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Orbit closures in flag varieties for the centralizer of an order-two nilpotent element : normality and resolutions for types A, B, D

Let G be a reductive algebraic group in classical types A, B, D and e be an element of its Lie algebra with Z its centraliser in G for the adjoint action. We suppose that e identifies with an nilpotent matrix of order two, which guarantees the number of Z-orbits in the flag variety of G is finite. For types B, D in characteristic two, we also suppose the image of e is totally isotropic. We show that any closure Y of such orbit is normal. We also prove that Y is Cohen-Macaulay with rational singularities provided that the base field is of characteristic zero, and that Cohen-Macaulayness remains in any characteristic for type A. We exhibit a birational, rational morphism onto Y involving Schubert varieties. Our work generalizes a result by N. Perrin and E. Smirnov on Springer fibers ([PS12]).

8 Actually the dimension of the centralizer is 4 for e ′ and 2 for e, see [Hes79, Theorem 4.5] for the latter computation.

9 As briefly explained in section 2.2 with the result of [Hes79, Theorem 3.8].

10 See the matrix models section 1 for a way to describe it as a matrix subgroup.

11 With the additional assumptions concerning this type, as stated in remark 0.7.

Introduction

1. Let k be an algebraically closed field and G be a reductive connected algebraic group over k with B a Borel subgroup. Let e be a nilpotent element of the Lie algebra g of G, and let Z be its centralizer in G for the adjoint action. When the Z-orbits in the flag variety G/B are in finite number1 , their closures are of particular interest. They include in this case the irreducible components of the so called Springer fiber over e. It is the fiber over e of the proper birationnal morphism Ñ → N , called the Springer resolution, which consists in the projection onto the nilpotent cone N ⊂ g from the smooth variety Ñ ∶= { (x, gB) ∈ N × G/B | Ad g -1 ⋅ x ∈ b }, b denoting the Lie algebra of B. The Springer fibers are of main interest in representation theory (see the seminal work of T-A. Springer [START_REF] Springer | Trigonometric sums, Green functions of finite groups and representations of Weyl groups[END_REF], their link with the orbital varieties [START_REF] Spaltenstein | Classes unipotentes et sous-groupes de Borel[END_REF], with the Steinberg variety [START_REF] Steinberg | On the desingularization of the unipotent variety[END_REF] 2 ), they are connected and equidimensional (see [START_REF] Spaltenstein | Classes unipotentes et sous-groupes de Borel[END_REF]). Their irreducible components have been subject to several studies. In [START_REF] Van Leeuwen | A Robinson-Schensted algorithm in the geometry of flags for classical groups[END_REF], M. van Leeuwen showed they are parametrized, at least for classical cases and char k ≠ 2, by standard tableaux, whose shapes are given by the Young diagrams which classically characterized (see for example [START_REF] Jantzen | Nilpotent orbits in representation theory[END_REF]) the involved nilpotent orbit. The further studies of their singularities have often relied on these shapes and have mostly produced results for G the general linear group and k the field of complex numbers. For example, F. Fung show in [START_REF] Fung | On the topology of components of some Springer fibers and their relation to Kazhdan-Lusztig theory[END_REF] they are all smooth in the so-called hook and two lines cases. A. Melnikov and L. Fresse give a necessary and sufficient condition for this global smoothness in [START_REF] Fresse | On the singularity of the irreducible components of a Springer fiber in sl n[END_REF] whereas they give a criterion for individual smoothness in [START_REF] Fresse | Composantes singulières des fibres de Springer dans le cas deuxcolonnes[END_REF], [START_REF] Fresse | On the singularity of the irreducible components of a Springer fiber in sl n[END_REF], under the additionnal assumption of being in the two columns case. This case is the first one where singularities appear and it ensures the number of Z-orbits is finite.3 

2. The two columns case is supposed in the article [START_REF] Perrin | Springer fiber components in the two columns case for types A and D are normal[END_REF] of N. Perrin et E. Smirnov.

For type A and the characteristic of k not equal to 2, they present rational resolutions of the components and show they are normal and Cohen-Macaulay. They also give argument for the same results in type D, but there is a gap at the step of their proof of normality and Cohen-Macaulayness, due to the non algebraicity of a certain map (see Appendix B for details and a counterexample). They nonetheless ensure that the existence of a rational birational morphism onto the component is again valid for this type. Our work is mainly inspired by the former, generalizing it in several directions. Keeping the two columns case assumption, we also prove normality and rationality, but for the much larger class of Z-orbit closures (for example, if G = Gl nk is the general linear group and r denotes the rank of e considered as a nilpotent order two matrix, then the number of Z-orbits is (n -r + 1)(nr) . . . (n -2r + 2) times the number of irreducible components4 ). Besides, we deal with the three types A, B, D and we also (almost5 ) treat the characteristic 2 case.

3.

Let us now state our main results. We suppose k of any characteristic and we fix an integer n. Let On k be the group over k whose closed points are invertible matrices preserving the quadratic form6 

⌊(n+1)/2⌋ ∑ k=1 Y k Y n-k+1 . (1) 
For n even, let △n denotes the Dickson invariant, as defined for example in [Knu91, IV, §5].

It is a regular function on On k satisfying detn = 1 + 2△n where detn is the restriction of the determinant to On k . Now, let suppose G is the general linear group Gln k or the special orthogonal group SOn k , regarded, in On k , as the zero locus of △n if n is even, and of detn -1 if n is odd7 . We suppose the former nilpotent element e is identified with a nilpotent matrix of order two, meaning we are in the two columns case. For the characteristic two and for types B, D, we make the additional assumption that the image of e is totally isotropic.

Recall that a proper morphism f ∶ X → Y of locally noetherian schemes is called rational if O Y ≃ f * O X and R i f * O X = 0 for i > 0. If the schemes are irreducible varieties with X smooth f is called a rational resolution if it is also birational with R i f * ω X = 0 for i > 0, where ω X denotes the canonical sheaf of X. In characteristic zero, two rational resolutions can be dominated by a third one so that being the target of a rational resolution lead to the intrinsic notion of having rational singularities. We proved: Theorem 0.1. Any Z-orbit closure in the flag variety of G is normal. In zero characteristic, they are Cohen-Macaulay with rational singularities. In any other characteristic, they remain Cohen-Macaulay for the type A.

This Theorem is based on two results. The first one is the construction of an explicit birationnal morphism into matrix models and using Schubert varieties. It ensures the existence of Borel subgroup B of G, containing a maximal torus T , and of a closed reductive subgroup H of G equipped with a retraction ϖ ∶ Z → H, having B H ∶= B ∩ H as Borel subgroup and T H ∶= T ∩ H as maximal torus, so that Theorem 0.2. For any Z-orbit closure Y in G/B, there exists w in the Weyl group of G such that Y = HB ⋅ wB = Z ⋅ wB and

H × B H B ⋅ wB → Y, [h, gB] ↦ hgB (2)
is rational, birational, Z-equivariant, with a Z-action on H × B H B ⋅ wB defined by z ⋅ [h, gB] = [ϖ(z)h, h -1 ϖ(z) -1 zhgB].

The second result involved is valid in a more general context, where we only suppose G is a connected reductive group over k and H a closed connected reductive subgroup of G. We make the same assumptions as before concerning T , B, T H , B H and we fix any w in the Weyl group of G. We denote by ρ G the half sum of positive roots and, for any dominant character λ, by ∇ G (λ) the dual Weyl G-module with lowest weight -λ. Let also ρ H and ∇ H (λ) be the corresponding objects for H. We refer to section 3 for precision on these notations and a stronger result which deals also with canonical sheaf vanishing.

Theorem 0.3. Suppose (i) The morphism π∶ H × B H B ⋅ wB → HB ⋅ wB, [h, gB] ↦ hgB is birationnal, (ii) The character 2ρ H -ρ G|T H is dominant, (iii) char(k) = 0 or (iii)' char(k) = p > 0 and the restriction ∇ G ((p -1)ρ G ) → ∇ H ((p -1)ρ G|T H ) is surjective.

Then HB ⋅ wB is normal and π is rational.

Remark 0.4. It remains an open question to know whether the Cohen-Macaulay property holds for types B, D and whether the Cohen-Macaulay property, rationality and normality hold for type C and exceptionnal types.

Remark 0.5. If we take H = T in Theorem 0.3, we recover the well-known result of the normality of Schubert varieties. Actually, in this case, the sequence of arguments used in the proof identifies with the M. Brion and S. Kumar one's in [START_REF] Brion | Frobenius splitting methods in geometry and representation theory[END_REF].

Remark 0.6. In types B and D, if char k ≠ 2, the two columns case assumption implies that the image of e is totally isotropic. However, it is not the case if char k = 2, as we can see in type D by taking e ∶= (

0 1 1 0 1 0 0 1 1 0 0 1 0 1 1 0
) which is an anti-adjoint nilpotent order two matrix just like e ′ ∶= ( 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0

). Hence the rank does not suffice to characterize the nilpotent orbits of e in this case. Moreover, even its dimension differs from the one of e ′8 . Our assumption concerning the image of e is thus necessary (and sufficient 9 ) to ensure that we deal with the specified nilpotent orbits of our matrix models, and then, that we can apply our argument (which depends essentially on the dimension of Z).

Remark 0.7. Let suppose char k ≠ 2, the rank of e odd, the involved Z-orbit with a T -fixed point (which is not insignifiant, since orbits without such points exists, see Proposition 2.9) and replace Z by its neutral component Z 0 for the action on the target and the source of (2). Then Theorem 0.2 (except rationality) is again valid for G = Spn k the symplectic group over k 10 . However, our proof of Theorem 0.1 cannot work because of the non dominancy of the character involved in Theorem 0.3 (see remark 4.2).

4.

To prove these results, we follow many of Perrin and Smirnov's arguments in [START_REF] Perrin | Springer fiber components in the two columns case for types A and D are normal[END_REF] together presenting new tools. Our birational morphism (2) onto a Z-orbit closure is an analogous of Perrin and Smirnov's one onto an irreducible component of the Springer fiber (see (36) of Appendix B); both involving a Schubert variety in the source variety. However, our approach is different. They present an explicit description and straightforward proof of birationality, depending on the type A or D and adapted to the particular setting of the irreducible components. Besides the presence of a Schubert variety is detected as a consequence. For us, the latter is a base point for a more general construction, using results on parabolic induction (see [START_REF] Chaput | Parametrization, structure and Bruhat order of certain spherical quotients[END_REF] by P-E. Chaput, L. Fresse, T. Gobet) and symmetric subgroups (see the work of R-W. Richardson and T-A. Springer [START_REF] Richardson | The Bruhat order on symmetric varieties[END_REF]), which can treat all the types A, B, C 11 , D together (see our Lemma 2.1) and can exactly recover, for type A and some precautions, the previous construction (see (38) of Appendix B). This general construction remains nonetheless very technical since it is shaped for being applied on a very particular matrix model. On the other hand, based on the previous birationality, our proof of normality, rationality and Cohen-Macaulayness follows closely the Perrin and Smirnov's one, excepted one point. We use the same reference [START_REF] He | On Frobenius splitting of orbit closures of spherical subgroups in flag varieties[END_REF] by X. He and J-F. Thomsen to get a Frobenius splitting12 and then the surjectivity of a restriction of sections, which, well, enables to run the same inductive result (proposition 3.2), producing normality and rationality. Besides, Cohen-Macaulayness follows the same canonical sheaf computations (proposition 3.513 ). The point concerns a passage from the positive to the zero characteristic which is needed if we want to make use of the Frobenius splitting in the latter case. One way is to realize the desired varieties in zero characteristic as finitely presented flat schemes over suitable large enough bases, so that the collections of their geometric fibers contain these varieties together their incarnations in some positive characteristics. This way is used by Perrin and Smirnov: thanks to the equations defining the Springer fibers, a realization of the irreducibles components can be made easily over Z and they just have to state its existence. For us, we need to realize the more general varieties HB ⋅ wB. It has been done for H = T (Schubert varieties) by V-B. Mehta, A. Ramanathan ( [START_REF] Mehta | Frobenius splitting and cohomology vanishing for Schubert varieties[END_REF]). But our even more general case of closures demand to treat systematically a problem of scheme theoretic image formation under non flat base changes. Dropping Spec Z for smaller bases Spec A where A is an integral finite type algebra over Z, we present a solution of scheme theoretic image realizations under some assumptions : the involved morphism has to be realized through A-scheme morphisms whose targets are proper and sources are with integral geometric fibers (theorem 5.6). It leads to realizations of quite general closures, in a setting of k-group actions on k-proper schemes of finite type (corollary 5.7) including the case of our varieties HB ⋅ wB (see Lemma 5.5 and its proof in Appendix A).

5.

If the number of Z-orbits is finite, another interesting fact is that the variety G/Z becomes spherical (i.e. counts a finite number of B-orbits) so that our study can be transposed in terms of B-orbit closures in G/Z and fall into the theory of spherical varieties, as originally developped by D. Luna in [START_REF] Luna | Variétés sphériques de type A[END_REF] then F. Knop in [START_REF] Knop | Localization of spherical varieties[END_REF]. In [START_REF] Brion | Multiplicity-free subvarieties of flag varieties[END_REF], M. Brion presents for such B-orbit closures a powerful criterium for normality and Cohen-Macaulayness, called the multiplicity free criterium. Applying it on our situation remains an open and interesting problem.

6.

Our article is organized as follows. We first introduce matrix models adapted to types A on the first hand and B, C, D on the other one (section 1). We then prove the Theorem 0.2 except the rational assumption, applying two technical Lemmas on the matrix models (section 2). With Theorem 3.1 in section 3 we prove a stronger version of Theorem 0.3 which uses our realization result presented in Appendix A and we just have to apply it on matrix models again in section 4 in order to conclude. In Appendix B, we present some comments on Perrin and Smirnov's article.

7.

Throughout this article, the varieties are finite type reduced schemes over an algebraically closed field and the (linear) algebraic groups are affine group schemes which are varieties. As usual, we essentially deal with closed points when we work on varieties, and in this context, taking the intersection ∩ mean we consider the reduced structure on scheme theoretic intersection (fiber product).We refer to [DGA11, Exposés XIX to XXVI] for the definitions of algebraic groups notions (Borel subgroup, maximal Torus, being reductive, ...) in the context of group schemes.
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Apart from Appendix A, k will denote an algebraically closed field.

Contents

Matrix -Let m ∈ N and σ ∈ Sm. If it is not ambigous, we denotes i ∶= mi + 1. We define σ as the permutation i ↦ σ(i) of { 1, ..., m }. We denote ℓm(σ) the number of inversions of σ, that is its lenght in Sm:

ℓm(σ) ∶= # { 1 ≤ i < j ≤ m | σ(i) > σ(j) }. If ς ∈ Sq, m ≤ q, 0 ≤ k ≤ q -m we say σ ∈ Sm is the induced permutation of ς ∈ Sq on { k + 1, ..., k + m } ⊂ { 1, ..., q } if ς( I k 0 0 0 σ -1 0 0 0 I q-(k+m) ) increases on { k + 1, ..., k + m }.
-For a matrix M , we denote δ M the symmetric transform of M along the antidiagonal (namely, echanging coefficients (i, j) and (j, i)). The permutations are often identified with their matrix in the usual basis. In this point of view, we have σ = δ σ -1 for any permutation σ. If m ∈ N and ϵ = ±1, we denote Iϵ,m the matrix (

I ⌊(m+1)/2⌋ 0 0 ϵI ⌊m/2⌋ ).
Let us now fix integers r, n with r ≤ ⌊n/2⌋ and let ε = ±1. In this section, we introduce the matrix models M(n, r) and M(ε, n, r) respectively relative to the type A on the first hand, and to the types B, C, D on the other hand. They consist in the following Z-group schemes G, B, T , P, L, Z, H, the morphisms Θ ∶ L → L and Π ∶ Z → H, the elements e and σ0, and the sets W, W P , W P .

Type A

We precise the matrix model M(n, r). For any ring R, we have on R-points :

G(R) = Gn(R) ∶= Gln(R), T (R) = Tn(R) ∶= ⎛ ⎜ ⎝ * 0 ⋱ 0 * ⎞ ⎟ ⎠ ⊂ G(R), B(R) = Bn(R) ∶= ⎛ ⎜ ⎝ * * * ⋱ * 0 * ⎞ ⎟ ⎠ ⊂ G(R), P(R) ∶= ⎧ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎩ ⎛ ⎜ ⎝ A * * 0 B * 0 0 C ⎞ ⎟ ⎠ ∈ G(R) A,C∈Gr (R) B∈G n-2r (R) ⎫ ⎪ ⎪ ⎪ ⎬ ⎪ ⎪ ⎪ ⎭ , L(R) ∶= ⎧ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎩ ⎛ ⎜ ⎝ A 0 0 0 B 0 0 0 C ⎞ ⎟ ⎠ ∈ P(R) ⎫ ⎪ ⎪ ⎪ ⎬ ⎪ ⎪ ⎪ ⎭ = ⎧ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎩ ⎛ ⎜ ⎝ A 0 0 0 B 0 0 0 C ⎞ ⎟ ⎠ A,C∈Gr (R) B∈G n-2r (R) ⎫ ⎪ ⎪ ⎪ ⎬ ⎪ ⎪ ⎪ ⎭ , Z(R) ∶= ⎧ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎩ ⎛ ⎜ ⎝ A * * 0 B * 0 0 A ⎞ ⎟ ⎠ ∈ P(R) ⎫ ⎪ ⎪ ⎪ ⎬ ⎪ ⎪ ⎪ ⎭ , H(R) ∶= ⎧ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎩ ⎛ ⎜ ⎝ A 0 0 0 1 0 0 0 A ⎞ ⎟ ⎠ ∈ P(R) ⎫ ⎪ ⎪ ⎪ ⎬ ⎪ ⎪ ⎪ ⎭ , and 
Θ(R) ∶ L(R) → L(R) ⎛ ⎜ ⎝ A 0 0 0 B 0 0 0 C ⎞ ⎟ ⎠ ↦ ⎛ ⎜ ⎝ C 0 0 0 B 0 0 0 A ⎞ ⎟ ⎠ , Π(R) ∶ Z(R) → H(R) ⎛ ⎜ ⎝ A * * 0 B * 0 0 A ⎞ ⎟ ⎠ ↦ ⎛ ⎜ ⎝ A 0 0 0 1 0 0 0 A ⎞ ⎟ ⎠ .
We also define the elements e ∶= ⎛ ⎜ ⎝ 0 0 Ir 0 0 0 0 0 0 ⎞ ⎟ ⎠ a square matrix of size n and

σ0 = σ0,n ∶= ⎛ ⎜ ⎜ ⎝ 0 1 . . . 1 0 ⎞ ⎟ ⎟ ⎠
a permutation in Sn and finally the sets

W = Wn ∶= Sn, W P ∶= ⎧ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎩ ⎛ ⎜ ⎝ σ1 σ2 σ3 ⎞ ⎟ ⎠ σ1, σ3 ∈ Sr, σ2 ∈ Sn-2r ⎫ ⎪ ⎪ ⎪ ⎬ ⎪ ⎪ ⎪ ⎭ , W P ∶= { u ∈ W | u is increasing on { 1, ..., r } , { r + 1, ..., n -r } , { n -r + 1, ..., n } } .

Types B, C, D

We define the matrix model M(ε, n, r). For G we adopt the picture presented in [START_REF] Chaput | On the adjoint quotient of Chevalley groups over arbitrary base schemes[END_REF] in order to get smooth matrix groups over Z. We explain some choices in the comments below. We need to introduce, for m ∈ N, the orthogonal group O2m over Z. We describe it as the closed Z-subscheme of 2m × 2m matrices M2m with equations

δ XX = I2m and m ∑ k=1 X k,i X 2m-k+1,i = 0, i ∈ { 1, ..., 2m }
meaning any fiber of O2m is the group of linear transformations preserving the quadratic form

m ∑ k=1 Y k Y 2m-k+1 . (3) 
On O2m the determinant det2m is a regular function which takes always value ±1, and there exists a unique regular function △2m, called the Dickson invariant, which satisfies det2m = 1 + 2△2m (see [START_REF] Chaput | On the adjoint quotient of Chevalley groups over arbitrary base schemes[END_REF]Lemma 4.1.4]). Let also † 2m be the difference between the mth and the (m + 1)th vector of the usual basis of the Z-free module Z m . We can now describe the data of our matrix model. For any ring R, we have on R-points:

G(R) = Gε,n(R) ∶= ⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ { A ∈ On(R) | △n(A) = 0 } if ε = 1, 2 | n { A ∈ On+1(R) | △n+1(A) = 0 A † n+1 = † n+1 } if ε = 1, 2 ∤ n { A ∈ Mn(R) | I-1,n δ AI-1,nA = In } if ε = -1, 2 | n T (R) = Tε,n(R) ∶= ⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ ⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ ⎛ ⎜ ⎜ ⎜ ⎝ t 1 ⋱ t n/2 t -1 n/2 ⋱ t -1 1 ⎞ ⎟ ⎟ ⎟ ⎠ t i ∈R * ∀i∈{ 1,...,n/2 } ⎫ ⎪ ⎪ ⎪ ⎪ ⎪ ⎬ ⎪ ⎪ ⎪ ⎪ ⎪ ⎭ if 2 | n ⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ ⎛ ⎜ ⎜ ⎜ ⎜ ⎜ ⎝ t 1 ⋱ t (n-1)/2 1 1 t -1 (n-1)/2 ⋱ t -1 1 ⎞ ⎟ ⎟ ⎟ ⎟ ⎟ ⎠ t i ∈R * ∀i∈{ 1,...,(n-1)/2 } ⎫ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎬ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎭ if 2 ∤ n , B(R) = Bε,n(R) ∶= ⎧ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎩ ⎛ ⎜ ⎝ * * * ⋱ * 0 * ⎞ ⎟ ⎠ ∈ G(R) ⎫ ⎪ ⎪ ⎪ ⎬ ⎪ ⎪ ⎪ ⎭ , P(R) ∶= ⎧ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎩ ⎛ ⎜ ⎝ A * * 0 B * 0 0 C ⎞ ⎟ ⎠ ∈ G(R) A,C∈Gr (R) B∈G ε,n-2r (R) ⎫ ⎪ ⎪ ⎪ ⎬ ⎪ ⎪ ⎪ ⎭ = ⎧ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎩ ⎛ ⎜ ⎝ A * * 0 B * 0 0 δ A -1 ⎞ ⎟ ⎠ ∈ G(R) A∈Gr (R) B∈G ε,n-2r (R) ⎫ ⎪ ⎪ ⎪ ⎬ ⎪ ⎪ ⎪ ⎭ , L(R) ∶= ⎧ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎩ ⎛ ⎜ ⎝ A 0 0 0 B 0 0 0 C ⎞ ⎟ ⎠ ∈ P(R) ⎫ ⎪ ⎪ ⎪ ⎬ ⎪ ⎪ ⎪ ⎭ = ⎧ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎩ ⎛ ⎜ ⎝ A 0 0 0 B 0 0 0 δ A -1 ⎞ ⎟ ⎠ A∈Gr (R) B∈G ε,n-2r (R) ⎫ ⎪ ⎪ ⎪ ⎬ ⎪ ⎪ ⎪ ⎭ , Z(R) ∶= ⎧ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎩ ⎛ ⎜ ⎝ A * * 0 B * 0 0 I-ε,rAI-ε,r ⎞ ⎟ ⎠ ∈ P(R) ⎫ ⎪ ⎪ ⎪ ⎬ ⎪ ⎪ ⎪ ⎭ = ⎧ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎩ ⎛ ⎜ ⎝ A * * 0 B * 0 0 I-ε,rAI-ε,r ⎞ ⎟ ⎠ ∈ P(R) I-ε,r δ AI-ε,r A=Ir B∈G ε,n-2r (R) ⎫ ⎪ ⎪ ⎪ ⎬ ⎪ ⎪ ⎪ ⎭ , H(R) ∶= ⎧ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎩ ⎛ ⎜ ⎝ A 0 0 0 1 0 0 0 I-ε,rAI-ε,r ⎞ ⎟ ⎠ ∈ P(R) I-ε,r δ AI-ε,rA = Ir ⎫ ⎪ ⎪ ⎪ ⎬ ⎪ ⎪ ⎪ ⎭ , and 
Θ(R) ∶ L(R) → L(R) ⎛ ⎜ ⎝ A 0 0 0 B 0 0 0 C ⎞ ⎟ ⎠ ↦ ⎛ ⎜ ⎝ I-ε,rCI-ε,r 0 0 0 B 0 0 0 I-ε,rAI-ε,r ⎞ ⎟ ⎠ , Π(R) ∶ Z(R) → H(R) ⎛ ⎜ ⎝ A * * 0 B * 0 0 I-ε,rAI-ε,r ⎞ ⎟ ⎠ ↦ ⎛ ⎜ ⎝ A 0 0 0 1 0 0 0 I-ε,rAI-ε,r ⎞ ⎟ ⎠ .
We also define the elements

e ∶= ⎛ ⎜ ⎝ 0 0 I-ε,r 0 0 0 0 0 0 ⎞ ⎟ ⎠ a square matrix of size n if 2 | n, of size n + 1 if 2 ∤ n, and 
σ0 = σ0,ε,n ∶= ⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ ⎛ ⎜ ⎜ ⎜ ⎜ ⎝ 0 1 . . . 1 0 0 1 . . . 1 0 ⎞ ⎟ ⎟ ⎟ ⎟ ⎠ if ε = 1, 2 | n and 4 ∤ n ⎛ ⎜ ⎜ ⎝ 0 1 . . . 1 0 ⎞ ⎟ ⎟ ⎠ if not
a permutation in Sn, and finally the sets

W = Wε,n ∶= { σ ∈ Sn | σ = σ and, if 2 | n and ε = 1, # { 1 ≤ i ≤ n/2 | σ(i) > n/2 } is even } , W P ∶= ⎧ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎩ ⎛ ⎜ ⎝ σ v σ⎞ ⎟ ⎠ σ ∈ Sr, v ∈ Sn-2r, v = v, and, if 2 | n and ε = 1 , # { 1 ≤ i ≤ (n -2r)/2 | v(i) > (n -2r)/2 } is even ⎫ ⎪ ⎪ ⎪ ⎬ ⎪ ⎪ ⎪ ⎭ , W P ∶= { u ∈ W | u increases on { 1, ..., r } , { r + 1, ..., ⌊n/2⌋ } and u(⌊n/2⌋) < u(⌊n/2⌋ + 1 + ε+(-1) n 2 ) } .

Comments

Let us make some observations about the previous data. We prove the assumptions on flatness and smoothness below. The assumptions concerning the reductiveness, semi-simpleness, the types and the Killing pairs 14 then follow from the isomorphism Theorem ([DGA11, Theorem 1.1 Exposé XXV]) and a classical algebraic group study on the geometric fibers of the involved groups.

General

-G possesses (T , B) as a Killing pair.

-The nilpotent matrix e can be identified with a section of the Lie algebra of G over Z and with a closed element of its Lie algebra over any geometric fiber. It is of order 2, rank r.

-Z is the centralizer Z G (e) of e in G for the adjoint action and we have L ∩ Z = L Θ and Z = L Θ U P where U P denotes the unipotent radical of P.

-H possesses (T × G H, B × G H) as a Killing pair.
-P is a parabolic subgroup of G and L is the related Levi subgroup containing T .

-W is naturally identified with the Weyl group of G related to T , W P for the one of P and W P for the set of minimal length representants of the quotient W/W P . Besides, σ0 is the maximal length element of W.

-Θ is an involution of L which stablizes T and B and Π is a retraction from Z to H.

Type A

-G is reductive (non semi-simple) of type An.

-H is reductive (non semi-simple) of type Ar.

-Θ induces on W P the involution

⎛ ⎜ ⎝ σ v σ ′ ⎞ ⎟ ⎠ ↦ ⎛ ⎜ ⎝ σ ′ v σ ⎞ ⎟ ⎠ .

Types B, C, D

-G is semi-simple of type Bn, Dn in the cases ε = 1 and 2 ∤ n, ε = 1 and 2 | n respectively. The base change G Z (2) is semi-simple of type Cn in the case ε = -1 and 2 | n. In any case, the geometric fiber G x over any point x ≠ (2) ∈ Spec Z is isomorphic to the group whose closed points consist in

{ A ∈ Sln(κ(x)) | Iε,n δ AIε,n = A -1 }.
-We deduce that in the case ε = 1, for any algebraically closed field K, the base change G K is also isomorphic to the special orthogonal group presented in the introduction. Then e identifies with a n × n matrix whose image is totally isotropic.

-In the cases ε = 1, r is necessarly even. In the case ε = -1, if r is odd then we have an isomorphism Z 0 ⋊ { ±1 } ≃ Z for any geometric fibers Z ∶= Z x over x.

-In the cases ε = 1, H is semi-simple of type Cr. In the case ε = -1, it is not even flat and its geometric fibers are not connected, but the base change H Z (2) is smooth and the neutral components of its geometric fibers are semi-simple of type Br.

-Θ induces on W P the involution

⎛ ⎜ ⎝ σ v σ⎞ ⎟ ⎠ ↦ ⎛ ⎜ ⎝ σ v σ ⎞ ⎟ ⎠ .
We outline the following Propositions Proposition 1.1. In the models M(n, r) and M(1, n, r) (types A, B, D), Z and L Θ have geometric connected fibers. In M(-1, n, r) (type C) the ones over s ≠ (2) ∈ Spec Z possess two connected components. However, the unipotent part

(L Θ s )u is contained in the neutral component (L Θ s ) 0 .
Proof. It is clear for types A, B, D. For type C, and any s ≠ (2) ∈ Spec Z, we remark

L Θ s ≃ O rs × Sp n-2rs and (L Θ s ) 0 ≃ SO rs × Sp n-2rs . It causes L Θ s = (L Θ s ) 0 ∪ γ(L Θ s ) 0 , for a suitable γ ∈ L Θ
s with det γ = -1 and similarly statement for Z s . We thus recognize two connected components. Since any unipotent matrix has its determinant equal to one, the isomorphisms also causes the desired inclusion.

Proposition 1.2. In the models M(n, r) and M(1, n, r) (types A, B, D), Z, L Θ and Z × G w B for any w ∈ W are smooth. In M(-1, n, r) (type C), they are not even flat but their base changes over Z (2) are all smooth.

Proofs concerning smoothness and flatness. Our several assumptions of smoothness and flatness follow from the same general argument which also justifies the quite complicated picture of our groups in types B, D. It is based upon the following Lemma.

Lemma 1.3. Let S be a locally noetherian irreducible scheme and G be a S-group scheme of finite type. Let η denote the generic point of S. We suppose G η is smooth. For any s ∈ S, if dim Lie(G s ) ≤ dim Lie(G η ), then G s is smooth. As a consequence, if the dimensions of the Lie algebras of the geometric fibers are the same, and if G is flat over S, then G is smooth over S.

Proof. Replacing G by its neutral component, we can suppose G is irreducible. Let s ∈ S. Applying [Gro66, Lemma 13.1.1] to the dominant finite type morphism of irreducible schemes G → S, we have the inequality of fiber dimensions

dim G η ≤ dim G s .
If we suppose the smoothness of the geometric generic fiber and the inequality between the dimensions of Lie algebras, we thus have

dim Lie(G s ) ≤ dim Lie(G η ) = dim G η ≤ dim G s ≤ dim Lie(G s )
which causes the smoothness of G s . The smoothness of G over S then follows from the smoothness fiber criterium for flat finite presentation morphisms.

Let us now state our general argument. Let us consider the equations which define the desired group as a closed subscheme of the affine space of matrix n × n. They are all linear or quadratic except for the Dickson invariant vanishing. Some of the quadratic ones are given by

X δ X = I2m (4) 
for some integers m and indeterminates 2m × 2m matrices X. They lead to 2-torsion with the equations depending on

i ∈ { 1, ..., 2m } 2m ∑ k=1 X ki X 2m-k+1,i = δi,2m-i+1 namely 2 m ∑ k=1 X ki X 2m-k+1,i = δi,2m-i+1.
That can be compensated by sharpening them with

m ∑ k=1 X ki X 2m-k+1,i = 0. (5) 
This problem does not occur for the other quadratic equations

I-1,m δ XI-1,mX = Im. (6) 
Remark the Dickson invariant does not imply torsion whereas its existence causes one for the equation det2m = 1. Hence, the group at stake is flat or non-flat over Z according to wether (4) or ( 6) is involved and potentially compensated. In any case, it is flat over Z (2) . On the other hand, it is finitely presented. and we can check that the Lie algebra of any of its geometric fibers is of constant dimension. Since the generic geometric fiber is smooth as an algebraic group in characteristic zero, we deduce the smoothness of all geometric fibers by the Lemma 1.3. Remark the point for Lie algebra dimension is the parity of 2m which prevents from squared term in (4) and (5) so that the differentials do not bring 2-torsion and thus a leap of dimension. This explains why we describe G1,n into G1,n+1, for n odd.

2 Birationality, types A, B, C, D

We first prove, except the rationality assumption, the Theorem 0.2 and its version for type C.

Two Lemmas

We will apply the two foundamental and technical Lemmas below.

Lemma 2.1. Let G be a connected reductive algebraic group over k and (T, B) be a Killing pair. Let H ⊂ Z ⊂ G be connected subgroups equipped with a retraction ϖ ∶ Z → H and such that B H ∶= B ∩ H is a Borel subgroup of H. Let w be in W , the Weyl group of G. We suppose:

1. dim Z/Z ∩ w B = ℓ(w) + dim H/B H 2. z -1 ϖ(z) ∈ w BB pour tout z ∈ Z 3. Z ∩ w B ⊂ ϖ -1 (B H )(Z ∩ w B) 0 4. The scheme theoretic intersection Z × G w B is reduced. Then Z acts on H × B H B ⋅ wB as z ⋅ [h, gB] = [ϖ(z)h, h -1 ϖ(z) -1 zhgB] and π ∶ H × B H B ⋅ wB → Z ⋅ wB [h, gB] ↦ hgB. ( 7 
)
is birational Z-equivariant.

Lemma 2.2. Let G, B, T , W , H, Z, B H , ϖ be as in the previous Lemma. Let P ⊃ B be a parabolic subgroup with U P its unipotent radical and L its Levi subgroup related to T . Let θ be an involution of L which stabilizes B ∩ L and T . We suppose Z is the subgroup (L θ ) 0 U P ⊂ P and we fix w ∈ W .

(i) If the subvariety of unipotents L θ u of L θ is contained in L Z , then Z ∩ w B ⊂ ϖ -1 (B H )(Z ∩ w B) 0 . (ii) If char k ≠ 2 and if w = τ v is the decomposition of w in W P (W P ) -1 , then dim Z/Z ∩ w B = ℓ(w) + dim Z/Z ∩ B + ℓ(τ -1 θ(τ ))/2 -ℓ(τ ).

Proof of Lemma 2.1

Let X be Z ⋅ wB and X be the subvariety

(ι × id) -1 (G ⋅ (eB, wB)) of H/B H × G/B where ι is the immersion H/B H ↪ G/B. We have X ≃ H × B H B ⋅ wB (8)
over H/B H as H-equivariant bundles and over G/B thanks to π and the second projection

pr2 ∶ H/B H × G/B → G/B.
Regarding this isomorphism, it suffices to show that pr2 induces a well defined birational morphism X → X and, transporting the action, to ensure X is stable for the Z action on H/B H × G/B given by z ⋅ (hB H , gB) = (ϖ(z)hB H , zgB). We proceed in several steps.

1. With the hypothesis 1, we have dim X = ℓ(w)

+ dim H/B H = dim Z ⋅ wB = dim X.
2. If f denotes the morphism g ↦ (gB, wB), we have for all

b ′ ∈ w B and b ∈ B, f (b ′ b) = (b ′ bB, wB) = (b ′ B, b ′ wB) = b ′ ⋅ (B, wB). Thus f ( w BB) ⊂ G ⋅ (eB, wB) and f ( w BB) ⊂ G ⋅ (eB, wB).
Thanks to the hypothesis 2, we have then for all z ∈ Z ι×id (z⋅(eB

H , wB)) = ι×id (ϖ(z)B H , zwB) = z⋅f (z -1 ϖ(z)) ∈ z⋅f ( w BB) ⊂ G ⋅ (eB, wB).
We deduce Z ⋅ (eB H , wB) ⊂ X.

3. pr2 induces a surjective Z-equivariant morphism Z ⋅ (eB H , wB) → Z ⋅ wB. The previous points give then dim

Z ⋅ wB ≤ dim Z ⋅ (eB H , wB) ≤ dim X = dim Z ⋅ wB so dim Z ⋅ wB = dim Z ⋅ (eB H , wB). It also implies dim Z ∩ w B = dim Z ∩ w B ∩ ϖ -1 (B H ) then (Z ∩ w B) 0 = (Z ∩ w B ∩ ϖ -1 (B H )) 0 and (Z ∩ w B) 0 ⊂ ϖ -1 (B H ). With hypothesis 3, we deduce ϖ(Z ∩ w B) ⊂ B H . Therefore pr -1 2 (wB) ∩ Z ⋅ (eB H , wB) = { (ϖ(z)B H , zwB) | z ∈ Z, zwB = wB } = { (ϖ(z)B H , zwB) | z ∈ Z ∩ w B } = ϖ(Z ∩ w B) ⋅ B H × {wB} = {(eB H , wB)},
and Z ⋅ (eB H , wB) → Z ⋅ wB is bijective. But it is also separable thanks to hypothesis 4. By the Zariski Main Theorem it is finally an isomorphism.

4. The previous points imply in particular dim X = dim Z ⋅(eB H , wB) then Z ⋅ (eB H , wB) = X. Hence, Z preserves X as desired.

5. To conclude note that we have

Z ⋅ wB ⊂ pr2( X). Since H/B H is complete, pr2( X) is closed in G/B
and we deduce X ⊂ pr2( X). Irreducibility and dimension formula give then dim pr2( X) ≤ dim X = dim X. Therefore X → X is well-defined and surjective.

We have all the needed assertions, with an isomorphism between the dense open orbits Z ⋅ (eB H , wB) and Z ⋅ wB.

Proof of Lemma 2.2

Let Φ L be the set of roots of L and put L Z ∶= (L θ ) 0 , B L ∶= B ∩ L and T Z ∶= (T ∩ Z) 0 = (T ∩ L Z ) 0 = T θ,0 . The involution θ and the elements of W P act linearly on the vector space R ⊗ Z Φ L and let ⋆ and ◇ denote respectively those actions. Note that B L is a θ-stable Borel subgroup of L. Besides, since T ⊂ B L is a θ-stable maximal torus of L, T Z is a regular subtorus of L (see for example [BH00, Lemma 4]15 ) and it follows it is a maximal torus of L Z and of Z.

1. Let us first prove (i). Since T ⊂ L, there exists a cocharacter λ ∶ Gm → T such that

U P = { x ∈ G | lima→0λ(a)xλ(a) -1 = 1 } and L = Z G (Im λ). Hence, if z = lv ∈ Z ∩ w B with l ∈ L Z and v ∈ U P then λ(a)zλ(a) -1 ∈ w B for all a ∈ Gm and λ(a)zλ(a) -1 = lλ(a)vλ(a) -1 → l when a → 0. We therefore have l, v ∈ w B and z ∈ (L Z ∩ w B)( w B ∩ U P ) so that Z ∩ w B ⊂ (L Z ∩ w B)(Z ∩ w B)u. (9) 
But we have

L Z ∩ w B ⊂ (T ∩ Z)(Z ∩ w B)u. ( 10 
)
To see it let x ∈ L Z ∩ w B and x = tv with t ∈ T and v ∈ ( w B)u its decomposition in the connected solvable group w B. We have v = t -1 x ∈ T L Z ⊂ L and we can apply θ on v.

Since x ∈ L Z we have tv = θ(t)θ(v) and θ(v) = θ(t) -1 tv ∈ w B because θ stabilizes T ⊂ w B.
Hence the unipotent element θ(v) is in the group ( w B)u and θ(t

) -1 t = θ(v)v -1 is also unipotent. It is thus the neutral element implying t, v ∈ L θ . By hypothesis L θ u ⊂ L Z so that v, and then t, are in L Z . Therefore x ∈ (T ∩ L Z )(( w B)u ∩ L Z ) ⊂ (T ∩ Z)(Z ∩ w B)u.
We have also

T ∩ Z ⊂ ϖ -1 (B H ). (11) 
Indeed, since ϖ ∶ Z → H is a retraction, we have

B H = B ∩H ⊂ B ∩Z and B H = ϖ(B H ) ⊂ ϖ(B ∩ Z)
which is an equality because ϖ(B ∩ Z) is solvable. On the other hand we have

(Z ∩ w B)u ⊂ (Z ∩ w B) 0 . ( 12 
)
Let us show it. The unipotent subgroup (Z ∩ w B)u of the connected group Z is contained in a Borel subgroup BZ of Z (see for example [Hum81, Theorem 30.4]). Since it is stable under the action of the maximal torus T Z , we can suppose T Z ⊂ BZ by the Borel fixed point Theorem. As for P and U P , the unipotent radical ( BZ )u is described by

{ x ∈ Z | lima→0µ(a)xµ(a) -1 = 1 }
where µ is a suitable cocharacter Gm → T Z . Therefore, conjugating by µ(a) and taking the limit when a → 0, any x ∈ (Z ∩ w B)u can be contracted, inside Z ∩ w B, to the neutral element, and then, belongs to (Z ∩ w B) 0 . Combining (9), ( 10), ( 11), (12) leads to the desired inclusion. 

L θ with L Z ) dim L Z /L Z ∩ τ B = dim L Z /L Z ∩ B + (ℓ (τ -1 θ(τ )) + dim E-(τ -1 θ(τ )) -dim E-(1)) /2 where E-(σ) ∶= { v ∈ R ⊗ Z Φ L | σ ◇ (θ ⋆ v) = -v } for any σ ∈ W P . But for all v ∈ R ⊗ Z Φ L we have θ(τ ) ◇ (θ ⋆ v) = θ ⋆ (τ ◇ v) hence the equivalences (τ -1 θ(τ ))◇(θ⋆v) = -v ⇔ τ ◇τ -1 ◇θ(τ )◇(θ⋆v) = -τ ◇v ⇔ θ(τ )◇(θ⋆v) = -τ ◇v ⇔ θ⋆(τ ◇v) = -τ ◇v which imply E-(τ -1 θ(τ )) = τ -1 ◇ E-(1). Besides, since U P ⊂ B, we have L Z /L Z ∩ B ≃ Z/Z ∩ B. We thus have dim L Z /L Z ∩ τ B = dim Z/Z ∩ B + ℓ (τ -1 θ(τ )) /2. ( 13 
)
On the other hand, since char k ≠ 2, the fixed point subgroup L θ counts a finite number of orbits in the flag variety L/B L (see [START_REF] Springer | Some results on algebraic groups with involutions, Algebraic groups and related topics[END_REF]§4]). Thus L Z is spherical in L. We can then apply a result 16 of the Chaput, Fresse and Gobet ([CFG21, Theorem 7.2 (c)]) for the subgroup Z produced by parabolic induction Z = L Z U P . We get, for τ ∈ W P and υ ∈ W P :

dim Z/Z ∩ τ υ B = ℓ(υ) + dim L Z /L Z ∩ τ B.
But with the decomposition w = τ υ we have ℓ(υ) = ℓ(w) -ℓ(τ ) and thus

dim Z/Z ∩ w B = ℓ(w) -ℓ(τ ) + dim L Z /L Z ∩ τ B. (14) 
Combining ( 13) and ( 14) gives the desired formula.

Application through matrix models

Let us now fix the setting presented in the introduction for G, e, Z taking account of types A, B, C, D. Recall that we suppose the image of e is totally isotropic for types B, D (which is automatically satisfied if char k ≠ 2) and that we consider only char k ≠ 2 for type C. Let r be the rank of e. According to the comments of section 1, we thus can suppose G is the base change G k of the matrix model M(n, r) or M(ε, n, r), depending on the type. Besides, we know, for the group Gln k , that the Young diagrams parametrize the nilpotent orbits and that they are uniquely characterized by the rank within the order two elements (two columns case). For char k ≠ 2 it is also the case for the groups On k and Spn k (see for example [Jan04, §1.6]). For char k = 2 and types B, D, if we want to characterize the orbit of a nilpotent N , then we must add to the previous invariants the data of the sequence (χ N m )m≥1 whose mth term is

χ N m ∶= min { l ≥ 0 | N l (KerN m ) is totally isotropic } 16
The article is written for the zero characteristic but we only need here its part 2 which is valid for any characteristic.

(see [START_REF] Hesselink | Nilpotency in classical groups over a field of characteristic 2[END_REF]Theorem 3.8]). Let us note that such a sequence is totally determined by the rank s of N , as soon as N is order two with a totally isotropic image. Indeed, in this situation, we first obviously have χ N 1 ≤ 1 and χ N m = 1 for all m ≥ 2. Besides, recall that 2s ≤ n since ImN ⊂ KerN . If 2s = n, the rank theorem implies KerN = ImN so that KerN is totally isotropic and χ N 1 = 0. If 2s < n, then the dimension of KerN exceeds n/2 so that it cannot be a totally isotropic subspace and we deduce χ N 1 ≥ 1. Thanks to an inner (for types A, C) or (potentially) an outer conjugation (for types B, D), we thus can suppose that e and then Z respectively consist in e and in the base change Z k of the suitable matrix model. We complete these data with B, T , P , L, H, B H , T H , θ, ϖ and W , W P , W P which will denote respectively the various base changes

B k , T k , P k , L k , (H k ) 0 , (B × G H) k , (T × G H) k , Θ k , Π k
and the sets W, W P , W P of the suitable matrix model again. We also denote L Z ∶= (L θ ) 0 , B L ∶= B ∩ L. We keep the notation σ0 for the maximal length element of W and u0 will denotes σ0,n-2r (type A), or σ0,ε,n-2r (types B, C, D).

For any integer m, and ϵ = ±1 we will also denotes more generally Gm, Bm, Tm, Gϵ,m, Bϵ,m, Tϵ,m, Wm, Wε,m the base changes Gm k , Bm k , Tm k , Gϵ,m k , Bϵ,m k , Tϵ,m k , and the sets Wm, Wε,m. We also introduce the natural applications

ζm ∶ N Gm (Tm) → Wm ζm,ε ∶ N Gε,m (Tε,m) → Wε,m
which map a monomial matrix to the induced matrix permutation.

In order to apply the previous Lemmas to this setting, we first give several properties. for the type A on one hand, and for types B, C, D on the other hand.

Restrictions for type C

In type C, we underline that we suppose char k ≠ 2, r odd and that we replace Z and H by their neutral components Z 0 and H 0 (see Remark 0.7).

Type A

We begin with a Proposition of independent interest. Proposition 2.3. We have the following parametrization of Z-orbit in G/B Wr × W P → Z/(G/B)

(u, v) ↦ Z ⋅ ( u 1 1 )v -1 B
As a consequence, the Z-orbits are in finite number. Besides, they all possess a T -fixed point.

Proof. Let us recall that the Bruhat Lemma implies a bijection Wr → Gr/Br × Gr/ (Gr/Br) u ↦ ↦ Gr ⋅ (σBr, eBr) .

But, considering the block shapes of L and L Z , there is a bijection

Gr/ (Gr/Br × Gr/Br) → L Z / (L/B L ) Gr ⋅ (xBr, yBr) ↦ L Z ⋅ ( x 1 y )B L .
We therefore have a bijection

Wr → L Z / (L/B L ) u ↦ L Z ⋅ ( u 1 1 
)B L .

We can then apply again [CFG21, Theorem 7.2 (a)] on the spherical subgroup Z = L Z U P which gives finally the desired parametrization

Wr × W P → Z/(G/B) (u, v) ↦ Z ⋅ ( u 1 1 )v -1 B.
The assertion on T -fixed points follows easily. Now, we consider the three essential results below.

Proposition 2.4. Let v ∈ W . Then, there exists z0 ∈ Z ∩ N G (T ) such that w ∶= ζn(z0) -1 v satisfies (a) w -1 induces u0 on { r + 1, ..., nr }; in other words, w -1 is decreasing on this set.

(b) w -1 is increasing on { 1, ..., r }.

Proof. If v ∈ W , there exists σ1 ∈ Sn-2r and σ2 ∈ Sr such that v -1

⎛ ⎜ ⎝ 1 σ1 1 ⎞ ⎟ ⎠
decreases on { r + 1, ..., nr } and v -1 σ2 increases on { 1, ..., r }. We fix then

z0 ∶= ⎛ ⎜ ⎝ σ2 σ1 σ2 ⎞ ⎟ ⎠
which is obviously an element of Z ∩ N G (T ), which is also equal, as a matrix, to ζn(z0) in W . Hence v -1 ζn(z0) is v -1 σ1 on { r + 1, ..., nr } and is v -1 σ2 on { 1, ..., r }, so that ζn(z0) -1 v is the desired element.

Proposition 2.5. Suppose w ∈ W satisfies property (a) of Proposition 2.4. Then z -1 ϖ(z) ∈ w BB for all z ∈ Z.

Proof. Let w satisfy the assumption. Since w induces u0 we get

( 1 0 0 0 u 0 B n-2r 0 0 0 1 ) ⊂ w B. ( 15 
)
But u0 is of maximal length so that

u 0 Bn-2rBn-2r ≃ Bn-2ru0Bn-2r
is dense in Gn-2r and (15) thus implies

⎛ ⎜ ⎝ 1 Gn-2r 1 ⎞ ⎟ ⎠ ⊂ w BB. (16) 
Let now z ∈ Z. The element z -1 ϖ(z) has the shape

⎛ ⎜ ⎝ 1 A1 A2 0 C A3 0 0 1 ⎞ ⎟ ⎠ = ⎛ ⎜ ⎝ 1 C 1 ⎞ ⎟ ⎠ ⎛ ⎜ ⎝ 1 A1 A2 0 1 C -1 A3 0 0 1 ⎞ ⎟ ⎠
with C ∈ Gn-2r and suitable matrices Ai. We conclude z -1 ϖ(z) ∈ w BBB = w BB by (16).

Proposition 2.6. Suppose w ∈ W satisfies properties (a) and (b) of Proposition 2.4. Let w = τ ν the decomposition of w in W P (W P ) -1 . Then

ℓ(τ ) -(ℓ(τ -1 θ(τ ))/2 = dim Z/Z ∩ B -dim H/B H .
Proof. Let w satisfy the assumptions. There exists σ ∈ Sr such that w -1 (

1 1 σ
) increases on { nr + 1, ..., n }. We fix then τ ∶= (

1 u 0 σ ) which is in W P . Besides, w -1 τ is in W P because it restricts to w -1 on { 1, ..., r }, to w -1 ( 1 u -1 0 1 ) on { r + 1, ..., n } and to w -1 ( 1 1 σ
) on { nr + 1, ..., n } which are all increasing by hypothesis on w. On the other hand, we have

τ -1 θ(τ ) = ( 1 u -1 0 σ -1 )( σ u 0 1 ) = ( σ 1 σ -1 ).
We thus have ℓ(τ -1 θ(τ )) = 2ℓ(σ). Besides, ℓ(τ ) = ℓ(u0) + ℓ(σ). But an easy computation gives dim Z/Z ∩ Bdim H/B H = dim Gn-2r/Bn-2r = ℓ(u0). Combining all thoses equalities give the desired formula.

But

N = # { (s, t) | s < t, v -1 (s) > v -1 (t), vv -1 (s) < vv -1 (t) } = # { (s, t) | s < t, v -1 (s) < v -1 (t), v(v -1 (s)) < v(v -1 (t)) } = # { (s, t) | s < t, v -1 (s) < v -1 (t), v(v -1 (s)) > v(v -1 (t)) } = # { 1 ≤ i < j ≤ d | v(i) > v(j) and v(i) < v(j) } .
Hence the equality (17).

(iii) We have the following fact

If d = 2k is even (respectively d = 2k + 1 is odd), there exists σ ∈ S d such that σ = σ and vσ(i) = min { vσ(j) | j ∈ [i, i] } (resp. vσ(i) = min { vσ(j) | j ∈ [i, i] ∖ { k + 1 } } ) for all i ∈ {1, ..., k}.
It implies the Proposition. Indeed, suppose vσ satisfies the minimal conditions for a σ in S d and fix 1 ≤ i < j ≤ d. If d = 2k is even, then if i ≤ k we deduce from the minimal property that vσ(i) < vσ(j) when j < ī, and vσ( j) < vσ( ī) when ī < j. And if k < i then j < ī ≥ k and we have again vσ( j) < vσ( ī) by minimality. In the case d = 2k + 1 is odd the same arguments give the alternative for i ≠ k + 1 and j ≠ k + 1. But if i = k + 1 then j < k + 1 < j and vσ( j) < vσ(j) by minimality. Since σ = σ, we have

σ(i) = σ(k + 1) = k + 1 = σ( ī) hence vσ(i) = v(k + 1) = vσ( ī).
Comparing vσ(i) and vσ(j) gives then the alternative thanks to the previous inequality. If j = k + 1 we apply the same argument with ī in the place of j. We now describe a suitable σ to prove the fact. Let first a be the composition of the transpositions We are now able to state and prove the desired Propositions, similar to the previous Propositions 2.3, 2.4, 2.5, 2.6. We begin with a parametrization. Let w0 ∶= σ0,r and let I 1 r (respectively I -1 r ) denote the set of involutions in Sr (respectively the set of involutions without fixed point). For u ∈ Wr, we also introduce the following subset of Gr/Br:

(i i) for 1 ≤ i ≤ k such that v(i) > v(i).
O(u) ∶= { xBr | I-ε,r δ xI-ε,rx ∈ Brw0uBr } .
Proposition 2.9. We have the following parametrization of Z-orbits in G/B

I -ε r × W P → Z/(G/B) (u, v) ↦ Z ⋅ ( x 1 δ x -1 )v -1 B with any xBr ∈ O(u).
As a consequence, the Z-orbits are in finite number. Besides, if ε = 1 (types B, D), all Zorbits contain a T -fixed point. If ε = -1 (type C), this is the case exactly for the Z-orbits parametrized by (u, v) with u ∈ I -1 r .

Proof. In the literature, there exist several parametrizations of the G-ε,r-orbits of the flag variety Gr/Br; we will use the one presented in [FP17, Proposition 4]17 for ε = 1 and the one presented in [RS90, Example 10.3] for ε = -1, char k ≠ 2. Considering that x ↦ I-ε,r δ x -1 I-ε,r is an involution of Gr whose fixed points set consists in the symplectic group (if ε = 1) or the (usual) special orthogonal group (if ε = -1, with char k ≠ 2), these two works ensure a bijection

I -ε r → G-ε,r/(Gr/Br) u ↦ O(u).
.

But if we consider the block shapes of L and L Z , we have a surjection

L/B L ↠ Gr/Br (18) 
which is L Z ↠ G-ε,r and T ↠ Tr equivariant and which induces the bijection

G-ε,r/(Gr/Br) → L Z / (L/B L ) G-ε,r ⋅ xBr ↦ L Z ⋅ ( x 1 δ x -1 )B L . (19) 
between the orbit sets. We deduce the bijection

I -ε r → L Z / (L/B L ) u ↦ L Z (u) ∶= L Z ⋅ ( x 1 δ x -1 )B L with any xBr ∈ O(u).
As in type A, we can then apply [CFG21, Theorem 7.2 (a)], and we finally have the bijection

I -ε r × W P → Z/(G/B) (u, v) ↦ Z(u, v) ∶= Z ⋅ ( x 1 δ x -1 )v -1 B with any xBr ∈ O(u).
which is the desired parametrization.

Let us now conclude about the claim on T -fixed points. As usual a superscript will denote the set of fixed points for the involved action. Let (u, v) be a couple of parameters. Since w0 is an involution without fixed point (recall r is even for ε = 1) and I-ε,r δ σI-ε,r = w0σ -1 w0 for any σ ∈ Wr, it is not difficult to show that

O(u) Tr ≠ ∅ ⇔ u is conjugate to w0 in Wr ⇔ u ∈ I -1 r .
Then it suffices to show

Z(u, v) T ≠ ∅ ⇔ O(u) Tr ≠ ∅. (20) 
But, thanks to the previous reference, we have a (L and thus) T -equivariant ismorphism ([CFG21, Proposition 6.4])

L/B L ≃ (P ⋅ v -1 B) τ
where τ is a suitable cocharacter Gm → T . Moreover, its restriction induces an isomorphism ([CFG21, Theorem 7.2(b)])

L Z (u) ≃ Z(u, v) τ .
Hence we get an isomorphism

L Z (u) T ≃ (Z(u, v) τ ) T = Z(u, v) T .
On the other hand, the equivariant surjection (18) which induces the bijection (19) gives an isomorphism L Z (u) T ≃ O(u) Tr . Composing, we finally get an isomorphism

Z(u, v) T ≃ O(u) Tr
which leads to the desired equivalence (20).

Proposition 2.10. Let v ∈ W . Then, there exists z0 ∈ Z ∩ N G (T ) such that w ∶= ζε,n(z0) -1 v satisfies :

(a) sv = sw and w -1 induces swu0 on { r + 1, ..., nr }, (b) w -1 (i) < w -1 (j) or w -1 (r -i + 1) > w -1 (r -j + 1) for any 1 ≤ i < j ≤ r.

Proof. Let v ∈ W . The inverse v -1 induces on { r + 1, ..., nr } an element u ∈ Sn-2r such that svu is in Wε,n-2r (proposition (2.7)) so that svuσ1 = u0 for a suitable σ1 ∈ Wε,n-2r.

Then v -1 ( 1 σ 1 1
) induces svu0 on { r + 1, ..., nr }. Besides, there exists a monomial matrix g1 ∈ Gε,n-2r such that ζε,n-2r(g1) = σ1. Applying Proposition 2.8 (iii) on v -1 gives also

σ2 ∈ Sr such that v -1 ( σ 2 I n-2r σ2
) satisfies (b) with σ2 = σ2 relatively to { 1, ...r }. We then can find a monomial matrix g2 ∈ G-ε,r such that ζ-ε,r(g2) = σ2. Indeed, in type C (ε = -1, 2 ∤ r, char k ≠ 2), let g2 be the matrix product σ2(

1 det(σ 2 ) 1
). In types B, D (ε = 1 and then 2 | r), since σ2 = σ in Sr, there exists λ ∈ T r/2 , with coefficients ±1, such that I-1,rσ2I-1,r = ( λ δ λ )σ 2.Let then g2 be the matrix product ( λ 1 )σ2. Now we can define

z0 ∶= ⎛ ⎜ ⎝ g2 g1 I-ε,rg2I-ε,r ⎞ ⎟ ⎠ , which is in Z ∩ N G (T ) with ζε,n(z0) = ( ζ-ε,r (g 2 ) ζ ε,n-2r (g 1 ) ζ-ε,r (I-ε,r g 2 I-ε,r ) ) = ( σ 2 σ 1 σ2
).

We see v -1 ζε,n(z0) and v -1 (

1 σ 1 1
) induce the same element svu0 on { r + 1, ..., nr }. Since σ1 ∈ Wε,n-2r, the quantities

# { i ∈ { r + 1, ..., n -r } | v -1 (i) > ⌊n/2⌋ } and # { i ∈ { r + 1, ..., n -r } | v -1 ( 1 σ 1 1 )(i) > ⌊n/2⌋ }
have the same parity in the case ε = 1, 2 | n. Hence sv = s ζε,n(z 0 ) -1 v . On the other hand, v -1 ζε,n(z0) and v -1 (

σ 2 I n-2r σ2 
) induce the same element on { 1, ..., r }. We conclude that w ∶= ζε,n(z0) -1 v satisfies the desired conditions.

Proposition 2.11. Suppose w ∈ W satisfies the property (a) of Proposition 2.10. Then z -1 ϖ(z) ∈ w BB for all z ∈ Z.

Proof. Let w -1 be such an element and fix w0 ∶= (

1 u 0 sw 1
).

We have

⎛ ⎜ ⎝ 1 0 0 0 u 0 Bε,n-2r 0 0 0 1 ⎞ ⎟ ⎠ ⊂ w B. (21) 
Indeed, sw stabilizes Bε,n-2r because, in the case sw ≠ id, n -2r even, we have for all i, j ∈ { 1, ..., n -2r } with 1 ≤ i < j < i = n -2r -i + 1 the inequality i < (n -2r)/2, so that sw(i) = i < sw(j). The inclusion (21) is thus equivalent to :

w -1 w0 ⎛ ⎜ ⎝ 1 0 0 0 Bε,n-2r 0 0 0 1 ⎞ ⎟ ⎠ w -1 0 w ⊂ B, that is ∀r + 1 ≤ i < j ≤ n -r, w -1 w0(i) < w -1 w0(j). But, w -1 induces swu0 on { r + 1, ..., n -r }, which means that w -1 ⎛ ⎜ ⎝ 1 (swu0) -1 1 ⎞ ⎟ ⎠ = w -1 w0
increases on { r + 1, ..., nr }. We get (21). But the maximal length of u0 ensures that

u 0 Bε,n-2rBε,n-2r ≃ Bε,n-2ru0Bε,n-2r
is dense in Gε,n-2r so that (21) implies

⎛ ⎜ ⎝ 1 Gε,n-2r 1 ⎞ ⎟ ⎠ ⊂ w BB. ( 22 
)
Let now z ∈ Z. The element z -1 ϖ(z) has the shape

⎛ ⎜ ⎝ 1 A1 A2 0 C A3 0 0 1 ⎞ ⎟ ⎠ = ⎛ ⎜ ⎝ 1 C 1 ⎞ ⎟ ⎠ ⎛ ⎜ ⎝ 1 A1 A2 0 1 C -1 A3 0 0 1 ⎞ ⎟ ⎠
with C ∈ Gε,n-2r and suitable matrices Ai. We conclude z -1 ϖ(z) ∈ w BBB = w BB by ( 22).

Proposition 2.12. Suppose w ∈ W satisfies properties (a) and (b) of Proposition 2.10. Let w = τ ν be the decomposition of w in W P (W P ) -1 . Then

ℓ(τ ) -ℓ(τ -1 θ(τ ))/2 = dim Z/Z ∩ B -dim H/B H .
Proof. Let w be such an element. There exists σ ∈ Sr such that w -1 σ increases on { 1, ..., r }.

We fix then τ ∶= (

σ 0 0 0 u 0 0 0 0 σ ) which is in W P . With the decomposition w -1 τ = w -1 ( 1 (sw u 0 ) -1 1 )( σ sw σ )
we see that w -1 τ increases on { 1, ..., r }, on { r + 1, ..., nr } and that w -1 τ (⌊n/2⌋) < w -1 τ (⌊n/2⌋ + 1 + ε+(-1) n

2

). Thus, w -1 τ is in W P and w -1 τ = v -1 . Applying θ, we find

τ -1 θ(τ ) = ( σ -1 u -1 0 σ-1 )( σ u 0 σ ) = ( σ -1 σ 1 σ-1 σ ) so that ℓn(τ -1 θ(τ )) = 2ℓr(σ -1 σ). Besides ℓn(τ ) = ℓn-2r(u0) + 2ℓr(σ). With Proposition 2.8 (i) we see that ℓn(τ -1 θ(τ )) = 2ℓ(τ -1 θ(τ )) and ℓn(τ ) -2ℓ(τ ) = ℓn-2r(u0) -2ℓ(u0). Since ( σ I n-2r σ ) = (w -1 ( σ I n-2r σ )) -1
w -1 where (w -1 (

σ I n-2r σ )) -1
increases on w -1 ({ 1, ..., r }), σ satisfies property (b) of Proposition 2.10. By Proposition 2.8 (ii) we have ℓr(σ -1 σ) = 2ℓr(σ -1 ) that is ℓr(σ -1 σ) = 2ℓr(σ). Therefore we have ℓ(τ -1 θ(τ ))/2 = ℓn(τ -1 θ(τ ))/4 = ℓr(σ) and ℓ(τ ) = 1/2(ℓn(τ ) -ℓn-2r(u0) + 2ℓ(u0)) = ℓr(σ) + ℓ(u0). Hence ℓ(τ ) -ℓ(τ -1 θ(τ ))/2 = ℓ(u0).

An easy computation gives dim Z/Z ∩ Bdim H/B H = dim Gε,n-2r/Bε,n-2r = ℓ(u0) and we have the desired formula.

Conclusion

We can now conclude in types A, B, D and, under the additionnal assumptions above, in type C. So let Y be a Z-orbit closure in G/B. In type C, we suppose the dense Z-orbit possesses a T -fixed point. By hypothesis (type C), the Proposition 2.3 (type A) or 2.9 (types B, D), there exists w ∈ W such that Y = Z ⋅ wB. Combining the Propositions 2.4 and 2.5 (type A) or the Propositions 2.10 and 2.11 (types B, C, D), we can suppose w is good enough and the hypothesis 2 of Lemma 2.1 is satisfied. The hypothesis 4 is satisfied by the Proposition 1.2 whereas the hypothesis 3 is satisfied by (i) of Lemma 2.2 together with the Proposition 1.1. For char k ≠ 2, (ii) of the same Lemma together with the Proposition 2.6 (type A) or 2.12 (types B, C, D) ensure the hypothesis 1 is satisfied. But, thanks to the smoothness given by 1.2, the same dimension formula holds for char k = 2 and types A, B, D. We can thus apply the Lemma 2.1 and get the desired result.

3 Normality, rationality, Cohen-Macaulayness, general case

We prove a stronger version of Theorem 0.3. We first clarify the notation used in its statement and the general context.

Context

Let G be a connected semi-simple algebraic group over k and (T, B) a Killing pair. Let H ⊂ G be a connected reductive subgroup such that (T H , B H ) ∶= (T ∩ H, B ∩ H) is a Killing pair. For any character λ of T , let k λ be the one dimensional representation of B with weight λ and L G (λ) be the G-equivariant line bundle on G/B corresponding to

G × B k -λ → G/B. Let ∇ G (λ) ∶= H 0 (G/B, L G (λ))
denotes the dual Weyl G-module with lowest weight -λ (if λ is dominant). We fix w in the Weyl group W of G and consider the Schubert variety B ⋅ wB ⊂ G/B. We also consider the natural morphisms

q∶ H × B H B ⋅ wB → G/B, [h, gB] ↦ hgB and k∶ H × B H B ⋅ wB → H/B H , [h, gB] ↦ hB H .
Let Zw be the Bott-Samelson variety associated to the choice of a reduced word w which decomposes w into simple reflexions. The B H -equivariant Bott-Samelson resolution Zw → B ⋅ wB induces a birational morphism

H × B H Zw → H × B H B ⋅ wB.
Composing with q and k, we get morphisms

q∶ H × B H Zw → G/B, k∶ H × B H Zw → H/B.
Let finally π and π be respectively the restriction of q and q onto their image

π∶ H × B H B ⋅ wB → HB ⋅ wB, π∶ H × B H Zw → HB ⋅ wB. Theorem 3.1. Suppose (i) The morphism π∶ H × B H B ⋅ wB → HB ⋅ wB is birationnal, (ii) The character 2ρ H -ρ G|T H is dominant, (iii) char(k) = 0 or (iii)' char(k) = p > 0 and the restriction ∇ G ((p -1)ρ G ) → ∇ H ((p -1)ρ |T H ) is surjective.
Then HB ⋅ wB is normal and π is rational. Moreover if

(iv) char(k) = 0 or (iv)' There exists a line bundle M on G/B such that k * L H (ρ G|T H -2ρ H ) ≃ q * M,
then HB ⋅ wB is also Cohen-Macaulay with dualizing sheaf π * ω H× B H Zw and we have the vanishings R i π * ω H× B H Zw = 0 for all i > 0.

Normality and rationality

We begin to prove the first part of Theorem 3.1 concerning normality and rationality.

An inductive result by Perrin and Smirnov

We present here a general setup which contains as a particular case the Bott-Samelson resolution. Let Y be a scheme and n an integer. Let us consider, for i ∈ [0, n], the following schemes and morphisms -a scheme Ti and a morphism Y

p i → Ti, -Y -schemes Xi and Xi, -Y -morphisms Xi → Xi, such that, for all i ∈ [0, n -1], Xi+1 / / Xi Y p i+1 Y p i+1 / / Ti+1 (23) is cartesian and for all i ∈ [0, n], Xi is the scheme-theoretic image of Xi → Y : Xi / / Y Xi / ? ? (24) 
Besides, we will say that a morphism f ∶ Z → T satisfies (*) if the following hold : f ∶ Z → T is faithfully flat and proper, its geometric fibers Z t are connected, normal and reduced,

with dim Zt ≤ 1, H 1 (Zt, O Z t ) = 0. (*)
Let also P be a property of morphism of schemes which is stable under composition, base change and satisfied by closed immersions.

Then, the article [PS12] of Perrin and Smirnov contains the following result, inspired by Brion and Kumar [START_REF] Brion | Frobenius splitting methods in geometry and representation theory[END_REF]. The proof consists in an increasing and a decreasing induction based upon suitable cartesian diagrams and base-change, descent, and cancellation stability of properties of schemes and morphisms of schemes. They express it in the context of particular varieties, but we present a statement in the point of view of schemes in order to outline the generality of their argument. Proposition 3.2. We suppose that for all i, pi satisfy (*), Ti is locally noetherian and that there exists an ample line bundle Mi on Ti such that the restriction

H 0 (X i+1, (p * i+1 Mi+1) |X i+1 ) → H 0 (X i, (p * i+1 Mi+1) |X i ) is surjective. Assume ⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ X0 → X0 possesses P X0 → X0 is rational Xn → Xn is birational X0 is normal , Then for all i, ⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ Xi → Xi possesses P is rational is birational Xi is normal .
We will apply this result on suitable families. Recall the data G, H, B, T , w, ... fixed in the context and let n ∶= ℓ(w). Let { α k } be the simple roots and Pα k the minimal parabolic subgroup relative to α k . Suppose we have w = (sα j 1 , ..., sα jn ). For all i ∈ [0, n] let wi be the subword (sα j 1 , ..., sα j i ) and wi ∶= sα j 1 ...sα j i the related Weyl group element. Let Zw i be the Bott-Samelson variety associated to wi. As we did it before for w = wn with q and q, we define as compositions

qi∶ H × B H Zw i → G/B. (25) 
We then denote :

Y ∶= G/B Ti ∶= G/Pα j i
-G is the semi-simple Chevalley group scheme over A with G k = G, and with (T , B) as a Killing pair satisfying

T k = T , B k = B.
-H is a closed subgroup of G and is the reductive Chevalley group scheme over A with H k = H and with (T H , B H ) ∶= (T × G H, B × G H) as a Killing pair satisfying T Hk = T H , B Hk = B H . -The fppf quotient sheaf G/B is representable by an A-scheme of finite presentation, smooth and projective and such that its base change (G/B) K over any algebraically closed field K consists in the flag variety G K /B K .

-W is the Weyl group of G related to T and the base change Wi k recover the element wi ∈ W .

Moreover, there also exists a line bundle L over G/B and an A-scheme Xi flat and projective, equipped with a closed immersion Xi → G/B over A, such that over G/B

L k ≃ L, (28) 
(Xi) k ≃ HB ⋅ wiB (29) 
and for all s ∈ Spec A,

2ρ H s -ρ G s |T H s is dominant (30) 
and we have over

(G/B) s Xi s ≃ H s B s ⋅ Wi s B s . (31) 
A proof is in the Appendix A. Taking into account classical results on general schemes ([Gro66, §8]) and group schemes ([DGA11, Exposés XIX to XXVI]) let us emphasize that our work focusses on the realization of the variety Xi = HB ⋅ wiB (see Corollary 5.8). It indeed demands caution as it raises a problem of scheme theoretic image formation under non flat base changes (see Theorem 5.6 and Corollary 5.7).

The base Spec A is suitable in the sense that the residue fields of its points produce almost all characteristics. Lemma 3.4. Let A be an integral Z algebra of finite type whose characteristic is zero. Then the set { char(κ(x)) | x ∈ Spec A } contains all but finitely many primes.

Proof. Since the characteristic is zero, we have Z ⊂ A and let f ∶ Spec A → Spec Z be the finite type dominant morphism related to this inclusion. By Chevalley Theorem f (Spec A) is constructible, and then contains an open dense subset U of its closure Spec Z. Hence, the closed set Spec Z ∖ U is finite. On the other hand, we have char(κ(x)) = p for all prime p ∈ Z and x ∈ f -1 ({ pZ }). We then have { p | p prime, pZ ∈ U } ⊂ { char(κ(x)) | x ∈ Spec A } and the desired result.

We can then choose s ∈ Spec A such that p ∶= char(κ(s)) is large enough to satisfy the assumption of [HT12, Lemma 14]. It gives the surjectivity :

∇ G s ((p -1)ρ G s ) → ∇ H s ((p -1)ρ G s |T H s
).

We are now able to use the result (27) of the previous section on vanishing and surjectivity. Thanks to the isomorphism (31), we have

H 1 ((G/B) s , L s ) = 0 H 0 ((G/B) s , L s ) ↠ H 0 (X is, L s|X is ) .
By semi-continuity, the surjectivity can then pass from these geometric special fibers over s to the generic one ([BK05, Lemma 1.6.3]): we have

H 0 ((G/B) η , L η ) ↠ H 0 (Xi η , L η |X iη ) ,
where η ∈ Spec A denotes the generic point. Tensorizing by the extension field κ(η) ⊂ k gives then

H 0 ((G/B) η ) k , (L η ) k ) ↠ H 0 ((Xi η ) k , (L η ) k |(X iη ) k ) ,
but we have and, with (28), (L η ) k ≃ (L) k ≃ L and, with (29), (Xi η ) k ≃ Xi k ≃ HB ⋅ wiB. We therefore recognize the desired surjectivity (26).

((G/B) η ) k ≃ (G/B) k ≃ G/B

Cohen-Macaulayness and rational singularities

The second part of Theorem 3.1 will then follow if we can prove R j π * ω Xn = 0, j > 0.

(32)

In the zero characteristic, the vanishings R j π * ω Xn = 0, j > 0 (32) are automatically verified thanks to the Grauert-Riemenschneider Theorem [START_REF] Grauert | Verschwindungssatze für analytische Kohomologiegruppen auf komplexen Raumen[END_REF] and we can suppose the characteristic positive and k * L H (ρ G|T H -2ρ H ) ≃ q * M for a suitable line bundle M (hypothesis (iv) ′ ).

Another Perrin and Smirnov's argument

We will again exploit the article [START_REF] Perrin | Springer fiber components in the two columns case for types A and D are normal[END_REF] of Perrin and Smirnov. We refine the data of Proposition 3.2 with the following. Denoting ϕi the morphisms Xi+1 → Xi we introduce their natural sections σi by the commutative diagrams

Y p i+1 " " Xi σ i / / q i 6 6 id ( ( 
Xi+1 q i+1 = = ϕ i ! ! Ti+1.
Xi

p i+1 q i = = (33) 
We suppose the morphisms Xi → Xi are proper birational and the pi (and thus the ϕi) are P 1 -fibrations over a field. Hence the scheme theoretic images Im σi are codimension one closed subschemes of Xi+1 and we can define by induction the divisors

∂ Xi+1 = σi( Xi) ∪ ϕ -1 i (∂ Xi).
Finally, we denote Φi ∶= ϕ0ϕ1..ϕi-1.

Using an induction and [Kum02, Lemma A-18] as Brion and Kumar did in [START_REF] Brion | Frobenius splitting methods in geometry and representation theory[END_REF] for the canonical sheaf of the Bott-Samelson varities, Perrin and Smirnov could give a general formula for the canonical sheaf of Xi depending on a suitable line bundle on Y (see the proof of their Lemma 4.7).

Proposition 3.5. Let L be a line bundle on Y such that q * i+1 L -1 has degree one on the fibers of ϕi. Then

ω Xi = O Xi (-∂ Xi) ⊗ q * i L ⊗ Φ * i (f * 0 L -1 ⊗ ω X0 ). (34) 
In our more precise setting, we have To conclude to Theorem 0.1 and the rationality assumption in Theorem 0.2, it now suffices to apply, as far as possible, the previous Theorem 3.1 for G, H, B, w as in the setting of matrix models and subsection 2.2. Since the birationality hypothesis (i) is satisfied by section 2, it suffices to verify the hypothesis (ii), the hypothesis (iii) ′ in case of positive characteristic and the hypothesis (iv) ′ for type A. It will be done thanks to the two following Propositions. For i ∈ { 1, ..., n -1 } let εi denote the morphism

ω X0 = ω H/B H = L H (- 2ρ 
⎛ ⎜ ⎝ t1 ⋱ tn ⎞ ⎟ ⎠ ↦ ti
from Tn to Gm.

Proposition 4.1. The character 2ρ H -ρ G|T H is dominant. It is even zero in type A.

Proof. We begin with type A case. We have H ≃ Gr and easily

2ρ H = ∑ 1≤i<j≤r ε ′ i -ε ′ j , 2ρ G|T H = ∑ 1≤i<j≤n ε ′ i -ε ′ j , ε ′ i = ε ′ n-r+i ∀i ∈ [1, r], ε ′ j = 0 ∀j ∈ [r + 1, n -r].
We deduce

2ρ G|T H = ∑ 1≤i<j≤r ε ′ i -ε ′ j + ∑ n-r+1≤i<j≤n ε ′ i -ε ′ j + ∑ 1≤i≤r<j≤n-r ε ′ i -ε ′ j + ∑ r+1≤i≤n-r<j≤n ε ′ i -ε ′ j + ∑ 1≤i≤r<n-r+1≤j≤n ε ′ i -ε ′ j + ∑ r+1≤i<j≤n-r ε ′ i -ε ′ j = ∑ 1≤i<j≤r ε ′ i -ε ′ j + ∑ 1≤l<k≤r ε ′ n-r+l -ε ′ n-r+k + ∑ 1≤i≤r<j≤n-r ε ′ i -0 + ∑ 1≤l≤r<i≤n-r 0 -ε ′ n-r+l + ∑ 1≤i,l≤r ε ′ i -ε ′ n-r+l + ∑ r+1≤i<j≤n-r 0 -0 = 4ρ H ,
Hence 2ρ H -ρ G|T H = 0. For types B, D, the form of H leads to

2ρ H = ∑ 1≤i≤r/2 (r -2i + 2)ε ′ i , 2ρ G|T H = ∑ 1≤i≤⌊n/2⌋ (n -2i)ε ′ i , ε ′ i = -ε ′ r-i+1 ∀i ∈ [1, r], ε ′ j = 0 ∀j ∈ [r + 1, n -r].
We deduce

2ρ G|T H = ∑ 1≤i≤⌊n/2⌋ (n -2i)ε ′ i = ∑ 1≤i≤r (n -2i)ε ′ i = ∑ 1≤i≤r/2 (n -2i)ε ′ i + ∑ r/2+1≤i≤r (n -2i)ε ′ i = ∑ 1≤i≤r/2 (n -2i)ε ′ i + ∑ 1≤j≤r/2 (n -2(r -j + 1))ε ′ r-j+1 = ∑ 1≤i≤r/2 ((n -2i) -(n -2r + 2i -2))ε ′ i = 2 ∑ 1≤i≤r/2 (r -2i + 1)ε ′ i = 2ρ H -∑ 1≤i≤r/2 ε ′ i , Hence 2ρ H -ρ G|T H = ∑ 1≤i≤r/2 ε ′ i .
Remark 4.2. With analogous calculations, we find for type C that 2ρ H -ρ |T H = -∑ 1≤i≤r/2 ε ′ i , a non dominant character.

Proposition 4.3. The restriction morphism

∇ G ((p -1)ρ G ) → ∇ H ((p -1)ρ G |T H ) is surjective.
Proof. We begin again with type A. Let us introduce the parabolic subgroup

P ′ = ⎧ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎩ ⎛ ⎜ ⎝ A * * 0 C * 0 0 D ⎞ ⎟ ⎠ ∈ G A, D ∈ Gr(R), C ∈ Bn-2r ⎫ ⎪ ⎪ ⎪ ⎬ ⎪ ⎪ ⎪ ⎭ containging B, with related T Levi subgroup L ′ ∶= ⎧ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎩ ⎛ ⎜ ⎝ A 0 0 0 C 0 0 0 D ⎞ ⎟ ⎠ ∈ G A, D ∈ Gr(R), C ∈ Tn-2r ⎫ ⎪ ⎪ ⎪ ⎬ ⎪ ⎪ ⎪ ⎭ ,
and let

L ′′ ∶= ⎧ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎩ ⎛ ⎜ ⎝ A 0 0 0 In-2r 0 0 0 D ⎞ ⎟ ⎠ ∈ G A, D ∈ Gr(R) ⎫ ⎪ ⎪ ⎪ ⎬ ⎪ ⎪ ⎪ ⎭ ,
for which B ∩ L ′′ is a Borel subgroup. Since P ′ /B is a Schubert variety, the restriction

∇ G ((p -1)ρ G ) → ∇ P ′ ((p -1)ρ G )
is surjective (see [Jan87, Proposition 14.15]). Besides, (P ′ , L ′ ) is a Donkin pair in the sense of Donkin ([Don85]) because L ′ ⊂ P ′ is a Levi subgroup ( [START_REF] Mathieu | Filtrations of G-modules[END_REF]). Thus, by [Van01, Remark 18], the restriction For types B, D, the argument is exactly the same as for type A except we replace P ′ , L ′ and L ′′ by

∇ P ′ ((p -1)ρ G ) → ∇ L ′ ((p -1)ρ G ) is surjective. But clearly the inclusion L ′′ ⊂ L ′ induces an identification L ′ /B ∩ L ′ ≃ L ′′ /B ∩ L ′′ so that ∇ L ′ ((p -1)ρ G ) → ∇ L ′′ ((p -1)ρ G |T ∩L ′′ ) is an isomorphism. Since H ↪ L ′′
P ′ = ⎧ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎩ ⎛ ⎜ ⎝ A * * 0 C * 0 0 δ A -1 ⎞ ⎟ ⎠ ∈ G A ∈ Gr(R), C ∈ Bε,n-2r ⎫ ⎪ ⎪ ⎪ ⎬ ⎪ ⎪ ⎪ ⎭ , L ′ ∶= ⎧ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎩ ⎛ ⎜ ⎝ A 0 0 0 C 0 0 0 δ A -1 ⎞ ⎟ ⎠ ∈ G A ∈ Gr(R), C ∈ Tε,n-2r ⎫ ⎪ ⎪ ⎪ ⎬ ⎪ ⎪ ⎪ ⎭ , L ′′ ∶= ⎧ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎩ ⎛ ⎜ ⎝ A 0 0 0 In-2r 0 0 0 δ A -1 ⎞ ⎟ ⎠ ∈ G A ∈ Gr(R) ⎫ ⎪ ⎪ ⎪ ⎬ ⎪ ⎪ ⎪ ⎭ ,
and the fact that (L ′′ , H) is a Donkin pair is not due to the fact that we have a diagonal embedding, but because H is the fixed point set of a diagram automorphism of L ′′ (we get a pair of type (An-1, Cn)), see [START_REF] Brundan | Dense orbits and double cosets, in Algebraic groups and their representations[END_REF].

Appendix A: Realizations

Here k will denote a field not necessary algebraically closed.

Definition of the notion

We will understand realization in a basic way, which consists in finding large base finitely presented schemes whose geometric fibers would furnish different incarnations of a given finite type k-scheme. We will do it in family. Our point of view is thus a special case of projective families of schemes, developped in [Gro66, §8].

Definition 5.1. Let X be a k scheme of finite type. A family (X A ) A is said to be a realization of X if, A running over all large enough Z-subalgebras of finite type A of k, X A is a finitely presented A scheme and we have

X A × A k ≃ X and X A × A A ′ ≃ X A ′
for any such algebras A ⊂ A ′ .

Example 5.2. Let X = Spec k[t1, ..., tn]/(f1, ..., fr). For any Z-subalgebra of finite type A of k containing f1, ..., fr let X A ∶= Spec A[t1, ..., tn]/(f1, ..., fr). Then (X A ) A is a realization of X.

The definition 5.1 can be easily extended to realizations of morphisms of k-schemes of finite type, of sheafs and modules over k-schemes of finite type, of k-group schemes and so on. Moreover, we can demand that the terms of the family satisfy additional properties, such that being flat over the base, a closed immersion, locally free and so on. In [Gro66, §8], several results ensure the existence of rough realizations for schemes, morphisms, modules, morphisms of modules (theorem 8.8.2, 8.5.2) and the fact we can recover several properties for the terms of the family as soon as we consider large enough A (theorem 8.10.5, Proposition 8.5.5). Besides, enlarging A also enables keeping commutativity and realizing diagrams so that group schemes are well-considered (Scholie 8.8.3).

For convenience again, we will often omit to precise the domain of variable for A.

Realization of scheme theoretic images

We refer to [Sta22, Section 29.6] for the notion of scheme theoretic image of a morphism of schemes and its fundamental properties. We refer also to section 29.6 for the description of the scheme theoretic image when the source of the morphism is reduced. Here we aim to prove the Theorem 5.6 below and its Corollary 5.7 which furnish good realizations for suitable scheme theoretic images. Our work is motivated by the fact that the construction of the scheme theoretic images does not commute in general with (non-flat) base-change so that we cannot hope realizing them easily. We begin with proving the two following preliminary Propositions.

Proposition 5.3. Let X → S be a flat morphism and T → S be a schematically dominant quasi-compact morphism. If X T is integral, then X is.

Proof. Consider a cartesian diagram

X T / / g T f X u / / S,
where u is flat and f is schematically dominant quasi-compact. By flatness, X ≃ (Im f ) X ≃ Im g and g is also schematically dominant. But, if X T is integral, then Im g identifies with g(X T ) red and is also integral. 

If (Im f ) T is integral and X T is reduced, then Im f T ≃ (Im f ) T over Y T .
Proof. Let f ∶ X → Im f denote the restriction of f onto its scheme theoretic image. By cancellation, f is finitely presented like f . Since f is quasi-compact, Im f is topologically 

f (X) = f (X)
f -1 U (V ) / / / / V _ / / / / U X U f U / / Y U . > > For any base change ∅ ≠ T → U the diagram (f -1 U (V )) T / / / / V T _ / / / / T X T f T / / Y T .
> > will then preserve thoses properties. We deduce V T ≠ ∅ and that f T (X T ) contains the open image of V T in Y T .

Theorem 5.6. Let f ∶ X → Y be a morphism of k-schemes of finite type. Let (f A ∶ X A → Y A ) A be a realization of f . Suppose that Y is proper over k and that there exists A such that X A has integral geometric fibers (in particular X ≃ ((X A ) η ) k is integral, where η ∈ Spec A denotes the generic point). Then, there exists A0 such that (i) (Im f A ) A 0 ⊂A realizes Im f . Proof. By induction, it suffices to show the result for a single subgroup H = H1 (n = 1). For large enough A we consider the morphism We now make use of [START_REF] Grothendieck | Éléments de géométrie algébrique IV : Étude locale des schémas et des morphismes de schémas, §8-15[END_REF]§8]. We have the following assertions by considering successively large enough A. Since there is a closed immersion of groups H ↪ G, we can suppose that H A is a closed subgroup of G A . Besides, since the base changes over k of T H A and T A × G A H A give T H , we can suppose these two groups identify over H A . Similarly B H A and B A × G A H A can be identified over H A . Finally, the root data are preserved and, for any s ∈ Spec A, 2ρ H As -ρ G As |T H As is dominant.

f A ∶ H A × A Z A → X A which denotes the restriction of the action G A × A X A → X A over H A × A Z A ↪ G A × A X A . The family (f A ) is clearly a realization of the k-morphism of finite type f ∶ H × k Z → X defined
On the other hand, there exists semi-ample line bundles L A on (G/B) A , for large enough A so that (L A ) A realizes L. To achieve the proof of the Lemma, we now just need a good realization of our variety Xi = HB ⋅ wiB. It is done with the following consequence of Corollary 5.7. 6 Appendix B: on Perrin and Smirnov's arguments Here k will denote an algebraically closed field with char k ≠ 2

Recovering the birational morphism

Here, we present the Perrin and Smirnov's construction of a birational morphism onto an irreducible component of a Springer fiber, in type A. We also show how our's one can recover it.

Perrin and Smirnov's version Let V be a n-dimensional k-vector space. Let N be an order two nilpotent endomorphism of V , with rank r and Z N its centraliser in the general linear group Gl(V ). In this setting, let ⋮ 1 be a standard tableau (see [START_REF] Van Leeuwen | A Robinson-Schensted algorithm in the geometry of flags for classical groups[END_REF]) (with decreasing numbers from left to right and from top to bottom) and let

F ∶= F(V ) = { V1 ⊂ ⋅ ⋅ ⋅ ⊂ Vn-1 | Vi ⊂ V, dim Vi = i,
X ∶= Xτ = { F• ∈ F(V ) | dim Fp i ∩ Im N ≥ i, dim Fp i ∩ Ker N ≥ pi -i + 1, Fp i ⊂ N -1 (Fp i-1 ), ∀i ∈ [1, r] }
be the related irreducible component of the Springer fiber over N . We define then the variety

X ∶= Xτ = {(F ′ • , F•) ∈ F(Im N ) × F(V )| F ′ i ⊂ Fp i ⊂ N -1 (F ′ i-1 ) ∀i ∈ [1, r]}.
In [START_REF] Perrin | Springer fiber components in the two columns case for types A and D are normal[END_REF], Perrin and Smirnov show that X is smooth, irreducible and that the projection to F induces a proper birational Z N -equivariant morphism

X → X (36) 
as soon as pi+1 > pi + 1 for all i (if not the case, the result holds for an irreducible component of X).

Our version Let G, H, B H , Z, e be as in the matrix setting of 2 for type A. Let integers q1, ..., qr and s1, ..., sn-2r such that qr ∶= pr + 1 = min(pr + 1, ..., n) and by decreasing induction on i = r -1, ..., 1, qi ∶= min({pi + 1, ..., n} ∖ {pi+1, qi+1, ..., pr, qr}).

-{s1, ..., sn-2r} ∶= {1, ..., n} ∖ {p1, q1, ..., pr, qr} with si < si+1.

We then define w ∶= wτ the unique element of Sn such that w(pi) ∶= i, ∀i ∈ {1, ..., r}.

Non-continuity Now, if the embedding of the authors exists as an algebraic morphism, then ϕ must exist as well. But we will show that ϕ is not continuous in the case n = 2r = 4. Let w and s be the operators in SO(ω) which consist respectively in the permutation 15263748 and 1324576818 of (fi), and let { U (t) } be the one-parameter subgroup of Z N acting on (fi) with the matrix :

U (t) ∶= ⎛ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎝ 1 1 1 0 t 0 1 0 -t 1 0 1 1 1 ⎞ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎠
We can check that for all t ≠ 0, U (t)wF• = F (f1, tf3+f5, f2, -tf4+f6, f3, f7, f4, f8) = F (f1, f3+1/tf5, f2, f4-1/tf6, f3, f7, f4, f8)

and sF• = F (f1, f3, f2, f4, f5, f7, f6, f8), and we see that limt→∞ U (t)wF• = sF•.

But wF• is N -stable and ϕ(wF•) = ⟨f1, f2⟩.

We have also ϕ(U (t)wF•) = U (t)⟨f1, f2⟩ = ⟨f1, f2⟩ and ϕ(sF•) = s⟨f1, f2⟩ = ⟨f1, f3⟩.

Hence, limt→∞ ϕ(U (t)wF•) = ⟨f1, f2⟩ ≠ ⟨f1, f3⟩ = ϕ(limt→∞ U (t)wF•).

Some more comments

Translating in our setting for types B, D in section 2, the Lagrangian space is H/P H where P H is the parabolic subgroup of H containing B H characterized by the (r/2) th simple root (ε ′ r/2 -ε ′ r/2+1 ) according to section 4). The problem of embedding amounts then to the existence of an algebraic morphism ψ from G/B to H/P H making the following diagram commutative

H × B H B ⋅ wB q k / / H/B H _ G/B ψ / / H/P H .
Let us remark the line bundle L H (ρ G|T H -2ρ H ) on H/B H is the pullback of an equivariant line bundle on H/P H so that such a diagram would ensure we satisfy hypothesis (iv) ′ of Theorem 3.1. Therefore the problem of embedding seem to be crucial to get rational resolutions and Cohen-Macaulayness, in Perrin and Smirnov's argument as well as in ours. If the previous counterexample does not rigorously invalid the existence of ψ, it nevertheless indicates another approach could be needed if we want to prove these two additional results.

2.

  Let us now prove (ii) and assume char k ≠ 2. On the first hand we can use a result of Richardson and Springer ([RS93, Proposition 3.3.4] reformulating [RS90, Theorem 4.6]) on the involution fixed-points subgroup L θ of L and we get (replacing harmlessly

  Let then b be the unique element of S d such that b = b and that vab increases on { 1, ..., k }. The desired permutation is σ ∶= ab.

  H ). Moreover, we remark that Φn = p and fn = ιπ where ι denotes the immersion HB ⋅ wB ↪ G/B. Taking L = L G (-ρ G ) in the previous Proposition we deduce with (iv) ′ ω Xn = O Xn (-∂ Xn) ⊗ π * ι * (L G (-ρ G ) ⊗ M).(35)Since the Bott-Samelson varieties are B-canonicaly compatibly split (see [BK05, Proposition 4.1.17]), and using hypotheses (ii) and (iii) ′ , we can apply again [HT12, Theorem 20] to get a splitting of Xn compatibly splitting ∂ Xn. We are then able to apply the last Perrin and Smirnov's arguments (see their Lemma 5.6 and what follow) which use a result of Brion and Kumar's book ([BK05, Theorem 1.2.12]) to get the vanishingsR j π * O Xn (-∂ Xn) = 0, j > 0,and finally the desired (32) by projection formula on (35).
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  is a diagonal embedding, (L ′′ , H) is also a Donkin pair ([Mat90] again) and∇ L ′′ ((p -1)ρ G |T ∩L ′′ ) → ∇ H ((p -1)ρ G |T H ) is surjective.By composition, the desired restriction is then surjective.

Proposition 5. 4 .

 4 Let S be a scheme and f ∶ X → Y be a finitely-presented S-morphism with Im f → S open. Then, there exists a non empty open U ⊂ S such that for any base change ∅ ≠ T → U , we have

  and f is (topologically) dominant. With the openness of Im f → S we thus can apply the Lemma 5.5 below. It gives a non empty open U ⊂ S such that for any base change∅ ≠ T → U , fT (X T ) contains a non empty open of (Im f ) T . If this last scheme is integral then ( fT (X T )) red ≃ (Im f ) T and if X T is reduced then Im fT ≃ ( fT (X T )) red . Under those assumptions fT ∶ X T → (Im f ) T is thus schematically dominant.Since this morphism followed by the closed immersion (Im f ) T ↪ Y T factorize f T , we deduce that Im f T ≃ (Im f ) T . Lemma 5.5. Let S be a scheme and f ∶ X → Y be a finitely presented (topologically) dominant S-morphism with Y → S open. Then, there exists U ⊂ S non empty open subset such that for any base change ∅ ≠ T → U , f T (X T ) contains a non empty open subset of Y T . Proof. By Chevalley Theorem f (X) is a constructible subset of Y and thus contains a dense open subset V of its closuree, which is Y by dominancy. Since Y → S is open, V is mapped onto a non empty open U of S. Restricting over U , we get a diagram where the upper horizontal arrows are surjective and the right vertical one is an open immersion :

  ):-G is the semi-simple Chevalley group scheme with G k = G -H is the reductive Chevalley group scheme withH k = H -(T , B) is the Killing pair of G with T k = T , B k = B -(T H , B H ) is the Killing pair of H with T H k = T H , B H k = B H -W isthe Weyl group of G related to T -The base change w ik recover the element wi ∈ W We know that the fppf quotient sheaf G/B is representable by a Z-scheme of finite presentation, smooth and projective and such that its base change (G/B) K over any algebraically closed field K consists in the flag variety G K /B K (see [DGA11, Exposé XXIV, Théorème 1.3]).

Corollary 5. 8 .

 8 There exists (Y iA ↪ (G/B) A ) A which realizes the closed subvariety Xi ↪ G/B and such that, for large enough A (i) Y iA is projective and flat over A,(ii) For all s ∈ Spec A, (Y iA ) s ≃ H As B As ⋅ w As B As over G As /B As .Proof. Suppose A large enough to ensure all the previous assertions and existences. Let Z ∶= Spec k and Z ↪ G/B be the section which corresponds to the closed point wiB ∈ G/B. The choice of B A gives a morphism W A → (G/B) A defined by the natural transformation (nT A (S) ↦ nB A (S)) S on the corresponding sheaves. Composing with w iA ∶ Spec A → W A produces a section Spec A → (G/B) A . Its geometric fiber over s ∈ Spec A is integral and corresponds to the closed point w iAs B As ∈ (G/B) As . Besides, the family of these sections realizes Z ↪ G/B. What is more (G/B) A is proper over A and B A and H A have integral geometric fibers as Borel and reductive group schemes. Finally, the natural action of G on G/B is realized by the family of the natural actions of G A on (G/B) A . Applying the Corollary 5.7 with H1 ∶= H, H2 ∶= B we get all the desired assertions, except the projectivity of the Y iA which is automatically satisfied as they are closed subschemes of the (G/B) A .
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  similarly by action and restriction. Since the product of two integral schemes over a perfect field is again integral, H A × A Z A has integral geometric fibers for large enough A. We can thus apply the previous Theorem 5.6 and we get a family of closed immersions Y A ↪ X A realizing Im f ↪ X, with notably Y A flat and proper over A and isomorphims (Y A ) s ≃ Im (f A ) s over (X A ) s for all s ∈ Spec A. To conclude, it suffices to remark we have Im f ≃ (H ⋅ Z) red and Im (f A ) s ≃ (H As ⋅ Z As ) red for all s ∈ Spec A. It comes from the reductiveness of H A × A Z A and H × k Z.We can now prove Lemma 3.3. Let suppose k is algebraically closed and G, H, T , B, T H , B H , W , wi be as in the setting of the section 4.2.Let first G, H, T , B, T H , B H , W be the group schemes over Z and w i ∈ W (Z) be the section such that (see[START_REF] Demazure | SGA3 structure des schémas en groupes réductifs, Exposés XIX à XXVI, éd. recomposée et annotée, in Schémas en groupes (Séminaire de géométrie algébrique du Bois Marie[END_REF] Exposés XIX to XXVI]

	5.3 Proof of Lemma 3.3

When char k = 0, D.Panyushev in[START_REF] Panyushev | Complexity and nilpotent orbits[END_REF] shows this is the case if the order of ad e is less than 3.

Actually, the latter references deal with unipotent elements instead of nilpotent ones, regarding the Springer fibers as the variety of Borel subgroups containing a given unipotent element. However, recall when G is the general linear group or is almost simple and simply connected and the characteristic of k is good, the unipotent variety in the group G and the nilpotent cone in its Lie algebra g can be identified with a G-equivariant isomorphism (see for example[START_REF] Springer | Trigonometric sums, Green functions of finite groups and representations of Weyl groups[END_REF] Theorem 

3.1] for an original but weaker statement and [Hum95, Theorem 6.20] and [BR85, Corollary 9.3.3 ] for this more general one), so that the two notions of Springer fibers exactly match.

See for example our Propositions 2.3 and 2.9 for a proof in types A, B, D.

We easily deduce the number of Z-orbits from Proposition 2.3. For the irreducibles components which are parametrized by standard Young tableaux, it suffices to count the latter with the hook lenght formula.

With precautions on the nilpotent orbit considered, see below.

If q denotes this quadratic form and β is the bilinear symmetric form (x, y) ↦ q(x + y) -q(x) -q(y), then(k n ) ⊥ β = 0 in any characteristic if n is even, but dim(k n ) ⊥ β = 1 with q(x) ≠ 0 for x ∈ (k n ) ⊥ β if char k = 2and n is odd. We say w is defective (see[START_REF] Hesselink | Nilpotency in classical groups over a field of characteristic 2[END_REF] or [Con14, Appendix C]).

If char k = 2, n odd, then detn = 1 but the defect of (1) in this case compensates this problem and On k is connected and is the simple group of type Bn, see for example [Con14, Appendix C ].

Let us just remark our approach is a little simpler since we use the main Theorem of[START_REF] He | On Frobenius splitting of orbit closures of spherical subgroups in flag varieties[END_REF] whereas Perrin and Smirnov, in order to get a more precise splitting, combine several results of this reference.

Actually, the formulas for the canonical sheaf identifies with type A only, but our's one can be obtained directly from their arguments.

Remark at the level of schemes, all these notions demand smoothness, according to our setting which follows[START_REF] Demazure | SGA3 structure des schémas en groupes réductifs, Exposés XIX à XXVI, éd. recomposée et annotée, in Schémas en groupes (Séminaire de géométrie algébrique du Bois Marie[END_REF].

Which is also valid for characteristic two.

Their article is written for the base field C, but the result used here is valid for any base field of any characteristic, see the proof in section 3.5.

Let T be the maximal torus of SO(ω) related to (f i ), ε i be the characters on T defined by t ↦ f * i (t(f i )) and W be the Weyl group attached to T . Let s 2 and s 4 in W be respectively the reflexions associated to the roots ϵ 2 -ϵ 3 and ϵ 3 + ϵ 4 . Then, w and s can be respectively seen as representatives of the Weyl group elements s 4 s 2 and s 2 .

Acknowledgment This article comes from a PhD thesis made under the direction of P-E.

Chaput and L. Fresse. It could not have come into being without them. They inspired most of its ideas and took a lot of time to proofread my writing, even after the viva; it was moreover a true pleasure to work under their advices and I am in a considerable debt to them. I would express my gratitude to N. Perrin and E. Smirnov whose work is the constant reference of this

Types B, C, D

The previous properties have their analogs in types B, C, D. Before giving them, let us begin with some material adapted to this setting. Some preliminairies For v ∈ W , we consider the quantity

Then define sv ∈ Sn-2r as

We motivate our definition by the following Proposition 2.7.

Proof. Indeed, let u be such an element. Since v -1 = v -1 , we have ǔ = u and thus š v u = svu in Sn-2r, so that it is enough to show the parity of

+ 1) then q = dv ± 1. In any case 2 | q and we proved the Proposition.

We will also use the following results concerning length and permutations.

Proposition 2.8.

(iii) There exists σ ∈ S d such that σ = σ and vσ(i) < vσ(j) or vσ(i) > vσ(j) for any

Proof. We prove the assertions separately.

(i) It follows from a suitable account of the different root systems depending on the types.

(ii) We actually have

In fact, let N denote

and let us compute the following numbers A and

We therefore have

Xi ∶= Im qi = HB ⋅ wiB and we choose an ample line bundle Mi on the projective variety Ti. By construction of the Bott-Samelson variety, we have :

Besides, we note that the Pα j i /B ≃ P 1 -fibration pi satisfies (*) and that

are normal varieties. On the other hand, the hypothesis (i) on the birationality of π ensures by composition that π is birational, that is :

Because the Xi are embedded in Y compatibly with their inclusions and that the pullbacks p * i Mi are semi-ample on Y = G/B, it suffices now to prove the surjectivity

for all i and all semi-ample line bundles L on G/B in order to have the surjectivity

for all i then be able to apply the previous Proposition 3.2 and to get the first part of the Theorem.

We fix now i ∈ { 0, ..., n }, a semi-ample line bundle L on G/B and we prove (26). We will need to distinguish between the zero and positive characteristic cases.

Positive characteristic case

We suppose first p ∶= char(k) > 0. The hypotheses (ii) and (iii) ′ of the Theorem enable to apply the main result of He and Thomsen in [START_REF] He | On Frobenius splitting of orbit closures of spherical subgroups in flag varieties[END_REF]Theorem 20]. It gives a Frobenius splitting of G/B, relative to the line bundle L G ((p -1)ρ G ) and which compatibly splits our variety HB ⋅ wiB. Because L G ((p -1)ρ G ) is ample and L semi-ample, [BK05, Theorem 1.4.8] gives :

and we have in particular the desired surjectivity (26).

Zero characteristic case

We suppose now char(k) = 0 and we will pass the surjectivity from the positive characteristic case to this zero one. For this, we begin to realize our data G, B, H, Xi, wi, L, ..., as schemes, morphisms or sheaf over a suitable base ring. It can be done thanks to the following Lemma which also extends the dominancy of the character 2ρ H -ρ G|T H on geometric fibers. 

Proof. Let us first show that if A satisfies (ii) then any B containing A as well and (Im f B ) A⊂B will realize Im f . By flatness we have

Remark also the properties of flatness, properness, being of finite presentation and having integral geometric fibers are preserved for X B and (Im f A ) B over B. These two schemes are also integral by the Proposition 5.3 applied on the two following cartesian diagrams with schematically dominant right vertical arrows

Besides, any base change ∅ ≠ T → Spec B leads to isomorphisms

Applying now (c) for f A and the base change ∅ ≠ Spec B → Spec A give the desired assertions.

Let us now show the existence of an A satisfying (ii). Since Y → Spec k is proper, we can suppose Y A → Spec A and then Im f A → Spec A are proper too for large enough A ([Gro66, Theorem 8.10.5]). We will establish the other assertions by successive localizations.

(flatness) By generic flatness ([Gro66, Proposition 8.9.4]) and localization of A at a suitable element, Im f A and X A can be supposed to be flat over A.

(fibers integrality) By flatness

It is an open subset ([Gro66, Theorem 12.2.4]) and, localizing again, it can be supposed to be the whole Spec A.

(base change) Since Im f A → Spec A is open by flatness, we can apply the Proposition 5.4 on the finitely presented morphism f A ∶ X A → Y A and localizing, we can suppose (c) is satisfied for f A .

(integrality) We get the integrality of Im f A and X A by applying the Proposition 5.3 on the following cartesian diagrams with schematically dominant right vertical arrows

Corollary 5.7. Let G be a k-group acting on a k-scheme of finite type X. Let Z be a closed subscheme of X and H1, H2, ..., Hn be closed subgroups of

.n be families which realize these data. Suppose that for large enough A, Z A and all the H iA have integral geometric fibers and that X is proper over k. Then, there exists a family (Y A ↪ X A ) A which realizes the closed subscheme (H1H2...Hn ⋅ Z) red ↪ X and such that, for any large enough A:

(i) Y A is proper and flat over A, with integral geometric fibers.

(ii) For all s ∈ Spec A,

w(qi) ∶= nr + i, ∀i ∈ {1, ..., r}.

w(sj) ∶= nr + 1 -j, ∀j ∈ {1, ..., n -2r}.

Let us remark that w induces the increasing bijection from {p1, ..., pr} to {1, ..., r} and the decreasing bijection from {s1, ... ) .

We can check that w satisfies the conditions of Proposition 2.6 so that we can apply the proof of section 2 and get a birational Z-equivariant morphism as (2):

Let us show that (36) and (37) identify.

Identification There is basis (fi) of V such that :

Choosing it to make G acting on V and then on F, we identify G with Gl(V ), e with N , Z with Z N , H with a diagonal embedding of Gl(Im N ) into Gl(V ) and B with the stabilizer of F ∶= ⟨f1⟩ ⊂ ⋅ ⋅ ⋅ ⊂ ⟨f1, ..., fn-1⟩ ∈ F, so that, in particular,

Besides, the element w act on F. We remark wF ∈ X so that Z ⋅ wF ⊂ X. Since dim Z ⋅ wB = dim H/B H + ℓ(w) thanks to (37), computations of dim H/B H = ( r 2 ) and ℓ(w) = ( n-r 2 ) lead to the equality Z ⋅ wF = X.

On the other hand, we can check (when pi+1 > pi + 1 for all i) that the fiber of (36) over wF is isomorphic to the Schubert variety related to w, that is B ⋅ wF .

It follows the diagram

identifying (37) and ( 36) through (fi) and through a natural isomorphism between H-equivariant bundles with isomorphic fibers.

The problem concerning normality, a counterexample

Whereas the general arguments presented in Proposition 3.2 and 3.5 are extracted from the article of Perrin and Smirnov, the authors actually apply them in a different manner for their type D. The reason is they embed the irreducible component of the Springer fiber into a larger variety, which does not live in the flag variety of the ambiant group but in its product with a Lagrangian space (see their Proposition 3.18). They thus deal with an Xn different from ours, causing they can get a formula analogous to (35) without additionnal assumption on the pullback sheaf like hypothesis (iv) ′ of Theorem 3.1 (see their Lemma 4.7). The problem is the embedding they present does not exist in general as an algebraic morphism so that they cannot run their argument and even ensure normality. Let us present a counterexample in the setting of their article.

Context Let V be a 2n-dimensional k-vector space, and SO(ω) be the group of unimodular linear operators preserving a symmetric nondegenerate bilinear form ω. Let N ∈ g be a nilpotent antiadjoint endomorphism. Let Z N be the stabilizer of N in SO(ω):

If 2r = dim ImN , there exists a basis (fi) of V such that : Let then L be the variety of Lagrangian subspaces of ImN for α:

) is any basis of V such that ω(f ′ i , f ′ j ) = 0 for i + j ≠ 2n + 1, we will denote by F (f ′ 1 , ..., f ′ 2n ) the flag in OF such that, for all i F (f ′ 1 , ..., f ′ 2n )i ∶= ⟨f ′ 1 , ..., f ′ i ⟩, and merely by F• the flag F (f1, ..., f2n). We consider the application ϕ defined as follows:

According to remark 3.13 of the article of the authors ϕ is well-defined. Clearly, Z N acts on OF and L and ϕ is Z N -equivariant.