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Abstract: Changes in metabolomics over time were studied in rats to identify early biomarkers 
and highlight the main metabolic pathways that are significantly altered in the period immediately 
following acute low-dose uranium exposure. A dose response relationship study was established 
from urine and plasma samples collected periodically over 9 months after the exposure of young adult 
male rats to uranyl nitrate. LC-MS and biostatistical analysis were used to identify early discriminant 
metabolites. As expected, low doses of uranium lead to time-based non-toxic biological effects, which 
can be used to identify early and delayed markers of exposure in both urine and plasma samples. A 
combination of surrogate markers for uranium exposure was validated from the most discriminant 
early markers for making effective predictions. N-methyl-nicotinamide, kynurenic acid, serotonin, 
tryptophan, tryptamine, and indole acetic acid associated with the nicotinate-nicotinamide and 
tryptophan pathway seem to be one of the main biological targets, as shown previously for chronic 

contaminations and completed, among others,bybetaine metabolism. This study canbe considered as 
a proof of concept for the relevance of metabolomics in the field of low-dose internal contamination by 
uranium, for the development of predictive diagnostic tests usable for radiotoxicological monitoring.

Keywords: uranium; low dose; acute; contamination; metabolomics; diagnostic; N-methyl-nicotinamide; 

tryptophan

1. Introduction
Anthropization produces pollution and threatens the health of the population [1]. For 

example, the operation of nuclear facilities (mines and mills) using uranium has become a 
health concern as, although uranium occurs naturally in the Earth's crust [2,3], it can be 
released into the environment in larger quantities around mining sites, in war zones, or dur- 
ing industrial incidents/accidents [4-8]. In addition, natural uranium (NU) is a radioactive 
heavy metal whose dual toxicity (chemical and radioactive) depends on its isotopic form. 
Depleted and natural forms of uranium are more chemically toxic than enriched forms of 
U-235, whereas the latter are more radiologically toxic [9,10]. Nevertheless, although its 
toxicity seems to be well characterized at high doses, current scientific knowledge does 
not allow us to rule out the risk associated with low-dose exposure to NU potentially 
faced by populations and nuclear workers [11,12]. In fact, neither epidemiological studies, 
which are too uncertain, nor the tests used in clinical analysis, can be used to estimate 
the risk of adverse effects at these low levels of exposure to NU. Occupational uranium 
contamination is currently monitored by checking the daily radiochemical profiles of urine 
and feces and additionally measuring clinical chemistry parameters to diagnose any kidney 
damage when appropriate [13]. However, this may be insufficient in the low-dose range of

Metabolites 2022,12, 421. https://doi.org/10.3390/metabo12050421 https://www.mdpi.com/journal/metabolites

https://www.mdpi.com/journal/metabolites
https://orcid.org/0000-0002-1569-7547
https://orcid.org/0000-0001-9705-167X
https://orcid.org/0000-0002-2870-0012
https://www.mdpi.com/article/10.3390/metabo12050421?type=check_update&version=2
https://doi.org/10.3390/metabo12050421
https://doi.org/10.3390/metabo12050421
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
mailto:celine.gloaguen@irsn.fr
mailto:dimitri.kereselidze@universite-paris-saclay.fr
mailto:christelle.elie@irsn.fr
mailto:maamar.souidi@irsn.fr
mailto:baninia.habchi@inrs.fr
mailto:jean-charles.martin@univ-amu.fr
mailto:stephane.grison@irsn.fr
https://doi.org/10.3390/metabo12050421
https://www.mdpi.com/journal/metabolites


Metabolites 2022,12, 421 2 of 21

exposure (considered non-toxic) as these tests are designed to identify acute toxicity and 
are not relevant for the detection of delayed morbidity [14]. In order to estimate such a 
risk and to refine radiation protection and the medical monitoring of workers, it is first 
necessary to establish a relationship between biological signs and adverse physiological 
effects [15]. Using analytical techniques that are sufficiently sensitive and specific to discern 
an abnormal biological signal in the homeostatic background could be relevant for this 
purpose when identifying biological markers for low-dose NU exposure [16-18].

Thus, in the field of low-dose chronic contamination by NU, experimental studies 
conducted in rats have shown that metabolomics could effectively be used to detect the 
effects of low contamination [19] and reveal a non-linear dose effect combined with a 
time relationship [20]. Among the most discriminant features highlighted (which could 
be used to help to develop a diagnostic exposure test), the level of N-methyl nicotinamide 
decreased in urine metabolome in contaminated rats, as previously observed with high 
doses [21]. Nevertheless, it is also relevant to consider the acute exposure that can prevail 
with occupational accidents and that the biological effects of chronic exposure may differ 
from those of acute exposure [22,23]. Therefore, in order to define the biological kinetics of 
acute exposure to low doses of NU, several study periods must be defined for the purposes 
of identifying early, late, or permanent biomarkers that could be used in clinical follow-up 
for accidentally contaminated workers. Nevertheless, the identification of early markers 
of acute exposure seems relevant when focusing on the early period of the biological 
response to identify the most sensitive metabolisms and better understand the adverse 
effects of uranium.

In this context, this present study is based on time-course design in an in vivo rat 
model (Figure 1) where urine and plasma samples were collected periodically over 9 months 
after the exposure of young adult male rats to uranyl nitrate. The aims are to (i) investigate 
metabolomic signatures that are significantly altered in the first period after NU exposure, 
(ii) use it as a potential diagnostic test, (iii) highlight the most affected metabolisms between 
these early biomarkers to better understand the impact of acute exposure to low doses of 
NU, and (iv) provide new insights that can be used in radiation protection and health risk 
assessments [24].
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270 days
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(b) Calculation procedure for each model

Step 1 Step 2 Step 3 Step 4 Step 5

(c) Purpose of the study
I. Identify metabolomic signatures of exposure in the early period following acute internai exposure to low-dose uranium and compare 

them to thosepreviously observed in chronic exposure situations,
II. Use signatures as a pre-clinical diagnostic test model providing a proof of principle for future dinical test useable in the medical 

monitoring,
III. Identify the most impacted metabolisms from early biomarkers to better understand the biological effects of uranium,
IV. Provide scientific knowledges to improve the radiation protection and health risk assessment.

Figure 1. (a) Urine and plasma sampling times after acute exposure to NU and sampling time models 
defined for Partial Least-Squares Discriminant Analysis (PLS-DA). (b) Data processing pipeline 
patterns. (c) The main objectives of this study.

2. Results
2.1. Clinical Monitoring of Animais

Total body and kidney weights showed no significant statistical differences between 
the control and contaminated groups at euthanasia (Table 1). Nevertheless, statistically 
significant dose-dependent concentrations of NU in kidneys can be detected 270 days after 
exposure. According to chemical parameters, statistically significant differences can be 
seen exclusively for the higher-administrated (dose of NU (500 pg/kg) for magnesium, 
phosphorus, total proteins, and uric acid 5 days aCter exposute. These dysregulations 
were associated with a x 1.7 increase in the 24 h urinary volume on day 5, which can be 
associated with kidney failure. No similar effects can be seen 9 months later except for a 
slight increase in uric acid, also exclusively shown at the higher dose of NU. This shows, 
however, that the miaor early kidney failure suffered at the highes- administered dote of 
uranium seems to pers ist in the lang term, but less intens ely, indicating partial recovery 
and reversiblo kidney failure.



Metabolites 2022,12, 421 4 of 21

Table 1. Clinical parameters measured in urine and plasma samples on day 5 (a) and day 270 (b) 
and NU concentration in kidneys measured on day 270 after exposure. The number of rats for 
each measurement is indicated in parentheses. Results are significantly different for: * p < 0.05;
*** p < 0.001.

Experimental Groups (NU 
Doses)

Control (20) NU 0.5 pg/kg (20) NU 50 pg/kg (20) NU 500 pg/kg (20)

Time: Day 5
Body weight (g)
Urine analysis

352.22 ± 4.94 363.63 ± 3.8 346.87 ± 4.78 345.75 ± 5.25

Urine volume (g/24 h) 12.76 ± 0.78 13.97 ± 0.87 13.40 ± 0.73 23.34 ± 2.47 ***
Chlorine (mmol) 4.27 ± 0.35 4.69 ± 0.30 3.90 ± 0.34 3.40 ± 0.36
Creatinine (pmol) 97.26 ± 3.38 100.87 ± 2.01 96.32 ± 3.07 96.24 ± 3.81

(a) Magnesium (mmol) 0.15 ± 0.01 0.16 ± 0.01 0.14 ± 0.02 0.27 ± 0.02 ***
Phosphorus (mg) 0.52 ± 0.07 0.63 ± 0.06 0.57 ± 0.06 0.86 ± 0.07 ***
Potassium (mmol) 2.94 ± 0.22 3.05 ± 0.18 2.63 ± 0.16 2.62 ± 0.18

Sodium (mmol) 1.50 ± 0.08 1.62 ± 0.06 1.44 ± 0.08 1.48 ± 0.09
Total proteins (mg) 0.007 ± 0.001 0.006 ± 0.001 0.006 ± 0.001 0.05 ± 0.01 ***

Urea (mmol)

Time: Day 270
Uranium concentration in

13.49 ± 0.61 
88.83 ± 3.79

14.65 ± 0.45
93.45 ± 3.63

13.31 ± 0.60 
95.45 ± 4.80

13.30 ± 0.51
44.90 ± 8.09 ***

kidney (ng U/g) 10.15 ± 0.56 13.09 ± 1.05 * 12.84 ± 1.03 * 75.96 ± 14.64 ***
Kidney weight (g) 1.93 ± 0.05 2.03 ± 0.06 1.86 ± 0.05 2.00 ± 0.05
Body weight (g)
Urine analysis

636.83 ± 10.89 653.13 ± 12.91 612.13 ± 12.84 658.00 ± 12.60

Urine volume (g/24 h) 11.60 ± 0.75 10.86 ± 0.62 11.00 ± 0.50 13.59 ± 1.30
Albumin (mg) 4.16 ± 0.90 4.82 ± 0.84 4.12 ± 0.81 6.63 ± 1.14

Chlorine (mmol) 2.96 ± 0.19 2.96 ± 0.16 2.70 ± 0.19 2.93 ± 0.17
Creatinine (pmol) 115.36 ± 4.96 120.35 ± 3.31 114.88 ± 3.11 127.41 ± 3.50

(b) Glucose (mmol) 15.75 ± 0.86 15.57 ± 0.49 14.96 ± 0.51 18.50 ± 1.93
Magnesium (mmol) 0.18 ± 0.01 0.18 ± 0.01 0.17 ± 0.01 0.21 ± 0.01
Potassium (mmol) 1.57 ± 0.11 1.60 ± 0.09 1.50 ± 0.05 1.73 ± 0.10

Sodium (mmol) 1.08 ± 0.09 1.01 ± 0.07 0.93 ± 0.05 1.00 ± 0.07
Total proteins (mg) 58.06 ± 17.85 80.82 ± 24.73 51.38 ± 14.45 46.79 ± 10.04

Urea (mmol) 11.53 ± 0.56 11.73 ± 0.40 11.27 ± 0.35 12.38 ± 0.49
Uric acid (pmol) 19.39 ± 1.06 19.85 ± 0.80 19.70 ± 0.91 22.53 ± 0.86 *

Clearance (mL/min) 
Plasma analysis

1.62 ± 0.11 1.76 ± 0.11 1.75 ± 0.10 1.83 ± 0.134

Creatinine (pmol) 48.74 ± 1.46 47.47 ± 1.57 46.09 ± 1.93 48.82 ± 1.79
Urea (mmol) 4.71 ± 0.16 4.89 ± 0.24 4.71 ± 0.14 4.96 ± 0.13

2.2. Metabolic Profile Analysis ofMass Data Features
The first goal was to compare the previous results obtained in chronic exposure 

conditions with those obtained under acute exposure using the same analytical (C18 
chromatographic column) and biostatistical procedure [20].

2.2.1. Change in Urinary Metabolic Profiles over Time
When monitoring acute exposure on a long-term basis, it appears necessary to estimate 

the effect of aging on metabolomic profiles compared to low-dose ionizing radiation as a 
possible confounding factor.

A strong sampling time effect was demonstrated by the PCA (Figure S1a) and the 
PLS-DA with sampling time as the Y predictor variable confirmed this difference (CV- 
ANOVA p = 0, R2Y(cum) = 85.2%, Q2(cum) = 67.8%, data not shown). Significant drift 
occurred after 30 days. However, no clear dose effect was observed with PCA (Figure S1b) 
or when the PLSDA model was calculated at all times and doses with the dose effect as the 
Y dummy matrix (data not shown). This result can be explained by the strong variation
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in contamination due to varying NU intraperitoneal injections (IP). Therefore, the data 
processing procedure was appHed to refine the analysis. Either the pCA or the pLS-DA_ 
analyses m^cal^ thal: the effect of time/aging was much superior to that of NU dose 
contamination (Figure Sl). In this instance, the time effect was more contrasting from day 
30 and beyond (Figure 2).

Figure 2. Hierarchical clustering of obsesvations based on the 30 principal componept analyses (A,B) 
or 10 (C) or 20 (F)) PLS-DA components performed on all urine sampling times and NU doses. Each 
component influence is weighted according to its respective eigenvalue. Hierarchical classification 
analys is wlth Ward as the clustering method and tree sorte d by size. In (A), sample colors correcpond 
to sampling times; in (B), sample colors refer to NU doses. (C,D) redresent the c(rorr) vector, showing 
how well the X variables (mass features intensity) fit with the Y variables (either time factor in (C) or 
the dose foctor in (D)e. This vnctor can be eeen as the barycenter oa each time group or NU dose 
group. In (C), the time response was highly significant in PLS-DA analysis (P after cross-validation 
ANOVA = 0), whereas in (D), the dose response was not (P after cross-validation ANOVA = 1).

The results obtained from the PLS-DA of mass features show that there is no discrimi
nant variable common to all sampling time models (Suj^plementary Materials, 
Tables S1 and S2). However a total of 19 dUcriminant variablen in common between 
a1 least two oo the calculated models were selected and are predictive of uranium exposwre 
m ainly between 24 h and b0 days (e.g., Q2 > 0.5, Table S2).

Based on these resulss, contaminationbiomarkers apparently exist for the early period 
and others may potentially be more relevant foa the late period. Therefore, to Mentify 
these specific early biomarkers for the longest period following acute exposure regard- 
less os the time collection poinf discriminant variables common to consecutive periods, 
especially between model 1 and model 2 (i.e., early period between 24 h and 15 days, 
Table S1), were used to detect nine common discriminant variables. Control and low-dose 
contaminated rats were clearly differentiated in the new reduced PLS-DA model, from 
which a composite score was calculated and validated using the Area Under the Receiver 
Operating Characteristics curve (AUC-ROC = 1, Table 2). Two interesting biomarkers 
were detected from these nine discriminant variables, M137T39 and M184T138. These
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two variables were identified as the [M+H]+ i.oi^^ of 1-methylnicotinamide (0.05 ppan) .and 
4-pyridoxate (0.5 ppm), rerpectively, baned on the accurate m/z xnd retenti on timc value 
and on the similar CragmentaOion patterns obtained for a protonated compound 1010 from 
urine sdmple e and tho authentic standard solution (Supplementary Materials, Figure S2).

Table 2. Composite score based on the nine common discriminant biomarkers for the early period 
(24 h to 15 days range) in urinary C18 positive profiles for reduced models 1 and 2.

Model Individuals of Model 1 and Model 2 (24 h, 48 h, 5 d, 15 d) Metabolite FDR Fold Change Boxplot

Validation
parameters

R2Y(cum) = 840% 
Q2(cum) = 81.9% 

p value = 5.41155 x 1Q-34

Very good 
permutation 

test
M137T39 1.1906 x 10-10 20.262

Composite score 
équation

Score =
(1.10234 x 10-10 x M184T138) + (-5.44577 x 10-11 x 

tm:l;3=,^;3c>^ +
(-2.31 708 x 10-9 x M254T1481 + 7 - 1.■40:7-75 x 10-8 x 

M236T148) + (9.49838 x 10-12 x 1^11‘53’T134:^ + (-2.3777X x 
10-8 x M276T148) + (2.55785 x 10-9 x M13CT133) + 
(-4.47195 x 10-9 x M366T259) + (1.52073 x 10x9 x 

M108TX33) + 0.74-0<9<^;>

M236T148 4.0973 x 10-21
. ’ kJ
■

ü Tia.

MOB IÉ

M276T148 3.4084 x 10-19

M366T259 5.2434 x 10-14

X 1.878

8.2975

y ÉM ES

. —

1

•- 1 ■

■ as*

ROC curve

We then tentatively tried to confirma in a validation step if this composite score is 
valid in the high-dose centamination range. The same procedure (based on these nine 
discriminant variables charactesistic oif l ow NU doses laeforeî 15 days) was applied to control 
and contaminated groups wil;]:a the huie:^e^st: dose (5(tü |ig/tlcgi). lia this case, the calculated
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model effectively predicted the first three models run between 24 h and 30 days, whereas it 
was not possible to discriminate between non-contaminated and contaminated rats after 
30 days (Q2(cum) < 30%) (data not shown).

2.2.2. Time Effect in Plasma Profiles
In the same way as urine, with plasma samples, the PCA performed with all samples 

(all sampling times for exposed and non-exposed rats) was not able to differentiate between 
the different NU doses, whereas all sampling times could be differentiated with the third 
principal component (data not shown). However, if a time effect was confirmed by PLS-DA 
in plasma metabolome, no dose effect was observed (Figure S3).

As was the case for urine, no common discriminant variables for all sampling time 
models (Table S3) were detected.

Therefore, the variables in common to at least two models were selected, and new 
models were calculated using the 27 common variables (Table S4). The PLS-DA models 
and the composite score (AUC-ROC > 0.8) clearly differentiate between controls and low 
NU doses up to 30 days, whereas after 30 days, the 27 selected biomarkers are not able to 
differentiate between contaminated and non-contaminated rats (Table S4).

2.2.3. Long-Term Kidney Profile after Low-Dose Exposure
In order to highlight a possible residual metabolic effect on the kidneys, a metabolomic 

analysis was performed on renal tissue 9 months after exposure. Nine months after NU 
contamination, the rat's kidney profiles entered in the PLS-DA model were calculated with 
NU contamination as the predictor variable Y in the matrix, including all NU doses and 
control samples at 9 months. NU-contaminated rats could not be differentiated. In addition, 
no differentiation between the controls and the different doses of NU was validated even 
after selecting the variables (data not shown).

2.3. Metabolic Profile Analysis ofAnnotated Data Matrixes
Data obtained from C18 and hydrophilic interaction chromatography (HILIC) chro- 

matographic analyses and both ionization modes were annotated and merged into a single 
dataset fully annotated using our in-house database as described in the methods section.

Discrimination of Rats Contaminated with Low Doses of NU as a Function of Time in the 
Concatenated Urine and Plasma Annotated Data Tables

The same procedure was applied separately to the annotated urinary and plasma 
data matrixes (Tables S5 and S6). The results obtained from each biological matrix are 
summarized in the Supplementary Materials, because more worthwhile results were ob- 
tained from the application of the same procedure to the annotated concatenated urine 
and plasma data. As observed above for C18 positive ionization urinary and plasma data, 
sampling times were clearly differentiated with PCA. However, contaminated rats could 
not be clearly differentiated from non-contaminated rats (Figure S4).

The same calculation processing procedure for the PLS-DA model was applied to 
these concatenated urine and plasma data between control group and contaminated NU 
doses (0.5 and 50 pg/kg) for the three different successive sampling times (Table S7). 
Metabolites that are common to the different successive time groups were then selected, 
and new PLS-DA models were calculated based on these common metabolites. Six discrim- 
inating variables were detected in common between the different time models (Table 3). 
The PLS-DA calculated on the three models (from 48 h to 90 days) using these six com- 
mon discriminant variables was not validated (R2Y(cum) = 26.6%; Q2(cum) = 24.4%; 
p-value = 3.04766 x 10-15). However, the 1-methylnicotinamide metabolite is one of these 
six common discriminant variables. These results demonstrate that the metabolites asso- 
ciated with uranium exposure are not the same over time following acute exposure and 
different combinations of biomarkers are more specific to each period.
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Table 3. The discriminant variables detected in common to at least two models calculated between 
the control group and the low doses of natural uranium for different sampling times in annotated 
urinary and plasma data.

Biological Sample/Masse (g-mol-1/Retention Time (s)) Primary Name KEGG ID CAS HMDB/YMDB ID
6 common discriminant variables between ”M1 '", ”M2” and ”M3” (24 hto 5 days and 48 hto 5 days and 5 days to 30 days)

Urine_CP_M137T39 1-Methylnicotinamide C02918 1005-24-9 HMDB00699
Urine_CP_M90T38 Beta-alanine C00099 107-95-9 HMDB00056
Urine_CN_M221T43 D-glucurunolactone C02670 32449-92-6 HMDB06355
Urine_CP_M104T39_1 N,N-dimethylglycine C01026 1118-68-9 HMDB0000092
Urine_CN_M209T40
Plasma CP M166T208 and CP M120T208 and

Saccharate C00818 576-42-1 HMDB29881

CP_M149T208 or Urine_CP_M166T209 and
CP_M120T209 and CP_M149T209

L-Phenylalanine C00079 63-91-2 HMDB0000159

5 common discriminant variables between ”M1” and ”M2” (24 hto 5 days and 48hto 5 days)
Urine_CN_M145T258 and CN_M101T259 Adipate C06104 124-04-9 HMDB00448
Urine_CN_M133T46 and CN_M115T46 Malate C00149 97-67-6 HMDB00156
Plasma_HP_M424T124

acid-3a,12a-diol-7-one
C04643 911-40-0 HMDB0000391

Plasma_HP_M355T137

Plasma CN M475T491 and CN M443T491 and
acid-3a-ol-12-one No id. 5130-29-0 HMDB0000328

CN_M407T491 and CN_M453T491 Cholate C00695 81-25-4 HMDB00619

3 common discriminant variables between ”M1” and ”M3” (24 hto 5 days and 5 days to 30 days)
Urine_CP_M118T53 5-aminopentoate C00431 660-88-8 HMDB03355
Urine_CN_M159T299 and CN_M115T300 6-carboxyhexnoate C02656 111-16-0 HMDB00857
Urine_CP_M144T297 or Plasma_CP_M144T264 Tryptamine C00398 61-54-1 HMDB00303

22 common discriminant variables between ”M2” and ”M3” (48 hto 5 days and 5 days to 30 days)
Urine_HP_M96T134 2-Hydroxypyridine C02502 142-08-5 HMDB13751

Urine_HN_M165T118 and HN_M147T118
3-(2-hydroxyphenyl
propanoate C01198 495-78-3 HMDB33752

Urine_CN_M183T294 3-Hydroxybenzoate C00587 99-06-9 HMDB02466
Urine_CP_M134T291 5-Hydroxyindole No id. 1953-54-4 HMDB59805
Urine_CP_M126T46_2 5-Methylcytosine C02376 58366-64-6 HMDB02894
Urine_CP_M118T40 Betaine C00719 107-43-7 HMDB00043
Urine_CP_M112T40 Cytosine C00380 71-30-7 HMDB00630
Urine_CP_M209T375
Urine_CN_M217T39_2 and CN_M227T38 and

dl-benzylsuccinic acid C09816 884-33-3 HMDB0142179

CN_M181T38 Sorbitol C00749 50-70-4 HMDB00247

Urine_HP_M110T838 Hypotaurine C00519 300-84-5 HMDB00965
Urine_CP_M176T374 and CP_M130T374 Indole-3-acetate C00954 6505-45-9 HMDB00197
Urine_CN_M185T40
Urine_CP_M166T209 and CP_M120T209 and

Pentose No id. No id. No id.

CP_M149T209
L-phenylalanine C00079 63-91-2 HMDB0000159

Urine_CP_M182T82_1
L-Threo-3-Phenylserine
(DL-3-Phenylserine) C03290 6254-48-4 HMDB0002184

Urine_CN_M308T40 N-acetylneuraminic acid C00270 131-48-6 HMDB0000230
Urine_CN_M206T343 N-acetylphenylalanine C03519 2018-61-3 HMDB00512
Urine_CP_M247T361 N-acetyltryptophan C03137 87-32-1 HMDB0013713
Urine_CP_M116T42 Proline C16435 147-85-3 HMDB00162
Urine_CN_M166T56 and CN_M122T56 Quinolinate C03722 89-00-9 HMDB00232
Urine_HP_M205T683 and HP_M188T684 Tryptophan C00525 153-94-6 HMDB13609
Plasma_CN_M157T39 Allantoin C01551 97-59-6 HMDB00462
Plasma_CP_M130T52 and CP_M84T51 Pipecolate C00408 3105-95-1 HMDB00716

However, 36 discriminant variables are in common to at least two models (Table 3 and 
Table S8 for more details). The PLS-DA models calculated from these metabolites effectively 
predicted the rat status between 48 h and 30 days (R2Y(cum) = 55.3%; Q2(cum) = 48.5%; 
p-value = 2.89677 x 10-24) and showed good permutation tests. However, the contamina
tion prediction appeared less robust after 30 days (Q2(cum) < 38%). Beyond 30 days, other
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metabolites spécifie to the later period (between 15 to 90 days) are needed to differentiate 
between the control and contaminated groups (Table 3 and S8).

3. Discussion
While studies using targeted [25,26] and non-targeted [27] analyses have looked at 

the effects of high- and low-dose chronic exposure to uranium [12,28,29] to assess health 
risks [30], the effects of acute low-dose exposure to uranium are still poorly described, even 
though they are a part of the occupational exposure faced by nuclear workers. To fill this 
gap, identifying biological signatures that could be used to diagnose the sub-toxic effects 
of low-dose internal exposure would be relevant to improving the radiation protection 
and medical monitoring of nuclear workers. Thus, in this present study, variations in dose 
effects over time were monitored by metabolomic analysis to detect specific biomarkers of 
acute low-dose exposure to NU.

Regarding zoometric and clinical monitoring, total body and kidney weights did not 
differ between the control and NU-contaminated groups of animals. Nonetheless, for the 
highest dose used (500 gg/kg), the statistically significant deregulation observed in urine 
for renal chemical markers (magnesium, phosphorus, total proteins, and uric acid) and the 
increase in 24 h urine volume reveals its toxicity and exclude it from the low-dose range. 
Thus, this dose can be considered as a high dose for which renal failure was observable 
between 5 days after contamination to 9 months. This is highlighted by the detection 
of a slight increase in urinary uric acid associated with a significant increase in the NU 
concentration measured in kidneys (Table 1). Renal NU retention seems to increase with 
the dose and persist for a long time after exposure. Unsurprisingly, kidneys and bones 
are known to be biological uranium reservoirs. Progressive release through bone turnover 
can thus partially explain this long retention time observed in kidneys [31]. Furthermore, 
given that xenobiotic toxico dynamics are closely related to toxicokinetics, the longer the 
NU is stored, the more cytotoxic it will become in the kidney [32,33]. Nonetheless, if this 
high dose can induce lasting kidney damage, it also appears that kidney injuries seem 
to decrease over time, indicating recovery. For the lower two doses used, residual NU 
concentrations and measured levels of urinary clinical markers are close to the values 
measured in control animals. This confirms the absence of renal failure and indicates that 
these doses are in the low-dose range. To assess the underlying biological effects of such a 
low level of exposure, a highly sensitive analytical approach, such as metabolomics, can 
be used to measure molecular dysregulations that could act as predictive markers of renal 
sensitivity or even risk indicators for subsequent morbidity [34].

With this aim, it seems relevant to first compare the effects of acute exposure with those 
previously observed in chronic exposure to uranium, by using the same Data Processing 
Pipeline for which only the most discriminant signals were chemically identified from the 
LC-MS signals measured [20].

As shown previously with chronic contamination [20], a significant effect of aging 
on metabolism is observable. It seems necessary to estimate the impact of age as a con- 
founding factor [16,35] in order to identify specific early biomarkers for low-dose NU 
exposure or reduce the time window of the analyses. As expected in this present study, 
the effect of aging is clearly superior to that of the dose-effect relationship measurable in 
the urinary and plasma metabolomes. Indeed, by combining all sampling times in one 
single statistical analysis, a significant time effect was observable in the PCA and PLSDA 
(Figures S1a and S3a) for both urine and plasma samples. A dose-effect relationship could 
not be revealed (Figures S1b, S3 and S4) and no common discriminant variable was iden
tified between all times models (Tables S1 and S2). Here, too, the effect of aging is more 
important than the effect of acute low-dose exposure to NU and no constant metabolic 
pattern signifying contamination was observable. Aging is an endogenous factor that 
interferes with the effects of low doses of NU and must be taken into account [35].

According to initial results on the effects of NU, the absence of metabolomic per
turbation observable 9 months after exposure in renal tissue may suggest the absence of
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long-term sequelae. Moreover, in the absence of morbidity, the changes in effects observed 
could be explained by a homeostatic return a few weeks after contamination. Nevertheless, 
biomarkers of contamination for the early period and others signifying the late period can 
be detected in both urine and plasma by dividing the temporal data into different study 
models. A statistical score that can be used as a diagnostic test for uranium exposure can 
also be calculated [36] from the respective concentrations of these metabolomic markers for 
low-dose range exposure, thus compensating for the lack of sensitivity of clinical tests.

Early effects are observable in urine samples by PCA for the first 30 days after exposure 
(relatively unaffected by aging as a clear time effect is observed after 30 days) and then 
change between 30 and 90 days. Nine common discriminant features exist between the 
first two sampling models run between 24 h and 15 days (Figure 1). The composite score 
calculated from these models clearly differentiated between 24 h and 30 days at a low dose 
level and was efficient beyond this level for the group exposed to the high dose (500 gg/kg). 
In addition, this score can be used for longer, up to 30 days, at high doses (instead of 
15 days for low doses), while 19 features common to at least two models are required at 
low doses to diagnose animals exposed during the first 30 days. At low doses, few features 
appear necessary to identify exposed and unexposed animals during the first 15 days after 
exposure, when the effects of NU are certainly most intense. Conversely, over a longer 
period, a greater number of markers will be needed to predict a diminishing biological 
effect. It should also be noted that this dose-response relationship can be extended over 
time (up to 30 days) when the dose of NU is higher (500 gg/kg). This close relationship 
between dose and time suggests that these nine features may be surrogate markers for 
exposure, as previously shown in a study of chronic NU exposure, where effects appeared 
earlier as the dose increased [20]. Due to these temporal dose-response relationships, these 
diagnostic scores could also reflect the severity of exposure. As one of the main objectives 
of this study was to compare the effects of this acute NU exposure with those of chronic 
exposure, it is interesting to note that 1-methylnicotinamide (NMN), already identified as 
deregulated in urine by chronic NU contamination [20], was detected among these nine 
early markers of acute NU exposure. According to current knowledge and experimental 
observations, NMN increases in the renal cortex and plasma and decreases in the urine 
of rats exposed to a high toxic dose of uranium [21,37], also associated with the effects of 
chronic low-dose exposure in urine and renal tissue [27]. Others have also identified NMN 
in the salivary analyses of Kuwaiti adolescents living in an area contaminated by uranium 
during childhood [38]. Thus, these observations suggest that NMN metabolism could be 
impacted by uranium exposure and, in addition, could be a marker for renal sensitivity 
through membrane transporter interaction (OCT2) in tubular cells [21,39,40]. NMN is also 
a metabolite of niacin, the B3 vitamin. This raises the hypothesis of therapeutic treatment 
for NU contamination and certainly deserves an evaluation using NU-treated rats.

In addition to urinary analysis, plasma analysis could offer a more complementary 
view. As in urine, discriminating variables related to time have been detected in plasma 
samples. The statistical model calculated using the common discriminant variable for 
the first sampling periods is predictive up to 30 days and shows that these discriminant 
variables vary, especially before and after 30 days, where a break in metabolomic profiles is 
clearly observed. Unlike urine, no biomarker linked to the nicotinate-nicotinamide pathway 
could be detected in the plasma. Nevertheless, the validation of the discriminant profile 
obtained in plasma using the ROC curve is robust and, as with urine, can be used to establish 
a reliable diagnostic test model, at least during the first month after acute contamination. 
Finally, to deepen clinical observations made 9 months after exposure for both urine 
and plasma samples, a metabolomic analysis was run based on renal tissue biopsies and 
showed that under our experimental conditions, it was not possible to differentiate between 
contaminated and non-contaminated animals. Thus, this result seems to confirm the clinical 
analysis that low doses of uranium do not cause lasting biological damage for kidneys.

In a second step, the objective is to further this study with a targeted analysis of 
signals exclusively identifiable by spectral databases to initially eliminate spurious signals
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that may be sources of redundancy and confusion in the statistical analysis [41]. This 
methodological approach should make it easier to interpret results by focusing exclusively 
on a large dataset of fully identified metabolites.

From the pre-annotated and combined data matrixes, a time/aging effect much larger 
than the treatment effect (NU) is again observable by PCA. This is demonstrated by the lack 
of general differentiation between contaminated and non-contaminated rats. However, PLS 
analysis identified six discriminant variables common to the different temporal patterns 
analyzed between 48 h and 30 days after exposure (Table 3). Among these variables, 1- 
methylnicotinamide (NMN) was systematically identified and associated with a decrease 
in its urinary clearance in contaminated animals. This result seems to confirm its ability to 
act as an endogenous biomarker sensitive to NU.

Furthermore, a set of 36 discriminating metabolites detected in at least two temporal 
models was selected and the new statistical model calculated using this set effectively 
predicts outcomes between 48 h and 30 days. This result thus confirms the existence of early 
NU biomarkers (before 30 days post exposure) and later biomarkers (Table 3, S7 and S8). 
Regarding these 36 discriminating metabolites, it can be assumed that different metabolic 
pathways could be affected by uranium. The results showed that indoleacetic acid and 
tryptamine may be related to the tryptophan metabolism, which is also related to the 
nicotinate-nicotinamide pathway by quinolinic acid and 1-methylnicotinamide, as targeted 
by the early NU markers, as observed after chronic exposure [27].

Interestingly, nicotinate-nicotinamide metabolism (related to 1-methyl-nicotinamide) 
has also been identified as deregulated by other sources of oxidative stress, such as gamma 
rays [42]. Tryptophan metabolism is also involved in inflammatory processes [43] and in 
several diseases, including chronic kidney disease [44]. Three main pathways arise from 
tryptophan metabolism: the aryl hydrocarbon receptor (AhR) signaling pathway and the 
kynurenine (KP) pathway that are involved in the immune response [45,46] and, finally, the 
serotonin pathway [47]. The AhR pathway, which may have an anti-inflammatory effect 
by regulating signaling cytokines processes [46], seems to be particularly affected by the 
dysregulation of L-tryptophan, tryptamine, and indole acetic acid. Indoleacetic acid is also 
a by-product of 5-hydrotryptamine (serotonin), whose pathway has been identified as a 
target of uranium [48] (Figure 3b). The kynurenine pathway, which leads to nicotinamide 
adenine dinucleotide (NAD+) via quinolinic acid, is also deregulated by uranium and 
linked to nicotinate-nicotinamide metabolism (already known to be affected by uranium) 
(Figure 3a).
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Figure 3. Main pathways targeted by NU at low doses: The main discriminating metabolites identified 
in urine and plasma are in white boxes. They show that tryptophan and nicotinate-nicotinamide 
metabolism (https://smpdb.ca; 2021) represent the main targets of acute NU exposure: (a) the kynure- 
nine pathway leading to nicotinate-nicotinamide metabolism and NAD+ synthesis and (b) the serotonin 
pathway are both highlighted by the metabolomic analysis of urine and plasma samples collected at dif
ferent times following the exposure of rats. The heat maps associated with each discriminating metabolite 
show both their relative levels change (green decrease and red increase) and the corresponding time for 
it was identified as the most discriminating (black if not significantly discriminating).

Other discriminant metabolites, such as betaine, which is an amino acid derivative, 
may have possible anti-inflammatory, antioxidant [49,50], and anticarcinogenic effects [51]. 
In addition, dimethylglycine is a metabolite involved in betaine metabolism, similar to 
dimethylglycine, and has also been associated with normal kidney function. The betaine 
metabolism here marked by betaine and dimethylglycine has been also associated with a 
normal kidney function [52]. Note that its antioxidant effects may reduce genotoxicity, as 
observed in the liver, by the effect of ionizing radiation [53,54] and help tolerate oxidative 
stress of heavy metals [55]. Finally, glycine and betaines are renal osmolytes that can be 
increased in urine (as observed in this study) in the case of renal disease and diabetes [56].

In addition, hypotaurine may be associated with inflammation through its antioxidant 
role and involvement in heavy metal detoxification processes [57-61 ] and may also have a 
wider impact on taurine metabolism [62], which appears to have a beneficial role in renal 
disorders [63]. Other discriminating metabolites, such as gluconolactone and saccharate, are 
glucuronic acid derivatives involved in the glucuronidation of toxic compounds. They are 
also involved in the phase II detoxification process of many endobiotics or xenobiotics. Fi- 
nally, amino acid metabolism that can be related to betaine, dimethylglycine, phenylalanine, 
L-phenylalanine, L-pipecolic acid, beta-alanine, beta-alanine, L-proline), carbohydrates 
(pentose), the citric acid cycle (L-malic acid), and allantoin may also be associated with an 
inflammatory state or renal disorders, such as chronic renal failure [64-66].

All these results reveal the existence of different metabolic profiles that could be 
associated with variations in effects over time. These molecular profiles could also be 
used to calculate score values, which could be used as a diagnostic test for the effects of 
accidental exposure to low doses of NU. However, it is once again noted that composite 
biomarkers designed for short-term use (<30 days) cannot be effective over a long period of 
time because the panels of bioindicators indicated shift over time. Thus, for more extensive 
follow-up, it would be necessary to use sets of biomarkers specific to the short term and 
others for the long term.

This alternative method can also be used to diagnose contaminated animals over 
a 30-day period. As NU effects appear to decrease progressively in intensity over time, 
53 additional variables were necessary to construct a discriminative, significant, and predic- 
tive model (Model 3, Table S7). Nevertheless, when the dose of NU is higher (500 pg/kg),

https://smpdb.ca
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persistent effects can be observed beyond 15 days, up to 30 days after exposure. This result 
suggests that the persistence of the effect is highly dependent on the dose and that the 
early metabolomic profile observed could be highly specific to NU exposure. Similarly, 
the diagnostic test defined at low doses becomes more accurate over a longer period of 
time, in proportion to the dose received. Plasma and urinary matrixes were then analyzed 
separately (Tables S5 and S6) to obtain a view that relates more and directly to biological 
compartments. A total of 3 of the 95 most discriminating urinary metabolites distributed 
across the different time sampling models are related to nicotinate-nicotinatide metabolism 
and 8 to tryptophan metabolism (Table S5). The impact of uranium is observable for 90 days 
after exposure. In plasma, 60 discriminating variables were identified, including nicoti- 
namide, which is also a part of the nicotinate-nicotinamide pathway, and other metabolites 
related to tryptophan metabolism (Table S6). Interestingly, this approach reveals serotonin 
deregulation in urine that was not revealed by the combined matrix analysis. A previous 
study had indeed shown that the serotonin pathway could be affected by NU [48], although 
this was not clear [67]. Thus, while the global analysis including both plasma and urine 
summarizes the main information on observable effects, the separate and specific analysis 
of biological compartments allows for a more in-depth observation of the mechanistic 
processes that may be involved in a biological effect while providing a more comprehensive 
view of all deregulated metabolites (Figure 3). Similarly, despite a significant time effect, 
the discriminating models obtained, combined with excellent validation scores for the ROC 
curve, confirm that it is also possible to establish diagnostic tests from urine or plasma 
samples exclusively using this method.

To conclude this section, targeted analysis of annotated data appears to be more 
attractive for mechanistic studies than direct analysis of mass signals [68] due to the 
limited coverage of metabolites referenced in spectral databases and the fact that the risk 
of interference from unidentified ionization adducts may also be significant at the risk of 
degrading the statistical analysis of the data.

In addition, the targeted analysis of the annotated arrays confirmed the previous 
results for the nicotinate-nicotinamide pathway and reinforced those obtained for the 
tryptophan pathway [27].

4. Materials and Methods
4.1. Materials

Ultra-pure water from a Milli-Q® system (Merck Millipore, Guyancourt, France) 
was used. Acetonitrile and formic acid of the highest commercial grade were obtained 
from Sigma Aldrich Chemicals (Fontenay-sous-Bois, France). Natural uranium (NU, Mc 
Arthur) was obtained from CERCA (Pierrelatte, France). Uranyl nitrate hexahydrate 
(UO2(NO3)2-6H2O) was prepared in a saline solution (NaCl) to obtain three different 
concentrations of uranium (0.5; 50; and 500 gg/kg).

4.2. Animal Treatment and Sample Collection
In all, 80 Outbred Sprague-Dawley rats (8 weeks old) were obtained from Charles 

River Laboratories (L'Arbresle, France). They were housed and maintained in a monitored 
environment (temperature 21 ° C and 50% humidity) under a reversed light-dark cycle 
(dark from 20:00 p.m. to 08:00 a.m.). The rats were split into 4 groups (20 rats/group) 
and exposed by the intraperitoneal injection of NU at the concentrations of 0.5, 50, and 
500 gg/kg for the three contaminated groups. The control group was injected with a 
saline (NaCl) solution. Urine and plasma samples were collected periodically throughout 
the experimental protocol at six and seven sampling times, respectively, for metabolomic 
analysis. Sampling intervals were shortened during early post-exposure times to focus 
on the early biological effects of uranium. In addition, to verify the long-term absence 
of any risk of renal impairment potentially caused by such exposure and thus confirm 
that the lowest doses used in this study are non-toxic, urine and plasma were collected at 
9 months (270 days) for clinical monitoring. All animals were euthanized at 9 months old,
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and kidney samples were stored at -80 °C prior to analyses. The experimental procedures 
were approved by the Animal Care Committee of the Institute of Radioprotection and Nu- 
clear Safety (IRSN) and complied with the French regulations for animal experimentation 
(Ministry of Agriculture Act No. 87-848,19 October 1987, modified 20 May 2001).

4.3. Clinical Monitoring
4.3.1. Animal Monitoring

Throughout the experimental protocol, the physical condition of each animal was 
monitored daily, water consumption weekly, and body weight gain at each sampling time 
during the early time after contamination by NU (24 h to 30 days) and monthly beyond 
to ensure good health and housing conditions. At euthanasia, kidney weights were also 
measured to detect any pathological features of the kidneys.

4.3.2. Chemical Monitoring in Urine and Plasma Samples
Biochemical measurements of thawed urine and plasma samples were taken with an 

automated spectrometric system (Konelab 20 from Thermo Electron Corporation, Cergy- 
Pontoise, France) and the manufacturer's biological chemistry reagents and protocols. 
For the purposes of diagnosing kidney failure, some biochemical and clinical parameters 
were measured in urine, including volume/24 h, albumin, chlorine, creatinine, glucose, 
magnesium, potassium, sodium, total proteins, urea, and uric acid. Creatinine and urea 
were measured in plasma. Creatinine clearance was calculated to estimate the glomerular 
filtration rate. Biochemical and clinical parameters are reported as the means ± the standard 
error of the mean (SEM). Statistics were performed with SigmaStat statistical software (SPSS, 
Paris, France) to calculate items such as Student's t-test in normal populations or the rank 
sum test in non-normal populations in order to compare the control and contaminated 
groups. Statistical significance was defined by a p-value less than 0.05.

4.3.3. Uranium Level in Urine and Kidney Samples
To measure NU burden in kidneys and urine, kidney samples were prepared by 

adding 8 mL of ultrapure nitric acid (69%) and 2 mL of hydrogen peroxide (30%) and 
then mineralized in a 1000 W microwave (Ethos Touch, Milestone Microwave Laboratory 
Systems, Sorisole, Italy) heating at a rate of 9 degrees per minute up to a temperature of 
180 ° C, which was then maintained for 10 min. The urine samples were only diluted before 
measurements. Samples were analyzed by ICP-MS (XSERIES 2, ThermoElectron, Villebon- 
sur-Yvette, France). Experimental conditions were optimized by using a multi-element 
standard solution (Thermo Electron, Villebon-sur-Yvette, France), and bismuth 209 was 
added to all samples as an internal standard at 1 gg L-1. A calibration curve was calculated 
based on a standard solution of uranium (Spex, Horiba Jobin Yvon, Longjumeau, France) 
at 1000 mg L-1 in 2% nitric acid freshly diluted to obtain 0, 0.001,0.005,0.01,0.1,0.5, and 
1 gg L-1 in 2% nitric acid. A linear relation-count number (iU) = f([iU]) was calculated 
for each isotope, i = [235;238] with [iU] equal to the isotope concentration in gg L-1. The 
ICP-MS limit of detection for uranium is 1 ng L-1.

4.4. Metabolomics Analysis
In order to minimize the analytical variability inherent in preparation and analysis, 

all group samples were first randomized, prepared, and analyzed in different analytical 
batches (80 to 100 samples by batch).

4.4.1. Sample Preparation
a. Urine samples

Urine samples were placed in a centrifuge for 15 min at 11,000 rpm and 4 °C, and the 
supernatant was diluted with ultrapure water (1:4 v/v). The samples were again placed 
in the centrifuge for 20 min at 11,000 rpm and 4 ° C, and 30 gL of the supernatant was 
transferred into HPLC vials and stored at -80 °C prior to analysis.
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b. Plasma samples

Plasma samples (40 pL) were diluted and homogenized with 400 pL of cold methanol 
(-20 °C), followed by incubation for 30 min at -20 °C to precipitate proteins. The samples 
were then placed in a centrifuge for 15 min at 11,000 rpm and 4 °C. Plasma supernatant was 
collected in a centrifugal filter (VWR®, Rosny-sous-Bois, France, 10 KDa) and centrifuged a 
second time for 45 min as previously. The supernatant was dried under a stream of nitrogen 
and stored at -80 °C until analysis. Dried plasma extracts were dissolved in 100 pL of 
water/acetonitrile (90/10, v/v). Samples were vortexed for 1 min and placed in a centrifuge 
for 15 min at 11,000 rpm and 4 °C. A total of 30 pL of the supernatant was transferred into 
HPLC vials and stored at -80 °C prior to analysis.

c. Kidney samples

An amount of 20 mg of kidney tissue was added to 600 pL of prechilled methanol 
and homogenized for 5 min at 25 Hz in a mixer mill powerful grinding system (MM400, 
Retsch Technology, Éragny, France). Samples were incubated for 30 min at -20 °C and 
centrifuged for 15 min at 11,000 rpm and 4 °C. The supernatant was collected in centrifugal 
filters (VWR®, France, 10 K) and centrifuged a second time for 45 min and dried under 
nitrogen flux. The dry residue was re-dissolved in 200 pL of water/acetonitrile (50/50, v/v) 
and centrifuged as previously. Finally, the supernatant was transferred into HPLC vials 
and stored at -80 °C prior to analysis.

d. Quality control (QC) and blanks

A quality control sample (QC, a pool of all samples of a biological matrix) was injected 
several times at the beginning of each batch for column equilibration and interspersed 
every set of 5 samples throughout the experimental sequence to evaluate the data quality 
(repeatability, drift correction). Some initiatives recommend the use of internal standard 
in the samples as a more robust procedure to monitor the performance of the analytical 
system and peak alignments [69]. However, there is yet no formal recommendations on 
how and what internal standards to be used in metabolomic experiments, compared to 
the use of QC samples, for instance. MS/MS experiments were also performed on the QC 
sample at the end of the sequence to improve metabolite annotation by comparing the 
MS/MS spectra with our in-house database, comprising over 800 metabolite standards. In 
addition, an extraction blank of the solvent mixture was prepared at the same time as the 
biological samples. The extraction blank was analyzed at the beginning of the experimental 
batch sequence.

4.4.2. Liquid Chromatography Mass Spectrometry Analysis
All samples were analyzed using an Orbitrap (Q-Exactive Plus, Thermo Fisher Scien- 

tific San Jose, CA, USA) hyphenated to a high-performance liquid chromatography system, 
Surveyor LC (Thermo Fisher Scientific). LC-MS experiments were acquired in polarity 
switching mode in the m/z 80-1000 range with a mass resolving power of 35,000 full 
width at half maximum (FWHM). The following ESI conditions were applied: electrospray 
voltage of 3.5 kV, an S-lens RF level of 55, and a capillary temperature of 320 °C. The sheath 
gas flow (nitrogen) was set at 30 arbitrary units (a.u.). Sheath gas, auxiliary gas, and sweep 
gas flow rates were maintained at 30, 8, and 0 arbitrary units (a.u.), respectively.

Chromatographic separation was performed using two column types to enlarge the 
metabolome coverage. For reversed phase (RP) chromatography, a Hypersil Gold C18, 
100 x 2.1 mm x 1.9 um (Thermo Fisher Scientific, Illkirch, France) was used with a mobile 
phase consisting of water plus 0.1% formic acid (A) and acetonitrile plus 0.1% formic acid 
(B) at a flow rate of 0.4 mL/min and a column temperature of 40 ° C. The gradient started 
at 0% (B) for 1 min, decreased to 100% (B) over 10 min, was maintained at 100% B for 
2 min, and then returned to 0% (B) in 1 min and equilibrated the column at 0% (B) for 
2 min (16 min in total). For hydrophilic interaction liquid chromatography (HILIC), a 
Sequant zicHILIC 5u, 200A, 150 x 2.1 (Merck, France) column was used at a flow rate of
0.25 mL/min and the mobile phase consisted of water plus 16 mM ammonium formate (A)
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and acetonitrile plus 0.1% formic acid (B) at a column température of 25 ° C. The gradient 
started at 97% (B) for 2 min, decreased to 70% (B) over 8 min and to 10% (B) in 5 min, then 
was maintained at 10% (B) for 2 min, was returned to 97% (B) in 1 min and held at 97% 
(B) until the end of the gradient for column equilibration (27 min in total). The injection 
volume was 5 pL for both columns.

Tandem mass spectrometry (MS/MS) experiments were performed on the top five 
monoisotopic peaks using positive and negative ionization mode separately in the m/z 
80-1000 range with a mass resolving power of 17,500 FWHM. The higher collision dis
sociation (HCD) condition was used with the following parameters: isolation width of 
precursor ions of 2 u, activation time of 50 ms, and normalized collision energy of 30% 
(arbitrary units).

4.4.3. Data Pre-Processing and Statistical Analyses 
a. Data pre-processing

Raw LC-MS data were converted from profile into the centroid mzXML file format. 
The data generated were pre-processed using XCMS script operated under R language 
(R version 3.4.0; 2018, The R Foundation for Statistical Computing, Vienna 2017, https: 
//www.r-project.org). The XCMS procedure was applied in four main steps: peak picking, 
peak grouping, retention time correction, and a second peak grouping step. The centWave 
method and a non-linear LOESS alignment method [70] were used to extract peaks and for 
a retention time drift correction, respectively. For missing values, the peak filling method 
was applied to determine the intensity of the peaks from the raw data.

Once the raw data matrix was created, a filtration step was applied to remove variables 
with a poor extracted-ion chromatogram (EIC), a poor peak shape, and/or blank intensities 
greater than or equal to those found in data from the biological samples. In a second step, a 
normalization method was applied using a non-linear LOESS intensity correction based on 
the repeated injections of QC samples during the sequences in order to correct intra- and 
inter-batch drift. After this normalization phase, a second filtration step was applied by 
removing variables with relative standard deviation (RSD) in QC injections higher than 
30%. Finally, a second data normalization phase was applied if needed (i.e., UV scaling 
or/and pareto scaling to enhance the relative importance of small peak intensities while 
keeping the data structure relatively intact).

Regarding metabolite annotation and the selection of discriminant variables, all de- 
tected ions were putatively annotated or identified thanks to an internal database of 
approximately 800 standards dedicated to each metabolomic analytical method and specific 
to each molecule, with the corresponding accurate m/z, RT, formula, and fragmentation 
spectrum. The experimentally accurate m/z and RT values were used to query the internal 
database with a mass error below 5 ppm and RT difference below 0.5 min using an auto- 
matic search tool freely available in the Workflow4Metabolomics collaborative portal [71]. 
To ensure the best metabolite annotations, we simultaneously considered the different pro- 
posals obtained for both columns and both ionization modes. If a metabolite was detected 
in different adduct forms in both ionization modes and/or both columns, the correlation 
coefficient was calculated between the corresponding adducts to confirm the annotation. In 
a second step, the different adduct intensities detected in the same ionization mode and the 
same column were summed and only one proposition was retained between the different 
columns and the ionization mode with the lowest RSD in the pool injections and/or the 
lowest mass measurement error. In addition, when the MS/MS spectrum was available (if 
the peak intensity for ions in the QC sample was high enough), it was compared with the 
standard MS/MS spectrum.

The most discriminant variables in a partial least squares discriminant analysis (PLS- 
DA) model were selected according to the variable importance in projection (VIP) of 
the PLS algorithm. Finally, metabolomic data were analyzed and discriminant variables 
were interpreted using Metaboanalyst 4.0 [72], SIMCA 17, and Excel 365 to calculate the 
composite score. The composite score is calculated with the NIPALS algorithm using the

https://www.r-project.org
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partial PLS corrélation coefficients of relevant variables (metabolites) and combining them 
into an equation used to predict the class of new individuals [73-75].

b. Data processing

Multivariate statistical analyses were performed using SIMCA-P+ 12.0 software (Umet- 
rics, Umeâ, Sweden) and Metaboanalyst [76]. Principal component analysis (PCA) was 
applied after each pre-processing step to view data and detect outliers. PLS-DA models 
were validated by CV-ANOVA and a permutation procedure to check overfitting.

According to the rate of NU in urine measured at 24 h, the uranium contamination 
level varies significantly due to heterogeneous NU intraperitoneal (IP) injections. A pre- 
treatment procedure based on data selection and cleaning was, therefore, applied using 
a supervised multivariate analysis to overcome this variation in contamination. The goal 
was to calculate a predictive equation (composite score) based on low doses (0.5 and 50 
gg/kg) from the most clearly differentiated individuals in order to predict new samples. 
Groups of three sampling times were created in order to maintain enough individuals in 
each statistical model (Figure 1a). In step one, a PLS-DA model was calculated between the 
control group and each contaminated group (0.5 and 50 gg/kg) for each of the first three 
sampling times (Figure 1a,b). The calculated models were validated in most cases, but 
some control and contaminated samples were misclassified. The overlapped samples were 
filtered to improve final differentiation, then a new PLS-DA model was calculated for the 
individuals retained from both doses (i.e., dose 0.5 and 50 were grouped into a low-dose 
group). In addition, variables were selected according to VIP and a new validated PLS-DA 
model was generated and used to compute a composite score (Figure 1b). The same proce
dure was applied after shifting the time window to the next sampling step and so on, as 
showed in (Figure 1a). Each composite score was validated based on the receiver operating 
characteristic (ROC) curve calculated using Metaboanalyst. In order to identify biomarkers 
relevant for uranium contamination irrespective of sampling time, metabolites in common 
to at least two models were selected, and a new model was calculated. In step two, if the 
different successive time groups shared common metabolites (i.e., model 1 and model 2 in 
Supplementary Materials, Table S1), a reduced composite score was calculated and this 
equation was used to evaluate the effectiveness of these metabolites in predicting the 
individuals of model 1 and model 2 and then the possibility of predicting the individuals 
previously eliminated in the filtration steps.

This procedure was applied to the C18 positive ionization mode data matrix in order 
to compare the results with those previously published [20] under the same analytical 
conditions on chronic exposure data. Then, to improve biological data mining based on the 
metabolites identified, the same procedure was applied to the annotated metabolites from 
the four concatenated matrixes of each biological matrix (positive and negative ionization 
modes for HILIC and C18 columns).

Finally, in order to group discriminating data according to their involvement in 
metabolisms and biological functions, pathway enrichment was analyzed with the specific 
MetaoAnalyst module (https://www.metaboanalyst.ca/, 2019) using the Small Molecule 
Pathway Database (https://smpdb.ca/, 2019).

5. Conclusions
To conclude, although further analysis is required, the results obtained in this study 

show that different metabolic pathways can be affected by dose exposure to uranium 
at levels below renal failure. The metabolomic disrupts can mainly be observed on the 
nicotinate-nicotinamide pathway and tryptophan, which are already known to be involved 
in inflammatory processes. Other metabolites could be implicated in betaine, taurine, and 
glycine metabolisms, which are involved in antioxidant and detoxification processes, as 
well other. Carbohydrates, amino acids, allantoin, citric acid cycle, steroids, phospholipids, 
and fatty acids also appear to be possibly targeted by uranium and may contribute to 
biological mechanisms associated to an increase in oxidative stress. This study provides 
proof of principle that a composite score calculated from the respective weights of the

https://www.metaboanalyst.ca/
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biomarkers identified as highly discriminant in the statistical model (PLS) could be used 
as a preclinical diagnostic test to monitor biological effects of exposure to NU over time 
and thus in a societal context, identify low contamination effects and predict a risk of late 
morbidity to NU. To complete the study and improve knowledge on uranium toxicity, 
it would be worthwhile to identify endogenous and exogenous factors likely to increase 
renal sensitivity to NU and the vulnerability of individuals, such as aging, genetic factors 
associated with the sex, and ethnic origins. Other environmental parameters, such as 
pollution, disease, or drug intake, may also be considered as co-factors of exposure and 
aggravating factors. In further work, they must be taken into account to validate biological 
markers as health risk indicators usable clinically for the monitoring of nuclear workers and 
for other populations likely to be exposed. Indeed, metabolomics appears relevant as an 
analytical strategy to identify predictive markers of morbidity and to improve knowledge 
on and expertise in radiation protection in the field of low-dose exposure.

Supplementary Materials: The following supporting information can be downloaded at https: 
//www.mdpi.com/article/10.3390/metabo12050421/s1: Figure S1: PCA performed on all urine 
sampling times and NU doses; Figure S2: MS/MS spectra; Figure S3: PLS-DA performed on all 
plasma sampling times and NU dose samples; Figure S4: PCA performed on all sampling times and 
NU dose samples on the annotated concatenated urinary and plasma data matrices; Table S1: The 
characteristic and validation parameters of the four models calculated between the control group 
and the low doses of NU for different sampling times in urinary profiles; Table S2: New PLS-DA 
models calculated using the 19 common discriminant variables in at least two time-period models in 
urinary profiles; Table S3: The characteristic and validation parameters of the three models calculated 
between the control group and the low doses of NU for different sampling times in a plasma blood 
matrix; Table S4: PLSD-DA models calculated using the 27 discriminant variables in common to 
at least two time models between the control group and the low doses of NU in in plasma blood 
matrix; Table S5: The characteristic and validation parameters of the four models calculated between 
the control group and the low doses of NU for different sampling times from the annotated urinary 
data matrix; Table S6: The characteristic and validation parameters of the three models calculated 
between the control group and the low doses of NU for different sampling time in an annotated 
plasma matrix; Table S7: The characteristic and validation parameters of the three models calculated 
between the control group and the low doses of NU for different sampling time in annotated urinary 
and plasma data matrices; TableS8: The discriminant variables detected in common to at least two 
models calculated between the control group and the low doses of NU for different sampling times 
for annotated urinary and plasma data are available online.
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