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ABSTRACT

Context. Rocky planets hosted by close-in extrasolar systems are likely to be tidally locked in 1:1 spin–orbit resonance, a configuration
where they exhibit a permanent dayside and nightside. Because of the resulting day-night temperature gradient, the climate and large-
scale circulation of these planets are strongly determined by their atmospheric stability against collapse, which designates the runaway
condensation of greenhouse gases on the nightside.
Aims. To better constrain the surface conditions and climatic regime of rocky extrasolar planets located in the habitable zone of their
host star, it is therefore crucial to elucidate the mechanisms that govern the day-night heat redistribution.
Methods. As a first attempt to bridge the gap between multiple modelling approaches ranging from simplified analytical greenhouse
models to sophisticated 3D general circulation models (GCMs), we developed a general circulation meta-model (GCMM) able to
reproduce the closed-form solutions obtained in earlier studies, the numerical solutions obtained from GCM simulations, and solutions
provided by intermediate models, assuming the slow rotator approximation. We used this approach to characterise the atmospheric
stability of Earth-sized rocky planets with dry atmospheres containing CO2, and we benchmarked it against 3D GCM simulations
using the THOR GCM.
Results. We observe that the collapse pressure below which collapse occurs can vary by ∼40% around the value predicted by analytical
scaling laws depending on the mechanisms taken into account among radiative transfer, atmospheric dynamics, and turbulent diffusion.
Particularly, we find (i) that the turbulent diffusion taking place in the dayside planetary boundary layer (PBL) globally tends to warm
up the nightside surface hemisphere except in the transition zone between optically thin and optically thick regimes, (ii) that the PBL
also significantly affects the day-night advection timescale, and (iii) that the slow rotator approximation holds from the moment that
the normalised equatorial Rossby deformation radius is greater than 2.
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1. Introduction

Launched recently from Kourou’s spaceport in French Guiana,
the James Webb Space Telescope (Deming et al. 2009) is on the
point of unravelling the features of exoplanetary atmospheres at
resolutions never before reached. With the current or upcoming
transit searches of the TESS (Barclay et al. 2018) and PLATO
(Ragazzoni et al. 2016) observatories, this telescope will accel-
erate the dynamics initiated by previous space missions by
populating the continuum of extrasolar planets and constraining
the properties of the detected objects. Many of these planets are
rocky planets in close-in star–planet systems, notably planets that
orbit brown dwarfs and very low-mass stars (e.g. Payne & Lodato
2007; Raymond et al. 2007; Kopparapu et al. 2017) such as the
seven Earth-sized planets hosted by the TRAPPIST-1 ultra-cool
dwarf star (Gillon et al. 2017; Grimm et al. 2018). Therefore, it
is crucial to better understand the mechanisms governing their
climate, atmospheric circulation, and surface conditions.

Tidal locking in 1:1 spin–orbit resonance is the most prob-
able final spin state of planets in close-in star–planet systems
(Goldreich 1966). This evolution results from the action of the
gravitational tides raised by the perturbing tidal potential of the
star. Because of dissipative mechanisms, the tidal response of
the planet is delayed with respect to the perturber. As a conse-
quence, the resulting tidal torque tends to drive the spin towards

the configuration where the star is motionless in the frame of
reference rotating with the planet. This spin state corresponds to
spin–orbit synchronisation and is reached when the spin angular
frequency of the planet, Ω, equalises its orbital frequency, n?.

Additionally, gravitational tides act to decrease both the
obliquity and the eccentricity of the planet, which is thereby
driven towards the equilibrium configurations of coplanarity and
circularity (Hut 1980, 1981) unless it spirals towards the star
until being engulfed by it if the system is very close (Hut 1981;
Levrard et al. 2009). Asynchronous final spin states may also
exist. For instance, eccentric orbits maintained by orbital reso-
nances in a multiple-planet system lead to spin–orbit resonances
of higher degrees where the planet can be trapped (Correia
et al. 2014; Auclair-Desrotour et al. 2019a). Similarly, it has
been shown that significant thermal tides generated by stellar
irradiation are able to prevent Venus-like planets from reaching
spin–orbit synchronisation by inducing a torque opposed to the
solid tidal torque (Gold & Soter 1969; Ingersoll & Dobrovolskis
1978; Leconte et al. 2015; Auclair-Desrotour et al. 2019b).

The probability of a planet being tidally locked in 1:1 spin–
orbit resonance with temperate surface conditions is determined
from the interplay between two radii: the tidal-lock radius, rT,
and the radius of the habitable zone, rHZ. While the tidal-lock
radius indicates the size of the region where planets are likely
to be tide-locked in spin–orbit synchronisation, the radius of the

A79, page 1 of 32
Open Access article, published by EDP Sciences, under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0),

which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

https://www.aanda.org
https://doi.org/10.1051/0004-6361/202243099
https://orcid.org/0000-0002-9577-2489
https://orcid.org/0000-0001-9423-8121
mailto:pierre.auclair-desrotour@obspm.fr
https://www.edpsciences.org
https://creativecommons.org/licenses/by/4.0


A&A 663, A79 (2022)

habitable zone corresponds to the typical star–planet distance at
which a planet can sustain liquid water at its surface (Kopparapu
et al. 2013). By assuming that the planet behaves as a black body,
and by writing the stellar luminosity as a function of the stellar
mass with the empirical formula given by Barnes et al. (2008), it
can be shown that rHZ ∝ M1.32

? for M? . 1 (Auclair-Desrotour
& Heng 2020), whereas the tidal-lock radius scales as rT ∝ M1/3

?
(Peale 1977; Kasting et al. 1993; Dobrovolskis 2009; Edson et al.
2011). Thus, the size of the habitable zone radius decays faster
than the tidal-lock radius with decreasing stellar mass, which
means that planets located in the habitable zone have a greater
chance of being tide-locked if they orbit low-mass stars than if
they orbit Sun-like stars (Kasting et al. 1993).

For planets orbiting low-mass M stars, tide-locking times are
actually very short, and even extremely short in the case of lava
planets (e.g. 55 Cancri e, Kepler 10b), with maximum values
reaching just a few million years. For instance, the time required
for the cool planet LHS1140 b to become tide-locked is about
14 million years (Pierrehumbert & Hammond 2019), which is
low compared with the typical ages of planetary systems. This
strongly suggests that planets orbiting in the habitable zone of
very low-mass stars such as TRAPPIST 1d are tide-locked in the
1:1 spin–orbit resonance. Therefore, the rotation rate of these
planets is well constrained and is given by Ω = n?. Additionally,
the strength of tidal forces makes the existence of orbital con-
figurations with significant eccentricities or obliquities unlikely.
Such planets can thus be reasonably supposed to be close to the
stable equilibrium configurations of coplanarity and circularity.

In this configuration, the planet exhibits a permanent day-
side and nightside centred on the star–planet axis. The dayside
is irradiated by the incident stellar flux while the nightside is
radiatively cooled, and the energy absorbed on the dayside is
transported towards the nightside by mean flows, which act to
decrease the horizontal temperature gradient (e.g. Showman &
Guillot 2002; Leconte et al. 2013; Pierrehumbert & Hammond
2019). The differential thermal forcing induced by spin–orbit
synchronisation plays a crucial role in the evolution of the
planet’s climate. Typically, as shown by the pioneering work of
Joshi et al. (1997), the thermal state of synchronously rotating
rocky planets is determined by the interplay between the night-
side surface temperature and the condensation temperature of
greenhouse gases. From the moment that the condensation tem-
perature of the gas exceeds the surface temperature, the nightside
acts as a cold trap. The greenhouse gas initially present in the
atmosphere condenses and forms an ice sheet on the surface,
which induces a temperature decrease in return. This triggers
a positive feedback that cools down the atmosphere until the
gas has been fully condensed, which is called atmospheric col-
lapse (e.g. Joshi et al. 1997; Heng & Kopparla 2012; Wordsworth
2015). In the opposite case, the atmosphere is said to be stable
against collapse, its composition remaining unchanged.

Over the past decade, a substantial effort has been made
to characterise the climate of tide-locked rocky planets using a
broad range of modelling approaches, from simplified analytical
greenhouse models (e.g. Heng & Kopparla 2012; Wordsworth
2015; Auclair-Desrotour & Heng 2020) to 3D general circula-
tion model (GCM) simulations (e.g. Merlis & Schneider 2010;
Leconte et al. 2013; Carone et al. 2014; Haqq-Misra et al.
2018; Ding & Pierrehumbert 2020; Sergeev et al. 2020; Turbet
et al. 2018), including intermediate semi-analytical or numeri-
cal approaches (e.g. Yang & Abbot 2014; Koll & Abbot 2016;
Song et al. 2021) that cannot be listed here in an exhaustive
way. Although based on robust methodologies, most of these
approaches cannot be related self-consistently to one another due

to major differences in modelling choices. These discrepancies
raise the two questions of how to disentangle the possible causes
of different predictions between two models and how to assess
the epistemic value of a given model. They can be reformulated
into the more concrete question of how to consistently charac-
terise the climate of tide-locked planets from multiple modelling
approaches. This major concern was explicitly formulated by
Held (2005), who argued for the need of model hierarchies
on which to base one’s understanding in climate modelling.
Such hierarchies appear as the only way to close the gap
between idealised modelling and high-end simulations as they
allow the essence of each particular source of complexity to be
captured.

The aim of the present work is to tackle these questions
from the angle of atmospheric stability against collapse. In the
continuity of a former study on the atmospheric stability of tide-
locked rocky planets (Auclair-Desrotour & Heng 2020), we have
developed a multi-dimensional model hierarchy that we call a
general circulation meta-model (GCMM) in order to bridge the
gap between the analytic theory of planetary climates and simu-
lations performed with 3D GCMs. This model hierarchy is based
on a systematic bottom-up approach in the spirit of Held (2005).

We need to specify the sense given here to meta-modelling.
By meta-model, we mean that the model ought to be able to
exactly reproduce the setups of both simplified greenhouse mod-
els and GCMs – as well as the configurations in between –
with the same intrinsic theoretical background. In that sense,
such models are possible instances of the meta-model, which
can generate any of them. Hence, the so-defined GCMM allows
the effects of mechanisms that are either strongly coupled in
standard GCMs or ignored in simplified analytic models to be
disentangled. These effects are added or subtracted as a function
of the number of degrees of freedom of the model. Increasing the
number of degrees of freedom amounts to adding key sources of
complexity.

Typically, radiative 0D models are essentially based on radia-
tive exchanges between the planet’s surface and the atmosphere
(e.g. Wordsworth 2015; Auclair-Desrotour & Heng 2020). At the
next level of complexity, 1D models take the coupling between
radiative transfer and the atmospheric structure into account (e.g.
Robinson & Catling 2012). Two-column – or 1.5D – models are
the minimum setup to self-consistently couple the large-scale
day-night overturning circulation with radiative transfer and the
atmospheric structure (e.g. Yang & Abbot 2014; Koll & Abbot
2016). This coupling is refined at the level of 2D GCMs, which
allow the interaction between physical mechanisms – clouds,
turbulent diffusion in the planetary boundary layer (PBL), con-
vection – and mean flows to be calculated self-consistently in
the slow rotation regime (e.g. Song et al. 2021). Finally, 3D
GCMs complete the picture by introducing Coriolis effects and
non-axisymmetric flows where super-rotation can develop (e.g.
Leconte et al. 2013; Carone et al. 2014; Haqq-Misra et al. 2018;
Ding & Pierrehumbert 2020; Sergeev et al. 2020; Turbet et al.
2021).

Thus, the essential function of a GCMM is to model all these
levels of complexity at the same time so that the roles played
by the different mechanisms involved in the planet’s climate can
be clearly separated. As, to our knowledge, such a model has
not yet been developed, the present work is a first attempt to
design a GCMM dedicated to the study of tide-locked rocky
planets. For simplicity, we confine ourselves to the slow rota-
tion regime and ignore Coriolis effects in the dynamics. This
allows us to avoid the mathematical complications related to the
3D geometry and to speed up calculations. Our GCMM is thus
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Table 1. Physics described by the four studied instances of the meta-model and the THOR 3D GCM.

Grid and physics 0D 1D 1.5D 2D THOR

Grid format 1 × 1 1 × 50 2 × 50 32 × 50 3D grid

Radiative transfer X X X X X
Thermal structure X X X X
Day–night circulation X X X
Planetary boundary layer X X
Soil heat transfer X X
Coriolis effects X

Notes. All instances of the meta-model use the same parameters and theoretical background. Physical mechanisms are gradually captured by grid
formats, which are defined by numbers of horizontal times vertical grid intervals. In ascending order of grid resolution, the main physical features
described by the meta-model’s instances and by the THOR GCM are (i) the radiative exchanges between the planet’s surface and the atmosphere,
(ii) the vertical thermal structure of the atmosphere (i.e. the temperature-pressure profile) in radiative equilibrium, (iii) the day-night large-scale
circulation, (iv) the convective turbulent diffusion due to friction in the PBL, (v) the soil heat diffusion, and (vi) the vortical components of mean
flows due to Coriolis effects.

designed to generate models ranging from 0D configurations
to 2D configurations. Additionally, we opt for a finite-volume
method to solve the hydrostatical primitive equations (HPEs),
following the approaches detailed by Yao & Stone (1987) and
implemented in standard finite-volume GCMs such as the LMDZ
(Hourdin et al. 2006) or THOR (Mendonça et al. 2016) GCMs.
As the finite-volume method divides the atmosphere into cells,
it is appropriate to describe the radiative energy balance models
on which the analytic theory is built. For instance, the one-cell
configuration (1× 1 grid) corresponds to the single-layer isother-
mal atmosphere of Wordsworth’s model (Wordsworth 2015).
Similarly, increasing numbers of horizontal and vertical grid
intervals generate the 1D (1 × 50 grid), 1.5D (2 × 50 grid), and
2D (32 × 50 grid) model setups.

In order to minimise the size of the parameter space, we
confine ourselves to the dry case in this study. The effects of
moisture (clouds, latent heat transport, sedimentation, and sur-
face condensation or evaporation) are ignored. Radiative transfer
is described in the double-grey approximation, meaning that the
fluxes are divided into two bands – shortwave and longwave –
characterised by effective absorption parameters (e.g. Sect. 4.1
of Heng 2017). We also make the two-stream approximation and
consider that radiative fluxes only travel upwards and downwards
(e.g. Heng 2017, Sect. 3.1). In addition to radiative transfer, the
vertical turbulent diffusivity induced by the interactions between
mean flows and the planet surface in the PBL is taken into
account by making use of a model based on the mixing length
theory (Holtslag & Boville 1993). Finally, the thermal diffusion
in the soil is included in the diffusion scheme of the GCMM with
a 1D finite-difference model following the method described by
Wang et al. (2016). As shown by earlier studies (Wordsworth
2015; Koll & Abbot 2016; Auclair-Desrotour & Heng 2020), the
three abovementioned physical ingredients (circulation, radiative
transfer, and turbulent diffusion) predominantly determine the
nightside surface temperature and, thereby, the atmospheric sta-
bility against collapse. Table 1 summarises the physics described
by the studied instances of the meta-model and the THOR 3D
GCM, with the latter used to benchmark the former. Physi-
cal mechanisms are gradually captured by the grid formats that
characterise the models as the number of degrees of freedom
increases.

In Sect. 2, we introduce some of the control parameters
and analytical scaling laws that characterise the climate and
circulation regime of tide-locked planets. In Sect. 3 we detail

the main features of the GCMM and the physical setup of the
studied Earth-like and pure CO2 atmospheres. Section 4 intro-
duces the four instances of the meta-model used in this work:
0D, 1D, 1.5D, and 2D. In Sect. 5, we run grid simulations
for these instances to characterise the atmospheric stability of
Earth-sized synchronous planets against collapse as a function
of the stellar flux and surface pressure. Particularly, this ver-
tical inter-comparison highlights the influence of the PBL on
climate, day-night advection, and surface conditions. In Sect. 6,
we investigate the limitations of the zero-spin rate approxima-
tion assumed in this approach by running simulations with the
THOR 3D GCM. We show that the approximation holds from the
moment that the dimensionless equatorial Rossby deformation
length is greater than 2. Finally, in Sect. 7 we summarise the
conclusions of the study.

2. Preliminary scalings

The circulation regime and thermal state of equilibrium of tide-
locked planets is controlled by a few parameters and scaling
laws derived either from the shallow water approximation (e.g.
Vallis 2006; Pierrehumbert & Hammond 2019) or from the weak
temperature gradient (WTG) approximation (e.g. Pierrehumbert
1995; Sobel et al. 2001). One ought to recall these scalings before
introducing the physical setup of the numerical approach.

2.1. Circulation regimes of synchronous planets

If we assume that the planet surface is isotropic, all the physics
and dynamics that govern the atmospheric circulation are sym-
metric about the star–planet axis except Coriolis terms. As
a consequence, the circulation regime is essentially charac-
terised by one control parameter depending on the planet’s spin
angular velocity, which determines whether mean flows are bi-
dimensional and symmetric about the star–planet axis or if they
are sufficiently deviated by the planet’s rotation as to become 3D.

Such a parameter appears naturally in analyses making use
of the Buckingham-Pi theorem (Buckingham 1914) in the prim-
itive equations of fluid dynamics and thermodynamics (e.g.
Koll & Abbot 2015). In the present study, following Leconte
et al. (2013) and Auclair-Desrotour & Heng (2020), we define
the dimensionless equatorial Rossby deformation length L̃Ro
from the equatorial Rossby deformation radius LRo as (e.g.
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Menou et al. 2003)

L̃Ro ≡
LRo

Rp
=

√
cwave

2ΩRp
, (1)

where Rp designates the planet radius, and cwave the speed
of horizontally propagating gravity waves. The dimensionless
equatorial Rossby deformation length is essentially the square
root of the distance – in radius unit – that fast gravity waves can
travel before they feel the Coriolis effects and geostrophically
adjust (Vallis 2006).

If L̃Ro > 1, the Coriolis effects are small and the two-way
force balance between advection and pressure-gradient accel-
erations leads to a day-night overturning circulation symmetric
about the star–planet axis (Leconte et al. 2013; Pierrehumbert &
Hammond 2019; Hammond & Lewis 2021). In this regime, the
dynamics of mean flows is the same in all planes containing the
star–planet axis, with high-altitude winds blowing from the day-
side to the nightside and near-surface winds blowing from the
nightside to dayside. This essentially corresponds to the steady
state expected in the WTG theory, where small Coriolis forces,
friction, and non-linearities make the heat advection unable to
annihilate completely the day-night temperature gradient (Sobel
et al. 2001; Hammond & Pierrehumbert 2017; Pierrehumbert &
Hammond 2019).

Conversely, for L̃Ro . 1, Showman & Polvani (2011) demon-
strated that the formation of standing planetary-scale equatorial
Rossby and Kelvin waves (i.e. waves restored by the Coriolis
acceleration; see e.g. Lee & Saio 1997) favours the emergence
of super-rotation by pumping angular momentum from the mid-
latitudes towards the equator. In this regime, the equatorial
Rossby deformation radius (LRo) essentially corresponds to the
latitudinal width of the produced eastward equatorial jet, and
mean flows take the form of the Matsuno-Gill standing wave pat-
tern (Matsuno 1966b; Gill 1980; Showman & Polvani 2011; Tsai
et al. 2014).

The dimensionless equatorial deformation length introduced
in Eq. (1) can be related to the atmospheric parameters by
considering the properties of gravity waves. Gravity waves are
restored by the Archimedean force associated with the fluid
buoyancy and their typical speed is given by cwave = HN,
where H designates the characteristic vertical scale length of
the atmosphere and N the Brunt-Vaisala frequency, which scales
the strength of the atmospheric stratification against convection
(Gerkema & Zimmerman 2008). In a dry, stably stratified atmo-
sphere, this frequency is expressed as (Gerkema & Zimmerman
2008)

N2 =
g

T

(
g

Cp
+
∂T
∂z

)
, (2)

where we have introduced the gravity g, the heat capacity per
unit mass of the gas Cp, the temperature T , and the partial

derivative operator over the altitude
∂

∂z
. In the idealised case

of the vertically isothermal atmosphere (constant temperature),
N = g/

√
CpT , and the vertical scale is the pressure height (Vallis

2006, Sect. 1.4),

H ≡
RdT
g
, (3)

where Rd ≡ RGP/Ma designates the specific gas constant for dry
air, RGP being the ideal gas constant and Ma the mean molec-
ular weight of the atmosphere. Thus, in this configuration (e.g.

Leconte et al. 2013),

L̃Ro =

√
RdT 1/2

2ΩRpC1/2
p

, (4)

which highlights the fact that the circulation regime depends
on the planet’s spin rotation, thermal state, and atmospheric
composition.

The dimensionless equatorial Rossby deformation length
conveys exactly the same information as the WTG parame-
ter Λ introduced in the WTG theory (see e.g. Pierrehumbert
& Hammond 2019), which is defined as the Rossby radius of
deformation – distinct from the equatorial deformation radius –
normalised by the planet radius (Vallis 2006, Sect. 3.8.2). The
two parameters are linked together by the relationship L̃Ro =√

Λ/2 (Pierrehumbert & Hammond 2019), meaning that either
the former or the latter can be chosen to characterise the circu-
lation regime. In the present study, we confine ourselves to the
configuration of the WTG theory (L̃Ro > 1) and consider thereby
that mean flows are symmetric about the star–planet axis.

In addition with the slow and fast rotators regimes, there
exists a third dynamical state that is proper to intermediate stel-
lar cases in the range of 3000–3300 K and that is described
as the Rhines rotation regime (Haqq-Misra et al. 2018; Sergeev
et al. 2020). This regime is related to the Rhines length, which
determines the maximum extent of zonally elongated turbulent
structures (Rhines 1975). It occurs when the non-dimensional
Rossby deformation radius is greater than one but the non-
dimensional Rhines length is less than one (Haqq-Misra et al.
2018). The slow rotation and fast rotation regimes occur when
both the non-dimensional Rhines length and Rossby deformation
radius are greater than or less than one, respectively. The Rhines
rotation regime is not considered here, meaning that we focus on
the configuration where both the non-dimensional Rhines length
and Rossby deformation radius are greater than one.

2.2. Thermal states predicted by radiative box models

Over the past decade, analytic solutions and scalings charac-
terising the thermal state of equilibrium of tide-locked planets
have been obtained both for hot Jupiters (Komacek & Showman
2016; Zhang & Showman 2017; Koll & Komacek 2018), lava
planets (Hammond & Pierrehumbert 2017), and cooler rocky
planets orbiting in the habitable zone of their host star (Showman
et al. 2013; Wordsworth 2015; Koll & Abbot 2016; Pierrehumbert
& Ding 2016; Koll 2022; Auclair-Desrotour & Heng 2020).
Most of them were derived in the framework of the WTG the-
ory and involve simplified atmospheric physics and structure.
The present study builds on these works, and particularly those
based on box model approaches, where the atmosphere and sur-
face are reduced to large-scale energy reservoirs exchanging
heat with each other (Wordsworth 2015; Koll & Abbot 2016;
Auclair-Desrotour & Heng 2020). Although they are based on
strong simplifications (isothermal atmosphere, large-scale aver-
ages, no self-consistent coupling between the dynamics and the
thermodynamics), these models provide scalings that capture the
behaviour of the thermal state of tide-locked rocky planets with
a minimum set of physical parameters. Particularly, they lead
to closed-form solutions for the nightside surface temperature
Tn, which determines the whole atmospheric stability against
collapse.

By considering a globally isothermal atmosphere inter-
acting with dayside and nightside surface hemispheres,
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Wordsworth (2015) shows that the pure radiative equilibrium
of the surface-atmosphere system corresponds, in the optically
thin layer approximation (i.e. transparent in the visible and opti-
cally thin in the infrared), to the nightside temperature scaling
(Wordsworth 2015, Eq. (29))

Tn;low ≡ Teq

[
1
2

(1 − As) τs;L

] 1
4

, (5)

which can be generalised to optically thick atmospheres with
scattering (Auclair-Desrotour & Heng 2020). In the above
expression, As designates the surface albedo in the shortwave,
τs;L the longwave optical depth at planet’s surface, and Teq the
black body equilibrium temperature, which is defined as

Teq ≡

(
F?

4σSB

) 1
4

, (6)

with F? the incident stellar flux and σSB = 5.670367 ×
10−8 W m−2 K−4 the Stefan-Boltzmann constant (Mohr et al.
2016).

Since it ignores all types of energy exchanges except radia-
tive transfer, the estimate given by Eq. (5) can be interpreted as
a lower bound for the nightside surface temperature of a rocky
tide-locked planet. In reality, the strong convection generated
by the thermal forcing of the atmosphere in the dayside PBL
increases surface-atmosphere heat fluxes, which significantly
affects the nightside temperature (Sergeev et al. 2020). The
friction of the flow against the surface generates sensible heat
exchanges in dry thermodynamics. Additionally, in moist atmo-
spheres, surface evaporation generates latent heat exchanges,
which results from the energy taken from or released in the fluid
during the changes of phases of the component (Pierrehumbert
2010).

We consider here that the atmosphere is dry and thereby
ignore the contribution of latent heat exchanges. Sensible heat
exchanges can be introduced in the radiative box model by
including, in the energy balance equations, the hemisphere-
averaged sensible heat flux given by (e.g. Pierrehumbert 2010,
Eq. (6.11), p. 396)

Fsen = CDCpρavsen (Td − Ta), (7)

where ρa is the atmospheric density at planet’s surface, CD the
bulk drag coefficient characterising the strength of friction in
the surface layer, and vsen the typical horizontal wind speed of
the flow. Among these parameters, vsen accounts for the circula-
tion, meaning that it cannot be self-consistently related to the
thermal state of the system in this simplified approach. Nev-
ertheless, it can be scaled from a dimensional analysis of the
thermodynamic equation (e.g. Wordsworth 2015), or by making
use of the heat engine theory (e.g. Koll & Abbot 2016; Koll &
Komacek 2018; Auclair-Desrotour & Heng 2020). For instance,
by modelling the overturning circulation as an ideal heat engine
and using Carnot’s theorem (Bruhat 1968), Koll & Abbot (2016)
found an upper bound of the dayside average surface wind speed
(Koll & Abbot 2016, Eq. (12)),

vsen =

{[
Td − (1 − As)

1
4 Teq

] (
1 − e−τs;L

)
(1 − As)

RdF?

2CD ps

} 1
3

, (8)

which agrees well with the values obtained numerically from 3D
GCM simulations (Koll & Abbot 2016; Koll & Komacek 2018).

For an isentropic cycle (i.e. an idealised Carnot’s heat
engine), the weight of dayside sensible heating1 relative to
radiative heating is controlled by the dimensionless parameter
(Auclair-Desrotour & Heng 2020, Eq. (63))

Lsen ≡
2CpCD ps

τs;LRdF?

QinRd

CD ps

(
F?

2σSB

) 1
4


1
3

, (9)

which is written here for an atmosphere optically transparent in
the shortwave and thin in the longwave. The notation Qin ∝ v3

sen
(e.g. Koll & Abbot 2016) designates the amount of power per
unit area available to drive atmospheric motion. Looking at the
zero-convection limit (Lsen = 0) we recover the purely radia-
tive regime, while the opposite asymptotic regime (Lsen = +∞)
implies that Td = Ta and provides an upper bound for the night-
side surface temperature of a tide-locked rocky planet (e.g.
Auclair-Desrotour & Heng 2020, Eq. (85)),

Tn;up ≡ Teq
[
2 (1 − As) τs;L

] 1
4 =
√

2Tn;low, (10)

which is valid in the optically thin layer approximation as well
as Eq. (5). Therefore, for a globally isothermal and optically
thin atmosphere, the nightside surface temperature falls into the
interval

Tn;low ≤ Tn ≤
√

2Tn;low. (11)

However, we remark that Td = Ta actually corresponds to an
extreme regime that is never reached in standard configurations,
and we thus consider Tn;up as a theoretical upper limit.

Similarly as the dayside convective planetary layer, the
nightside atmospheric structure alters the nightside equilibrium
temperature. Its effect can be quantified by relaxing the isother-
mal approximation and by dividing the atmosphere into dayside
and nightside air columns, which is the essence of two-column
models (Yang & Abbot 2014; Koll & Abbot 2016; Auclair-
Desrotour & Heng 2020). As shown by Koll & Abbot (2016),
the nightside subsidence induced by the day-night overturning
circulation generates a temperature inversion in the lowest layers
of the atmosphere if the subsidence timescale is slightly greater
than the radiative cooling timescale. The resulting atmospheric
structure leads to large day-night differences.

3. A general circulation meta-model (GCMM)

We introduce in this section the main features of the meta-model
and the used physical setup.

3.1. Primitive equations

At a given time, t, the dynamical core of the GCMM solves
the HPEs over the Cartesian rectangular domain defined by the
colatitude θ ∈ [0◦, 180◦] of the tidally locked coordinates (TLCs;
see Koll & Abbot 2015, Appendix B) and the mass-based verti-
cal coordinate defined, in the absence of the topography, as (e.g.
Yao & Stone 1987; Carone et al. 2014)

σ ≡
p − pt

ps − pt
∈ [0, 1] , (12)

1 Sensible heating designates surface-atmosphere heat exchanges due
to the vertical turbulent diffusion generated by friction of mean flows
against the planet’s surface within the surface layer in dry thermody-
namics. This mechanism is distinct from latent heat exchanges, which
designates the energy exchanges resulting from the change of phase of
a condensable substance (e.g. Pierrehumbert 2010, Sect. 6.3).
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where we have introduced the pressure p, the surface pressure ps,
and the pressure at the top of the atmosphere pt. In these coor-
dinates, θ = 0◦ and θ = 180◦ correspond to the sub-stellar and
anti-stellar points, respectively, while σ = 0 and σ = 1 corre-
spond to the top and the bottom of the atmosphere, respectively.
While ps and p vary over time and spatial coordinates, pt is set
to pt = 0 in the model, which corresponds to the usual sigma
coordinate σ = p/ps. The vertical coordinate given by Eq. (12)
is well suited to the study of the tide-locked planets since it fol-
lows the distortion of the atmosphere induced by the differential
day-night thermal forcing: the pressure of an altitude level may
differ by orders of magnitude between the dayside and nightside,
which would possibly generate numerical issues with the altitude
coordinate.

The relationship between the altitude (z) and the generalised
vertical coordinate (σ) is contained in the so-called pseudo-
density (e.g. Kasahara 1974),

p ≡ −gρ
∂z
∂σ

, (13)

where ρ denotes the density. The pseudo-density is proportional
to the mass contained in a generalised volume where the vertical
dimension is not a length but an interval of the generalised coor-
dinate σ. With the chosen mass-based coordinate (Eq. (12)) and
the assumed hydrostatic balance, it is simply expressed as (e.g.
Yao & Stone 1987)

p = ps − pt. (14)

We note that p would be the density to a constant factor if the
vertical coordinate were the altitude. Using the pseudo-density
instead of the density allows the HPEs given further in the same
form to be written for any chosen vertical coordinate.

The HPEs are the mass continuity equation (e.g. Kasahara
1974),

∂p

∂t
+ ∇σ · (puσ) +

∂

∂σ
(pσ̇) = 0, (15)

the horizontal momentum equation,

∂

∂t
(pvθ sin θ) +

1
Rp

∂

∂θ

(
pv2

θ sin θ
)

(16)

+
∂

∂σ
(pvθσ̇ sin θ) +

1
Rp
p sin θ

[
∂φ

∂θ
+ Θ

∂E
∂θ

]
= p sin θFθ.

the potential temperature equation,

∂pΘ

∂t
+ ∇σ · (pΘuσ) +

∂

∂σ
(pΘσ̇) = p

Q
E
, (17)

and the hydrostatic equation combined with the ideal gas law,

∂φ

∂σ
+ Θ

∂E
∂σ

= 0, (18)

where we have introduced the horizontal velocity vector uσ ≡

vθ eθ, the sigma-velocity σ̇ ≡
dσ
dt

(with
d
dt

the material time
derivative), the geopotential φ ≡ gz, the potential temperature Θ,
the Exner function E (e.g. Vallis 2006, Sect. 3.9), and the
horizontal divergence operator at constant σ,

∇· ≡
1

Rp
eθ ·

∂

∂θ
. (19)

The potential temperature and Exner function are defined as

Θ ≡ T
(

p
pref

)−κ
, E ≡ Cp

T
Θ

= Cp

(
p

pref

)κ
, (20)

where T is the temperature, pref a constant reference pressure set
to pref = 1 bar, and κ ≡ Rd/Cp. We note that the Exner function
is a proxy for pressure. It is used for convenience, as it facilitates
the integration of the hydrostatic equation. In right-hand mem-
bers of Eqs. (15)–(18), the source-sink terms are the force per
unit mass Fθ, and the heat power per unit mass Q. We note that
the primitive equations are written in their conservative forms,
which involve mass flows and mass-integrated quantities rather
than the original quantities themselves. Besides, these equations
are given here for any vertical coordinate varying monotonically
with altitude for the sake of generality.

The non-dimensional HPEs derived from Eqs. (15)–(18)
(see Appendix A) are solved for {p, vθ,Θ, φ} on a staggered
Arakawa C grid (Arakawa & Lamb 1977) with uniformly spaced
horizontal intervals, and σ-dependent vertical intervals refined
near the model bottom and top (see Appendix B). Following
the method implemented in the LMDZ GCM (Hourdin et al.
2006), the integration is done using a leapfrog scheme with
a periodic predictor/corrector timestep. The source-sink terms
associated with the physics, {Fθ,Q}, as well as other physi-
cal variables, are updated periodically using implicit schemes
except radiative transfer equations, which are solved directly
from the current thermodynamical state. In the 2D GCM-like
configurations, integrating the HPEs on a discrete domain gener-
ates numerical instabilities that develop at grid scale and may
strongly disrupt calculations. In GCMs, this concern is usu-
ally handled by introducing horizontal hyper-diffusion, which
is ideally designed to efficiently damp the numerical instabili-
ties at grid scale while leaving the mean flows unchanged (e.g.
Thrastarson & Cho 2011). Therefore, we include in the model a
fourth-order hyper-diffusion (or bi-harmonic diffusion) using an
anisotropic super-diffusivity that vanishes at the sub-stellar and
anti-stellar points (see Appendix C.1) in order to avoid the sta-
bility concerns associated with isotropic diffusion near the poles
(Sect. 13.3 of Lauritzen et al. 2011). The corresponding hyper-
diffusion terms for the momentum and temperature equations are
given by

Fdiff;v = −K4 sin2α (θ)∇4
σvθ, (21)

Fdiff;T = −K4 sin2α (θ)∇4
σT, (22)

where∇4
σ ≡ ∇

2
σ∇

2
σ designates the second-order horizontal hyper-

Laplacian operator, α the anisotropy exponent (α = 1 in the
model), and K4 the super-diffusivity defined by Eq. (C.5). Vali-
dation test simulations were run to verify that the mean flow and
temperature distribution are insensitive to the hyper-diffusion
scheme (see Fig. C.1).

In very hot cases, exponentially growing gravity waves prop-
agating upwards and reflected by the upper boundary of the
model can lead to extreme fluctuations of the dynamical quan-
tities in the upper atmosphere. To address these instabilities,
it can be necessary to use a sponge layer in addition with
horizontal hyper-diffusion. In the present work, we introduce
a linear Rayleigh friction sponge (e.g. Lauritzen et al. 2011,
Sect. 13.4.5) following the formulation proposed by Polvani &
Kushner (2002) for the vertical profile of the Rayleigh coeffi-
cient (see Appendix C.2). The sponge layer is thus modelled by a
Rayleigh damping increasing with the altitude between a critical
level σ = σSL and the top of the atmosphere, σ = 0, which tends
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to annihilate horizontal winds in the vicinity of the upper bound-
ary. Finally, the strong convection generated by the thermal
forcing on the dayside can induce super-adiabatic vertical tem-
perature gradients (i.e. ∂Θ/∂z < 0), which is another source of
numerical errors. This behaviour can be prevented by introduc-
ing a convective adjustment scheme in the model. The convective
adjustment scheme regularises the atmospheric structure by
dynamically correcting the tendencies to adjust super-adiabatic
regions to adiabatic profiles. We implemented a standard scheme
(e.g. Hourdin et al. 1993; Mendonça & Buchhave 2020) that can
be activated when necessary (see Appendix D). However, we did
not have to use the convective adjustment scheme nor the sponge
layer in the simulations performed for this work.

3.2. Radiative transfer

In the model, radiative transfer is described through the double-
grey approximation, which consists in (i) decoupling the stellar
radiation (shortwave flux) and the planet radiation (longwave
flux) – each band being characterised by an effective optical
depth – and (ii) assuming that radiative fluxes only propagate
upwards and downwards, which is the essence of the two-stream
approximation (e.g. Heng 2017, Sects. 3.1 and 4.1). This allows
fluxes in the shortwave and in the longwave to be calculated
separately (see Appendix E). We denote upward and downward
fluxes by F↑ and F↓, respectively. The equations governing the
propagation of the wavelength-integrated total flux F+ ≡ F↑+ F↓
and net flux F− ≡ F↑ − F↓ have the same formulation in both
bands. They are written as (Heng 2017)

dF+

dτ
=

1
β0

F−, (23)

dF−
dτ

= β0 (F+ − 2B) , (24)

where B ≡ σSBT 4 designates the black body radiation of the gas,
which is zero in the shortwave since the atmosphere is assumed
to radiate in the infrared only.

In these equations, τ designates the optical depth of the asso-
ciated band, and β0 the scattering parameter (β0 = 1 for pure
absorption; 0 < β0 < 1 in the presence of scattering). The fluxes
equations given by Eqs. (23) and (24) are solved numerically
in the code by computing the transmission functions of each
atmospheric layer as a first step, and by solving the boundary
condition problem as a second step. We note that the solu-
tion obtained numerically for the single-layer atmosphere this
way exactly corresponds to that derived in radiative box mod-
els based on the isothermal atmosphere approximation (see e.g.
Wordsworth 2015; Auclair-Desrotour & Heng 2020). The optical
depths in the shortwave τS and longwave τL are both assumed to
scale linearly with pressure, and are defined as

τS ≡
κS p
g
, τL ≡

κL p
g
, (25)

where we have introduced the effective absorption coefficients
of the gas in the short- and longwave, κS and κL, respectively.

We remark that the optical depths defined by Eq. (25) depict
horizontally averaged vertical profiles rather than local profiles
varying as functions of the propagation angles of radiative fluxes,
αS and αL. Therefore, the effective absorption coefficients κS and
κL introduced in Eq. (25) are related both to the absorption prop-
erties of the gas and to the mean cosine of the propagation angles
in the visible and in the infrared, cosαS and cosαL. Typically,

these coefficients are related to Wordsworth’s absorption coeffi-
cients (Wordsworth 2015, Eq. (12)) – denoted by κW

S and κW
L – by

the equations2 κS = κW
S / cosαS and κL = κW

L / cosαL. Therefore,
changing the value of the mean cosine of the propagation angle
in this definition amounts to changing the value of the absorp-
tion coefficient in Eq. (25). One shall also bear in mind that
the absorption coefficients defined in the double-grey approach
are not fundamental parameters of the gas but parameters that
mimic the averaged effect of highly frequency-dependent atmo-
spheric opacities, as shown by Wordsworth et al. (2010a) for
CO2-dominated atmospheres.

Although it does not fully account for the complex physics of
radiative transfer, the adopted double-grey approximation with
average optical depths captures the dependence of optical depths
on pressure, and it allows for fast numerical computation of
radiative fluxes. The radiative transfer scheme may be refined
in future works by using more sophisticated approaches such as
the correlated-k distribution method (e.g. Lacis & Oinas 1991),
but this goes beyond the scope of the present study.

3.3. Planetary boundary layer

In the PBL the shear instability generates turbulence, which acts
to mix the flow. This turbulent mixing induces a vertical dif-
fusion of momentum, heat, and potentially moisture in moist
cases, near the planet’s surface. The associated eddy diffusivi-
ties are controlled by the gradient Richardson number Ri defined
as (Vallis 2006)

Ri ≡
g
∂Θ

∂z

Θ

(
∂vθ
∂z

)2 , (26)

which characterises fluid stratification. The Richardson number
is essentially the ratio of the production of turbulent energy due
to the shear instability over the restoring force induced by buoy-
ancy. For a given quantity X = vθ,CpΘ (or q in moist cases, q
being the specific humidity), the vertical diffusion equation is
written, in the gradient-flux theory (e.g. Garratt 1994), as

dX
dt

=
1
ρ

∂

∂z

[
ρKX

∂X
∂z

]
, (27)

the upward diffusive flux being given by

Fdiff;X = −ρKX
∂X
∂z
. (28)

In these equations, KX is the eddy diffusivity associated with
turbulent mixing for X. This parameter is a function of the mean
fields. The lower boundary condition is a continuity condition
determined by the exchanges with the planet’s surface, while the
upper condition is a zero-flux condition. In a dry atmosphere, the
tendencies for the momentum and potential temperature equa-
tions in the dry case are expressed from the diffusive terms given
by Eq. (27) as

Fθ =
dvθ
dt
, Q =

(
p

pref

)κ d
dt

(
CpΘ

)
. (29)

2 In Wordsworth (2015), the atmosphere is assumed to be transparent in
the visible and the mean cosine of the propagation angle in the infrared
is set to cosαL = 0.5. As a consequence, the effective absorption coeffi-
cient κL of Eq. (25) is exactly twice larger than Wordsworth’s value, the
optical depths being equal.
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To calculate the eddy diffusivities, we make use of the formula-
tion given by Holtslag & Boville (1993). In that model, the eddy
diffusivities of Eq. (27) are expressed as functions of a mixing

length scale `, the local shear
∣∣∣∣∣∂vθ∂z

∣∣∣∣∣, and the gradient Richardson

number Ri defined by Eq. (26). They read (e.g. Holtslag &
Boville 1993, Eq. (3.2))

KX = `2
∣∣∣∣∣∂vθ∂z

∣∣∣∣∣FX (Ri) , (30)

where FX (Ri) describes the functional dependence of KX on
the gradient Richardson number. The form of FX is determined
by the turbulent regime, which can be either stable (Ri ≥ 0) or
unstable (Ri < 0). The mixing length is expressed as (Blackadar
1962)

` =
`0Kz
Kz + `0

, (31)

the parameter K ≈ 0.4 being the von Karman constant (e.g.
Garratt 1994), and `0 the asymptotic length scale (` ≈ `0 for
Kz � `0), which varies as a function of z (see Appendix F.1).

The turbulent friction of mean flows against the soil in the
surface layer leads to sensible momentum and heat exchanges
that are described in the form of parametrised surface fluxes.
Denoting by M and H the subscripts for the momentum and heat
components, respectively, we write the upward momentum and
heat surface fluxes as

FM = −CMρSL
∣∣∣uσ;SL

∣∣∣ vθ;SL, (32)

FH = −CHρSLCp

∣∣∣uσ;SL
∣∣∣ (ΘSL − Θs), (33)

where the subscripts s and SL refer to values at the surface and
at the top of the surface layer3, respectively. The surface-layer
exchange coefficients CM and CH are defined as (Holtslag &
Boville 1993)

CM ≡ CN fM (Ri0), (34)
CH ≡ CN fH (Ri0). (35)

Here, CN designates the neutral exchange coefficient (e.g.
Holtslag & Boville 1993),

CN ≡

[
K

ln (1 + zSL/zr)

]2

, (36)

where zr denotes the roughness height, while fM and fH are two
functions of the bulk Richardson number,

Ri0 ≡
gzSL (ΘSL − Θs)

ΘSL
∣∣∣uσ;SL

∣∣∣2 , (37)

which controls the stability of the surface layer. We note that the
bulk Richardson number Ri0 corresponds to the local gradient
Richardson number Ri (Eq. (26)) characterising the surface layer.
The functions fM and fH, as well as the functions FX introduced
in Eq. (30), are detailed in Appendix F.1. The physical tendencies
resulting from turbulent diffusion are evaluated every physical
time step using an implicit scheme (see Appendix F.2).

As it accounts for the dependence of eddy diffusivities on
the gradient Richardson number, the above turbulent diffusion
3 The top of the surface layer is taken at the middle of the lowest model
layer. Therefore, it corresponds to the lowest model level.

scheme describes both the regime of strong convection occurring
on the dayside and the regime of stable stratification associated
with the nightside temperature inversion (see Figs. 1 and 2 in
the following). It thus captures the evolution of turbulent diffu-
sivities in the PBL between the dayside, where they are high,
and the nightside, where they are low. However, we note that the
used standard formulation of turbulent diffusion is not sophis-
ticated enough to account properly for the heat and momentum
exchanges due to turbulent flows in the case of strong stratifi-
cation (Ri � 1). In this regime, the vertical momentum mixing
continues even at relatively high Ri due to the momentum trans-
port of vertically propagating internal gravity waves, which may
increase the surface-atmosphere sensible heat exchanges and
warm up the nightside surface (e.g. Sukoriansky et al. 2005;
Joshi et al. 2020). Considering this effect, the used turbulent
scheme might tend to underestimate the atmospheric stability
against collapse. Nevertheless, we adopt it as a convenient com-
promise between simplicity and realism, which can be refined
in the future by using more advanced turbulent diffusion models
(e.g. Sukoriansky et al. 2005).

3.4. Soil heat transfer

The soil heat transfer is solved by using a classical 1D soil heat
conduction approach (e.g. Hourdin et al. 1993; Wang et al. 2016).
The evolution of the ground temperature, T , due to vertical
diffusion is governed by the heat equation

Cgr
∂T
∂t

= −
∂Fc

∂u
, (38)

where u = −z is the depth from surface (u ≥ 0), Cgr the heat
capacity of the ground per unit volume, and Fc the conductive
flux propagating downwards. The conductive flux is expressed
as

Fc = −λgr
∂T
∂u
, (39)

the parameter λgr being the thermal conductivity of the material.
Both Cgr and λgr are assumed to be constants in the model.

We introduce the normalised pseudo-depth

ũ ≡ u

√
Cgr

λgr
, (40)

which has dimensions of s1/2. Expressed in terms of ũ, the ver-
tical diffusion is controlled by one parameter solely, the thermal
inertia

Igr ≡
√
λgrCgr. (41)

The downward conductive flux given by Eq. (39) then becomes

Fc = −Igr
∂T
∂ũ
, (42)

and the vertical diffusion equation simply reads

∂T
∂t

=
∂2T
∂ũ2 . (43)

The above equation is solved by means of the finite difference
method between the surface (ũ = 0) and an inner boundary
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Fig. 1. Two-day averaged snapshots of pressure (left), temperature (middle), and vertical wind speed (right) distributions for the 1 bar-atmosphere
of an Earth-sized tidally locked planet (Earth-like case of Table 2) with a stellar irradiation of 1366 W m−2 after convergence (t = 400 days). From
bottom to top: 0D (1 × 1 grid), 1D (1 × 50 grid), 1.5D (2 × 50 grid), and 2D (32 × 50 grid) instances of the meta-model. The sub-stellar point
corresponds to θ = 0◦ and the anti-stellar point to θ = 180◦.

(ũ = ũbot) using an implicit time scheme. At the surface, a conti-
nuity condition is applied: the incoming heat fluxes equalise the
outcoming fluxes. At the inner boundary, a zero-flux condition
is applied, which enforces the assumption that the planet interior
is in thermal equilibrium. These two conditions are respectively
formulated as

−Fc + F↓ − F↑S − FH − εsσSBT 4
s = 0 at ũ = 0,

Fc = 0 at ũ = ũbot,
(44)

where F↓ designates the downward radiative flux (i.e. the sum
of the shortwave and longwave contributions), F↑S the reflected
shortwave flux, Ts the surface temperature, and εs the surface
emissivity in the longwave. The scheme used to solve the soil
heat transfer is detailed in Appendix G. Similarly as the radiative
transfer and turbulent diffusion equations, the soil heat transfer
equation is discretised and integrated as a boundary condition
problem by means of the tri-diagonal matrix algorithm (see
Appendix H).
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Table 2. Values of parameters used in the two reference cases of the present work.

Symbol Description Units Earth-like case Pure CO2 case

Planet characteristics
Rp Planet radius (a) R⊕ 1.0 1.0
g Surface gravity (a) m s−2 9.8 9.8

Atmospheric properties
Rd Gas constant for dry air (a) J kg−1 K−1 287 188.9
Cp Heat capacity per unit mass (a) J kg−1 K−1 1005 909.3
κS SW absorption coefficient (b) m2 kg−1 10−6 10−6

κL LW absorption coefficient (b) m2 kg−1 10−4 2.5 × 10−4

βS0 SW scattering parameter – 1.0 1.0
βL0 LW scattering parameter – 1.0 1.0

Surface properties
εs Surface emissivity – 1.0 1.0
As Surface albedo (c) – 0.2 0.2
Igr Thermal inertia (c) J m−2 s−1/2 K−1 2000 2000
zr Roughness height (d) m 3.21 × 10−5 3.21 × 10−5

Notes. The acronyms SW and LW stand for ‘shortwave’ and ‘longwave’, respectively. (a)Values for the Earth’s atmosphere given by Deitrick et al.
(2020), Table 2, in the Earth-like case. In the pure CO2 case, Rd is calculated from Meija et al. (2016) and Cp is evaluated for T = 350 K from Yaws
(1996), Appendix E. (b)Defined so that the optical depths in the longwave and in the shortwave at p = 1 bar are τL = 1 and τS = 10−2τL, respectively,
in the Earth-like case. In the pure CO2 case, the optical depth in the longwave is set to an effective value for which the collapse pressure computed
using the 2D instance of the meta-model in Sect. 5 corresponds to that obtained by Wordsworth (2015) from numerical simulations performed with
a 3D GCM with correlated-k radiative transfer (Lacis & Oinas 1991). (c)Typical values for Venus-like soils (e.g. Lebonnois et al. 2010). (d)Defined
so that CN = 10−3 for a 10 m-thick surface layer, following Frierson et al. (2006).
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Fig. 2. Two-day averaged potential temperature field in the Earth-like
case of Table 2 with ps = 1 bar and F? = 1366 W m−2. Plotted values
belong to the interval [248 K, 376 K]. Outside of this interval, the colour
is set to that of the closest bound. The 2D instance of the meta-model
(32×50 grid) is used. The latitudes 90◦ and −90◦ correspond to the sub-
and anti-stellar points, respectively.

Several simulations were run in order to assess the sensitivity
of mean fields to the heat transfer scheme. The obtained results
are discussed in Appendix G. They show that mean flows and
temperatures do not depend much on the ground thermal inertia
that parametrises the soil heat transfer scheme (Eq. (41)). Par-
ticularly, the nightside surface temperature is almost insensitive
to the value chosen for Igr. Nevertheless, we recall that hori-
zontal diffusion is ignored in the scheme since we focus of dry
rocky planets, while it might play an important role for an ocean
planet due to heat advection by oceanic flows, as discussed by
Wordsworth (2015).

3.5. Physical setup

In the following, we perform simulations for the two cases
defined in Table 2: (i) and Earth-like atmosphere, and (ii) a
pure CO2 atmosphere. For the Earth-like case, we use the val-
ues given by Deitrick et al. (2020) in the synchronous Earth case
(see Deitrick et al. 2020, Table 2). These values correspond to
a tide-locked Earth-sized planet with an atmosphere having the
thermodynamical properties of the Earth’s atmosphere. Follow-
ing Wordsworth (2015), we assume that τL = 1 at p = 1 bar.
Similarly, we fix τS = 0.01 at p = 1 bar to enforce the assump-
tion that the atmosphere is optically thin in the visible. The
effective absorption coefficients introduced in Eq. (25) are set
accordingly. Besides, we consider the case of pure absorption (no
scattering). The scattering parameter is therefore set to β0 = 1
both for the shortwave and longwave. Assuming that the planet’s
surface is made of bare rocks, we use the typical values com-
monly assumed for Venus-like soils (e.g. Lebonnois et al. 2010)
to set the planet’s surface properties. Following Frierson et al.
(2006), the roughness height is set to zr = 3.21 × 10−5 m so that
CN = 10−3 for zSL = 10 m.

The pure CO2 case is similar to the Earth-like case except
for the specific gas constant, Rd = 188.9 J kg−1 K−1 (calculated
from Meija et al. 2016), the heat capacity per unit mass, Cp =

909.3 J kg−1 K−1 (evaluated for T = 350 K from Yaws 1996,
Appendix E), and the absorption coefficient in the longwave,
κL = 2.5 × 10−4 m2 kg−1. The latter is an effective value of κL
for which the 2D instance of the GCMM presented in Sect. 4
approximately reproduces the stability diagram obtained by
Wordsworth (2015) from 3D GCM simulations with correlated-
k radiative transfer (Wordsworth 2015, Fig. 12), as shown in
Sect. 5. We note that this value is less than that obtained by
Wordsworth (2015) by adjusting the analytic solution given by
Eq. (5) to GCM simulations (κL = 3.2 × 10−4 m2 kg−1 by taking
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into account the factor 2 difference between the definition of κL
given by Eq. (12) of the article and ours, given by Eq. (25)). As
highlighted by Sect. 5, this discrepancy is due to the fact that the
PBL acts to warm up the nightside surface in the general case,
which consequently requires a weaker greenhouse effect to reach
the same thermal state.

4. Climate regime: From 0D to 2D models

The GCMM described in the preceding section can be used
at the same time for various grid configurations, each of them
being a possible instance of the meta-model. This allows the
results obtained from a bench of models of various complexi-
ties, though with the same intrinsic theoretical background and
physical setup, to be compared. Four instances of the meta-model
are examined in the present study (Table 1). There are introduced
below in ascending order of complexity, while the resulting pres-
sure, temperature, and vertical wind speed snapshots are plotted
in Fig. 1.

We note that, for legibility, the arrows representing wind
speeds are uniformly spaced both horizontally and vertically in
the figure, rather than being centred at the points where winds
speeds are really evaluated. For instance, in the 1.5D model, the
arrows are determined from a linear interpolation and located
at θ = 45◦, 135◦, while horizontal wind speeds are evaluated at
θ = 90◦. In the range 180◦ ≤ θ ≤ 360◦, the distributions are plot-
ted by applying a symmetric transformation to the distributions
calculated in the range 0◦ ≤ θ ≤ 180◦. The additional inner ring
in temperature snapshots (middle column of Fig. 1) corresponds
to the soil temperature.

The 0D model (1×1 grid) is the simplest configuration. Here
the atmosphere is vertically and horizontally isothermal, and it
exchanges heat with dayside and nightside isothermal surface
hemispheres through radiative transfer only. This configuration
corresponds exactly to that of the two-layer grey radiative model
described in Sect. 3 of Auclair-Desrotour & Heng (2020), which
provides closed-form solutions. In the optically thin limit, it
reproduces the analytic model introduced by Wordsworth (2015).

The next level of complexity is the 1D model (1 × 50 grid).
In this configuration, the vertical structure of the atmosphere is
allowed to adjust with radiative transfer although it is still hor-
izontally isothermal. Similarly as in the 0D configuration, the
planet’s surface is divided into the dayside and nightside hemi-
spheres, and the surface-atmosphere heat exchanges are purely
radiative. The 1D model thus provides a more realistic verti-
cal temperature profile than that assumed in the 0D model. This
profile can be interpreted as an approximation of the globally
averaged atmospheric structure. This instance of the GCMM
appears as a simplified version of more sophisticated 1D models
(e.g. Robinson & Catling 2012).

Then we introduce the 1.5D model (2 × 50 grid). This level
corresponds to the two-column approach, where the atmosphere
is modelled by dayside and nightside hemispherical air columns,
similarly as the planet’s surface (e.g. Yang & Abbot 2014; Koll
& Abbot 2016). Therefore, the vertical structure ceases to be
horizontally uniform and differences appear between the day-
side and the nightside. However, these differences are mitigated
by the fact that the dayside and nightside PBLs are both con-
trolled by the horizontal wind speed at the planet’s terminator
(θ = 90◦) here, whereas horizontal wind speeds strongly differ
between the dayside and nightside in reality. Besides, this con-
figuration allows the coupling between the thermodynamics and
the day-night overturning circulation to be taken into account,

particularly the contribution of heat advection to the planet’s
thermal state of equilibrium.

Finally, the 2D model (32 × 50 grid) is the more complex
instance of the meta-model. In this configuration, the 2D model
behaves similarly as a 2D GCM (e.g. Song et al. 2021) or a 3D
GCM in the slow rotation regime (e.g. Leconte et al. 2013; Haqq-
Misra et al. 2018; Pierrehumbert & Hammond 2019; Turbet et al.
2021). Both the atmospheric structure and mean flows are fully
resolved, which describes the global heat engine circulation. The
PBL strongly differs between the dayside, where it is unstable
(Ri < 0) due to convection (see e.g. Koll & Abbot 2016), and
the nightside, where it is stable (Ri ≥ 0). Also, the circulation is
highly asymmetric with respect to the terminator: as shown by
Fig. 1 (top panels), it exhibits strong upwelling flows in a small
region around the sub-stellar point, and weak subsidence over
a large area that spreads from θ ≈ 60◦ to θ = 180◦ (anti-stellar
point).

We recover the day-night evolution of the atmospheric struc-
ture in the potential temperature distribution shown by Fig. 2,
which was obtained using the 2D model. In this figure, the
latitude is measured with respect to the terminator, located at
0◦. The sub- and anti-stellar point thus correspond to the lati-
tudes 90◦ and −90◦, respectively. The nightside stably stratified
region is characterised by a positive vertical potential temper-
ature gradient. On the dayside, the convective mixing induced
by the thermal forcing makes the temperature gradient converge
towards the adiabat. As a consequence, convective regions are
indicated by vertically uniform profiles of potential temperature.
We note that the thickness of the PBL grows as the latitude
increases, and that it is maximal at the sub-stellar point.

Owing to spatial bi-dimensionality, the solver is relatively
fast even for the 2D instance, where one day of simulation with a
two-minute dynamical timestep is equivalent to 0.61 seconds of
CPU time on one CPU. This allows grid simulations to be run,
which is the purpose of the next section.

5. Stability diagrams

In this section we examine both the role played by several phys-
ical features in the atmospheric stability, and the sensitivity of
model predictions to the simplifications made in the different
approaches. To do so, we proceed to a vertical inter-comparison
between the four models introduced in Sect. 4 for the two
Earth-sized synchronous planets defined in Table 2. For each
instance of the meta-model, simulations were performed on a
15 × 13 grid in the space of stellar flux and initial surface pres-
sure, with 0.2F⊕ ≤ F? ≤ 3F⊕ and 0.01 bar ≤ ps ≤ 10 bar, F⊕ =
1366 W m−2 being the Earth’s incident stellar flux. Starting
from isothermal and zero-velocity initial conditions, simulations
were run for a period trun = min {max [trad, tmin] , tmax} ranging
between tmin = 300 and tmax = 30 000 Earth days, trad being an
empirical estimate of the timescale necessary to reach radiative
equilibrium that includes the dependence of the radiative cool-
ing timescale on surface pressure and stellar flux (e.g. Showman
& Guillot 2002),

trad = 900 days ×
( ps

1 bar

) ( F?

1366 W m−2

)−3/4

. (45)

At the end of simulations, two-day averaged distributions of
mean fields were computed, as well as the resulting minimum
(or nightside) surface temperature (Tn).

As highlighted by Wang & Wordsworth (2020) in the
case of sub-Neptunes, the convergence time of 3D numerical
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simulations can be extremely long (trun ∼ 250 000 Earth days,
typically) for massive atmospheres (ps & 80 bar) owing to the
long radiative timescale of deep atmospheric layers. In the
present study, the maximum surface pressure (10 bar) is smaller
than that usually assumed for sub-Neptunes, the circulation
described by our 2D model is simpler than that described by
3D GCMs – where complex structures and super-rotating zonal
jets can emerge –, and the major part of the incident stellar flux
reaches the planet’s surface, which tends to facilitate vertical
energy transport. Therefore the resulting convergence times are
expected to be smaller than those reached in the case of sub-
Neptunes by one order of magnitude approximately. However,
we verified a posteriori that both the energy balance between the
outgoing longwave radiation and the absorbed stellar radiation
on the one hand, and the circulation on the other hand, had
reached a steady state at the end of several test simulations.
Besides, by running grid simulations with larger values of trun,
we noticed that increasing this parameter did not affect the
considered mean fields.

Following earlier studies (Wordsworth 2015; Koll & Abbot
2016; Auclair-Desrotour & Heng 2020), we assume that the
greenhouse effect is mainly due to the presence of CO2
in the atmosphere. The condensation temperature of CO2 is
given, in K, by (Fanale et al. 1982; Wordsworth et al. 2010b;
Wordsworth 2015)

Tcond,CO2 (p)=


3167.8

23.23 − ln (0.01p)
if p < ptr,

684.2 − 92.3 ln (p) + 4.32 ln2 (p) if p ≥ ptr,

(46)

where the partial pressure of the gas p is given in Pa, and
ptr = 5.18 × 105 Pa designates the triple point pressure. The
stability diagrams are therefore obtained by comparing the min-
imum surface temperature calculated from simulations with
the condensation temperature of CO2 at the planet’s surface,
Tcond,CO2 (χps), where χ designates the volume mixing ratio of
CO2. In the Earth-like case, the volume mixing ratio of CO2 is
set to the value of Earth at the beginning of the 21st century,
namely χ = 370 ppm (e.g. Etheridge et al. 1996), while χ = 1.0
in the pure CO2 case. The atmosphere is considered to be stable
if Tn (F?, ps) > Tcond,CO2 (χps) and unstable else. We remark that
the collapse itself, when it occurs, is not described by the model
since the changes of phases of CO2 are not taken into account.

Figure 3 shows the simulation results. The minimum sur-
face temperature is plotted in both cases as a function of the
normalised stellar flux F?/F⊕ and the surface pressure ps in log-
arithmic scale. The stability diagrams are plotted too, with large
red dots indicating stability and small blue dots collapse. The
collapse pressures associated with the lower and upper bounds of
the nightside temperature given by Eqs. (5) and (10), are obtained
by solving for ps the equations

Tn;low (F?, ps) = Tcond,CO2 (χps), (47)
Tn;up (F?, ps) = Tcond,CO2 (χps), (48)

and are denoted by pC;low (orange dashed line) and pC;up (pink
dotted line), respectively.

With the 0D model, we recover the behaviour of the nightside
temperature predicted by the closed-form solutions of Auclair-
Desrotour & Heng (2020) in the purely radiative regime. This
is due to the fact that the two models are actually the same in
this configuration, the temperatures being computed numerically

here instead of analytically. Compared with the other models,
the 0D model tends to underestimate the nightside temperature
in the high surface pressure regime. As the surface pressure
increases, Tn reaches a plateau that corresponds to the planet’s
equilibrium temperature, Teq (F?) , given by Eq. (6), and no
longer evolves with ps. This unrealistic behaviour is a conse-
quence of the isothermal approximation, which does not account
for the strong vertical temperature gradient characterising thick
atmospheres, especially their convective regions. In the low stel-
lar flux regime, the 0D model captures the stability decrease
observed for pure CO2 atmospheres in the 3D GCM simulations
performed by Wordsworth (2015). However, this feature is due to
the isothermal temperature profile too since it vanishes from the
moment that the atmospheric structure is allowed to adjust with
radiative transfer, in models of higher dimensions. This effect
is a caveat of the limitations of idealised models in explaining
predictions of much more sophisticated 3D GCMs.

The 1D model exhibits the same behaviour as the 0D model
for surface pressures of less than 1 bar, which corresponds to
the regime where the vertically isothermal approximation holds.
Beyond ps ≈ 1 bar, the nightside surface temperature increases
as a function of both the stellar flux and surface pressure, which
makes the collapse pressure associated with Tn;low capture the
threshold of the stability region for the whole stellar flux interval.
The two-column configuration (1.5D model) relaxes the horizon-
tally isothermal atmosphere approximation. As a consequence,
the nightside temperature becomes dependent on the efficiency
of the interhemispheric heat redistribution, and can thereby be
less than the lower bound obtained in the horizontally isothermal
atmosphere approximation, Tn;low. The coarse spatial resolution
of the 1.5D model for the horizontal direction does not account
for the strong convection generated in the sub-stellar region. The
wind speed is therefore underestimated, and so are the strength
of the overturning circulation and the heat advected from the
dayside to the nightside. This leads to the observed stability
decrease: the collapse pressure is approximately increased by
∼25% with respect to pC;low in the Earth-like case, and by ∼80%
in the pure CO2 case.

Conversely, the 2D model predicts a wider stability region.
The collapse pressure is lowered by ∼10−40% with respect to
pC;low for F? & 0.7F⊕, which is significant, albeit less than
the 75% maximum decrease predicted by the analytic the-
ory (pC;up/pC;low = 1/4; see Auclair-Desrotour & Heng 2020,
Eq. (86)) in the case of intense sensible heating (Lsen → +∞;
see Eq. (9)). This stability increase results from the effect of the
PBL. The vertical turbulent diffusion generated by the friction
of mean flows against the planet’s surface in the planetary layer
acts both (i) to increase the thermal forcing of the atmosphere by
intensifying sensible exchanges, and (ii) to enhance the day-night
heat advection by strengthening the overturning circulation. As
a consequence, the nightside surface is warmer by ∼4−14 K in
the vicinity of the threshold between the stability and collapse
regions.

The nightside temperature increase induced by the PBL
was quantified by running simulations in the 2D configuration
without turbulent diffusion both for Earth-like and pure CO2
atmospheres. In these simulations, the surface-atmosphere heat
exchanges are induced by radiative transfer only, and there is no
friction of mean flows against the surface. Figure 4 shows the
resulting stability diagrams, as well as the corresponding night-
side surface temperature difference between the cases with and
without turbulent diffusion, denoted by the superscripts TD (tur-
bulent diffusion) and NTD (no turbulent diffusion), respectively
(top panels). In addition with the nightside surface temperature,
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Fig. 3. Stability diagrams of Earth-
sized tidally locked planets with
Earth-like (left panels) and pure CO2
(right panels) atmospheres, and the
associated minimum surface temper-
ature. Quantities are plotted as func-
tions of the stellar flux normalised by
the Earth’s stellar flux, F?/F⊕ (hor-
izontal axis), and the surface pres-
sure, ps, in logarithmic scale (verti-
cal axis). From bottom to top: 0D
(1 × 1 grid), 1D (1 × 50 grid), 1.5D
(2 × 50 grid), and 2D (32 × 50 grid)
instances of the meta-model. Large
red dots indicate simulations where
the atmosphere remained stable, while
small blue dots indicate atmospheric
collapse. The dashed orange (or dot-
ted pink) line indicates the collapse
pressure pC;low (or pC;up) correspond-
ing to the lower (or upper) bound
of the nightside surface temperature
predicted by Wordsworth’s analytic
model and given by Eq. (11).

we consider the day-night advection timescale tadv, which is
defined here as the mean period necessary for a fluid par-
cel to accomplish one full cycle of the day-night overturning
circulation (see Appendix I),

tadv ≡
4Rp[∫ 1

0 |vθ| dσ
]

90◦

, (49)

where the subscript 90◦ indicates that the integral of the mass
flow rate is performed over the terminator annulus (θ = 90◦).
The day-night advection timescale also corresponds to the mean
renewal time of the air contained in one atmospheric hemi-
sphere (dayside or nightside). This timescale can be compared

to the advection timescales introduced in earlier studies, such as
the analytic expression of the lower bound obtained by Koll &
Abbot (2016) from the heat engine theory (Koll & Abbot 2016,
Eq. (12)),

tKA
adv ≡

Rp

vsen
, (50)

where the typical speed vsen, given by Eq. (8), is a function of
the stellar flux, the surface pressure, the surface albedo, the day-
side surface temperature, the optical depth in the longwave at
surface, the specific gas constant, and the bulk drag coefficient
of the surface layer. The timescale tKA

adv is estimated by setting
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Fig. 4. Stability diagrams of Earth-sized tidally locked planets hosting Earth-like (left panels) and pure CO2 (right panels) atmospheres, with
turbulent diffusion (TD, four bottom panels) and without turbulent diffusion (NTD, four top panels), superimposed on the maps of various quan-
tities. From bottom to top: day-night advection timescale with turbulent diffusion, day-night advection timescale with turbulent diffusion over the
lower bound estimated analytically by Koll & Abbot (2016) using the heat engine theory, ratio of day-night advection timescales with and without
turbulent diffusion, and nightside surface temperature difference between the cases with and without turbulent diffusion. The curves and symbols
are the same as in Fig. 3.

the bulk drag coefficient to the typical value CD = 10−3 for con-
venience and by taking the maximum surface temperature for
the dayside temperature. Thus, in addition with the nightside
temperature difference mentioned above, we plot in Fig. 4 the
day-night advection timescale in the case with turbulent diffu-
sion (bottom panels), the ratio of this timescale over tKA

adv, and the
ratio between advection timescales in the cases with and without
turbulent diffusion (middle panels).

We first consider the stability diagrams obtained in the
absence of turbulent diffusion (Fig. 4, top and middle panels).
Similarly as in the 1D configuration, the threshold of the sta-
bility region coincides with the lower bound of Tn associated
with the purely radiative regime in the radiative box model,
namely pC;low. This indicates that the bulk atmosphere is hor-
izontally isothermal for ps & 0.1 bar, which corresponds to
an efficient interhemispheric heat redistribution. As highlighted
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by temperature differences (Fig. 4, top panels), turbulent dif-
fusion tends to warm up the nightside surface in the general
case with, for instance a temperature increase of 6–28 K in
the Earth-like case. However, this temperature increase does not
vary monotonically with the stellar flux and surface pressure,
but instead it exhibits a bi-modal behaviour with maxima and
minima depending on surface pressure.

Particularly, turbulent diffusion in the PBL somehow
counter-intuitively acts to decrease the nightside surface temper-
ature instead of increasing it in a region centred on ps ∼ 1 bar for
pure CO2 atmospheres, with a minimum of −8 K for ps = 1 bar
and F? = 1.2F⊕. A similar – although slightly smaller – negative
difference (−5 K) was obtained by running grey gas simulations
with the fully global 3D GCM THOR (Mendonça et al. 2016;
Deitrick et al. 2020) in this configuration using the values given
by Table 2 and assuming a zero-spin angular velocity, which
tends to corroborate the prediction of the 2D model. This effect
of the PBL can be analysed through the interplay between the
day-night advection timescale given by Eq. (49) and the dayside
radiative timescale, trad, which is the typical timescale needed
for a warm fluid parcel located in the upper atmosphere to cool
down radiatively. Both parameters are altered by the turbulent
diffusion taking place within the PBL.

Notwithstanding the high pressure – and optically thick –
regime, where strong convection develops, the effect of turbulent
diffusion reaches a maximum around ps ∼ 0.1 bar for Earth-like
atmospheres and around ps ∼ 0.03 bar for pure CO2 atmospheres
(Fig. 4, top panels). This maximum is consistent with the fact
that the additional thermal forcing due to turbulent diffusion
is all the more significant as the radiative absorption is weak,
which tends to maximise the impact of turbulent diffusion for
small optical thicknesses. However, the radiative timescale of
the atmosphere scales as trad ∝ ps/T 3

a (e.g. Showman & Guillot
2002, Eq. (10)) in the optically thin regime, meaning that the
heat surplus provided by sensible exchanges is radiated towards
space over timescales that become extremely short as the surface
pressure tends to zero. Thus, in spite of the decay of tadv induced
by turbulent diffusion, a fluid parcel is radiatively cooled before
being advected to the nightside by mean flows in the optically
thin limit (trad � tadv), which mitigates the impact of the PBL
in this regime and makes the temperature difference decay as
ps → 0.

Similarly, as the surface pressure increases, the atmosphere
switches from the optically thin regime to the optically thick
regime, with a transition occurring at lower pressures in the
pure CO2 case than in the Earth-like case due to the differ-
ence between optical depths in the infrared. In this transition
regime, the PBL strongly affects the advection timescale, which
is increased up to three times (Fig. 4, middle panels) and
becomes thereby greater than the radiative timescale. As a con-
sequence, less heat is advected towards the nightside than in the
absence of PBL – although the PBL generates a heat surplus on
the dayside – and the nightside temperature difference falls to
the observed minimum valley, where it reaches negative values
in the pure CO2 case.

We note that this behaviour could be significantly altered by
the presence of gas, dust, and aerosols inducing the so-called
anti-greenhouse effect by increasing the shortwave scattering
and absorption, as observed on Titan (McKay et al. 1991). The
anti-greenhouse effect refers to the cooling of the planet surface
resulting from the fact that a substantial part of the incident stel-
lar flux is absorbed and re-radiated towards space in the infrared
by the upper layers of the atmosphere, and that only a fraction
of it reaches the surface (e.g. Pierrehumbert 2010). This effect

is likely to play a major role on rocky planets with thick atmo-
spheres similar to Venus, where only ∼ 0.1−1% of the incident
solar flux reaches the surface (Lacis 1975).

We now consider the evolution of the advection timescale
itself, which is plotted in the case including turbulent diffusion
in the PBL (Fig. 4, bottom panels). Similarly as the nightside
surface temperature (Fig. 3), tadv exhibits a relatively smooth
dependence on the incident stellar flux and surface pressure, with
values spanning over two orders of magnitude from ∼8 days in
the low pressure-high stellar flux regime to ∼500 days in the
high pressure-low stellar flux regime. These values are larger
than those given by the analytic scaling law of Koll & Abbot
(2016) by one order of magnitude owing to the difference in the
used definitions: since it is computed from the horizontal wind
speed in the sub-stellar region, the analytic advection timescale
tKA
adv is necessarily smaller than the advection timescale defined

by Eq. (49), which is computed from mass flows going through
the terminator annulus. Notwithstanding this scaling factor, tTD

adv
matches tKA

adv relatively well for both Earth-like and pure CO2
atmospheres in the optically thin regime, where the ratio varies
by a factor of two. The two quantities diverge from each other as
the stellar flux decreases and the surface pressure increases, the
model of the present study predicting larger advection timescales
in this regime. However, we remark that this discrepancy is less
significant for pure CO2 atmospheres than for Earth-like atmo-
spheres, which suggests that the thermodynamic and absorption
properties of the gas affect the large-scale overturning circula-
tion in a non-negligible way when the atmosphere is optically
thick.

The strength of the overturning circulation can be charac-
terised by examining the behaviour of the Eulerian mean stream
function, which is defined in TLCs as (e.g. Pauluis et al. 2008)

Ψ ≡
2πRp

g

∫ ps

p
vθ sin θdp. (51)

The Eulerian mean stream function measures here the strength
of longitude-averaged cells in the TLC. It accounts for the vor-
ticity of the flow in a plane containing the planet-star axis. In
the slow rotation regime, the large-scale cell of the predominant
overturning circulation corresponds to a large region centred on
a maximum of Ψ in absolute value, Ψ taking negative values
owing to the flow direction (see e.g. Fig. 6 in the next section).
The maximum value of Ψ over the atmospheric domain, defined
as

Ψmax ≡ max {−Ψ} , (52)

can be scaled analytically, as shown by Innes & Pierrehumbert
(2022) who established for sub-Neptunes the scaling law Ψmax ∝

F3/4
? . In the case of rocky planets, we need to account for the

presence of the planet’s surface, which sizes the thickness of
the atmosphere. The mass flow thus depends on the atmospheric
mass in addition with the stellar flux. As the atmospheric mass
is directly proportional to the surface pressure, we introduce for
rocky planets a scaling law of the form

ΨSL
max =

R2
pF⊕

CpT⊕

(
F?

F⊕

)α (
ps

pref

)β
, (53)

where T⊕ is the equilibrium temperature of Earth given
by Eq. (6), pref = 1 bar a reference pressure, and α
and β two real exponents to be defined. We remark that
(α, β) = (3/4, 0) corresponds to the scaling law obtained by
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Fig. 5. Maximum of Eulerian mean stream function (top) and its ratio over the scaling law (bottom) for Earth-sized planets hosting Earth-like
(left panels) and pure CO2 (right panels) atmospheres. The two estimates of the Eulerian mean stream function are given by Eqs. (52) and (53),
respectively. The curves and symbols are the same as in Fig. 3.

Innes & Pierrehumbert (2022) for sub-Neptunes. However, for
the Earth-sized rocky planets of the present study, we adopt
the empirical values (α, β) = (1/2, 1), which seem to be more
appropriate as discussed further.

Figure 5 shows the evolution of Ψmax and of the ratio
Ψmax/Ψ

SL
max as functions of instellation and surface pressure for

the Earth-like and pure CO2 atmospheres defined in Table 2.
In both cases the maximum of the Eulerian mean stream func-
tion varies over more than three orders of magnitude (Ψmax ∼

1010−1013 kg s−1), by increasing with F? and ps monotonically.
The scaling law given by Eq. (53) (with α = 1/2 and β = 1)
approximately captures this behaviour although it can only be
considered as a rough estimate of Ψmax. We observe that the
dependence of Ψmax on the instellation and surface pressure
evolves between the optically thin and optically thick regimes
with transition zones located around ps ∼ 0.3 bar for Earth-like
atmospheres and 0.1 bar for pure CO2 atmospheres. The scal-
ing law Ψmax ∝ F1/2

? is appropriate to describe the dependence
of Ψmax on F? in the regime of optically thick atmospheres in
the infrared, but not in the regime of optically thin atmospheres
where Ψmax increases faster with F?. Conversely, the slow evo-
lution of Ψmax/Ψ

SL
max with ps at low surface pressures suggests

that the scaling law Ψmax ∝ ps captures well the dependence
of Ψmax on the surface pressure in the regime of optically thin
atmospheres, while this dependence is weaker in the regime of
thick atmospheres.

6. From slow to fast rotation

Since the GCMM is designed to study the asymptotic regime
of slowly rotating planets, where mean flows are predominantly
driven by the day-night temperature gradient, we have ignored
the effects of rotation on the general circulation until now. As

discussed in Sect. 2, the impact of these effects is mainly con-
trolled by the non-dimensional equatorial Rossby deformation
radius L̃Ro introduced in Eq. (1). The zero-spin rate limit treated
by the model corresponds to L̃Ro = +∞. In reality Coriolis accel-
eration tends to deviate the divergent winds blowing between the
sub-stellar and the anti-stellar points. This alters the large-scale
circulation regime, which switches from the bi-dimensional
Hadley cell described by the 2D model to the 3D structure char-
acterising fast rotators, where super-rotation develops, as L̃Ro
decays. In this section we investigate the limitations of the bi-
dimensional approach by benchmarking the results obtained with
the 2D instance of the GCMM against the simulations performed
with the THORGCM (Mendonça et al. 2016; Deitrick et al. 2020),
which solves the 3D non-hydrostatic Euler equations on an icosa-
hedral grid. Particularly, THOR fully accounts for the horizontal
vortical component of mean flows that is ignored in the 2D
model.

Four simulations were performed with THOR for the pure
CO2 atmospheres defined by Table 2. They each correspond to
a given spin period P taken in a range spanning from fast to
slow rotators all things being equal (P = 10−3, 10−2, 10−1, 100 P0
with P0 = 365 days). For comparison, one additional simulation
was run with the 3D GCM in the slow rotator case (P = P0) by
assuming no turbulent diffusion or sensible surface-atmosphere
heat exchanges. In these simulations, the values of the surface
pressure (ps = 0.18 bar) and stellar flux (F? = F⊕) were cho-
sen so that the studied cases are in the vicinity of the threshold
between the stability and collapse regions predicted by the 2D
instance of the meta-model (see Fig. 3, top right panel). The hor-
izontal resolution of the icosahedral grid used in the model was
set to ∼4 degrees, and the atmosphere was divided into 40 verti-
cal intervals logarithmically refined in the vicinity of the surface
with a top altitude of 37000 m and a 2 m-thick lowest layer.
For the sake of consistency, the simulations were run using the
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˜Fig. 6. Dayside and nightside surface temperatures vs. normalised equatorial Rossby deformation radius (L̃Ro) in the grey 3D GCM simulations
performed with THOR. Top left: maximum (solid red line) and hemisphere-averaged (solid purple line) dayside surface temperatures. Top middle:
minimum (solid blue line) and hemisphere-averaged (solid green line) nightside surface temperature. Top right: day-night averaged (solid grey
line) and extremal (solid black line) surface temperature differences. Dashed lines, dotted lines, star symbols, and square points indicate (i) the
asymptotic surface temperatures computed using the 2D model, (ii) the hemisphere-averaged surface temperatures predicted by Wordsworth’s
greenhouse model (W15; Wordsworth 2015), (iii) the surface temperatures obtained in the 3D simulation without turbulent diffusion in the slow
rotator case, and (iv) those obtained in the simulation performed with the same asymptotic scale lengths in the PBL as in the GCMM, respectively.
Bottom, from left to right: averaged snapshots of the Eulerian mean stream function (e.g. Pauluis et al. 2008) obtained from the 2D simulation
(zero-spin rate limit), the 3D simulation for P = 365 days (slow rotator), and the 3D simulation for P = 0.365 days (fast rotator).

double-grey approximation for radiative transfer and a physical
setup as close as possible as that implemented in the GCMM.
After the circulation and radiative transfer have reached a state of
equilibrium, the physical quantities were averaged over the longi-
tude of the TLCs to transform the 3D fields into 2D fields similar
to those displayed in Fig. 1. The bulk dimensionless equatorial
Rossby deformation length (L̃Ro) was computed from the result-
ing mass-averaged temperature using the expression given by
Eq. (4). In parallel of the simulations performed with THOR, a
simulation corresponding to the zero-spin rate limit was run with
the 2D instance of the meta-model.

Notwithstanding the vertical coordinates used in dynam-
ical cores – altitude-based in THOR, and mass-based in the
GCMM – the main differences between the two models essen-
tially lie in the description of the surface thermal response,
PBL, and numerical energy dissipation. In THOR, the surface
temperature evolution is integrated using a 0D thermodynamic
equation parametrised by an effective surface heat capacity
(Cs = 107 J K−1 m2), while a 1D soil heat transfer scheme is
used in the GCMM (see Appendix G). In the treatment of the
PBL, the two models closely follow the method proposed by
Holtslag & Boville (1993), except for some parameters, which
are set to different values. For instance, the asymptotic length

scale characterising the evolution of the mixing length with
altitude (Eq. (31)) for the heat equation is set to three times
the function used for the momentum equation (Eq. (F.6)) in
THOR, while the same function is used in both cases in the
GCMM. As regards numerical energy dissipation, all THOR sim-
ulations utilised fourth-order horizontal hyper-diffusion and 3D
divergence damping with a non-dimensional coefficient Dhyp =
Ddiv = 0.002 (see Mendonça et al. 2016; Deitrick et al. 2020,
for descriptions of the hyper-diffusion scheme). We additionally
used sixth-order vertical hyper-diffusion with a non-dimensional
coefficient of Dver = 5×10−4. Finally, a sponge layer was applied
to the upper 25% of the model domain to damp spuriously
reflected waves off the top boundary, with a damping timescale
of 5000 s (see Mendonça et al. 2018; Deitrick et al. 2020, for the
sponge layer description).

Figure 6 shows the simulation results. The dayside and
nightside surface temperatures, as well as the day-night surface
temperature difference, are plotted as a function of the bulk
equatorial Rossby deformation radius (top panels). Solid lines
designate the temperatures obtained in THOR 3D simulations,
and the horizontal dashed lines the temperatures obtained in
the 2D simulation performed with the meta-model. The dotted
lines indicate the corresponding averaged dayside and nightside
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surface temperatures predicted by Wordsworth’s purely radia-
tive greenhouse model (Wordsworth 2015). The temperatures
obtained from the 3D simulation performed in the absence of
turbulent diffusion are designated by the star symbol ?. In addi-
tion, the Eulerian mean stream function defined in Eq. (51) is
plotted for the 2D model and the two extrema of the 3D model
(P = 365 days and P = 0.365 days) as functions of pressure (or
sigma coordinate) and the latitude of the TLCs, where the north
and south poles correspond to the sub-stellar and anti-stellar
points, respectively (bottom panels).

We first consider the evolution of surface temperatures with
L̃Ro (Fig. 6, top panels). Whereas the dayside surface temper-
ature predicted by 3D GCM simulations is hardly affected by
the planet’s rotation, the nightside surface temperature increases
monotonically with the equatorial Rossby deformation radius
until it converges towards the asymptotic limit of slow rotators
described by the 2D model. The effect of rotation is particularly
significant for the minimum surface temperature, which varies
by ∼35 K between the two extremal cases. This difference results
from the decay of day-night advection provoked by the breaking
of the day-night overturning circulation in the fast rotator regime
(L̃Ro . 1). The super-rotating equatorial jets induced by Coriolis
effects do not compensate the overturning circulation in terms
of mass flux crossing the terminator annulus, which makes the
nightside surface temperature decrease. However, we remark that
the nightside temperature stays close from the asymptotic limit
of slow rotators from the moment that L̃Ro > 2, the difference of
the cases P = 36.5 days and P = 365 days to this limit being less
than 3 K. This suggests that the 2D model is relevant to describe
the climate and large-scale circulation regime of the planet for
equatorial Rossby deformation radii exceeding the critical value
L̃Ro ≈ 2. Below this value, the circulation and heat redistribution
are strongly affected by the planet’s rotation.

Additionally, we remark that the 2D model and the THOR
GCM are in agreement with each other for the nightside surface
temperature, which is greater by ∼2 K only in 3D simulations.
The discrepancy between the two models is more significant
for the dayside average temperature, where the effects of the
PBL in surface-atmosphere heat exchanges are predominant. As
observed in the 2D model, the frictional interaction of mean
flows with the planet’s surface taking place in the PBL tends
to increase the atmospheric stability against collapse by warm-
ing up the nightside surface hemisphere. To understand whether
the differences in PBL parameters between the 2D and 3D mod-
els could be the source of the discrepant dayside temperatures,
one additional THOR simulation was run at the slowest rotation
rate. In this simulation, the asymptotic scale lengths (for heat
and momentum mixing in the boundary layer) were set equal
to those used in the 2D model. The resulting values are shown
as the square points in top panels of Fig. 6. Interestingly, these
results are nearly indistinguishable from the simulation with dif-
ferent scale lengths used for the heat and momentum equations,
indicating that the scenario is insensitive to the asymptotic scale
lengths used in Eq. (31).

We now consider the snapshots of the Eulerian mean stream
function (Fig. 6, bottom panels). We remark that the vertical
coordinates used for the plots in the 2D and 3D cases differ
from each other, which leads to slight distortions of the distri-
butions. The sigma coordinate is such that σ = 1 everywhere
at planet’s surface, while the surface pressure is less than the
globally averaged surface pressure on the dayside, and greater on
the nightside due to the day-night thermal forcing gradient. As
a consequence, isobars in sigma coordinates are slightly shifted
downwards on the dayside and upwards on the nightside. The

3D simulation performed with THOR GCM in the slow rotation
regime is in good agreement with the 2D simulation performed
with the GCMM in the zero-spin rate limit (Fig. 6, bottom left
and middle panels). The two snapshots both exhibit large day-
night cells of comparable strengths, albeit slightly weaker in
the 2D model. The snapshot corresponding to the fast rotation
regime (bottom right panel) exhibits more complex features due
to Coriolis effects although a weak day-night cell still remains
visible.

7. Concluding remarks

In this work we have developed a GCMM to bridge the gap
between the analytic solutions provided by simplified green-
house models for synchronous planets and the numerical simula-
tions obtained from 3D GCMs in the asymptotic regime of slow
rotators. This model hierarchy is based on a systematic bottom-
up approach in the spirit of Held (2005), wherein the number of
degrees of freedom determines the key sources of complexity
that are added or subtracted. The solver of the GCMM inte-
grates the HPEs using the finite-volume method for arbitrary
numbers of horizontal and vertical intervals, each configuration
being an instance of the meta-model. Consistent with a previous
analytical study (Auclair-Desrotour & Heng 2020), the physics
implemented in the meta-model includes double-grey radiative
transfer, turbulent diffusion in the PBL, and soil heat conduction.
Particularly, the meta-model was designed so that the solutions
obtained with the 0D instance exactly correspond to the analytic
solutions of the purely radiative box model detailed in Sect. 3.3
of Auclair-Desrotour & Heng (2020).

As a first step, we proceeded to a vertical model inter-
comparison by running grid simulations for four instances of the
meta-model (0D, 1D, 1.5D, and 2D) in the cases of dry Earth-
like and pure CO2 atmospheres. In each case, we computed from
simulations the nightside surface temperature of the planet as a
function of the stellar flux and surface pressure as well as the
resulting stability diagrams of the atmosphere against collapse.
These diagrams were compared to the scaling laws predicted
by the analytic theory. With the 0D and 1D instances of the
meta-model, we recovered the stability diagrams predicted by
simplified radiative models in the optically thin regime, which
shows that the globally isothermal approximation used in these
models is relevant in this regime. The 1.5D instance tends to
underestimate the atmospheric stability, by predicting a collapse
pressure 25% to 80% larger than that given by radiative box
models. Conversely, the collapse pressure computed using the
2D instance of the meta-model is 10% to 40% smaller than the
analytic estimate owing to the warming effect of the PBL, which
is less than the theoretical 75% maximum decrease predicted by
radiative models, albeit still significant.

As a second step, we investigated the role played by the PBL
in the thermal state of equilibrium and atmospheric circulation
of the planet by examining with the 2D instance of the GCMM
how the turbulent diffusion taking place in the PBL alters the
nightside temperature, the day-night advection timescale, and
the collapse pressure. We compared the advection timescale
obtained from simulations with the analytic scaling law proposed
by Koll & Abbot (2016). We observed that the turbulent diffusion
taking place in the PBL increases the nightside surface temper-
ature by 4–14 K around the threshold of the stability region.
However, we found that the PBL can also contribute to cool-
ing the nightside surface of the planet by acting on the day-night
advection timescale in the transition zone between optically thin
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and optically thick atmospheres. This result was corroborated a
posteriori by 3D GCM simulations. The effect of the PBL on the
large-scale circulation is complex and depends on the interplay
between the advection and radiative timescales. The day-night
advection timescale estimated with the 2D model varies over two
orders of magnitude in the studied domain of stellar fluxes and
surface pressures, with values ranging between 8 and 500 days.
In the optically thin regime its evolution matches the scaling law
derived by Koll & Abbot (2016) relatively well, but it diverges
from it at high pressures and low stellar fluxes. We noticed that
this behaviour also depends on the thermodynamic and absorp-
tion properties of the atmosphere in the optically thick regime.
In addition we empirically obtained, for the circulation of slowly
rotating rocky planets, a scaling law analogous to that established
analytically by Innes & Pierrehumbert (2022) for sub-Neptunes.

As a third and final step, we characterised the limitations
of the slow rotator approximation that forms the foundations
of the meta-model by performing simulations with the THOR
3D GCM, which fully accounts for the effects of rotation on
mean flows. We computed from these simulations the evolu-
tion of the planet’s dayside and nightside surface temperatures
as functions of the dimensionless equatorial Rossby deformation
radius, which controls the large-scale circulation regime of the
planet. The results obtained with the 3D GCM were compared
with the outcomes of the 2D instance of the meta-model. The
3D GCM simulations highlight the transition between the slow
and fast rotation regimes. We found that the 2D model properly
accounts for the climate and large-scale atmospheric circulation
from the moment that the normalised equatorial Rossby defor-
mation radius is greater than the critical value L̃Ro ≈ 2, which
corresponds to a broad region of the parameter space. In the
slow rotation regime, the circulation and surface temperature
predicted by the THOR 3D GCM and the 2D instance of the
meta-model are similar.

This study is a first attempt to fill the continuum between ana-
lytic greenhouse models and 3D GCMs in a self-consistent way.
The obtained results show that the meta-modelling approach is
efficient at disentangling the mechanisms that determine the cli-
matic state of the planet, which are narrowly coupled together
in GCMs. This approach allows models of various complexities,
albeit with the very same physical setup, to be run in parallel
series so that each simulation can be interpreted using the others.
As a consequence, the final outcome of the meta-model conveys
information not only on the climate itself but also on the sepa-
rated contributions of key physical ingredients such as radiative
transfer, atmospheric structure, dynamics, and turbulent friction
in the PBL. In addition to these diagnostic aspects, the meta-
modelling approach appears as a robust method for refining the
analytic theory of planetary climates given that it allows the rel-
evance of solutions obtained at low spatial dimensionality to
be assessed with consistently generated GCM numerical solu-
tions. Finally, we note that the meta-modelling approach can be
extended to moist atmospheres and rapidly rotating planets, but
we leave that to the content of a future study.
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Appendix A: Non-dimensional primitive equations

The model solves the HPEs given by Eqs. (15-18) in their non-
dimensional form. Although it is not used in the present study,
the moisture conservation equation is included in the solver and
we give it here for the sake of generality. In its conservative form,
this equation reads (e.g. Yao & Stone 1987)

∂

∂t
(pq) + ∇σ · (pquσ) +

∂

∂σ
(pqσ̇) = pq̇, (A.1)

where q designates the specific humidity of any tracer, and q̇
the corresponding net evaporation or condensation rate per unit
mass. Since the elemental unit of time of the discretised equa-
tions is the dynamical time step ∆t used in the time-differencing
scheme, it is convenient to normalise the time by ∆t so that the
time lapse between two dynamical time steps is always unity.

We then introduce the reference pressure p0, temperature T0,
and specific humidity q0, from which we can define the reference
velocity v0, energy per unit mass e0, density ρ0, force per unit
mass F0, heat power per unit mass Q0, net evaporation per unit
mass q̇0, Exner function E0, and potential temperature Θ0,

v0 ≡
√

CpT0, e0 ≡ CpT0, ρ0 ≡
p0

CpT0
,

F0 ≡

√
CpT0

∆t
, Q0 ≡

CpT0

∆t
, q̇0 ≡

q0

∆t
,

E0 ≡ Cp

(
p0

pref

)κ
, Θ0 ≡

CpT0

E0
.

(A.2)

Besides, we make the horizontal coordinate vary within the
range [0, 1] like the vertical coordinate by re-normalising the
colatitude (θ). The normalised variables and colatitude are there-
fore defined as

p̃s ≡
ps

p0
, p̃ ≡

p
p0
, p̃ ≡

p

p0
, ṽθ ≡

vθ
v0
,

˜̇σ ≡ ∆tσ̇, T̃ ≡
T
T0
, Θ̃ ≡

Θ

Θ0
, ρ̃ ≡

ρ

ρ0
,

φ̃ ≡
φ

e0
, F̃θ ≡

Fθ

F0
, Q̃ ≡

Q
Q0

, q̃ ≡
q
q0
,

˜̇q ≡
q̇
q̇0
, θ̃ ≡

θ

π
.

(A.3)

As a second step, the spatial coordinates
(
θ̃, σ

)
are converted

to grid coordinates4, (Y,Z). In this transformation, the nor-
malised colatitude θ̃ = θ̃ (Y) and vertical coordinate σ = σ (Z)
are assumed to be monotonic functions of Y and Z, respectively.
These functions are defined further so that the interval between
the two boundaries of a finite volume is equal to 1 both in the
horizontal and in the vertical directions, as showed by Fig. A.1.
The transformation

(
θ̃, σ

)
→ (Y,Z) is defined at any point by the

horizontal and vertical metric coefficients, cY and cZ , defined as

cY ≡
∂θ̃

∂Y
, cZ ≡

∂σ

∂Z
, (A.4)

4 The notation Y is chosen in place of X for the horizontal coordinate
in order to be consistent with notations conventionally used in GCMs
(X and Y for the longitudinal and latitudinal directions, and Z for the
vertical direction).

˜Fig. A.1. Change of coordinate,
(
θ̃, σ

)
→ (Y,Z), from the physical

spatial coordinates to the grid spatial coordinates. The grid coordinates
vary in the range 0 ≤ Y ≤ M and 0 ≤ Z ≤ N, where M and N are two
integers that do not need to be defined at this stage but will correspond
to the numbers of horizontal and vertical grid levels in the finite-volume
discretisation of the primitive equations. The metric is illustrated by
the spacing variation between two isolines. The interval between two
isolines in grid coordinates is of size 1 to mark the cells of the finite-
volume method employed in the following.

which yields the change relations of partial derivatives

∂

∂θ̃
=

1
cY

∂

∂Y
,

∂

∂σ
=

1
cZ

∂

∂Z
, (A.5)

∂

∂Y
= cY

∂

∂θ̃
,

∂

∂Z
= cZ

∂

∂σ
. (A.6)

We remark that the change of coordinate is just a dilation if
the adopted horizontal and vertical spacings are uniform since
cY and cZ are constants in this case. We also notice that cZ <
0 with the chosen sigma coordinate given that σ decreases
monotonically as the altitude increases.

To include the metric in the primitive equations, we intro-
duce the respective covariant and contravariant horizontal veloc-
ities,

v̂ ≡ cY ṽθ, v̌ ≡
ṽθ
cY
, (A.7)

the normalised area density (area per unit length),

Ã ≡ cY sin (θ) (A.8)

mass density5,

m̃ ≡ −p̃ÃcZ (A.9)

and horizontal and vertical mass flux densities,

V ≡ m̃v̌, W ≡ m̃
˜̇σ

cZ
. (A.10)

After the above manipulations, the system of HPEs given
by Eqs. (15-18) and Eq. (A.1) become the normalised primitive

5 The minus sign in the expression of m̃ is here to ensure m̃ > 0, which
is the convention used in the model.
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equations

∂m̃
∂t̃

+ b
∂V
∂Y

+
∂W
∂Z

= 0, (A.11)

∂

∂t̃
(m̃ṽθ) + b

∂

∂Y
(V ṽθ) +

∂

∂Z
(W ṽθ) (A.12)

+
b
cY

m̃
(
∂φ̃

∂Y
+ Θ̃

∂Ẽ
∂Y

)
= m̃F̃θ,

∂

∂t̃

(
m̃Θ̃

)
+ b

∂

∂Y

(
VΘ̃

)
+

∂

∂Z

(
WΘ̃

)
=

m̃Q̃
Ẽ
, (A.13)

∂φ̃

∂Z
+ κΘ̃

∂Ẽ
∂Z

= 0, (A.14)

∂

∂t̃
(m̃q̃) + b

∂

∂Y
(Vq̃) +

∂

∂Z
(Wq̃) = m̃ ˜̇q, (A.15)

where the normalised Exner function, derived from Eq. (20), is
expressed as a function of the normalised pressure p̃,

Ẽ ≡
E
E0

= p̃κ. (A.16)

As may be noticed, with the normalisation adopted in
Eq. (A.3), the dynamics of the non-dimensional HPEs is con-
trolled by one unique dimensionless parameter,

b ≡
v0∆t
πRp

=

√
CpT0∆t
πRp

, (A.17)

which is a global Courant number weighting the contribution
of horizontal advection6. The density is not a variable of the
primitive equations but can be evaluated using the perfect gas
equation,

p̃ = κρ̃T̃ , (A.18)

while the vertical velocity can be calculated from the conversion
formula

vz =
vz0

m̃

[
m̃
∂φ̃

∂t̃
+ bV

∂φ̃

∂Y
+ W

∂φ̃

∂Z

]
, (A.19)

where we have introduced the characteristic vertical velocity

vz0 ≡
e0

g∆t
. (A.20)

Appendix B: Dynamical core

The system of prognostic equations given by Eqs. (A.11-A.15)
is integrated numerically using a standard finite-volume method.
This appendix details the main features of the dynamical core of
our model.

Appendix B.1: Grid

The primitive equations are discretised and solved on a staggered
Arakawa C grid (Arakawa & Lamb 1977). The atmosphere is
divided into elemental cells. Mass fluxes and velocities are eval-
uated at cell interfaces, and volume quantities (m̃, Θ̃, q̃, φ̃, Ẽ) at
cells centres, except the pressure, which is evaluated at horizon-
tal cells interfaces. A diagram representing the grid is shown by
Fig. B.1.
6 The global Courant number given by Eq. (A.17) should be multiplied
by the number of horizontal cells to obtain the Courant number used in
the CFL (Courant, Friedrichs, and Lewy) numerical stability condition
(Courant et al. 1928).

As a first step, the spatial domain defined by
(
θ̃, σ

)
∈ [0, 1]2 is

divided into non-uniform intervals both along the horizontal and
vertical directions. There are M intervals for the colatitude, and
N intervals for the vertical coordinate, which represents M × N
cells. The vertical spacing can be specified arbitrarily. It deter-
mines the coordinates of cell boundaries. We note that the σ
levels of cell centres can be explicitly computed from the σ lev-
els of cell boundaries if pt = 0 (standard sigma coordinate) as
discussed in Sect. B.2.

As as second step, the change of coordinates
(
θ̃, σ

)
→

(Y,Z) ∈ [0,M] × [0,N] is applied, and the corresponding met-
ric coefficients cY and cZ are calculated. Typically, for a uniform
grid, θ̃ = Y/M, and thus cY = 1/M everywhere. The case of
non-uniform horizontal intervals is more complicated, since this
implies θ̃-dependent coefficients. To treat the general case, we
adapt the method employed for the horizontal grid in the LMDZ
GCM to the 1D case: each surface area is divided into two sub-
surface areas, as shown by Fig. B.2, and the cY are evaluated at
subarea centres and boundaries (Sadourny 1975a,b). The cZ are
just the difference between two vertical levels. We introduce the
difference and average operators,

δXψ (X) = ψ

(
X +

1
2

)
− ψ

(
X −

1
2

)
, (B.1)

ψ
X

(X) =
1
2

[
ψ

(
X +

1
2

)
+ ψ

(
X −

1
2

)]
, (B.2)

where X is a placeholder for Y or Z and ψ any variable. In this
formalism, the cZ are simply expressed as cZ = δZσ.

In the present work, we use a vertical grid refined near
the surface and the upper boundary. The sigma coordinates of
vertical levels are given by the function

σ (x) =
1
2

[
1 + cos (πxa)

]
, (B.3)

where x ≡ Z/N takes its values between 0 and 1. Here, the expo-
nent a is a dilation coefficient that controls the growth or decay
rate of vertical intervals in the vicinity of the lower and upper
bounds. Introducing the vertical coordinate difference between
the lowest model level and the surface, ∆σSL, this parameter is
defined as

a ≡
ln

[
π−1 arccos (1 − 2∆σSL)

]
ln (1/N)

. (B.4)

For an isothermal temperature profile near planet’s surface,
∆σSL ≈ zSL/H, where H is the local pressure height. In practice,
we set ∆σSL = 3.0 × 10−3.

Appendix B.2: Exner function

The calculation of the Exner function follows the method
described by Arakawa & Lamb (1977) and Hourdin (1994),
which is summarised here. Instead of computing E at the mid-
dle of the layer by extrapolating the pressure at the middle
of the layer from the level pressures at the interfaces, which
is computationally expensive, one rather uses a supplementary
relationship between the interface levels and the Exner function.
This relationship is directly derived from considerations about
energy conservation principles within the atmospheric air col-
umn. Particularly, in the hydrostatic approximation, the internal
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Fig. B.1. Staggered grid. In the adopted finite-volume method, the horizontal axis is divided into M intervals and the vertical axis into N intervals,
which represents M × N cells (here, M = 5 and N = 4). Horizontal levels are indexed by j and vertical levels by k. The left and right boundaries of
the physical domain correspond to θ̃ = 0 (sub-stellar point) and θ̃ = 1 (anti-stellar point), respectively. The top and bottom boundaries correspond
to σ = 0 (space) and σ = 1 (ground), respectively. The horizontal and vertical mass flows, V and W, are evaluated at vertical and horizontal cell
interfaces, respectively, while the mass, temperature, geopotential, specific humidity, and Exner function (blue) are evaluated at cell centres. The
physical domain is surrounded by ghost cells (grey), which are employed to facilitate vectorisation.

ψ

σ

Fig. B.2. Subdivision of a surface area into two subsurface areas, A1 and
A2 (light grey and grey regions). The big blue dots indicate the centres of
horizontal intervals. The areas are calculated analytically by taking their
dependence on colatitude into account. The configuration of the dia-
gram corresponds to small horizontal intervals, where this dependence
is approximately linear.

and potential energy are proportional, which implies (Arakawa
& Lamb 1977; Hourdin 1994)

∫ mcol

0
φdm =

∫ mcol

0
RdTdm, (B.5)

where m = ρdz is the infinitesimal parcel of mass per unit sur-
face, and mcol the mass of the air column per unit surface. The
expression of φ as a function of Θ and E is simply obtained by
making use of the hydrostatic balance equation given, in grid
vertical coordinates, by

∂φ

∂Z
+ Θ

∂E
∂Z

= 0, (B.6)

and reads

φ =

∫ Z

0

∂φ

∂Z′
dZ′ = −

∫ Z

0
κΘ

∂E
∂Z′

dZ′, (B.7)

which allows us, noticing that RdT = κΘE, to rewrite Eq. (B.5)
as∫ mcol

0

[∫ Z

0
Θ
∂E
∂Z′

dZ′ + κΘE
]

dm = 0. (B.8)

The discretised form of the first term is given by

∫ Zl

0
Θ
∂E
∂Z

dZ′ =

k∑
k=1

(
Θk + Θk−1

2

)
(Ek − Ek−1) + Θ0 (E0 − Es) ,

(B.9)

where Θl, El are the potential temperature and Exner function
evaluated at the middle of the layer, indexed by l = 0, . . . ,N − 1
(for N vertical intervals), and Es = Cp (p/pref)κ is the Exner
function evaluated at the planet’s surface. By making use of
the difference and average operators introduced in Eqs. (B.1)
and (B.2), the preceding equation can be rewritten in the com-
pact form∫ Zl

0
Θ
∂E
∂Z

dZ′ =

N−1∑
l=0

[
Θ

Z
δZ E

]
k
, (B.10)

with[
Θ

Z
δZ E

]
k

=

(
Θk + Θk−1

2

)
(Ek − Ek−1) , k = 1, . . . ,N − 1,[

Θ
Z
δZ E

]
0

= Θ0 (E0 − Es) . (B.11)
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Then, introducing the mass ml per unit area of layer l and
interchanging the sums in the double integral, we obtain

N−1∑
l=0

ml

∫ Zl

0
Θ
∂E
∂Z

dZ′ =

N−1∑
l=0

ml

l∑
k=0

[
Θ

Z
δZ E

]
k
, (B.12)

=

N−1∑
k=0

[
Θ

Z
δZ E

]
k

N−1∑
l=k

ml. (B.13)

In the above equation, we recognise the atmospheric mass per
unit surface above the k interfaces (k = 0, . . . ,N), which is
expressed in the framework of the hydrostatic approximation as

N∑
l=k

ml =
pk

g
. (B.14)

It follows

N−1∑
l=0

ml

∫ Zl

0
Θ
∂E
∂Z

dZ′ =
1
g

N−1∑
k=0

[
Θ

Z
δZ E

]
k

pk. (B.15)

Finally, expanding the coefficients of the sum, we remark that
this later may be rewritten

N−1∑
k=0

[
Θ

Z
δZ E

]
k

pk =

N−1∑
k=0

Θk

[
pδZ E

Z
]

k
, (B.16)

with the conventions[
pδZ E

Z
]

0
=

1
2

(E1 − E0) p1 + (E0 − Es) p0 (B.17)[
pδZ E

Z
]

N−1
=

1
2

(EN−1 + EN−2) pN−1 + (Et − EN−1) pt. (B.18)

Thus, in the general case, the Exner function can be evaluated at
cell centres by applying, at all vertical levels, the relation

pδZ E
Z

= −κEδZ p. (B.19)

The use of standard sigma coordinates appreciably reduces the
complexity of the problem. Assuming pt = 0 and introducing
the notation s = σκ, the preceding equation simplifies to

σδZ s
Z

= κsδZσ, (B.20)

which allows the sigma coordinates of cell centre levels to be
pre-calculated. Indexing these levels by k = 0, . . . ,N − 1 and the
intermediate (or interface) σ levels by k = 0, . . . ,N, we have[

σδZ s
Z
]

k
=κsk [δZσ]k for k = 1, . . . ,N − 2, (B.21)[

σδZ s
Z
]

0
=

1
2

(s1 − s0)σ1 + (s0 − ss)σ0 = κs0 (σ1 − σ0) ,[
σδZ s

Z
]

N−1
=

1
2

(sN−1 − sN−2)σN−1 = κsN−1 (σN − σN−1) ,

where ss = 1 and st = 0 are the value of s at planet’s surface and
atmospheric upper boundary, respectively.

In practice, the Exner function is evaluated at grid centre lev-
els by solving an algebraic equation of the form AX = B. In the
case of standard sigma coordinates (pt = 0), this calculation is

performed only once, when the grid is constructed. The algebraic
system to solve then writes
A0,0 A0,1

A1,0 A1,1 A1,2

Ak,k−1 Ak,k Ak,k+1

AN−2,N−3 AN−2,N−2 AN−2,N−1

AN−1,N−2 AN−1,N−1




s0

s1

sk

sN−2

sN−1

=


B0

B1

Bk

BN−2

BN−1

 , (B.22)

where the sk is the coordinate s = σκ evaluated at the mid-level
of the k-layer, A the tri-diagonal matrix of coefficients

Ak,k =

(
1
2

+ κ

)
(σk − σk+1) for k = 1, . . . ,N − 2; (B.23)

A0,0 = (1 + κ)σ0 −

(
1
2

+ κ

)
σ1, (B.24)

AN−1,N−1 =

(
1
2

+ κ

)
σN−1 − (1 + κ)σN , (B.25)

Ak,k+1 = −Ak+1,k =
1
2
σk+1, (B.26)

and B the vector of coefficients

Bk = 0 for k = 1, . . . ,N − 2; (B.27)
B0 = σ0ss, (B.28)
BN−1 = −σN st. (B.29)

In these equations, ss = 1 and st = 0 are the values of s at planet’s
surface and atmospheric top, respectively. This procedure can
be applied from the moment that N > 1. If there is only one
layer, then the mid-level coordinate of the unique layer is set to
s0 = (σ0 + σ1) /2.

Appendix B.3: Discretisation of the primitive equations

The normalised prognostic equations given by Eqs. (A.11-A.15)
are discretised by making use of the difference and average
operators defined by Eqs. (B.1) and (B.2), and become

∂m̃
∂t̃

+ bδYV + δZW = 0, (B.30)

∂

∂t̃

(
m̃

Y
ṽθ

)
+ bδY

(
V

Y
ṽθ

Y
)

+ δZ

(
W

Y
ṽθ

Z
)

+
b
cY

[
m̃

Y
δY φ̃ + m̃Θ̃

Y (
δY Ẽ

)]
= m̃

Y
F̃θ, (B.31)

∂

∂t̃

(
m̃Θ̃

)
+ bδY

(
VΘ̃

Y)
+ δZ

(
WΘ̃

Z)
=

m̃Q̃
Ẽ
, (B.32)

∂

∂t̃
(m̃q̃) + bδY

(
Vq̃

Y
)

+ δZ

(
Wq̃

Z
)

= m̃ ˜̇q, (B.33)

δZ φ̃ + Θ̃
Z
δZ Ẽ = 0. (B.34)

In the right-hand members of these equations, the horizontal
force is specified at horizontal interface levels, where the hori-
zontal mass fluxes and velocities are also evaluated, and Q̃ and q̃
at cell centres. The vertical velocity can be calculated afterwards,
when it is necessary, using the formula

vz =
vz0

m̃
Z

m̃∂φ̃

∂t̃

Z

+ bVδY φ̃
Y

Z

+ WδZ φ̃

 . (B.35)
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Appendix B.4: Time-differencing scheme

Following the method used in many GCMs (Hansen et al. 1983;
Yao & Stone 1987; Hourdin et al. 2006), the temporal integra-
tion of the primitive equations is based on the so-called leapfrog
scheme, which is a centred explicit scheme (e.g. Press et al.
2007). Since the leapfrog scheme tends to generate a spuri-
ous growth of numerical instabilities over time (e.g. Lauritzen
et al. 2011, Sect. 5.5), a Matsuno time step (Matsuno 1966a) is
introduced every nMT steps (with nMT = 5) to stabilise the inte-
gration, as illustrated by Fig. B.3. Mathematically, denoting the
time derivative operator byM, any dynamical variable by ψ, and
indexing time steps by n, a leapfrog step is expressed as

ψn = ψn−2 + 2∆t̃M (ψn−1) , (B.36)

while a Matsuno step (Matsuno 1966a) consists in the succession
of two steps,

ψ∗n = ψn−1 + ∆t̃M (ψn−1) , (B.37)
ψn = ψn−1 + ∆t̃M

(
ψ∗n

)
, (B.38)

where the superscript ∗ is used to designate the intermediate
virtual time step. In Fig. B.3, the leapfrog time step is used
to compute variables at all dates except t0 and t5, where it is
replaced by a Matsuno step. Sink terms associated with numeri-
cal dissipation (hyper-diffusion, sponge layer, etc.) are evaluated
periodically every nMT dynamical time step, before Matsuno
time steps. Physical tendencies are computed every nP dynamical
time step (with nP = 10).

) t0 t1 t2 t3 t4 t5 t6 t7 t8

Matsuno timestep

Leapfrog timestep

Fig. B.3. Time-differencing scheme implemented in the solver. The
scheme is based on a leapfrog time step (e.g. Sect. 5.5.2 of Lauritzen
et al. 2011), which is replaced by a Matsuno time step (Matsuno 1966a)
every nMT = 5 steps.

Appendix C: Numerical dissipation

Appendix C.1: Horizontal hyper-diffusion

To dissipate energy at grid scale, we introduce a bi-harmonic
diffusion (Lauritzen et al. 2011), which is a fourth-order diffu-
sion. This is obtained by applying twice the Laplacian operator
to the temperature and horizontal velocity. For any scalar quan-
tity ψ, the horizontal Laplacian operator reads, in our 2D system
of coordinates,

∇2
σψ = R−2

p
1

sin θ
∂

∂θ

(
sin θ

∂ψ

∂θ

)
. (C.1)

In grid coordinates, it is expressed as

∇2
σψ =

(
πRp

)−2
(cY sin θ)−1 ∂

∂Y

(
sin θ
cY

∂ψ

∂Y

)
(C.2)

=
(
πRp

)−2
∇̃2
σψ,

where ∇̃2
σ designates the normalised horizontal Laplacian oper-

ator,

∇̃2
σψ ≡ (cY sin θ)−1 ∂

∂Y

(
sin θ
cY

∂ψ

∂Y

)
. (C.3)

We introduce the hyper-Laplacian operator, which is the Lapla-
cian of order q, defined as ∇2q ≡ ∇2

σ . . .∇
2
σ. Basically, for the

fourth-order hyper-diffusion, q = 2, and ∇4 ≡ ∇2
σ∇

2
σ. In the gen-

eral case, the 2q-order hyper-diffusion term of any variable ψ is
defined by

Fdiff ≡ (−1)q+1 K2q∇
2qψ, (C.4)

where K2q is the hyper-diffusivity. This parameter can be written
as a function of the diffusion timescale tdiff and mean horizontal
grid spacing ∆θ ≡ π/M (Lauritzen et al. 2011, Sect. 13.3),

K2q =
1

2tdiff

Rp∆θ

2

2q

. (C.5)

The normalised hyper-diffusivity K̃2q is thus given by

K̃2q ≡
K2q(
πRp

)2q =
1

2tdiff (2M)2q . (C.6)

In order to adapt the hyper-diffusivity to the horizontal grid
resolution, it is convenient to introduce the non-dimensional dif-
fusion parameter (Tomita & Satoh 2004; Mendonça et al. 2016)

γ ≡
∆t

22q+1tdiff
, (C.7)

which allows us to rewrite diffusivity parameters as

K2q = γ
∆θ

2q

∆t
, K̃2q = γ

1
∆tM2q . (C.8)

Bi-harmonic diffusion is used in the model, with a diffusion
parameter set to γ = 6.25 × 10−4 in agreement with the order
of magnitude of commonly used values (Lauritzen et al. 2011,
Sect. 13.3).

In the finite-volume approach, hyper-diffusion can lead to
numerical instabilities near the poles because of the singularity
sin−1 (θ) of the Laplacian operator. Typically, assuming that ψ is
an oscillatory function of the form ψ (θ) = sin (nπθ) yields

∇2
σψ =

(nπ)2

sin θ

[
(nπ)−1 cos (θ) cos (nπθ) − sin (θ) sin (nπθ)

]
, (C.9)

and thus ∇2
σψ ∝ sin−1 (θ) in polar regions. To remediate to this

problem, it is often chosen to compensate the singularity intro-
duced by the Laplacian by annihilating the diffusivity parameter
at the poles (Lauritzen et al. 2011, Sect. 13.3). Basically, the
isotropic diffusivity introduced in Eq. (C.4) is multiplied by
sinαq (θ), where α is a coefficient of anisotropy (α = 0.5− 1 typi-
cally). This anisotropic diffusion solves the stability problem but
can also induce unphysical boundary effects near the poles. Fol-
lowing Majewski et al. (2002), we apply a bi-harmonic diffusion
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Fig. C.1. Two-day averaged temperature snapshots for various values of the hyper-diffusion parameter (see Eq. (C.7)). Left: γ = 10−5. Middle:
γ = 10−4. Right: γ = 10−3. Simulations were performed for the Earth-like case of Table 2 with a stellar irradiation of 1366 W m−2 and a 1 bar
surface pressure, similar to as in Fig. 1.

(q = 2) to the temperature and horizontal velocity vθ. We use the
same diffusion coefficient for both terms. Thus,

Fdiff;v = −K̃4 sin2α (θ) ∇̃4
σvθ, (C.10)

Fdiff;T = −K̃4 sin2α (θ) ∇̃4
σT. (C.11)

In addition, we apply to the top layer of the model an harmonic
diffusion of the form

Fdiff;v = −K̃2 sin (θ) ∇̃2
σvθ, (C.12)

Fdiff;T = −K̃2 sin (θ) ∇̃2
σT. (C.13)

In order to verify that the mean flow and temperature
distribution are insentitive to the hyper-diffusion scheme, sim-
ulations were run for various values of the non-dimensional
diffusion parameter γ introduced in Eq. (C.7), namely γ =
10−5, 10−4, 10−3. These validation tests were performed for the
Earth-like case of Table 2 with the same surface pressure and
stellar flux as in Fig. 1. Figure C.1 shows the two-day averaged
temperature snapshots obtained for each value of γ, as well as
the associated mean flows. We observe that varying the value
of γ over two orders of magnitude hardly alters the temperatures
and wind speeds. The minimum nightside temperature after con-
vergence is Tn = 231.5 K, Tn = 231.7 K, and Tn = 231.8 K,
for γ = 10−5, 10−4, 10−3, respectively. Similarly, the maximum
wind speed varies between 59.55 m s−1 and 62.08 m s−1 (see
Fig. C.1). These variations correspond to a 0.1% difference for
the minimum surface temperature, and to a 4.2% difference for
the maximum wind speed. Winds are thus more sensitive to
the hyper-diffusion scheme than the nightside surface temper-
ature, although the observed dependence is relatively weak in
both cases. Nevertheless, this dependence is expected to be more
important for extreme values of γ because such values would
lead either to under-dissipated or to over-dissipated flow fields, as
shown by Thrastarson & Cho (2011). Typically, with a value of γ
smaller than the adopted one by several orders of magnitude, the
flow rapidly becomes numerically unstable at grid scale, which
induces spurious fluctuations and may cause the run to abort.

Appendix C.2: Sponge layer

In extreme cases (low surface pressure and high stellar flux),
the strong thermal forcing of the atmosphere on the dayside

generates instabilities that can lead to negative pressures near
the top of the model. Particularly, it generates internal gravity
waves that propagate upwards with amplitudes becoming very
large as the atmospheric density tends to zero7. These waves
are reflected downwards by the upper boundary, which acts as
a wall (no vertical mass flow). Owing to the weak density, such
extreme fluctuations have dramatic repercussions on the com-
putation of mass flows and are thereby a source of unphysical
values that make runs abort. Thus, in addition with the hyper-
diffusion scheme, the use of a sponge layer is necessary in cases
where the surface pressure is low and the stellar irradiation is
strong.

The sponge layer is a numerical dissipation process that
strongly damps wind flows diverging from a prescribed equi-
librium profile in the upper regions of the atmosphere, with an
efficiency increasing with the altitude. In the present model, we
use a Rayleigh friction sponge, which is based on a linear relax-
ation term of generic form (e.g. Lauritzen et al. 2011, Sect. 13.4)

∂vθ
∂t

= −kSL
(
vθ − vθ;SL

)
, (C.14)

where kSL designates the Rayleigh damping coefficient of the
sponge layer and vθ;SL the equilibrium velocity profile near the
upper boundary. This profile is set to the standard value vθ;SL = 0.
Following Polvani & Kushner (2002), we opt for a vertical profile
of the Rayleigh coefficient of the form

kSL (σ) =

 0 if σ ≥ σSL,

kSL;max

(
1 − σ

σSL

)2
if σ < σSL.

(C.15)

In the above piecewise function, σSL corresponds to the criti-
cal normalised pressure below which the sponge layer is applied
while kSL;max is the maximum value of the Rayleigh friction coef-
ficient. This parameter has dimensions of a frequency and is
the inverse of the minimum damping timescale of the sponge
layer tSL;min. The smaller tSL;min, the stronger the damping in the
sponge layer. In the model, the maximum Rayleigh coefficient is
set to kSL;max = 0.5 day−1, while the thickness of the sponge layer
is defined as a function of the stellar flux and surface pressure.
7 Although they exist, these waves are poorly resolved in the hydro-
static approximation since the buoyancy term in the vertical momentum
equation is missing.
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Appendix D: Convective adjustment scheme

The turbulent diffusion scheme implemented described by
Sect. 3.3 is not sophisticated enough to prevent super-adiabatic
vertical temperature gradients,

∂Θ

∂z
< 0. (D.1)

If such an unstable profile is produced by the model, it may gen-
erate numerical errors in the solution and lead the run to crash. In
order to prevent this behaviour, a convective adjustment scheme
can be activated in simulations. This scheme tends to regu-
larise the potential temperature profile every physical timestep
by correcting the tendencies in heat fluxes while conserving
the entropy over the air column. The convective adjustment
scheme used in the present work is similar to that implemented
in the LMDZ and THOR GCMs (Hourdin et al. 1993; Mendonça &
Buchhave 2020).

unstable

Fig. D.1. Construction of the stable temperature profile in the convec-
tive adjustment scheme. An initially unstable region of the air column
spreading from layer l1 to layer l2 is extended both downwards and
upwards until the temperature profile is stable. At every step, the mass-
averaged potential temperature of the region is adjusted to include the
contribution of the current unstable layer.

The principle of the scheme is contained in two steps. During
the first step, the unstable intervals of the vertical temperature
profiles extrapolated from tendencies are detected and a stable
profile is constructed by averaging the potential temperature over
unstable layers. Starting from the ground, the interval bounded
by layers l1 and l2 with l1 ≤ l2 is extended both downwards and
upwards incrementally until l1 and l2 correspond to the bottom
and top layers of the atmosphere, respectively. In an unstable
region, the potential temperature is set to the mass-averaged
adiabatic potential temperature,

Θ̄ ≡

∫ mtop

mbot
Θdm∫ mtop

mbot
dm

, (D.2)

where dm = ρdz is an infinitesimal parcel of mass of the air col-
umn, mbot the mass of the air column below the lower boundary
of the mixed region, and mtop the mass below the upper bound-
ary of the mixed region. If Θk > Θ̄ for a layer k underneath the
mixed region, the mass-averaged adiabatic potential temperature
is adjusted by including the contribution of the layer and Θk is set
to Θ̄. Figure D.1 illustrates how the adiabatic profile is adjusted
to stabilise the layer l1, where the vertical gradient of potential
temperature is negative.

The second step of the scheme consists in evaluating the
new tendencies resulting from the stable temperature profile. The
tendency for the entropy equation is straightforwardly obtained
from the adiabatic temperature profile constructed at the first
step. For the momentum equation, an estimate of the instabil-
ity of the atmosphere is computed from the relative enthalpy
exchange that is necessary to restore the adiabatic profile from
the original profile,

α ≡

∫ mtop

mbot

∣∣∣Θ − Θ̄
∣∣∣ dm∫ mtop

mbot
Θdm

. (D.3)

This parameter corresponds to the fraction of the mesh on which
the angular momentum is mixed (in practice, the condition α < 1
is always verified in simulations; e.g. Hourdin et al. 2006). The
extrapolated horizontal velocity used to compute the tendency
for the horizontal momentum is corrected by a factor α (v̄θ − vθ),
where v̄θ is the mass-averaged velocity defined as

v̄θ ≡

∫ mtop

mbot
vθdm∫ mtop

mbot
dm

. (D.4)

Appendix E: Radiative transfer scheme

The two radiative transfer equations given by Eqs. (23) and (24)
are solved periodically every nRT physical time step (with nRT =
6) as illustrated by Fig. E.1. First we integrate them analytically
between two intermediate vertical levels, indexed by k and k + 1,
with k = 0, . . . ,N − 1. This leads to

F↓k = η−1
k

{
λkF↓k+1 + µkF↑k − λkBk+1 +

[
ηk − µk

]
Bk

−
(
ζ2

+ − ζ
2
−

)
(1 − Tk) (ζ+ + ζ−Tk)

dB
dτ

∣∣∣∣∣
k

}
, (E.1)

F↑k+1 = η−1
k

{
λkF↑k + µkF↓k+1 − λkBk +

[
ηk + µk

]
Bk+1

+
(
ζ2

+ − ζ
2
−

)
(1 − Tk) (ζ+ + ζ−Tk)

dB
dτ

∣∣∣∣∣
k

}
, (E.2)

where the Bk designate the values of the blackbody emission B
introduced in Eq. (24) (B = 0 for the shortwave) interpolated

at intermediate vertical levels,
dB
dτ

∣∣∣∣∣
k

the values of its deriva-

tives evaluated at internal vertical levels, ζ± the usual coupling
coefficients,

ζ± =
1
2

(1 ± β0) , (E.3)

and where we have introduced the transmission functions

Tk ≡ eτk+1−τk , (E.4)

and the coefficients

ηk ≡ ζ
2
+ − (ζ−Tk)2 , λk ≡

(
ζ2

+ − ζ
2
−

)
Tk,

µk ≡ ζ−ζ+

(
1 − T 2

k

)
.

(E.5)

These relations can be put in the matrix form

[
−µk ηk 0 −λk
−λk 0 ηk −µk

] 
F↑k
F↓k

F↑k+1
F↓k+1

 =

[
b1

k
b2

k

]
, (E.6)
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where b1
k and b2

k are given by

b1
k = − λkBk+1 + (ηk − µk) Bk (E.7)

−
(
ζ2

+ − ζ
2
−

)
(1 − Tk) (ζ+ + ζ−Tk)

dB
dτ

∣∣∣∣∣
k
,

b2
k = − λkBk + (ηk + µk) Bk+1 (E.8)

+
(
ζ2

+ − ζ
2
−

)
(1 − Tk) (ζ+ + ζ−Tk)

dB
dτ

∣∣∣∣∣
k
.

They are completed by relations derived from the lower and
upper boundary conditions, which, in the general case, are of
the form

as;0F↑0 + as;1F↓0 + as;2F↑1 + as;3F↓1 = bs, (E.9)
at;0F↑N−1 + at;1F↓N−1 + at;2F↑N + at;3F↓N = bt, (E.10)

where the subscripts s and t denote the coefficients associated
with the planet’s surface or with the top of the atmosphere,
respectively. Therefore, introducing the vectors Fk ≡

(
F↑k, F↓k

)T,
we can write the discretised equations as a linear algebraic
system of the form


B0 C0
A1 B1 C1

Ak Bk Ck
AN−1 BN−1 CN−1

AN BN




F0
F1
Fk

FN−1
FN

 =


d0
d1
dk

dN−1
dN

 . (E.11)

In this system, the sub-matrices Ak, Bk, and Ck are expressed as

Ak =

[
−λk−1 0

0 0

]
, Bk =

[
ηk−1 −µk−1
−µk ηk

]
, (E.12)

Ck =

[
0 0
0 −λk

]
, k = 1, . . . ,N − 1, (E.13)

B0 =

[
as;0 as;1
−µ0 η0

]
, C0 =

[
as;2 as;3
0 −λ0

]
, (E.14)

AN =

[
−λN−1 0

at;0 at;1

]
, BN =

[
ηN−1 −µN−1
at;2 at;3

]
, (E.15)

and the corresponding vectors are expressed as

dk =

[
b2

k−1
b1

k

]
, k = 1, . . . ,N − 1, (E.16)

d0 =

[
bs
b1

0

]
, dN =

[
b2

N−1
bt

]
. (E.17)

As the matrix of the system is a block tri-diagonal matrix,
the system can be solved by making use of Thomas algorithm
(see Appendix H). We note that the shortwave and longwave
fluxes can be integrated in parallel since there are decoupled.
In practice, the coefficients of boundaries conditions introduced
in Eqs. (E.9) and (E.10) are, for the shortwave,
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Fig. E.1. Radiative transfer in double-grey approximation, as described
in Appendix E. The equations for the shortwave and longwave radia-
tive fluxes are solved separately. In each band, the coupled upward and
downward fluxes are calculated by making use of the Thomas algo-
rithm (see Appendix H). The superscript ′ designates the vertical gra-

dient of the black body emission flux B′k =
dB
dτ

∣∣∣∣∣
k

introduced in

Eqs. (E.1) and (E.2).

as;0 = 1, as;1 = −As, as;2 = 0, as;3 = 0, bs = 0,
at;0 = 0, at;1 = 0, at;2 = 0, at;3 = 1, bt = Fi,

(E.18)

and, for the longwave,

as;0 = 1, as;1 = 0, as;2 = 0, as;3 = 0, bs = εsσSBT 4
s ,

at;0 = 0, at;1 = 0, at;2 = 0, at;3 = 1, bt = 0,
(E.19)

where Fi designates the incident stellar flux, given by

Fi (θ) =

{
F? cos θ, if 0◦ ≤ θ ≤ 90◦,
0, if 90◦ < θ ≤ 180◦. (E.20)

Appendix F: Turbulent diffusion scheme

Appendix F.1: Stability and asymptotic length scale functions

The functions fM and fH introduced in Eqs. (34) and (35) are
piecewise functions of the surface-layer bulk Richardson num-
ber given by Eq. (37). They are defined in the model following
the formulation proposed by Holtslag & Boville (1993), which
was established experimentally in the Earth case. In the unstable
regime (Ri0 < 0), they are given by

fM (Ri0) = 1 −
10Ri0

1 + 75CN
√

(1 + zSL/zr) |Ri0|
, (F.1)

fH (Ri0) = 1 −
15Ri0

1 + 75CN
√

(1 + zSL/zr) |Ri0|
, (F.2)

and, in the stable regime (Ri0 ≥ 0), by

fM (Ri0) = fH (Ri0) =
1

1 + 10Ri0 (1 + 8Ri0)
. (F.3)
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The functions FX introduced in Eq. (30) to characterise the
dependence of eddy diffusivities on the gradient Richardson
number are the same for both momentum and heat diffusion.
This function is defined, in the unstable regime (Ri < 0), as

FX (Ri) =
√

1 − 18Ri0, (F.4)

and, in the stable regime (Ri ≥ 0), as

FX (Ri) = fM (Ri) =
1

1 + 10Ri (1 + 8Ri)
. (F.5)

Finally, following Holtslag & Boville (1993), the asymptotic
length scale is defined, for both momentum and heat diffusivi-
ties, as the piecewise function

` (z) =

{
300 if z ≤ 1 km
30 + 270 exp (1 − z/1000) if z > 1 km, (F.6)

where z and ` are expressed in meters. This function enforces
a mixing length of 300 m from the surface to z = 1 km, and a
smooth interpolation to the free atmospheric value, which is set
to 30 m.

Appendix F.2: Discretisation of diffusion equations

The contribution of turbulent diffusion to the physical tendencies
is computed every physical time step. Between the surface and
the top of the atmosphere (internal levels corresponding to k =
1, . . . ,N − 2), the discretised equations derived from Eq. (27) are
given by

Xn
k+1/2 − Xn−1

k+1/2

∆tP
=
A

mn
k+1/2

[
ρn

k+1Kn
X;k+1

δzXn
k+1

δzn
k+1
− ρn

k Kn
X;k

δzXn
k

δzn
k

]
,

(F.7)

with A the area of the surface parcels defined by horizontal
intervals. We note that integer indices in subscripts indicate lev-
els separating vertical intervals, and non-integer indices centres
of vertical intervals (see Fig. F.1). For k = 0 (lower boundary
condition),

Xn
1/2 − Xn−1

1/2

∆tP
=
A

mn
1/2

[
ρn

1Kn
X;1

δzXn
1

δzn
1
− Fturb

]
, (F.8)

and, for k = N − 1 (upper boundary condition),

Xn
N−1/2 − Xn−1

N−1/2

∆tP
= −

A

mn
N−1/2

[
ρn

N−1Kn
X;N−1

δzXn
N−1

δzn
N−1

]
, (F.9)

where Fturb is the downward turbulent flux at the surface-
atmosphere interface. Similarly as the equations of vertical
diffusion, these equations are put into the form

ck+1/2

(
Xn

k+1/2 − Xn−1
k+1/2

)
= dk+1δzXn

k+1 − dkδzXn
k , (F.10)

c1/2

(
Xn

1/2 − Xn−1
1/2

)
= d1δzXn

1 − Fturb,

cN−1/2

(
Xn

N−1/2 − Xn−1
N−1/2

)
= −dN−1δzXn

N−1,

where we have introduced the coefficients

ck+1/2 ≡
mn

k+1/2

A∆tP
, dk ≡

ρn
k Kn

X;k

δzn
k
. (F.11)

Fig. F.1. Discretisation of the atmosphere and ground into vertical
levels.

This algebraic system is solved using the tri-diagonal matrix
algorithm (Appendix H). We introduce, for k = 1, . . . ,N − 1, the
recursion relation

Xk+1/2 = αkXk−1/2 + βk, (F.12)

where the coefficients αk and βk are given by

αk =
dk

∆k
, βk =

1
∆k

(
ck+1/2Xn−1

k+1/2 + dk+1βk+1

)
, (F.13)

with ∆k = ck+1/2 + dk + (1 − αk+1) dk+1. The αk and βk are first
computed downwards starting from the upper boundary, where

αN−1 =
dN−1

cN−1/2 + dN−1
, βN−1 =

cN−1/2Xn−1
N−1/2

cN−1/2 + dN−1
. (F.14)

Then, the Xn
k+1/2 are computed upwards, from k = 0 to k = N −

1, using the recursion relation given by Eq. (F.12) and starting
from

Xn
1/2 =

d1β1 − Fturb + c1/2XN−1
1/2

c1/2 + d1 (1 − α1)
. (F.15)

This allows the source terms of the momentum, thermodynamic,
and moisture conservation equations to be calculated. Basically,

Fθ =
dvθ
dt
, Q =

(
p

pref

)κ d
dt

(
CpΘ

)
, q̇ =

dq
dt
. (F.16)

Appendix G: Soil heat transfer scheme

The 1D heat conduction equation given by Eq. (43) is solved by
means of a finite difference method adapted from Appendix B.1
of Wang et al. (2016). The domain is discretised into Ngr ver-
tical intervals of ũ following a geometric law of scale factor α
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PHYSICS:

ATMOSPHERIC TURBULENT DIFFUSION
Ø CALCULATION OF TURBULENT DIFFUSIVITIES AND DRAG COEFFICIENTS
Ø DOWNWARD CALCULATION OF THE ATMOSPHERIC COEFFICIENTS ⍺k AND βk

SURFACE THERMAL EVOLUTION
Ø CALCULATION OF THE SURFACE TEMPERATURE

⍺atm, βatm, Fs, Cs à Ts

ATMOSPHERIC TURBULENT DIFFUSION
Ø UPWARD CALCULATION OF THE ATMOSPHERIC QUANTITIES Xatm

GROUND THERMAL DIFFUSION
Ø DOWNWARD CALCULATION OF THE TEMPERATURES Tgr

⍺k, βk, Ts à Tk+1/2  
Ø UPWARD CALCULATION OF THE COEFFICIENTS ⍺k AND βk FOR THE NEXT STEP

Tk+1/2 à ⍺k, βk, Fs, Cs

RADIATIVE TRANSFER
Ø CALCULATION OF RADIATIVE FLUXES

t = t + ẟt

Fig. G.1. Temporal integration scheme for the calculation of physical tendencies resulting from turbulent diffusion and soil heat conduction. The
notation δt designates a physical timestep (δt = nP∆t with nP = 10).

(Fig. F.1). Denoting by k = 0, . . . ,Ngr the vertical grid levels
(k = 0 corresponding to the surface, and k = Ngr to the inner
boundary of the domain), we express all of the ũk as functions of
the thickness of the first layer ũ1. Literally, the depths of the full
and intermediate levels are respectively given by

ũk =
αk − 1
α − 1

ũ1, k = 0, . . . ,Ngr (G.1)

ũk+1/2 =
αk+1/2 − 1
α − 1

ũ1, k = 0, . . . ,Ngr − 1. (G.2)

We take Ngr = 6, α = 2 and ũ1 = 0.1 s1/2. To solve the heat equa-
tion, we use an implicit scheme. The set of discretised equations
is written, for 1 ≤ k ≤ Ngr − 1, as

T n
k+1/2 − T n−1

k+1/2

∆tP
=

1
δũk+1/2

[
δũT n

k+1

δũk+1
−
δũT n

k

δũk

]
, (G.3)

with δũT n
k = T n

k+1/2 − T n
k , and the boundary conditions yield

T n
1/2 − T n−1

1/2

∆tP
=

1
δũ1/2

[
δũT n

1

δũ1
+

1
Igr

(∑
F↓ (Ts) − εsσSBT 4

s

)]
,

(G.4)

and

T n
Ngr−1/2 − T n−1

Ngr−1/2

∆tP
= −

1
δũNgr−1/2

δũT n
Ngr−1

δũNgr−1

 . (G.5)

Introducing the coefficients ck+1/2 and dk defined as

ck+1/2 ≡
δũk+1/2

∆tP
, dk ≡

1
δũk

, (G.6)

the above equations (Eqs. (G.3-G.5)) are rewritten as

ck+1/2

(
T n

k+1/2 − T n−1
k+1/2

)
= dk+1δũT n

k+1 − dkδũT n
k , (G.7)

c1/2

(
T n

1/2 − T n−1
1/2

)
= d1δũT n

1 + I−1
gr

(∑
F↓ (Ts) − εsσSBT 4

s

)
,

cNgr−1/2

(
T n

Ngr−1/2 − T n−1
Ngr−1/2

)
= −dNgr−1δũT n

Ngr−1,

and the system is put into the standard algebraic form


B0 C0
A1 B1 C1

Ak Bk Ck
ANgr−2 BNgr−2 CNgr−2

ANgr−1 BNgr−1




T n

1/2
T n

3/2
T n

k+1/2
T n

Ngr−3/2
T n

Ngr−1/2


=


b0
b1
bk

bNgr−2
bNgr−1

, (G.8)

with the coefficients

Ak = −dk for k = 1, . . . ,Ngr − 1,
Bk = dk + dk+1 + ck+1/2 for k = 0, . . . ,Ngr − 1,
Ck = dk+1 for k = 0, . . . ,Ngr − 2,
bk = ck+1/2T n−1

k+1/2 for k = 1, . . . ,Ngr − 1,

(G.9)
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B0 = d1 + c1/2,
BNgr−1 = dNgr−1 + cNgr−1/2,

b0 = c1/2T n−1
1/2 + I−1

gr

(∑
F↓ (Ts) − εsσSBT 4

s

)
.

(G.10)

The algebraic system given by Eq. (G.8) is solved by mak-
ing use of Thomas algorithm (Appendix H). As a first step, the
temperatures of two consecutive levels are linked together by the
recursion relation

T n
k+1/2 = αkT n

k−1/2 + βk, (G.11)

where the coefficients αk and βk are defined, for k = 1, . . . ,Ngr −

2, as

αk =
dk

∆k
, βk =

1
∆k

(
ck+1/2T n−1

k+1/2 + dk+1βk+1

)
, (G.12)

with ∆k = ck+1/2 + dk + (1 − αk+1) dk+1. At the inner boundary,
the zero-flux condition leads to

αNgr−1 =
dNgr−1

∆Ngr−1
, βNgr−1 =

cNgr−1/2T n−1
N−1/2

∆Ngr−1
, (G.13)

with ∆Ngr−1 = dNgr−1 + cNgr−1/2. Thus, the coefficients αk and βk
are integrated upwards from the inner boundary.

As a second step, the equation of the surface boundary
condition is put into the form

C∗s
T n

1/2 − T n−1
1/2

∆tP
= F∗s +

∑
F↓ − εsσSBT 4

s − F↑S. (G.14)

where C∗s and F∗s are expressed as

C∗s = Igr∆tP
[
c1/2 + d1 (1 − α1)

]
, (G.15)

F∗s = Igrd1

[
β1 + (α1 − 1) T n−1

1/2

]
. (G.16)

In order to obtain an equation for the surface temperature, we
proceed to a linear interpolation near the surface, which yields

Ts = (1 + µ) T1/2 − µT3/2, with µ =
ũ1/2

ũ3/2 − ũ1/2
. (G.17)

Combining the above equation with the recursion relation T n
3/2 =

α1T n
1/2 + β1, we rearrange Eq. (G.14) into

Cs
T n

s − T n−1
s

∆tP
= Fs +

∑
F↓ − F↑S − εsσSB

(
T n

s
)4 , (G.18)

where the heat capacity per unit surface Cs and upcoming flux
Fs are given by

Cs =
C∗s

1 + µ (1 − α1)
, (G.19)

Fs = F∗s +
C∗s
∆tP

T n−1
1/2 −C∗s

(
T n−1

s + µβ1

∆tP

)
. (G.20)

In practice, this equation is linearised and solved with an implicit
scheme. The parameters Cs and Fs can be set to constants if one
does not wish to solve the vertical diffusion within the ground.
This yields the surface temperature of the current step, T n

s , which

allows the temperatures at ground levels to be calculated using
the recursion relation downwards.

Linearising and discretising the surface temperature evolu-
tion equation, given by Eq. (G.18), we obtain

Cs
T n

s − T n−1
s

∆tP
=Fs +

∑
F↓ − F↑S + Fturb − εsσSB

(
T n−1

s

)4

− 4εsσSB

(
T n−1

s

)3 (
T n

s − T n−1
s

)
. (G.21)

The downward heat flux associated with turbulent diffusion is
expressed in its general form as

Fturb = −AT n
s + B, (G.22)

which allows the surface temperature of the current step to be
written as

T n
s =

Cs
∆tP

T n−1
s + 3εsσSB

(
T n−1

s

)4
+ Fs +

∑
F↓ − F↑S + B

Cs
∆tP

+ 4εsσSB

(
T n−1

s

)3
+ A

. (G.23)

The evolution of the surface content of any tracer in liquid or
solid phase can be described with a similar equation. It induces
a source-sink term in the moisture conservation equation. In the
case of temperature the downward turbulent flux is given by

Fturb = −FH = CHρSLCp

∣∣∣uσ;SL
∣∣∣ (ΘSL − Θs) , (G.24)

which is a function of the mean fields near the surface (see
Eq. (33)). The coefficients A and B introduced in Eq. (G.22) are
thus expressed as

A = CHρSLCp

∣∣∣uσ;SL
∣∣∣ ( ps

pref

)−κ
, B = CHρSLCp

∣∣∣uσ;SL
∣∣∣ ΘSL.

(G.25)

As shown by Fig. G.1, the soil heat transfer scheme is cou-
pled with the turbulent diffusion scheme (Appendix F) through
the equation of surface thermal evolution, which may lead to
consistency issues. In order to preserve the consistency of the
diffusion scheme from the lowest level of the atmosphere to
the highest level of the ground conduction model, the two steps
of the calculation are permuted in chronological order: temper-
atures are computed first, and the coefficients αk and βk are
computed then, and conserved for the next step.

Simulations were run for various values of the
ground thermal inertia given by Eq. (41) (Igr =

102, 103, 104 J m−2 s−1/2 K−1) for the Earth-like planet of
Fig. 1 in order to investigate how numerical solutions depend
on the soil thermal response. The two-day averaged tempera-
ture snapshots obtained from these simulations are shown by
Fig. G.2. We observe that varying the ground thermal inertia
over two orders of magnitude does not significantly alter the
climate state of equilibrium. The change in Igr essentially affects
the maximum wind speed, which varies by ∼ 9%. The minimum
surface temperature on the nightside, Tn, hardly varies, as it
switches from 231.3 K for Igr = 102, 103 J m−2 s−1/2 K−1 to
231.8 K for Igr = 104 J m−2 s−1/2 K−1. This insensitivity of
mean fields to the soil vertical conduction is consistent with
the fact that the circulation reaches a steady state where mean
flows are essentially invariant in time. With variations, mean
flows might be more substantially affected by vertical thermal
diffusion in the soil.
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´ ´ ´Fig. G.2. Two-day averaged temperature snapshots for various values of soil thermal inertia (see Eq. (41)). Left: Igr = 102 J m−2 s−1/2 K−1.
Middle: Igr = 103 J m−2 s−1/2 K−1. Right: Igr = 104 J m−2 s−1/2 K−1. Simulations were performed for the Earth-like case of Table 2 with a stellar
irradiation of 1366 W m−2 and a 1 bar surface pressure, similar to as in Fig. 1.

Appendix H: Thomas algorithm for block
tri-diagonal matrices

The tri-diagonal matrix algorithm (or the Thomas algorithm;
Thomas 1949) can be used to solve a system of equations that
involves a block tri-diagonal matrix of the form
B0 C0
A1 B1 C1

Ak Bk Ck
AN−2 BN−2 CN−2

AN−1 BN−1




x0
x1
xk

xN−2
xN−1

 =


d0
d1
dk

dN−2
dN−1

 , (H.1)

where the Ak, Bk, Ck are sub-matrices indexed by k = 0, . . . ,
N − 1, and the xk and dk vectors of appropriate dimensions. As a
first step, the matrix is triangularised, meaning that the system is
transformed into a system where the matrix is block triangular.
The new system is written as
1 Γ0

1 Γ1
1 Γk

1 ΓN−2
1




x0
x1
xk

xN−2
xN−1

 =


β0
β1
βk
βN−2
βN−1

 . (H.2)

The matrices Γk and vectors βk are computed forwards using the
recursion relations

Γ0 = B−1
0 C0, (H.3)

Γk = (Bk − AkΓk−1)−1 Ck, k = 1, . . . ,N − 2; (H.4)

and

β0 = B−1
0 d0, (H.5)

βk = (Bk − AkΓk−1)−1 (dk − Akβk−1) , k = 1, . . . ,N − 1. (H.6)

As a second step, the solution vectors xk are computed back-
wards (backward sweep) using the recursion relation

xN−1 = dN−1, (H.7)
xk = βk − Γk xk+1, k = N − 2, . . . , 0. (H.8)

Appendix I: Interhemispheric mass flow rate

At the terminator (θ = 90◦ in TLCs), the total mass flow rate (i.e.
mass that passes through the terminator annulus per unit of time
in one direction) is given by

Fmass = πRp

∫ ztop

0
|vθ| ρdz. (I.1)

The day-night advection timescale tadv corresponds to the mean
timescale necessary for one particle to accomplish one full cycle
of the day-night overturning circulation. It measures the renewal
rate of the air and the strength of the cell. The smaller tadv and the
faster air is advected from the dayside to the nightside. Introduc-
ing the total mass of the atmosphere Matm ≡

(
4πR2

p ps

)
/g, this

timescale can be defined as

tadv ≡
Matm

Fmass
. (I.2)

In sigma coordinates, the circulation timescale is expressed as

tadv =
4Rp∫ 1

0 |vθ| dσ
, (I.3)

the integral being performed at the terminator (θ = 90◦).
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