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Abstract: The real-time segmentation of sidewalk environments is critical to achieving autonomous
navigation for robotic wheelchairs in urban territories. A robust and real-time video semantic
segmentation offers an apt solution for advanced visual perception in such complex domains. The
key to this proposition is to have a method with lightweight flow estimations and reliable feature
extractions. We address this by selecting an approach based on recent trends in video segmentation.
Although these approaches demonstrate efficient and cost-effective segmentation performance in
cross-domain implementations, they require additional procedures to put their striking characteristics
into practical use. We use our method for developing a visual perception technique to perform in
urban sidewalk environments for the robotic wheelchair. We generate a collection of synthetic scenes
in a blending target distribution to train and validate our approach. Experimental results show that
our method improves prediction accuracy on our benchmark with tolerable loss of speed and without
additional overhead. Overall, our technique serves as a reference to transfer and develop perception
algorithms for any cross-domain visual perception applications with less downtime.

Keywords: video semantic segmentation; sidewalk segmentation; cross-domain; spatial convolution;
dilated convolution; error mitigation; environment perception

1. Introduction

As scene perception has become a staple requirement within many computer vision
applications, accurate and efficient object detection and classification is now on its core
foundations. In recent years, the approaches using convolution neural networks (CNN)
have produced impressive results in numerous perception problems including object
detection [1,2], classification [3–5], and scene segmentation [6–8]. These approaches have
also been used for end-to-end learning of robotic tasks such as detection of goals [9] and
autonomous navigation [10]. In addition to standard benchmark metrics and the new
end-to-end learning algorithms, they are yet to become the dependable solution for outdoor
robotic perception. Generally, perception tasks in outdoor environments are coherently
onerous due to frequently altering environments accompanied by the change in appearance
throughout the day and across the seasons. Combining that with the void due to the
unavailability of datasets encompassing these adversities to effectively train and validate
the deep learning (DL)-based machine learning (ML) models leads to an improbable
solution to the outdoor robot perception problem.

Theoretically, an approach to outdoor perception can be termed as generic if the dataset
on which the models are evaluated are rich in diversity that ensure generalization to varying
objects and scenarios and environmental conditions [11] and the same model is able to yield
stable, reliable predictions over time. Usually the CNN layers are trained on such a data
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distribution by minimising a given loss function on the training set. Consequently they
will perform well if the evaluation domain is similar to the training domain and is carried
out on a per frame basis. However the inputs are normally image sequences from passive
optical sensors while in use in real world applications, and therefore these mechanisms
are prone to adventitious behaviours. Hence it is uniformly important to obtain a high
level of accuracy in prediction and maintain a consistent behaviour while performing in
heterogeneous environments.

As a consequence, a number of authors have proposed methods that can allow domain
adaption (for example [11–16]) in cases where fully or partially labelled set of samples from
fixed target distributions are available. Although these adapted algorithms can succeed
in training models well on known target distributions, the presupposition of a prior fixed
target distributions will possibly be a constraint in practical scenarios. For instance, consider
a semantic segmentation algorithm deployed on a mobile robot. A new task, different
camera arrangement or an unplanned environment, will alter the target distribution. A
common issue as these diverse scenarios can only be identified after the model is trained
and deployed [11].

Environment perception techniques for roads by using semantic segmentation is an
acutely active area of innovation. In this paper, we aim to transfer these approaches to
perform in a distinct domain, the sidewalk environment. Our experimental setup and
results provide an insightful approach that could be used as a guideline for nearly all
robotics projects that aim at developing a general robust visual perception technique for
autonomous control, navigation, and maneuver in diverse environments.

Our robot is an electrically powered wheelchair (EPW), an auspicious, distinctive,
challenging real-world use case equipped with two Intel RealSense cameras (the RGB-D
D435 and tracking T265) and a NVIDIA Jetson TX1 single-board computer. The robot is a
part of the ADAPT project that aims at extending the usability of EPWs among people with
different degrees of impairment [17].

Inspired by the recent developments in video semantic segmentation (VSS) approaches,
we propose a novel method for efficient video segmentation that include: (1) a base
semantic segmentation model that adopts ResNet18 backbone [18,19]; (2) GSVNET [20], a
propagation network that does guided spatially varying convolution on downscale crude
feature maps from the base segmentation network; (3) a multi-scale dilated convolution to
further enhance the receptive field of the feature map; and (4) a low-rank bilinear upscaling
method to obtain the segmentation maps in the original resolution. To correspond with
our distinctive use case we produce our own synthetic dataset with a blending target
distribution to ablate, train, and validate our method while performing scene perception
for our autonomous EPW.

The remainder of this paper is structured as follows. In Section 2, we review the related
works in smart assist features for EPW and video semantic segmentation. In Section 3,
we introduce our method that perform fast semantic segmentation (FSS). In Section 4, we
present and explain our dataset, the benchmark metrics, and the analysis of the results we
obtained. Finally, the conclusions and future directions are outlined in Section 5.

2. Related Work

Scene understanding techniques have an extensive scope to enable EPW users to com-
mute more safely in challenging environments. In this section, we introduce related work in
two fields namely, smart EPW assist features and lightweight video semantic segmentation.

2.1. EPW Smart Assist Features

With the emergence of embedded systems, significant innovations have occurred in
EPWs that are triggered by the ambitions of several challenged people who use them. This
includes users with multiple and/or severe disabilities who find it difficult to maneuver
the wheelchair in typical places where approaches are tightly constrained [21] either due to
various untypical and vivid outdoor settings or users’ lack of autonomy to control. Aside



Sensors 2022, 22, 5241 3 of 13

from these requirements on mobility, clinical surveys have also proved the users’ desire to
gain leisure, independence, and productivity by benefiting from these technologies [22–24].

Intelligent wheelchair systems that can offer semi-autonomous to fully autonomous
navigation systems based on computer vision utilizes a selection of goal techniques by
using the head and gaze motion of users [25,26], eye movements [27–29], or a com-
bination of speech and vision [30]. Moreover, technologies such as obstacle detection
and collision avoidance can be used for better-assisted maneuvering of the wheelchairs.
Zhengang et al. [31] proposed an ROS-based autonomous navigation approach by using
an RGB-D camera for the environment and depth perception for obstacle avoidance, map
building for unexplored areas by using an algorithm of target point generation based
on edge detection. Viswanathan et al. [32] presented a real-time system that can detect
and avoid obstacles by using stereo vision cameras and perform path planning using
visual odometry.

Hengli et al. [33] addressed these issues in navigation for an EPW through tight
spaces by proposing a self-supervised approach with a pipeline that automatically labels
and captures frames for further fine-tuning their network. Seungbo et al. [34] used a
CNN composed of only encoders to perform lightweight semantic segmentation to detect
road surface damage detection. In [35], a residual network-based architecture called
WideSeg [36] classifies the region of outdoor environments into sidewalks, crosswalks, and
traffic lights.

2.2. Video Semantic Segmentation

Partitioning image segments into pixel-level regions belonging to various classes is
called image semantic segmentation. The same process is carried on videos to obtain video
semantic segmentation with various approaches [37–39] that would adjust the loss between
speed and accuracy. Most of the methods apply the same CNN model to each frame and
temporally aggregate the features with additional layers [40–42]. Although these methods
score fine accuracy values over single frame approaches, they cause considerable overhead
computation over a per-frame model.

Consequently, a few other approaches to leverage the overhead computational costs,
proposed to maintain temporal continuity to propagate and reuse the high-level features
from key frames [43–46]. However, the continuous motion of objects and their occlusion
in videos are often challenging hindrances to robustly propagate pixel-level predictions
over time. To tackle this problem, refs. [44,47] directly reuse relatively steady, high-level
features extracted from downscaled frames in deep layers. Another approach is to suit
optical flow to wrap high-level features in key frames to non key frames [43] and further
update flow wrapped feature maps with shallow features extracted at current frames [46].
However, relying on optical flow causes significant computation costs and can fail with
large variations and nontextured regions. To avoid using optical flow and reduce error
propagation due to scene warping errors, Li et al. [45] uses a spatially varying convolution
(SVC) together with a lightweight feature extractor for non-key frames.

Although these methods offer an overall computational costs reduction compared to
their image segmentation baselines, evidently their accuracy have also decreased [43,45,46].
In addition, due to less reliable extractions at key frames, these methods are prone to
inconsistent speeds with equivalent latency that of single-frame CNN models. Therefore,
to perform fast, lightweight semantic segmentation on video, it is crucial to utilize the
extracted features at the fullest potential and the feature extraction on non-key frames to be
made sheer as possible.

GSVNET is a simple temporal propagation network that performs spatial convolu-
tions on the segmentation maps obtained from a basic segmentation network [20]. The
framework incorporates temporal wrapping based on optical flow on downscaled frames
to estimate the feature maps of current frames, spatial convolutions to mitigate the errors
from imperfect optical flows, and then concatenate the crude estimates from channels of a
base segmentation network to form a downscaled segmentation of each frame. However,
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due to flow estimations on downscaled frames, the feature extraction suffers from a great
degree of contextual information loss and therefore requires additional steps to mitigate
this, while keeping the framework light as possible.

3. Fast Video Semantic Segmentation Method
3.1. GSVNET Semantic Segmentation Approach

For key frame segmentation, we use the SN-R18 and BN-R18 models, based on the
SwiftNet-R18 [18] and BiSeNet [19] networks, and GSVNET as a propagation framework.
GSVNET starts with a spatio-temporal estimation on downscaled segmentation obtained
from the aforementioned models. St−1 is the segmentation from previous frame It−1.
To arrive at an initial estimate St for the current frame It, GSVNET performs temporal
wrapping on St−1 based on optical flow, as expressed in Equation (1):

St(c, x, y) = St−1(c, x + mtx, y + mty), ∀cεC (1)

where x and y denote the pixel locations in the scaled-down segmentation and mtx and
mty are attributes from the optical flow network hierarchical feature fusion. To correct the
errors during optical flow estimation, the segmentation wrapping is refined by applying
a guided SVC. First, it performs a separable convolution on St with several ideal kernel
values to shift St channel-wise by pixels in a certain direction and then sum it up with
crude estimates from the current frame It. An SVC is applied across the channels of each
chunk C and then summed up to obtain the downscaled estimate of the current frame’s
segmentation St(c, x, y).

3.2. Dilated Convolution

Dilated convolution helps in understanding the positional relationship and semantic
relationship between objects [35]. We apply multi-scale convolution to the downscale
segmentation map with 2, 4, 8 factors on St(c, x, y) from GSVNET to refine the feature map.
This can effectively extract global context information and also enlarge the receptive field
without losing resolution [48–50]. Moreover, it uses sparse kernels to enlarge the receptive
field without increasing the number of parameters or the computational costs.

The refined feature maps of different factors generated by dilated convolution are
concatenated together with an input image. Through concatenation operation, we combine
the raw feature information and the information in hierarchical structure. Then the fused
feature map is fed to an upsampling process. In symbols, a 2D dilated convolution can be
expressed in Equation (2),

Yt =
x

∑
i=0

y

∑
j=0

St(c, x + r× i, y + r× j) (2)

where parameter r is the dilation rate. In this process, a kernel of size k× k is enlarged to
k + (k− 1)(r− 1) with dilated stride r, to obtain the output frame at the same resolution.
Hence this allows us to enhance the captured context at various spatial scales.

3.3. Pixel Recovery

The native resolution of the frames are downsized by a certain factor, as lower spatial
resolution can significantly reduce the run-time costs. We use a common empirical factor of
1/8. This downscaled resolution is conserved throughout the whole process. The feature
map Yt ε Rc×x×y is upsampled to Y′t ε Rc×x×8×y×8. We use an upsampling kernel w ε Rk2×1

to obtain each pixel in Y′t .
By applying the kernel to a channel of the local feature map χ ε RC×kxk centered at

position l on Yt, denoted by X ε R1×kxk, the corresponding upsampled feature point Y′tl
ε Y′t

of the same channel at target position l is obtained by Y′tl
= wT × X.
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This sorts pixels from channels to the spatial dimension and without an additional
layer. We replace the simple interpolation step on the network output in the GSVNET by
this low-rank bilinear formulation.

4. Experimental Results and Analysis
4.1. Dataset Construction

The native GSVNET model uses the Cityscapes [51] and CamVid [52] datasets for
training and benchmark. The distribution of these datasets are in the context of vehicles in
a road, a dissimilar collection of scenes from our target distribution. Figure 1 shows some
sample snippets of synthetic scenes we develop by using the CARLA [53] simulator, with
similar specifications as Cityscapes. CARLA is an open-source simulator for supporting,
training, and validating autonomous driving systems in urban environments with a wide
variety of sensor suits.

We generate video snippets of fixed distribution in the sidewalk preview with image
capture geometries set as per our camera properties and its mounting location in our EPW.
The total volume is split as 11, 904/8020/10, 076 for training/validation/testing. Each
snippet has a resolution of 2048× 1024 with 30 frames for each sequence with the 19th
frame finely annotated for 22 classes. These 22 classes include all the group of classes from
the Cityscapes dataset with additional crucial classes such as road lines, guard rails and
static objects, (such as fire hydrants, fixed benches, fountains, and bus stops). To further
enrich diversity and generalization, the scenes are captured in various visibility, weather,
and intricate scenarios. Figure 1 shows some sample frames from our dataset.

Figure 1. The first and third rows show some sample video frames from our agent in the CARLA
urban sidewalk environment. The second and fourth rows illustrate finely annotated RGB segmenta-
tion ground truths for each corresponding frame in the upper row. The annotations are for 22 classes,
as per class names and colour labels as shown in the palette. These include all the groups from the
Cityscapes dataset, with an additional three classes as road lines, guard rails and static objects.

4.2. Evaluation Metrics

For measuring the accuracy of the segmentation, pixel accuracy and variants of the
Jaccard index [54] are the most popular statistic used for gauging the similarity and diversity
of sample sets generated with semantic segmentation networks. The Jaccard index is also
known as the mean intersection over union (mIoU) calculated as presented in Equation (3):
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mIoU =
1
k

k

∑
i=1

TPi
TPi + FPi + FNi

, (3)

where TPi, FPi, FNi are true positives, false positives, and false negatives for number
of classes k. The predictions are accounted for frames as l, image pairs (k, i), where
k = 0 . . . i− 1, for each frame i that has ground truth annotation available.

Mean pixel accuracy (mPA) is determined in Equation (4),

mPA =
1
k

k

∑
i=1

nii
ti

, (4)

where nii is the total number of pixels corresponding to true positives for class i, tj is the
total number of pixels annotated as class i from k total number of classes. mPA is an intuitive
metric that implies the effectiveness of individual class weights used for imbalanced class
datasets to prevent overfitting of the model.

4.3. Implementation

We implement our network on PyTorch [55] and use the pre-trained weights SN-R18
and BN-R18 [20] from GSVNET for key-frame segmentation. At inference time, the size of
the key frame is downscaled by a factor of 0.75 to facilitate the best accuracy–throughput
trade-off. The segmentation output of these frames is then upsampled to the full resolution
for accuracy measurement.

Figure 2 provides an overview of our proposed method. The process begins by seg-
menting the first key frame to obtain a crude semantic segmentation from BiseNet/SwfitNet
as a base segmentation network. Our propagation framework, a combination of GSVNET
and dilated convolution processes, then temporally propagates the segmentation prediction
maps from previous frames to assist in predicting the segmentation maps for the current
non-key frames. At each step, the segmentation maps from GSVNET of previous frames
are subject to dilated convolution to refine and enhance the segmentation maps.

Figure 2. Demonstration of our proposed method. BiseNet/SwiftNet is the base segmentation
network, GSVNET with dilated convolution (DC) is the propagation framework. Segmentation
prediction maps S from frames I are temporally propagated until the next keyframe is reached.

The models are trained end-to-end with the training objective that involves an ordinary
cross-entropy loss imposed on the final segmentation output. Similar to [20], we use
stochastic gradient descent (SGD) with a momentum of 0.9 and a learning rate of 0.002,
which is decreased by a factor of 0.992 every 100 iterations and set the batch size to 8 and
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the weight decay to 0.0005. The complete training and validation dataset are generated
with CARLA.

We train our models on the MYRIA [56], with the AI–Deep Learning framework.
MYRIA is composed of 366 Broadwell dual-processor compute nodes (28 cores at 2.2 GHz,
128 GB RAM) including 20 nodes, each equipped with either 4 GPU Kepler K80 (12 GB
VRAM per GPU) or 2 GPU Kepler P100 (12 GB VRAM per GPU). For testing, we use
NVIDIA Jetson TX1 with NVIDIA Maxwell GPU and a Quad-core ARM Cortex-A57
MPCore processor.

4.4. Results and Analysis

We report the accuracy measurements in terms of mIoU and mPA. All the accuracy
numbers are measured at native resolution. For complexity assessment, we report the
throughput in frames per second (FPS) on NVIDIA Jetson TX1 and the number of net-
work parameters in bytes. In addition, we report the accuracy-throughput trade-off of
each models.

Table 1 compares the accuracy-throughput trade-offs of GSVNET models and our
models. As shown, SN-R18 from our method outperforms SN-R18 from GSVNET at the
same scale factor 0.75 by 21% in mIoU, 19.4% in mPA. Likewise, our BN-R18, under similar
configuration outperforms GSVNET BN-R18 by 27.1% in mIoU, 8.3%. Although there is a
loss of 19.5% speed in SN-R18 and 10.9% in BN-R18, our approach still transcends in terms
of mIoU with acceptable values of FPS for our application.

Table 1. The accuracy and throughput comparison using our dataset with GSVNET and our method.
The scale factor specifies the downscale factor for key frames in the video sequences.

Method Model Scale Factor Avg. mIoU mPA FPS

GSVNET SN-R18 0.75 38.4 65.8 65
BN-R18 0.75 34.2 66.7 59.5

Ours SN-R18 0.75 46.5 78.6 52.3
BN-R18 0.75 43.5 72.3 49.5

We also compare the complexity of our method in terms of number of network param-
eters between GSVNET and our method. SN-R18 from GSVNET has 47.2 M parameters
for segmenting key frames and 1.6 M parameters for non-key frames, at same scale fac-
tor 0.75 and speed of 65 FPS. Our scheme, with the same configuration, at the speed of
46.5 FPS generates the same number of training parameters for key frames and non-key
frames. Therefore, our method introduces no overhead and retains the key lightweight
characteristic of GSVNET while improving the accuracy.

In Figure 3, we present a fair comparison of accuracy-throughput performance. We
benchmark the competing models on same hardware and configuration. Because of the
lightweight temporal propagation of GSVNET, SwiftNet-R18 and BiSeNet-R18 achieve the
highest through output with a considerable loss of accuracy. But in our approach, we alter
this trade-off to gain in accuracy at a modest loss of speed.

Figures 4 and 5 shows some qualitative evaluation. The enlarged view depicts the
comparison of the loss of details from the ground-truth annotation. The segmentation map
from GSVNET suffers a considerable loss of information in pixel units. In Figure 4, the
prediction maps from GSVNET has object boundaries distorted with a loss of information
such as traffic light pole edges, pedestrians at a distance and, in Figure 5, the lost text in
buildings. Because of our dilated convolution and pixel-recovery technique, our models can
afford to perform better with more detailed segmentation prediction maps. As seen in the
enlarged view of map from our method, the information lost with GSVNET is preserved,
due to better object boundary segregation.
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Figure 3. Comparison of accuracy-throughput performance using our dataset on our end hardware,
NVIDIA Jetson TX1. Our models, exclusive of the pre-trained GSVNET SN-R18 or BN-R18 and
SwiftNet-R18 or BiSeNet-R18, are trained and validated with our dataset.

Figure 4. Qualitative evaluation, scenario 1. From the top down, the first row shows a sample snippet
(sidewalk, traffic light, and pedestrians at far) with its ground-truth annotation. The second and third
row contains the segmentation prediction maps with a zoom-in for detail depiction, from GSVNET
SN-R18 and our SN-R18 models.
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Figure 5. Qualitative evaluation, scenario 2. From the top down, a sample snippet (sidewalk with
pedestrians, traffic signs, and contextual information of building) is presented with its ground-truth
annotation, segmentation prediction maps with a zoom-in for detail depiction, from GSVNET SN-R18
and our SN-R18 models.

5. Conclusions and Outlook

This paper presents a light and efficient video segmentation method for visual per-
ception in urban sidewalk environments for robotic EPWs. We propose a self-supervised
approach that facilitates cross-domain applications of popular CNN models into distinct
use-cases. Our approach is innovative for at least two significant reasons. First, we use an
open source simulator to develop a dataset of synthetic video sequences in diverse sidewalk
environments with matching target distribution to succeed data unavailability. Second,
we prove the feasibility of reusing available models and possibility to alter its accuracy-
through output intrinsic characteristics depending on requirements at no additional cost
of computational resources. We select GSVNET, a lightweight semantic segmentation
framework, and institute the necessary process without overhead to obtain better accuracy
and throughput trade-off for our application.

Our initial results with GSVNET as a propagation framework and SwiftNet/BiseNet
as a base segmentation model prove the feasibility of performing semantic segmentation
for the new sidewalk domain. But we found this setup has an exigent accuracy-throughput
characteristic that can be manipulated to improve the accuracy further by moderately
taxing speed. Being a mobile robotic application, it is crucial to preserve the lightweight
nature of the initial setup. Therefore, we incorporate two additional process that perform
dilated convolution to refine the feature map from GSVNET with a better receptive field
and a low-rank bilinear upsampling technique to obtain prediction maps with better object
boundaries and detailed contextual information. With our custom dataset, our approach
achieves an mIoU of 46.5 at a speed of 52.3 FPS.

In the future, we expect to expand our ablation studies towards temporal consistency
(TC) of the predictions over all frames in a sequence. As TC defines measurement of
consistency of object predictions subject to sudden appearance and disappearance in
consecutive frames, we believe that a novel unsupervised TC metric has a strong correlation
with the supervised intersection over union metrics and can help to reliably benchmark
models in terms of consistency.
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