). This is also the case in perturbation theory.

In case of the tree models, we have

ϕ1(λ) =
τ(λ)

ξ
, (B.3)

where ξ is the averaged correlation function within the cells. This
is obtained assuming a mean-field approximation. We expect
subleading corrections when d becomes comparable to the size
of the cells.

B.2. Extending the previous case to the three variable case

In addition to the two variables ρ1 and ρ2, we introduce here the
variable ρs, which is the density within the sample. We assume
that the correlation functions are built with the same model. Here
the small parameter is the correlation between two cells V1 and
V2 (at positions x1 and x2) and the correlation function at sample
size. It is natural in the context we are interested in to assume
that these two quantities are on the same order.

We further assume we can use the mean-field approxima-
tion for the two cells V1 and V2. This is not a priori the case for
the density in the whole sample, however. We therefore derive
the results without this approximation. The general expression is
then

ϕ(λs, λ1, λ2) = λs

∫
dxs

(
ζ(τ(xs)) −

1
2
τ(xs)ζ′(τ(xs))

)
+ λ1

[
ζ(τ1) −

1
2
τ1ζ

′(τ1)
]

+ λ2

[
ζ(τ2) −

1
2
τ2ζ

′(τ2)
]
,

(B.4)

with the consistency relations

τ(xs) = λs

∫
dx′s ξ(xs, x′s) ζ

′(τ(x′s))

+ λ1ξ(xs, x1)ζ′(τ1) + λ2ξ(xs, x2)ζ′(τ2) (B.5)

τ1 = λs

∫
dxs ξ(x1, xs) ζ′(τ(xs))
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Fig. B.1. Diagrammatic visualization of the bias functions. The function ϕ0(λ) is the generating function of all trees within one cell, ϕ1(λ) of all
trees within one cell with one external lines, and ϕ2(λ) with two external lines. The resulting connected diagrams up to second order in ξ12 are thus
those presented here. Two ϕ2 generating functions cannot be conntected as that would induce a loop contribution. This reflects the underlying tree
structure.

+ λ1 ξ ζ
′(τ1) + λ2 ξ12 ζ

′(τ2) (B.6)

τ2 = λs

∫
dxs ξ(x2, xs) ζ′(τ(xs))

+ λ1 ξ12 ζ
′(τ1) + λ2 ξ ζ

′(τ2). (B.7)

We therefore derive the expression of ϕ(λs, λ1, λ2) up to linear
order jointly in ξ(xs, x′s), ξ(xs, x1), ξ(xs, x1) and ξ12 ≡ ξ(x1, x2).
At zeroth order, τ(xs) vanishes and

τ(0)
1 = λ1 ξζ

′(τ1), (B.8)

with a similar relation for τ(0)
2 . At linear order, we have

τ(1)(xs)=λs

∫
dx′s ξ(xs, x′s)

+ λ1ξ(xs, x1)ζ′(τ(0)
1 ) + λ2ξ(xs, x2)ζ′(τ(0)

2 ) (B.9)

F (τ(0)
1 )τ(1)

1 =λs

∫
dxs ξ(x1, xs) + λ2 ξ12 ζ

′(τ(0)
2 ) (B.10)

F (τ(0)
2 )τ(1)

2 =λs

∫
dxs ξ(x2, xs) + λ1 ξ12 ζ

′(τ(0)
1 ), (B.11)

where

F (τ) ≡
(
1 −

τζ′′(τ)
ζ′(τ)

)
. (B.12)

The resulting cumulant-generating function reads

ϕ(λs, λ1, λ2) = λs + λ1

[
ζ(τ(0)

1 ) −
1
2
τ(0)

1 ζ′(τ(0)
1 )

]
+ λ2

[
ζ(τ(0)

2 ) −
1
2
τ(0)

2 ζ′(τ(0)
2 )

]
+
λs

2

∫
dxs τ

(1)(xs)

+
λ1

2
ζ′(τ(0)

1 )F (τ(0)
1 )τ(1)

1 +
λ2

2
ζ′(τ(0)

2 )F (τ(0)
2 )τ(1)

2 , (B.13)

where the first three terms are at zeroth order and the last three
are at linear order. Using the previous expression, we obtain

ϕ(λs, λ1, λ2) = λs + ϕ0(λ1) + ϕ0(λ2)

+
λ2

s

2

∫
dxsdx′s ξ(xs, x′s) + λs

∫
dxs ξ(xs, x1)ϕ1(λ1)

+ λs

∫
dxs ξ(xs, x2)ϕ1(λ2) + ϕ1(λ1) ξ12 ϕ1(λ2). (B.14)

This relation is used to derive the expression of the sample bias
functions in the next section.
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Fig. B.2. Joint CGF as a function of d and for different values of λ1, λ2:
from bottom to top, λ1 = λ2 = −0.1, λ1 = λ2 = 0.2, λ1 = λ2 = 0.5.
The solid blue lines correspond to the two-cell mean-field expression,
(C.13). The predictions given in Eqs. (B.2) and (B.15) are shown as
dashed red lines and dotted black lines. The shaded area is the region of
overlapping cells.

B.3. Second order in the mean-field approximation

Results of Sect. B.1 can naturally be extended to any order in
the cross-cell correlation function in the context of the tree-
hierarchical models (as illustrated on Fig B.1). Up to second
order, it takes the form

ϕ(λ1, λ2) = ϕ0(λ1) + ϕ0(λ2) + ϕ1(λ1) ξ12 ϕ1(λ2)

+
1
2
ϕ2

1(λ1) ξ2
12 ϕ2(λ2) +

1
2
ϕ2(λ1) ξ2

12 ϕ
2
1(λ2), (B.15)

where the function ϕ2(λ) takes the form

ϕ2(λ) =
λζ′′(τ)

1 − τζ′′(τ)/ζ′(τ)
. (B.16)

This last expression can be directly obtained through a perturba-
tive expansion as presented in the previous subsection12.

In case of the minimal tree model, this perturbative expan-
sion can be directly compared with exact mean-field results13.
This is shown in Fig. B.2. It shows that for a large regime in
λ, the relation (B.15) provides a very accurate description of
the joint cumulant-generating function down to a distance cor-
responding to overlapping cells. For overlapping cells, relation

12 A quicker approach is to view ϕ0(λ) as a function of the “leaf
weight”, that is, the value of ν1; ϕ1(λ), ϕ2(λ) are then obtained by suc-
cessive derivatives of ϕ0(λ) with respect to ν1.
13 it is possible to fully solve the consistency relations in case of two
cells; the conclusions remain unchanged.
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(B.15) continues to be accurate except for high values of λ. In
general,

ϕ(λ1, λ2)→ ϕ0(λ1 + λ2) (B.17)

when d → 0 (more accurate results in case of the minimal tree
model are given in Appendix D.).

Using (B.15), we then derive corrective perturbative terms to
the joint density PDF. More specifically, we have

P(ρi, ρ j) = P(ρi)P(ρ j)
[
1 + b1(ρi) ξ12 b1(ρ j)

+
1
2

b2(ρi) ξ2
12 b2(ρ j) +

1
2

b2(ρi) ξ2
12 q1(ρ j)

+
1
2

q1(ρi) ξ2
12 b2(ρ j)

]
, (B.18)

where

b2(ρi)P(ρi) =

∫
dλ
2πi

[
ϕ1(λ)

]2 exp
[
−λρi + ϕ(λ)

]
(B.19)

q1(ρi)P(ρi) =

∫
dλ
2πi

ϕ2(λ) exp
[
−λρi + ϕ(λ)

]
. (B.20)

For a sample with periodic boundary conditions, the average of
ξ12 vanishes, which a priori makes the other terms the leading
contributors to the covariance elements. Equation (B.18) can be
written as a sum of symmetric factorized terms,

P(ρi, ρ j) = P(ρi)P(ρ j)
[
1 + b1(ρi) ξ12 b1(ρ j)

+
1
2

(b2(ρi) + q1(ρi)) ξ2
12

(
b2(ρ j) + q1(ρ j)

)
−

1
2

q1(ρi) ξ2
12 q1(ρ j)

]
, (B.21)

showing the eigenstructure of the resulting matrix and showing
that it defines three different eigendirections at most.

B.4. Relative density joint PDFs and bias functions

We wish to compute the joint PDF of the density when expressed
in terms of the survey average density ρs. In order to do so, we
consider the joint density P(ρs, ρi, ρ j), where ρs is the density in
the sample and ρi and ρ j are the densities in two cells at distance
d.

We wish to compute the joint probability distribution func-
tion of ρ̂i and ρ̂ j, defined as

ρ̂i =
ρi

ρs
, (B.22)

and the joint distribution functions of ρi and ρ j, defined as

ρi = ρi − ρs + 1. (B.23)

From these changes of variables, we have

P(ρ̂i) =

∫
dρs ρs P(ρs, ρ̂iρs) (B.24)

and

P(ρ̂i, ρ̂ j) =

∫
dρs ρ

2
s P(ρs, ρ̂iρs, ρ̂ jρs). (B.25)

Similarly, we also have

P(ρi) =

∫
dρs P(ρs, ρi + ρs − 1) (B.26)

and

P(ρi, ρ j) =

∫
dρs P(ρs, ρi + ρs − 1, ρ j + ρs − 1). (B.27)

We continue the calculations by expressing the joint PDF with
the help of inverse Laplace transforms,

P(ρs, ρi) =

∫
dλs

2πi
dλ
2πi

× exp
[
−λsρs − λρi + ϕ(λs, λ)

]
(B.28)

P(ρs, ρi, ρ j) =

∫
dλs

2πi
dλ1

2πi
dλ2

2πi

× exp
[
−λsρs − λ1ρi − λ2ρ j + ϕ(λs, λ1, λ2)

]
. (B.29)

As a result,

P(ρ̂i) =

∫
dλs

2πi
dλ
2πi

1
(λs + λρ̂i)2 exp

[
ϕ(λs, λ)

]
(B.30)

P(ρ̂i, ρ̂ j) =

∫
dλs

2πi
dλ1

2πi
dλ2

2πi
1

(λs + λ1ρ̂i + λ2ρ̂ j)3

× exp
[
ϕ(λs, λ1, λ2)

]
(B.31)

after integration over ρs. The latter expressions can be expressed
as

P(ρ̂i) =

∫
dλ
2πi

[
∂ϕ

∂λs

]∣∣∣
λs=−λρ̂i

exp
[
ϕ(−λρ̂i, λi)

]
(B.32)

P(ρ̂i, ρ̂ j) =

∫
dλ1

2πi
dλ2

2πi

( ∂ϕ∂λs

)2

+
∂2ϕ

∂λ2
s

∣∣∣
λs=−λ1 ρ̂i−λ2 ρ̂ j

× exp
[
ϕ(−λ1ρ̂i − λ2ρ̂ j, λ1, λ2)

]
. (B.33)

In a similar manner, we can obtain the form of the joint PDF for
{ρi},

P(ρi) =

∫
dλ
2πi

exp
[
−λρi + ϕ(−λ, λ)

]
(B.34)

P(ρi, ρ j) =

∫
dλ1

2πi
dλ2

2πi

× exp
[
−λ1ρi − λ2ρ j + ϕ(−λ1 − λ2, λ1, λ2)

]
. (B.35)

We then use the relation (B.14) to compute the form of these
functions.

Noting that the expressions
∫

dx0dx′0 ξ(x0, x′0),∫
dx0 ξ(x0, x1) take all the same averaged value when inte-

grated over the sample, which we note ξs, then at linear order in
ξs,

∂ϕ

∂λs
=1 + ξs

[
λs + ϕ1(λ1) + ϕ1(λ2)

]
. (B.36)

∂2ϕ

∂λ2
s

= ξs. (B.37)

At the same order, we then have(
∂ϕ

∂λs

)2

+
∂2ϕ

∂λ2
s

= 1 + ξs
[
1 + 2 (λs + ϕ1(λ1) + ϕ1(λ2))

]
. (B.38)

Combining both the expressions of P(ρ̂i) and P(ρ̂i, ρ̂ j) and
expanding all terms at linear order in ξs, we obtain
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P(ρ̂i, ρ̂ j) − P(ρ̂i)P(ρ̂ j) =

∫
dλ1

2πi
dλ2

2πi

×
[
1 + ξs (1 + ϕ1(λ1) − λ1ρ̂i)

(
1 + ϕ1(λ2) − λ2ρ̂ j

)]
× exp

[
−λ1ρ̂i − λ2ρ̂ j + ϕ0(λ1) + ϕ0(λ2)

]
. (B.39)

This leads to the definition of the first sample bias function,

bs1(ρ̂i) =
1

P(ρ̂i)

∫
dλ
2πi

(1 + ϕ1(λ) − λρ̂i) exp
[
−λρ̂i + ϕ0(λ)

]
,

(B.40)

which can be re-expressed in terms of the density-bias function
defined in Eq. (18) and the derivative of P(ρ̂i) with respect to ρ̂i

bs1(ρ̂i) = b(ρ̂i) + 1 +
d log(P(ρ̂i))

d log ρ̂i
. (B.41)

The second sample-bias function can be obtained in a similar
manner. We indeed have

P(ρi, ρ j) − P(ρi)P(ρ j) =

∫
dλ1

2πi
dλ2

2πi

×
[
1 + ξs (ϕ1(λ1) − λ1) (ϕ1(λ2) − λ2)

]
× exp

[
−λ1ρi − λ2ρ j + ϕ0(λ1) + ϕ0(λ2)

]
,

(B.42)

which eventually leads to

bs2(ρi) = b(ρi) +
d log(P(ρi))

dρi
. (B.43)

B.5. Response to a change in amplitude in ξ

A close notion related to the density-bias function is how the
PDF is changed when the parameters of the simulations are
changed. In particular for tree models, the statistical properties
are entirely determined by the amplitude of the two-point func-
tion, for instance, at cell size. This dependence can be made
explicit by writing Eq. (17) as

P(ρi, ξ) =
1

ξ

∫
dλ̂
2πi

exp
(
−λ̂

ρi

ξ
+

1

ξ
ψ(λ̂)

)
(B.44)

after the change of variable and function,

λ̂ = ξλ, ψ(λ̂) = ξϕ(λ), (B.45)

where then the expression ψ(λ̂) does not depend on ξ (only on
the functional form of ζ). It follows that

−ξ
∂P(ρi, ξ)

∂ξ
= P(ρi, ξ) + ρ

∂P(ρi, ξ)
∂ρi

+

∫
dλ
2πi

ϕ(λ) exp
(
−λ̂

ρi

ξ
+ ϕ(λ)

)
. (B.46)

This expression can be used to defined the function bξ(ρi) as

bξ(ρi) = −
∂ log P(ρi, ξ)

∂ log ξ
. (B.47)

It appears that bξ(ρi) is very similar to bs1(ρi), but the two are not
equal in general.

B.6. Close cell results

B.6.1. CGF for 2 close cells

Saddle point approximation and close cell results. In case of two
cells, the general system in the mean-field approximation leads
to

τ1 = λ1ξζ
′(τ1) + λ2ξ12ζ

′(τ2) (B.48)

τ2 = λ2ξ12ζ
′(τ1) + λ2ξζ

′(τ2) (B.49)

and

ϕ(λ1, λ2) = λ1

(
ζ(τ1) −

1
2
τ1ζ

′(τ1)
)

+ λ2

(
ζ(τ2) −

1
2
τ2ζ

′(τ2)
)
. (B.50)

We are interested here in the behavior of ϕ(λ1, λ2) when the two
cells are close, that is, when ξ12 → ξ. When ξ12 = ξ, τ1 and τ2
are also equal, making ϕ(λ1, λ2) a sole function of λ1 + λ2 and
therefore forcing the joint PDF to be proportional to δDirac(ρi −

ρ j). To be more precise, in this regime, ξ12 → ξ, δρ ≡ (ρi − ρ j)/2
is expected to be distributed with a width of about ∆

1/2
ξ = (ξ −

ξ12)1/2. This suggests that in this limit, the difference λ1 − λ2

should be treated as a large quantity of about (ξ − ξ12)−1/2. The
limit behavior of the joint CGF can then be explicitly computed
in terms of

λ = λ1 + λ2, (B.51)
µ = λ1 − λ2, (B.52)

∆ξ = ξ − ξ12. (B.53)

In this limit, we obtain

τ = λ ξ ζ′(τ) + µ ξ ζ′′(τ) δτ, (B.54)

δτ =
µ

2
∆ξ ζ

′(τ), (B.55)

leading to

τ = λ ξ ζ′(τ) +
µ2ξ

4
∆ξ

(
ζ′(τ)2

)′
(B.56)

and

ϕ(λ1, λ2) = λ

(
ζ(τ) −

1
2
τζ′(τ)

)
+
µ2

4
∆ξ

(
ζ′(τ)2 −

1
2
τ
(
ζ′(τ)2

)′)
. (B.57)

The joint PDF of ρm = (ρi + ρ j)/2 and δρ then reads

P(ρm, δρ) =

∫
dλ
2πi

dµ
2πi

exp
[
−λρm − µδρ + ϕ(λ, µ)

]
, (B.58)

for which there is in general no closed form. We then need to
rely on approximation schemes to complete the calculations.
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B.6.2. Saddle point approximation

One of the approximations that can be used to evaluate Eq.
(B.58) is to use the saddle point approximation. It has been used
in the literature to compute the PDF (see Balian & Schaeffer
1989; Bernardeau 1992; Valageas 2002; Codis et al. 2016a). It is
a priori valid when ξ is small (and not for too high values of the
density). In this approach, the expression under the exponential
is approximated by a quadratic form at its minimum. In practice,
the latter is obtained from the resolution of the system

∂ϕ(λ, µ)
∂λ

= ρm (B.59)

∂ϕ(λ, µ)
∂µ

= δρ, (B.60)

which leads to the implicit or explicit values of λ, µ, and τ at
the saddle point position (we hereafter denote this with the sub-
script s),

ρm = ζ(τs), δρ = µs
∆ξ

2
(
ζ′(τs)

)2 . (B.61)

It is to be noted here that the value of τs is independent of δρ. At
the saddle point position, we then have

−λsρm s − µsδρ + ϕ(λs, µs) = −
δρ

2

∆ξ
[
ζ′(τs)

]2 −
τ2

s

2
. (B.62)

This then suggests that the joint PDF is given by the product
of the one-point PDF of ρm and a Gaussian distribution of δρ
of width ∆

1/2
ξ ζ′(τs)/

√
2. For usual models, as described above,

ζ′(τs)2 scales like a power of ρm so that one suggested form for
the joint PDF is the following:

P(ρm, δρ) = P(ρm) exp
(
−
δρ

2

∆ξρ
α
m

)
1√

π∆ξρm
α
. (B.63)

Interestingly, the value of α can be related to the reduced skew-
ness of the density field from the computation of 〈δρ2ρm〉c, and
in the context of tree hierarchical models, it leads to

α =
2
3

S 3. (B.64)

The validity of this form clearly ought to be checked. Its simplic-
ity nonetheless offers a good grasp of the contribution of close
cells to the covariance matrix.

Appendix C: Minimal tree model

In the previous section, general formulae were given. The aim
of this section is to account for more precise results obtained in
the case of a specific hierarchical model, namely the minimal
tree model, as described below. It can then serve as a toy model
for the construction of the approximate form for the covariance
matrix. We first recall that this model describes the Rayleigh
Levy flights model.

C.1. One-point results in the mean-field approximation

The Rayleigh-Levy flight model makes it possible to build syn-
thetic samples whose statistical properties follow the minimal

model, that is, a hierarchical model with the following vertex-
generating function:

ζRL(τ) = 1 + τ +
1
4
τ2. (C.1)

In the one-cell mean-field approximation, we have the equa-
tion

τ = λξζRL
′(τ), (C.2)

which can be solved in

τ =
λξ

1 − λ ξ/2
, (C.3)

which leads to the following expression for the CGF:

ϕ(λ) =
λ

1 − λ ξ/2
. (C.4)

The one-point PDF of the density can then be computed
explicitly. It takes the form in the continuous limit of

P(ρ) =

∫
dλ
2πi

e−λρ+ϕ(λ)

= e−
2
ξ δDirac(ρ) +

4

ξ
2 e−

2
ξ

(1+ρ)
0F1

(
2,

4ρ

ξ

)
. (C.5)

For this particular model, the void probability distribution (VPF)
is nonzero even in the continuous limit. We recall here that the
general expression of the VPF is given by exp(ϕ(−N)),which for
the minimal model leads to

P0 = exp
(
−2/ξ

)
(C.6)

when N → ∞.
The density-bias function can also be computed explicitly.

For the minimal model, we have ϕ1(λ) = ϕ(λ) so that

b1(ρ) =
1

P(ρ)

∫
dλ
2πi

ϕ1(λ) e−λρ+ϕ(λ)

=
0F1

(
1, 4ρ

ξ

)
0F1

(
2, 4ρ

ξ

) − 2

ξ
(C.7)

for ρ > 0. For this model, the fact that ϕ1(λ) = ϕ(λ) implies that

bs1(ρ) = bξ(ρ). (C.8)

This means that in the case of the minimal model, the density-
bias function can be extracted from the functional form of the
one-point PDF as

b(ρ)P(ρ) =

−1 −
d

d log ρ
−

d

d log ξ

 P(ρ, ξ). (C.9)

This is a somewhat remarkable identity (which can be extended
to higher orders, as shown below.)

In this case, the second-order expansion leads to the form
ϕ2(λ) given by

ϕ2(λ) =
1
2
ϕ1(λ), (C.10)

and we note that ϕp(λ) all vanish for p ≥ 3.
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C.2. Two-cell results in the mean-field approximation

These mean-field calculations can be extended to the two-cell
case. In this case, we have the system

τ1 = λ1 ξ ζRL
′(τ1) + λ2 ξ12 ζRL

′(τ2) (C.11)

τ2 = λ1 ξ12 ζRL
′(τ1) + λ2 ξ ζRL

′(τ2) (C.12)

when the two cells are of the same size. This leads to the follow-
ing expression for the joint CGF:

ϕ(λ1, λ2) =
λ1 + λ2 + (ξ12 − ξ)λ1λ2

1 − (λ1 + λ2) ξ/2 − λ1λ2 (ξ2
12 − ξ

2
)/4

. (C.13)

Remarkably, this expression can be written in terms of the one-
cell CGF as

ϕ(λ1, λ2) =
ϕ(λ1) + ϕ(λ2) + ξ12 ϕ(λ1)ϕ(λ2)

1 − ξ2
12 ϕ(λ1)ϕ(λ2)/4

. (C.14)

This opens the possibility of computing the joint PDF to any
order of ξ12. The calculation of this expansion is made simple
by the following observations: The corrective terms will make
intervene functions of the forms

bn(ρ) P(ρ) ≡
∫

dλ
2πi

[
ϕ(λ)

]n exp (−λρ + ϕ(λ)) . (C.15)

We further note that

d
dλ
ϕ(λ) =

 ξ2
2 [

ψ(λ)
]2 (C.16)

with

ψ(λ) = ϕ(λ) +
2

ξ
. (C.17)

We the define cn(ρ) as

cn(ρ) P(ρ) ≡
∫

dλ
2πi

[
ψ(λ)

]n exp (−λρ + ϕ(λ)) . (C.18)

We then have on one side

bn(ρ) =

n∑
q=0

Cq
n

(
−

2

ξ

)q

cn−q(ρ), (C.19)

and on the other side

ρ cn(ρ) =

 ξ2
2

(cn+2(ρ) + ncn+1(ρ)) , (C.20)

which derives from the fact that

ρ cn(ρ) =

∫
dλ
2πi

exp (−λρ)
d

dλ
{[
ψ(λ)

]n exp (ϕ(λ))
}

(C.21)

after integration by parts. As a result, the expression of the join
PDF to any order can be written as polynomials making inter-
vene P(ρ1), b(ρ1) P(ρ2) and b(ρ1) only.

C.3. Perturbative expansion for close cells

Another interesting result is when the cell centers are close (so
that cells overlap), as described above. In this case, the limit
behavior of the joint CGF is given by

ϕ(λ1, λ2) =
λ + µ2 ∆ξ/4

1 − λ ξ/2 − µ2 ∆ξ ξ/8
, (C.22)

with

λ = λ1 + λ2, (C.23)
µ = λ1 − λ2, (C.24)

∆ξ = ξ − ξ12. (C.25)

It is then remarkable to see the result can be expressed with the
sole one-cell CGF,

ϕ(λ1, λ2) = ϕ(λ + µ2 ∆ξ/4). (C.26)

In other words, the GFC of the variables ρm = (ρ1 + ρ2)/2 and
δρ = (ρ1 − ρ2)/2 is given by Eq. (C.26). It is possible to compute
the joint PDF,

P(ρm, δρ) =

∫
dλ
2πi

∫
dµ
2πi

× exp
(
−λ ρm − µ δρ + ϕ(λ + µ2 ∆ξ/4)

)
, (C.27)

with the change of variable

λ̃ = λ + µ2 ∆ξ

4
. (C.28)

The integral in λ̃ leads to the one-cell PDF of the density ρm,
whereas the integral in µ can be done explicitly as it is a quadratic
form in µ, leading to a Gaussian distribution in δρ. The final PDF
is given by

P(ρm, δρ) = P(ρm)
1[

π∆ξρm

]1/2 exp
(
−

δρ
2

∆ξ ρm

)
. (C.29)

This shows that the joint PDF peaks for ρ1 ∼ ρ2 with a width
that depends on the distance between the cells through the dif-
ference ξ − ξ12. Moreover, this form has no overlapping regime
with the previous expansions of the joint PDF. It captures differ-
ent aspects of the covariance calculations as listed below.

– The previous expression says that close cells contribute more
specifically to the covariance when ρ1 and ρ2 are close. This
suggests that Eq. (C.29) contributes mostly to the near diag-
onal terms, whereas off diagonal terms could still be well
described by perturbative expansions, as described before.

– As noted before, perturbative expansions are closely related
to supersample effects. They encode the way in which the
local densities are jointly correlated with long-wavelength
modes. This is not the case in Eq. (C.29). It rather captures
how a rare event, such as a peak, can contribute to the covari-
ance elements: if there is a peak somewhere, nearby cells
are likely to have a similar density up to distances for which
ξ − ξ12 remains small enough.
The above development can be pursued to any order in ∆

1/2
ξ

provided the following recipe is applied:

δρ ∼ ∆
1/2
ξ and µ ∼

1

∆
1/2
ξ

. (C.30)
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Fig. C.1. Performances of the perturbative expansions of the joint PDF
PMF(ρ1, ρ2; ξ, ξ12) in the mean-field approximation either for the ξ12

expansion (open blue dots) or the ∆
1/2
ξ expansion (red dots) up to 11th

and 10th order, respectively. The comparisons are made for ρ1 = ρ2 = 2
and ξ = 1 (top panel) and for ρ1 = 0.5, ρ2 = 3.5 and ξ = 1 (bottom
panel) and for ξ12 equalling 0.1, 0.3, 0.5, 0.7, and 0.9.

Then the joint density can be computed to any order in ∆
1/2
ξ ,

making use of the very same expressions bn(ρ).
The next-to-leading order in ∆

1/2
ξ is thus given by

P(2)(ρm, δρ) = P(0)(ρm, δρ)

×

 δ2
ρ

2ξ̄ρm
−
ρm∆ξ

ξ̄2
−

∆ξ

4ξ̄
−

∆ξ

ξ̄2
−

δ4
ρ

4ρ3
m∆ξ

+
3δ2

ρ

4ρ2
m
−

3∆ξ

16ρm

+

(
ξ̄ρm∆ξ − 2ξ̄δ2

ρ + 8ρ2
m∆ξ

)
8ξ̄ρ2

m

0F1

(
1, 4ρm

ξ̄2

)
0F1

(
2, 4ρm

ξ̄2

)
 , (C.31)

and the expansion can be extended in any (even) order in ∆
1/2
ξ .

Fig. C.1 illustrates the convergence properties of these expan-
sions. Depending on ξ12/ξ, either the expansion in ξ12 or that in
∆

1/2
ξ gives a very accurate estimate of the joint PDF. It opens the

way to computing the covariance matrix starting in the two-cell
mean-field approximation (C.13).

C.4. Construction of the theoretical covariance matrix for the
minimal tree model

The previous form can be used to compute the covariance matrix
for the minimal tree model in simple implementations. It relies
on analytic forms for both the two-point cell correlation func-
tions, which can formally be written as

ξ12(r) =

∫
d2k W2

2D(k R) J0(k r) P(k) (C.32)

for a given power spectrum. We also make use of the form Ps(rd)
given in footnote 2 to derive the PDF of cell distances. We then

have all the required ingredients to compute the elements of the
covariance matrix in the mean-field approximation,

CovMF(ρ1, ρ2) =

∫
dr Pd(r) P(8)

MF(ρ1, ρ2; ξ, ξ12(rLsample)). (C.33)

In practice, P(8)
MF(ρ1, ρ2; ξ, ξ12) is computed from the eighth-order

expansion either in ξ12 when ξ12/ξ < 0.4 or in ∆ξ when ξ12/ξ >
0.4. This is used to explore the detailed properties of the covari-
ance matrix and the validity of approximate schemes.

C.5. Joined PDF for relative densities

The minimal model allows us also to pursue the computation of
the joint PDF for the variables {ρ̂i} or {ρi} in all regimes. The
first step is to extend Eq. (B.14) to a regime in which ξ12 is not
assumed to be small. We find that

ϕ(λs, λ1, λ2) = λs + ϕ(λ1, λ2) +
λ2

s

2

∫
dxsdx′s ξ(xs, x′s)

+ λs

∫
dxs ξ(xs, x1)ϕc(λ1, λ2)

+ λs

∫
dxs ξ(xs, x2)ϕc(λ2, λ1), (C.34)

where ϕc(λ1, λ2) is given by

ϕc(λ1, λ2) =
λ1 + (ξ12 − ξ)λ1λ2/2

1 − (λ1 + λ2) ξ/2 − λ1λ2 (ξ2
12 − ξ

2
)/4

, (C.35)

and we can note that

ϕc(λ1, λ2) + ϕc(λ2, λ1) = ϕ(λ1, λ2). (C.36)

At leading order in ξs, that is, when we assume that the density
fluctuations at sample size are much smaller than at smoothing
scale, this expression then reduces to

ϕ(λs, λ1, λ2) = λs +
λ2

s

2
ξs + ϕ(λ1, λ2)(1 + λsξs). (C.37)

We can then exploit this relation to compute the P(ρ̂i, ρ̂ j) and
P(ρi, ρ j) from Eqs. (25) and (31), respectively. We then have at
leading order in ξs

Ps1(ρ̂i, ρ̂ j) = P(ρ̂i, ρ̂ j) + ξs

∫
dλ1

2πi
dλ2

2πi

×

(
1 + 2λs +

1
2
λ2

s + (2 + λs)ϕ(λ1, λ2)
)

× exp
[
λs + ϕ(λ1, λ2)

]∣∣∣
λs=−ρ̂iλ1−ρ̂ jλ2

(C.38)

and

Ps2(ρi, ρ j) = P(ρi, ρ j)

+ ξs

∫
dλ1

2πi
dλ2

2πi

(
1
2
λ2

s + λsϕ(λ1, λ2)
)∣∣∣
λs=−λ1−λ2

× exp
[
−λ1ρi − λ2ρ j + ϕ(λ1, λ2)

]
. (C.39)

To complete the formal calculation of these expressions, we
introduce the function
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Pb(ρi, ρ j, ξ, ξ12) =

∫
dλ1

2πi
dλ2

2πi
ϕ(λ1, λ2)

× exp
[
−λ1ρi − λ2ρ j + ϕ(λ1, λ2)

]
. (C.40)

We can first note that Eq. (C.9) can be extended to

Pb(ρi, ρ j, ξ, ξ12) =

(
−2 −

d
d log ρi

−
d

d log ρ j
−

d

d log ξ
−

d
d log ξ12

 P(ρi, ρ j, ξ, ξ12).

(C.41)

This comes from the observation that

P(ρi, ρ j, ξ, ξ12, η) ≡
∫

dλ1

2πi
dλ2

2πi

× exp
[
−λ1ρi − λ2ρ j + ηϕ(λ1, λ2, ξ, ξ12)

]
can also be written

P(ρi, ρ j, ξ, ξ12, η) =
1
η2

∫
dλ̂1

2πi
dλ̂2

2πi

× exp
−λ̂1

ρi

η
− λ̂2

ρ j

η
+ ϕ

λ̂1, λ̂2,
ξ

η
,
ξ12

η


=

1
η2 P

ρi

η
,
ρ j

η
,
ξ

η
,
ξ12

η
, 1

 (C.42)

and that

Pb(ρi, ρ j, ξ, ξ12) =
∂

∂η
∣∣∣
η=1

P(ρi, ρ j, ξ, ξ12, η). (C.43)

The final expression of the PDF of the relative densities can then

be obtained by noting that applying a multiplicative factor λi to
the moment-generating function is equivalent to the application
of the operator ∂/∂ρi to the final expression this finally leads to
the following forms:

Ps1(ρ̂i) = P(ρ̂i) + ξs

ρ̂i
∂

∂ρ̂i
+
ρ̂2

i

2
∂2

∂ρ̂2
i

 P(ρ̂i)

+

(
1 + ρ̂i

∂

∂ρ̂i

)
(b(ρ̂i)P(ρ̂i))

]
(C.44)

Ps1(ρ̂i, ρ̂ j) = P(ρ̂i, ρ̂ j)

+ ξs

1 + 2
∑

i

ρ̂i
∂

∂ρ̂i
+

1
2

∑
i

ρ̂2
i
∂2

∂ρ̂2
i

 P(ρ̂i, ρ̂ j)

+

2 +
∑

i

ρ̂i
∂

∂ρ̂i

 Pb(ρ̂i, ρ̂ j)

 (C.45)

for the ρ̂i = ρi/ρs and

Ps2(ρi) = P(ρi) + ξs

1
2
∂2

∂ρ2
i

P(ρi)

+
∂

∂ρi
(b(ρi)P(ρi))

]
(C.46)

Ps2(ρi, ρ j) = P(ρi, ρ j) + ξs

1
2

∑
i

∂2

∂ρ2
i

P(ρi, ρ j)

+
∑

i

∂

∂ρi
Pb(ρ̂i, ρ̂ j)

 (C.47)

for ρi = ρi − ρs + 1. These relations can then be applied to the
expressions of the joint density such as P(8)

MF(ρi, ρ j; ξ, ξ12) found
in the previous subsection.
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