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Abstract—3D Computerized Tomography (CT) is a gold stan-
dard technique to assess bone microstructure in the context of
bone diseases such as osteoporosis. However, when acquired in-
vivo, bone images may suffer from a low spatial resolution and the
presence of noise due to the limited tolerable radiation exposure.
One way to overcome this issue consists in applying Super-
Resolution (SR) techniques that aim at recovering high resolution
images. Significant progress has been recently made thanks to
deep learning SR methods trained on natural image datasets. To
measure the reconstruction quality, Peak Signal to Noise Ratio
(PSNR) and Structural Similarity (SSIM) are commonly used in
the SR literature. In this paper, we give evidence of the limitation
of these two criteria. Through extensive experiments performed
from a dataset of mice tibias specifically collected and imaged for
this study, we show that state of the art deep learning-based SR
methods miss important details about the bone microstructure
which is not reflected by the PSNR and SSIM values. This study
opens the door to future promising lines of research including
new SR methods regularized with respect to morphometric and
topological parameters of bone microstructures.

Index Terms—super resolution, bones, CT-images

I. INTRODUCTION

Computerized Tomography (CT) images are fundamental
to assess bone diseases such as osteoporosis. High-Resolution
peripheral Quantitative Computed Tomography (HR-pQCT)
can provide images of bone microstructures in humans in-vivo
at spatial resolution of the order of 100µm. More resolved
techniques (e.g. micro-CT, nano-CT) can be used to better
understand bone diseases but they are restricted to small
animals or humans ex-vivo. Recovering High Resolution (HR)
images from their Low Resolution (LR) counterparts is a
challenging task, called Super Resolution (SR), that received
much attention from the signal/image processing and machine
learning communities. In bone imaging, SR methods are a
real opportunity to overcome the limited tolerable radiation
exposure of humans. For instance, by taking HR-pQCT images
of astronauts, they might offer a solution for observing new
bone formation or resorption as well as porosity evolution after
repeated space flights.
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Deep learning (DL)-based SR methods allowed to obtain
quite remarkable results during the past few years. They
typically resort to a combination of convolutional layers before
an upscaling step to output the SR image (e.g. transposed
convolutional layer, subpixel convolution layer, etc.). The
first DL-based SR method in the form of a convolutional
network, called SRCNN, was introduced in [1] and improved
by FSRCNN [2] to overcome its high computational cost.
Other DL SR architectures have been proposed in the liter-
ature, including SRResNet [3] which makes use of a residual
network with skip connections between layers, or Generative
Adversarial Networks (GAN) [4] as introduced in SRGAN [3]
and enhanced with ESRGAN [5]. On the other hand, RCAN
[6] introduced an attention layer to the architecture, becoming
the new state of the art of the so-called non blind SR meth-
ods, the family of networks assuming a known degradation
(typically bicubic). More recently, blind methods have been
introduced aiming at estimating a degradation kernel used for
restoring SR images. Among them, DAN [7] is probably the
most performing method nowadays. Note that DL-based SR
has received a growing interest in the medical field, mostly on
MRI images (e.g. [8], [9]) and a few focusing on CT images
(e.g. [10], [11] and [12]). Those approaches are usually based
on the aforementioned SR methods.

To measure the reconstruction quality of the SR images, two
main criteria are commonly used: Peak Signal to Noise Ratio
(PSNR) and Structural SIMilarity index (SSIM). The former
aims at quantifying the reconstruction quality of images (or
videos) subject to lossy compression. The latter [13] measures
the similarity between the SR image and the ground truth
(HR). While these two measures are indisputably relevant
for estimating from an aesthetic perspective the perceptual
quality of SR images representing animals, flowers, human
faces, buildings or landscapes, we claim that they are not well
adapted for dealing with bone CT images.

The contribution of this paper is two-fold: first, we perform
an extensive experimental comparison between four state of
the art DL-based SR (blind and non blind) methods on a
dataset of mice tibias specifically collected and imaged for
this study. We show that while both PSNR and SSIM reach
reasonable scores for some methods giving evidence of the
good perceptual quality of the restored images, this is at the
expense of missing important details about the bone micro-
stucture that is essential for establishing clinical diagnosis;



second, we highlight the importance of some morphometric
and topological parameters [14] characterizing the trabecular
and cortical bones and show that the studied state of the
art SR methods do not lead to any enhancement of these
biological parameters compared to the LR images. This study
should encourage the next generation of SR methods to take
advantage of these parameters to design new loss functions or
regularization terms based on this biological knowledge. How-
ever, assessing quantitatively the microstructure of a bone is
challenging because this latter has a hierarchical organization
including structures at different scales. Indeed, trabecular bone
micro architectures are made of a complex network of small
trabeculae while the cortical bone constitutes the external layer
of the bone and includes pores at various scales.

The paper is organized as follows: Section II is devoted
to preliminary information about SR and the presentation of
the related work; Section III focuses on evaluation metrics
and presents morphometric and topological parameters that
can be used to evaluate the quality of SR bone images; Section
IV is dedicated to a comparative experimental study between
SR methods. Finally, we conclude in Section V opening new
promising lines of research.

II. PRELIMINARIES AND RELATED WORK

We can formalize the super resolution (SR) problem as
follows. Let f and g be respectively the high resolution (HR)
and low resolution (LR) images. We assume that there exists
an underlying degradation function D such that: g = D(f).
The SR task consists in restoring f from g. The output of a
SR convolutional neural network S takes the following form:
f̂ = S(g, θ), where f̂ is the estimated HR image and θ are
the parameters of the neural network. S is trained using (g, f)-
pairs of LR and HR images and minimizing a loss function
often based on the mean squared reconstruction error (MSE).

The first DL-based SR method, called SRCNN, was pre-
sented by Dong et al. [1]. The corresponding architecture is
composed of three convolutional layers allowing to perform
three successive operations from LR images: (i) the extraction
of a set of feature maps, (ii) a non linear mapping of these
features followed by (iii) the reconstruction of the HR image.
To overcome the high computational cost of SRCNN, an
improved version called FSRCNN [2] takes advantage of a
deconvolution layer at the end of the network allowing the
mapping to be learned directly from the LR images. Ledig
et al. [3] designed the first SR method based on a generative
adversarial network (GAN), called SRGAN. Unlike SRCNN
and FSRCNN, SRGAN does not minimize the mean square
reconstruction error. It rather resorts to a perceptual loss
function composed of an adversarial loss and a content loss,
which aim at inferring more photo-realistic images. To get
rid of some unpleasant artifacts, ESRGAN [5] modifies the
architecture and the two losses of SRGAN leading to an
enhancement in terms of sharpness and details. On the other
hand, Zhang et al. introduced RCAN [6], a residual channel
attention network composed of several residual groups with

long skip connections allowing the network to better focus on
high-frequency information.

Acquiring a large number of (g, f)-pairs for training the
previous DL networks can be a tricky task according to the
application at hand. A cheaper and common way to create the
training set consists in generating artificially the LR images
according to an priori known degradation function D. SR
methods that are following this strategy are usually called
non blind. SRCNN, FSRCNN, RCAN and SRGAN belong to
this family because they all resort to a bicubic downsampling.
Because of the limitation of this model that can be seen
as a too constrained prior inducing a domain gap between
bicubically generated LR examples and real images, a new
family of blind models has recently emerged [15] supposing
that the degradation is unknown and has to be estimated
through a kernel and an additive noise.

DAN [7] is a well known representative of this family.
It performs an alternating optimization process allowing a
joint estimation of the blur kernel and the restoration of the
SR images. On the other hand, Kernel-GAN [16] estimates
the degradation kernel based on internal statistics. It learns
only from the LR test image at test time and optimizes its
internal distribution of patches. This latter has been shown to
play a key role to identify the right SR kernel. However, it
suffers from a time consuming training phase, which is an
important drawback for 3D images containing hundreds of
slices. To finish this (non exhaustive) list of related work,
note that the algorithm pix2pix [17], which is not a specific
SR method, is very known in medical image processing for
image segmentation/reconstruction. It is based on a GAN
architecture with a U-net generator, composed of an encoder-
decoder generator, and a patch-GAN discriminator. Since this
algorithm takes the form of an image-to-image translation, it
can be used - provided some slight changes (as discussed in
the experimental part) - to perform an SR task.

III. SR EVALUATION METRICS AND BONE BIOLOGICAL
PARAMETERS

The peak signal to noise ratio (PSNR) and the Structural
SIMilarity index (SSIM) are two measures that are the most
widely used to evaluate SR methods. PSNR quantifies the
reconstruction quality of images subject to lossy compression.
It corresponds to a function of the ratio of (i) the maximum
possible value of a pixel (i.e. 255 for 8-bit images) over (ii)
the mean square error between the restored image (SR) and
the ground truth (HR). Therefore, the higher the PSNR, the
better the SR is. SSIM [13] is a measure of the perceptual
quality of the reconstruction. It compares the SR and HR
images through a weighted combination of three comparison
measurements: the structure, the luminance and the contrast.
SSIM is symmetric and ranges between [0,1]. It is equal to
0 if there is no structural similarity and 1 if the images are
identical.
Even though PSNR and SSIM are widely used in the SR field,
we claim here that those two metrics are not well adapted to
address bone SR tasks. To give evidence of the issues raised



Fig. 1. SR images obtained from RCAN, FSRCNN, pix2pix and DAN. A bicubic upscaling (on the left) is shown as a baseline. For each method, the PSNR
and SSIM values are reported. The ground truth is given by the HR image.

by these two criteria, we report in Fig. 1 an illustration of the
resulting images (representing mice tibias) obtained by four
state of the art SR methods (RCAN, FSRCNN, pix2pix and
DAN) as well as a bicubic upscaling obtained from a real
LR image, used as a baseline. We can note that RCAN and
FSRCNN are the best methods from a perceptual standpoint,
illustrated by the highest PSNR and SSIM scores. But the
latter are not as high as the values obtained in the literature
on standard datasets shared by the SR community. Moreover,
pix2pix and DAN provide pretty poor results (even worse for
the latter compared to the bicubic upscaling) illustrating the
fact than bone SR is a complex task. The most important
remark we can make from this figure is that even though
from an aesthetic perspective RCAN and FSRCNN seem to
be pretty convincing, we can observe from the HR image that
details such as pores of the cortical bone and some parts of
the trabecular bone are lost by these SR methods, while they
play a key role in the medical diagnosis of bone diseases.

From a biological perspective, several 3D morphometric
and topological parameters characterize well the bone mi-
crostructure and should be used to evaluate SR methods. In the
experiments, we will use the following trabecular parameters:
Bone Volume/Total Volume (BV/TV), the percentage of bone
in the Region of Interest (ROI); Trabecular thickness, the
average thickness of trabeculae; Conn.D, the connectivity
density; Trabecular Separation, the average distance between
trabeculae; Degree of Anisotropy, indicator of how strongly
oriented are trabeculae. The main cortical parameters are the
following: close and open porosity, number of pores or
cortical thickness. Due to lack of space, we will not show
results on those parameters, but note that the main conclusions
made on the trabecular parameters hold for the cortical ones.

Note that more human perception correlated evaluation
metrics exist [18]. Nevertheless, PSNR and SSIM are more
frequently used than those metrics in papers dealing with SR.

IV. EXPERIMENTS

We present here the dataset that has been specifically
collected and imaged for this study. Then we report the results
and main conclusions obtained from an extensive experimental
comparison between four state of the art SR methods.

A. Dataset and experimental setup

Forty mice tibias were imaged from a Scanco micro-CT
(µCT) at the laboratory Sainbiose, Saint-Etienne. 3D LR and

HR images with cubic voxel size of 19 µm and 10.5 µm
respectively were acquired on the same tibia site for all mice.
We thus created a 40 mice dataset of LR and HR 3D images.
The LR and HR slices were not directly paired since the HR
(resp. LR) slices are spaced by 10.5 µm (resp. 19 µm) and
the tibias may have been scanned with a different orientation
and position for the two resolutions. Thus, we first performed
3D image registration in order to create paired (HR,LR) slices
to be used for training and testing. For registration, we used
an affine transform from the AntsPy1 package in python.
An interpolation was applied to the 3D LR images before
registration in order to manipulate similar bone volumes in
both images. After registration, we obtained 26484 HR slices2.

In this series of experiments, we compared four SR meth-
ods: RCAN, FSRCNN, DAN and pix2pix. For the first three,
we used the versions available online. For the latter, we
used the implementation of You et al. [19] where the usual
noise input of GAN were replaced by our LR images, and
the loss function was changed accordingly. Each SR method
was trained from scratch from 29 (LR,HR) pairs of our
dataset. This training set was separated into 90%/10% for the
learning/validation process for DAN and RCAN. For pix2pix
and FSRCNN, we used hyperparameters obtained from a
preliminary study (not reported in this paper). We used 11
bone images for testing and calculated SSIM and PSNR from
the resulting 6948 (SR,HR) pairs of slices. As a baseline, we
also used a bicubic upscaling of LR images which is supposed
to be the worst SR result.

The biological bone parameters were calculated from the 3D
reconstructions from the SR images ouput from the different
SR methods. The computation of these 3D parameters was
performed after the binarization of the images in bone (white)
and background (black) by using the 2-class Otsu method.
Since some HR images can be subject to the presence of
noise, we first applied a total variation denoising step to the
HR images before segmentation. We also achieved this task on
the SR images generated by DAN and pix2pix which do not
benefit from the effect of the MSE loss function, like RCAN
and FSRCNN. As indicated before, we only present in this
section the 3D trabecular bone parameters. This required to
select a volume of interest of 50 consecutive slices where

1https://antspyx.readthedocs.io/en/latest/
2The source code and the datasets used in this paper are available at

https://github.com/RJhuboo/SRBoneMicrostructure



trabecular bone is mainly present. Then, we created a binary
mask of the trabecular area to exclude the cortical bone.
The computation of parameters was performed by using the
Skyscan CTan software.

Fig. 2. PSNR comparison of four SR methods as well as a bicubic upscaling
as a baseline. Red line: median. Blue box: 15th and 75th percentiles. Black
lines: upper and lower adjacent values.

B. Results

Fig. 2 displays boxplots of the PSNR and SSIM for the
different SR methods. While RCAN and FSRCNN allow to
obtain reasonable scores (PSNR greater than 30 and SSIM
around 0.65), we can note that they do not reach values usually
obtained in the literature on standard datasets composed of
natural images. These results illustrate well the fact that bone
SR is a much more challenging task than restoring images
of buildings, flowers or animals. Even worse, we can note
that DAN, known to be the state of the art blind SR method,
is only slightly better than the bicubic baseline that shows
its difficulty to capture the right degradation. We report in
Table I the values of some trabecular bone parameters. It is
worth noticing that the best two methods RCAN and FSRCNN
in terms of PSNR and SSIM fail to recover well the bone
microstructure. Both tend to produce denoised and blurry
SR images (as illustrated in Fig. 1) where small trabeculae
disappeared leading to an overestimation of the trabecular
separation and thickness (compared to the ground truth HR)
and thus an underestimation of BV/TV. On the other hand,
pix2pix produces SR images with more noise that prevents the
recovery of the right connectivity. DAN tends to overestimate
the trabecular thickness (as well illustrated in Fig. 1). Associ-
ated with the noise it generates, DAN also looses information
about the connectivity density. Finally, the most striking result
from Table I comes from the fact that the SR parameters are
on average worst than those calculated from the LR images.
This means that even if the perceptual aspect seems to be
improved (especially with RCAN and FSRCNN as expressed
by reasonable PSNR and SSIM), the SR methods do not allow
any enhancement from a biological perspective and thus are
not really efficient for medical diagnosis.

To illustrate graphically how the SR methods over/under-
estimate the biological parameters, Fig. 4 shows three SR bone
parameters versus their HR counterparts, where the bisecting
line y = x corresponds to the perfect matching with the ground

truth. This figure confirms that no method is able to recover
correctly the bone microstructure w.r.t all parameters.

V. CONCLUSION AND PERSPECTIVES

In this paper, we analyzed the behavior of DL-based SR
methods when addressing a super resolution task from micro-
CT images of bones. As far as we know, it is the first study
showing that state of the art SR methods (i) lead to PSNR
and SSIM values that are reasonable but smaller than what
is generally observed on standard datasets of natural images
and (ii) do not enhance LR images when evaluating the
capacity of the methods to recover the bone microstructure.
Therefore, this study raises the question of the direct use of
these methods for medical diagnosis. It also highlights the
fundamental difference between inducing aesthetic images and
generating SR images relevant from a biological perspective.

Fig. 3. Illustration of the biological gap existing between images produced
by SR methods and images that would satisfy some biological requirements.

This paper opens promising future lines of research. In
particular, it raises the need of a new generation of SR
methods that would bridge the gap between perceptual and
biologically accurate SR images. Inspired by [15] (Fig. 2),
we illustrate this gap by the red arrow depicted in Fig.3. State
of the art SR methods generate perceptual images that are
relevant when dealing with applications where the easthetics
is key. But this is not enough in biological tasks. One way to
address this limitation would consist in pre-training a module
calculating the morphometric and topological parameters of
bone microstructures and regularizing the loss function so as
to reconstruct SR images that are biologically accurate. A
more promising and complex strategy would be to jointly learn
the super resolution and this biological module. The difficulty
coming from the need to build a differentiable module.
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