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We present a conjecture for the three-point functions of single-trace operators in planar N ¼ 4 super-
Yang-Mills theory at finite coupling, in the case where two operators are protected. Our proposal is based
on the hexagon representation for structure constants of long operators, which we complete to incorporate
operators of any length using data from the TBA-QSC formalism. We perform various tests of our
conjecture, at weak and strong coupling, finding agreement with the gauge theory through 5 loops for the
shortest three-point function and with string theory in the classical limit.
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Introduction.—The discovery of integrability [1,2] in the
planar limit of the N ¼ 4 super-Yang-Mills (SYM) theory
has led to tremendous advances in the study of this interact-
ing superconformal gauge theory and of its gravitational
dual, the type IIB superstring theory in AdS5 × S5 [3]. The
best example is the solution to the full spectrumof anomalous
dimensions of single-trace operators which was argued on
both sides of the duality to follow from the diagonalization of
a commuting family of transfer matrices Ta;sðuÞ, depending
on a spectral parameter u and labeled by representations
ða; sÞ of the superconformal group. The latter generate an
infinite number of conserved charges, pinning down the
conformal primary operators, and fulfill the celebrated
Hirota equation [4]

Tþ
a;sT−

a;s ¼ Taþ1;sTa−1;s þ Ta;sþ1Ta;s−1; ð1Þ

with T�
a;s ¼ Ta;sðu� i=2Þ. Once supplied with appropriate

boundary conditions and analyticity requirements [5–8],
Eq. (1) can be cast into a set of integral thermodynamic
Bethe ansatz (TBA) equations [4,9–11], or in the more
compact quantum spectral curve (QSC) equations involv-
ing Q functions with simpler analytical structure [5,12].
One may expect optimistically that the remaining con-
formal data—the structure constants—can be addressed
along the same lines and expressed in the same terms, for all
values of the ‘t Hooft coupling constant, λ ¼ 16π2g2, as
suggested by recent studies [13–16].

However, to date, the known non-perturbative method for
structure constants of singe-trace operators, which relies on
the hexagon representation [17–21], only works for asymp-
totically long operators, with very high charges. For short
operators, the description is known to disagree with pertur-
bation theory, past a certain loop order, highlighting the need
to include wrapping corrections in the formalism [22,23] as
in the TBA’s early days [24,25]. Even worse, the description
is plagued with divergences that need to be subtracted
carefully and it stays unknown so far how to perform this
subtraction systematically, such as to make contact with the
solution for the spectrum.
In this Letter, we present a conjectured solution to this

problem for a simple class of structure constants, with two
half-BPS operators and one spinning operator,

C∘∘• ∼ hTr½ZL1

1 �Tr½ZL2

2 �Tr½DSZL�i; ð2Þ

with Z1; Z2; Z three complex scalar fields and D a light-
cone derivative. They look pictorially like in Fig. 1 with
two vacua of length L1 and L2 merging into a length-L
Bethe state with S magnons. Our conjecture, which

FIG. 1. Pair of pants with two empty strings at the bottom and
an excited one at the top with magnons carrying momenta p1 and
p2. The string diagram may be obtained by gluing two hexagons
together along the identified mirror edges (dashed lines) as shown
in the right panel.
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extrapolates from existing results, may be viewed as a
minimal way of combining the hexagon representation with
the TBA-QSC spectral data, such as to obtain an exact
description for operators of arbitrary length.
Main conjecture.—The key idea behind the hexagon

construction is that the structure constant may be obtained
by attaching two hexagons together (Fig. 1). The gluing is
achieved by summing over all the states of the open strings
stretching along the seams of the pair of pants. It results in a
representation in terms of multiple sums of integrals,
describing the multiple exchanges of particles, the mirror
magnons, across the three channels of the pair of pants
(Fig. 2), that is,

C∘∘• ¼ N ×
XZ
L

×
XZ
R

×
XZ
B

e−lLEL−lRER−lBEB jHj2; ð3Þ

with N an overall normalization factor (see Sec. A of the
Supplemental Material [26]). Each process in the sums
occurs with a “probability” jHj2, determined by the
hexagon form factors [17], and is suppressed by a factor
depending on the energies of the mirror states, EL;R;B. The
latter are conjugate to the so-called bridge lengths,

lL ¼
L1þL−L2

2
; lR ¼ L−lL; lB ¼

L1þL2 −L
2

;

ð4Þ

fixing the distances between the hexagons.
The details of this construction were worked out in

Ref. [34] yielding definite predictions for the integrand
jHj2 and the phase-space integral

PR
. The latter reads

XZ
¼

X∞
N¼0

1

N!

YN
i¼1

X∞
ai¼1

Z
C

μmir
ai ðuiÞdui

2π

YN
i<j

pmir
aiajðui; ujÞ; ð5Þ

with N the number of magnons in the given channel and
where each magnon in the sum carries a rapidity u and
“spin” a, labeling its representation under the asymptotic
symmetry algebra, suð2j2Þl ⊕ suð2j2Þr [35], and its
energy [24]

EaðuÞ ¼ log ðx½þa�x½−a�Þ; ð6Þ

with x½�a� ¼xðu� ia=2Þ and xðuÞ ¼ ðuþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2 − 4g2

p
Þ=2g.

The integration is done with the help of the measure

pmir
ab ðu; vÞ ¼ kþþ

ab kþ−
ab k

−þ
ab k

−−
ab ; ð7Þ

with k��
ab ¼ ðx½�a� − y½�b�Þ=ðx½�a�y½�b� − 1Þ, y½�b� ¼

xðv� ib=2Þ, and with μmir
a coming from the double zero

of pmir at v ¼ u,

pmir
ab ðu; vÞ ∼ μmir

a ðuÞ2ðu − vÞ2δab; ð8Þ

with δab the Kronecker delta. The contour of integration C
runs over the real axis, up to a small detour which is
explained in the next section.
The integrand jHj2 is less explicit, yet remarkable in that

it factorizes into a number of individual weights and
pairwise interactions,

jHj2 ¼
YNL;R;B

i;j;k¼1

WL
aiðuiÞWR

bj
ðvjÞWB

ckðwkÞ
pmir
aibj

ðui; vjÞ
; ð9Þ

with fui; vj; wkg and fai; bj; ckg denoting the rapidities
and spins of the magnons in the three channels. Theweights
WaðuÞ encode the interactions between the mirror magnons
and the physical magnons in the excited state. As such, they
depend implicitly on the Bethe roots, z ¼ fz1;…; zSg,
parametrizing the excited-state wave function. In the
original hexagon description, see formulas in Ref. [34],
they are expressed in terms of the eigenvalues of the
suð2j2Þ transfer matrices, describing the action of the
magnon S matrices on the Bethe state [35,36].
As said earlier, the problem with this description is that it

is only valid in the asymptotic limit, that is, when the length
L of the excited operator is large. At finite length L, one
also expects wrapping corrections ∼e−nLEa ; n ¼ 1; 2;…,
associated with particles winding around the excited
operator (Fig. 2). Their appearance relates to the double
poles in Eq. (9), see Eq. (8), for magnons with same
quantum numbers, ui ¼ vj and ai ¼ bj, in the left and right
channels, which must be regularized somehow. An all-
order derivation of these corrections, akin to the TBA for
the spectrum, is still lacking. Nonetheless, one can gain
several insights into the general formula from the leading
exponentials, which were worked out in a number of
situations [22,37,38]. They indicate that the hexagon
formula stays intact (and as factorized as above) up to
modifications of the weights W in Eq. (9) and normaliza-
tion factor N in Eq. (3). Furthermore, the expressions hint
at a simple all-order extrapolation in terms of TBA-QSC
quantities.
To be precise, the evidence suggests that the problem is

solved by (i) shifting the poles away from the real axis,

pmir
ab ðu; vÞ → pmir

ab ðuþ i0; v − i0Þ; ð10Þ

FIG. 2. Mirror magnons propagating across the left, right, and
bottom seams of the pair of pants. Additional magnons moving
closely around the excited operator as in the right panel are
needed to account for wrapping corrections.
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in Eq. (9), and (ii) setting

WR=L
a ðuÞ ¼ e

1
2
LEaðuÞ Ta;1ðuÞ

Tþ=−
a;0 ðuÞ

; ð11Þ

with T�
a;0ðuÞ ¼ Ta;0ðu� i=2Þ, and

WB
a ðuÞ ¼ e−

1
2
LEaðuÞta;1ðuÞ: ð12Þ

Here, ta;s and Ta;s denote the eigenvalues (for the Bethe
state of interest) of two families of transfer matrices,
associated with compact and noncompact representations
of the superconformal algebra, respectively. The latter
generate the familiar T-system underlying the TBA equa-
tions [4,9–11], with ða; sÞ labeling the nodes on the T hook,
whereas the former define a companion system solving the
Hirota equation (1) on the L hook (Fig. 3).
Transfer matrices in general are only defined up to gauge

transformations [4]

Ta;s → g½aþs�
1 g½a−s�2 g½s−a�3 g½−a−s�4 Ta;s; ð13Þ

which leave Eq. (1) invariant ∀ gj, with g
½n�
j ¼gjðuþ in=2Þ.

In our case, the gauge is fixed, with T given in the
distinguished T-gauge of Refs. [5,8] and with t normalized
as in Ref. [39], up to a sign, ta;sjhere ¼ ð−1Þasta;sjthere. One
may also find in these references explicit representations
for the transfer matrices in terms of the QSC’s Q functions,
which are valid for operators of any length L and prove
extremely useful in practical applications.
Alternatively, one may state the conjecture in a gauge-

invariant way, using the Y functions,

Ya;s ¼ Ta;sþ1Ta;s−1=Taþ1;sTa−1;s: ð14Þ
This is so at least for WR

a and WL
a , which readily obey

e−LEaWR
aWL

a ¼ Ta;1Ta;1

Tþ
a;0T

−
a;0

¼ Ya;0

1þ Ya;0
; ð15Þ

using Eq. (1) and the left-right symmetry, Ta;s ¼ Ta;−s,
observed for our states. Integral representations [5,39] yield
the extra relation

log
�
WL

a ðuÞ
WR

a ðuÞ
�
¼ i

X∞
b¼1

Z
�

C

dv
2π

LbðvÞ∂v logpmir
ba ðv; uÞ; ð16Þ

with LaðuÞ ¼ log ½1þ Ya;0ðuÞ� and with a principal-value
prescription for the pole at v ¼ uwhen b ¼ a. The analysis
is much harder for the t’s, however, which are less
obviously embedded in the TBA formalism.
Formulas (11) and (12) are our main results for the

resummation of the wrapping corrections. We stress that
they go along with the prescription (10), with the�i0 shifts
responding to the ∓ shifts of Ta;0 in Eq. (11).
At last, there is a formula for the normalization constant,

N , which depends on the Bethe state alone. It is conjec-
tured to be given, up to a simple factor, by Fredholm
determinants canonically associated with the TBA equa-
tions, in line with recent findings for structure constants of
determinant operators [15,40]. Its detailed presentation is
deferred to Sec. A of the Supplemental Material [26].
Contour and partitions.—In addition to the mirror sums,

the hexagon rules also predict a sum over all possible ways
of distributing the physical magnons on the two sides of the
pair of pants. This sum was skipped in the formula above,
which may be viewed as describing a configuration with all
roots standing on the same hexagon. The reason for this
omission is that this sum is not independent and may be
restored for a suitable choice of the contour C in Eq. (5), as
was first noticed in Refs. [41,42]. The key observation is
that the fundamental weights (with a ¼ 1) develop simple
poles on the physical sheet, at the locations of the Bethe
roots, log Wphys

1 ðuÞ ∼ log ðu − ziÞ for u ∼ zi. In analogy
with the analytic continuation trick used in the thermody-
namic Bethe ansatz [43–45], see also Refs. [15,40,46] for
recent discussions, the contour must be chosen to go around
these Bethe poles.
There are two alternatives: C may go around the poles of

WR
1 sitting on the second sheet of xðuþ i=2Þ, as depicted in

Fig. 4, or around those of WL
1 on the second sheet of

xðu − i=2Þ. They may be shown to be equivalent, for roots
solving the exact Bethe equations, Yphys

1;0 ¼ −1. Either way,
extracting the residues has the desired effect of moving
magnons to the next hexagon, over the right or left bridge.
In particular, keeping only the integrals around the roots

one reproduces the sum over the partitions [17,47]

C∘∘• → N ×
X
α

ð−1ÞjαjQzj∈αe
ipðzjÞlRT ðzjÞQ

zi;zj∈ᾱ;αhðzi; zjÞ
; ð17Þ

which runs over the subsets of z, with α ∪ ᾱ ¼ z, pðuÞ ¼
iEphys

1 the spin-chain momentum and hðzi; zjÞ the physical

FIG. 3. Hooks for rectangular representations of suð2; 2j4Þ and
suð4j4Þ, respectively [39], with highlighted the transfer matrices
used in the conjecture. The T-t systems are defined as solutions
to the Hirota equation with null boundary conditions outside their
respective domains.
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hexagon form factor [17]. T ðzjÞ is a dressing factor
collecting the wrapping corrections to the residue of
WR

1 ðuÞphys at u ¼ zj. Using Eqs. (14) and (15), it may
be written as

T ¼ exp

�
i
2
ΦðzjÞ −

i
2

X∞
a¼1

Z
du
2π

LaðuÞ∂u logpa1ðuγ; zjÞ
�
;

ð18Þ

where Φ is the wrapping-induced phase shift in the exact
Bethe equations [25] and pa1ðuγ; zjÞ is the measure (7) in
the mixed, mirror-physical kinematics, see Ref. [17] for
notations. It agrees perfectly with the Lüscher formula
proposed in Ref. [22], in the IR limit La ≈ Ya;0 ∼ e−LEa , up
to an overall factor which follows from N .
At last, let us comment on WB

1 . In the asymptotic
description, this weight also appears to have poles on
the physical sheets. It suggests the strange possibility that
the physical magnons should also be transported over the
bottom bridge, in tension with the locality of the hexagon
rules. However, the tension goes away when wrapping
corrections are included. The exact expression (12) is indeed
free from singularities, since transfer matrices are regular
everywhere on their Riemann surfaces [5,39]. The puzzle
arises because the analytic continuation to the physical
sheets does not commute with the large L limit; the mirror
asymptotic formula being valid only on the mirror sheet.
The effect is nicely illustrated with the fundamental transfer
matrix at weak coupling. On the physical sheet, it is given as
a sum of two terms,

tphys1;1 ∝ e
i
2
pL

�
Qðuþ iÞ
QðuÞ −1

�
þe−

i
2
pL

�
Qðu− iÞ
QðuÞ −1

�
; ð19Þ

with Q ¼ Q
S
j¼1ðu − zjÞ and eip ¼ ðuþ i=2Þ=ðu − i=2Þ. It

is regular at u ¼ zj, despite the poles in each term, in virtue
of the Baxter equation. Nonetheless, the cancellation cannot
be seen asymptotically from the mirror kinematics, because

the two termsmap then to different orders e�ipL=2 → e∓EL=2

at large L.
Advanced checks.—We turn to direct tests of our con-

jecture with available data from field and string theory. To
simplify the discussion, we shall focus on a ratio of
structure constants

RðlBÞ ¼ C∘∘•= lim
lB→∞

C∘∘•; ð20Þ

with the limit taken at fixed L. Owing to the factorization in
Eqs. (3) and (9), this ratio receives no contributions from
the left-right channels or normalization factor. As such, it is
given by a single sum of mirror integrals,

R¼1þ
X∞
a¼1

Z
du
2π

μmir
a ðuÞe−lBEaðuÞWB

a ðuÞþ…; ð21Þ

with dots standing for terms with N ¼ 2; 3;… magnons.
Weak coupling.—Taking the weak coupling limit,

g2 → 0, greatly simplifies the analysis, by suppressing
the N-particle terms in Eq. (21) which kick in at NðlB þ
NÞ loops at the earliest [34]. The first wrapping correction,
on the other hand, enters at ðLþ lB þ 2Þ loops and thus
dominates over the higher-particle terms for L < lB þ 2.
This hierarchy is observed for the “shortest” three-point
function of two stress tensors and one Konishi operator,
with lB ¼ 1 and L ¼ S ¼ 2. The associated ratio (20) was
studied in Refs. [23,48–50] through higher loops, using
diagrammatic techniques, and a mismatch was found with
the original hexagon formula at five loops, that is, precisely
when the first wrapping occurs. The discrepancy reads [23]

δR
g10

¼ 972ζ3 − 2700ζ5 þ 5355ζ7 − 2376ζ3ζ5 − 1512ζ9;

ð22Þ

with ζn ¼
P∞

a¼1 a
−n the Riemann zeta function. Nicely,

formula (12) restores the agreement with the field theory.
To see that, one needs the expression for ta;1. It is easily
obtained using the QSC [39]

ta;1ðuÞ ¼ −
X4
j¼1

Qjðuþ ia=2ÞQ̃jðu − ia=2Þ; ð23Þ

with Qj; Q̃
j the fundamental (fermionic) Q functions. The

weak coupling expansion may then be taken efficiently
using powerful QSC solvers [51–54]. The outcome is a
complicated meromorphic function of the rapidity, which is
too lengthy to be shown here; we describe it in detail in
Sec. B of the Supplemental Material [26]. Its integration is
immediate and it reproduces perfectly the gauge-theory
prediction, including the wrapping contribution (22).

FIG. 4. Rapidity sheets of WR
1 ðuÞ with branch points at u ¼

�2g� i=2 and with poles on the second sheet at the positions of
the Bethe roots. The contour C goes along the real line in the
mirror sheet and around the roots in the physical sheet.
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Strong coupling.—The ratio (20) may also be calculated
in the string theory at strong coupling, g ≫ 1, in the
classical limit L; S;lB ∼ g. In this regime, one may rely
on the integrability of the classical worldsheet theory to get
a closed-form expression for the structure constants [55,56].
It is given in terms of the eigenvalues of the string
monodromy matrix ΩðxÞ ∈ SUð4j4Þ, generating the con-
served charges of the string [57–59],

Ω ≅ diagðeip̃1 ; eip̃2 ; eip̃3 ; eip̃4 jeip̂1 ; eip̂2 ; eip̂3 ; eip̂4Þ; ð24Þ

with x the spectral parameter and p̃iðxÞ; p̂jðxÞ the so-called
quasimomenta. General expressions for the states of interest
give [60,61]

p̂1ðxÞ ¼ −p̂4ðxÞ ¼ −p̂2

�
1

x

�
¼ p̂3

�
1

x

�
¼ L

2i
EðxÞ þGðxÞ;

ð25Þ

and similarly for p̃i withG→0, with EðxÞ ¼ ix=½gðx2 − 1Þ�
and withGðxÞ the resolvent of the classical curve. The string
theory then predicts that [55,56]

log Rstring ¼
Z
Uþ

duðxÞ
2π

X4
j¼1

½Li2ðξeip̂jÞ − Li2ðξeip̃jÞ�; ð26Þ

at large g, with Li2ðzÞ ¼
P∞

n¼1 z
n=n2 the dilogarithm, Uþ

the upper half of the circle jxj ¼ 1, uðxÞ ¼ gðxþ 1=xÞ,
and ξðxÞ ¼ e−

1
2
ðL1þL2ÞEðxÞ.

Now, the hexagon sum in Eq. (21) also greatly simplifies
in this regime. It exponentiates and its exponent can be
calculated exactly using the clustering method [42]

log Rstrong ¼
Z
Uþ

duðxÞ
2π

Z
ξ

0

dq
q
log

�X∞
a¼0

qata;1ðxÞ
�
; ð27Þ

with t0;1 ¼ 1. In this form, the comparison with the string
formula is immediate. One first observes [62,63] that in the
classical limit the t’s become characters of the group
element Ω in finite-dimensional representations of
suð4j4Þ, with the generating function

X∞
a¼0

qata;1 ¼ sdetð1 − qΩðxÞÞ ¼
Y4
j¼1

1 − qeip̃jðxÞ

1 − qeip̂jðxÞ ; ð28Þ

and “sdet” the Berezinian (superdeterminant). Plugging
then this expression inside Eq. (27) and integrating over q,
one gets

log Rstrong ¼ −
Z
Uþ

duðxÞ
2π

str½Li2ðξΩÞ�; ð29Þ

with “str” the graded trace on the 4j4 module, in perfect
agreement with the string result (26).

It is also instructive to look at these expressions in the
asymptotic limit, which corresponds here to L ≫ g. In this
regime, half of the eigenvalues are exponentially large, see
Eq. (25),

eip̂1;2 ∼ eip̃1;2 ∼ eLE=2: ð30Þ

It implies that the product in Eq. (28) and the sum in
Eq. (26) can be restricted to j ¼ 1, 2, as for the suð2j2Þ
problem studied in Ref. [42]. The four remaining eigen-
values, with indices j ¼ 3, 4, are exponentially small
∼e−LE=2 and stand for wrapping corrections. This decom-
position makes it clear that maintaining the agreement with
the classical string theory away from the large L limit
amounts to restoring the full suð4j4Þ symmetry, as done in
Eq. (12) through the replacement of the “old” suð2j2Þ
hexagon weights by “new” suð4j4Þ ones.
Finally, let us mention that similar tests may be per-

formed for the left-right sums and normalization factor. The
analysis is significantly harder and not as transparent as the
one carried out here, but the comparison may be done order
by order in the wrapping parameter ∼e−LE, using the
character solution for the T system [60,62,63].
Conclusion and outlook.—We reported a conjecture for

structure constants of single-trace operators in planar N ¼
4 SYM theory at finite coupling and found evidence for it at
weak and strong coupling from matching with gauge and
string theory.
For simplicity we focused in this Letter on operators in

the smallest closed subsector. It seems possible, however, to
extend the conjecture to the higher-rank sectors, such as to
describe operators with derivatives but also scalars and
fermions. Structure constants of this sort were analyzed in
Ref. [64] in the asymptotic limit and found to be subject to
a flavor selection rule, imposing a stringent left-right
symmetry on the operators, that is, Ta;s ¼ Ta;−s [5]. We
believe our formula applies as well to this more general
case. It is less clear how to extend it to asymmetric
operators though, should the left-right symmetry be broken
by wrapping corrections. It would also be fascinating to
explore applications of our findings to structure constants
with two or more unprotected operators, like the ones
studied recently in Refs. [65–69].
One may also expect applications in lower dimensional

AdS=CFT setups, where the hexagon formalism was
developed [70], or in integrable deformations of the
SYM theory, such as the fishnet theory [71,72]. The latter
is of particular interest to make contact with approaches
based on the separation of variables [16,73] or to shed light
on the group theory meaning of our formula.
Admittedly, the evaluation of the hexagon sums at high

orders in perturbation theory or at finite coupling neces-
sitates a fair amount of work. One will also run into serious
difficulties at special points in the parameter space, like at
the extremal points where the mixing with double-trace
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operators is important. At these points the hexagon inte-
grals no longer make sense and must be analytically
continued. The Pfaffian structure identified in Ref. [64]
may help simplifying the algebra. It may also help
obtaining a more compact representation for the structure
constants, as found recently in the study of large-charge
four-point functions [74–76].
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