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This paper is divided in two parts. In the first part, we prove the coercivity results and minimization of the Euler energy functional, in addition to presenting a new extension of the Harnack inequality. In the second part, we focus on the existence and multiplicity of a positive solutions for the fractional Dirichlet problem involving the 𝑝 ( 𝑥)-Laplacian equation with nonnegative weight functions in H 𝛼,𝛽;𝜓 𝑝 ( 𝑥) (Ω, R) using the Nehari manifold approach and some variational techniques.

Introduction and Motivation

Over the last decade, the variable exponent Lebesgue spaces 𝐿 𝑝 ( 𝑥) and the corresponding Sobolev space 𝑊 1, 𝑝 ( 𝑥) have been a subject of an active research area [START_REF] Fan | Eigenvalues of 𝑝 ( 𝑥)-Laplacian Dirichlet problem[END_REF][START_REF] Chabrowski | Existence of solutions for 𝑝 ( 𝑥)-Laplacian problems on a bounded domain[END_REF][START_REF] Fan | Sobolev embedding theorems for spaces 𝑊 𝑘, 𝑝 ( 𝑥) (Ω)[END_REF][START_REF] Mashiyev | The Nehari manifold approach for Dirichlet problem involving the 𝑝 ( 𝑥)-Laplacian equation[END_REF][START_REF] Alves | Existence and multiplicity of solutions for a 𝑝 ( 𝑥)-Laplacian equation with critical growth[END_REF][START_REF] Edmunds | Sobolev embeddings with variable exponent[END_REF][START_REF] Edmunds | Sobolev embeddings with variable exponent[END_REF][START_REF] Diening | Lebesgue and Sobolev spaces with variable exponents[END_REF]. The specific attention according to such problems is due to their applications in mathematical physics. What has been noticed is a growing interest in elliptic problems in Sobolev space 𝑊 1, 𝑝 ( 𝑥) using classical variational techniques. Researchers such as Radulescu [START_REF] Xiang | Existence of solutions for perturbed fractional p-Laplacian equations[END_REF], Alves [START_REF] Alves | Existence and multiplicity of solutions for a 𝑝 ( 𝑥)-Laplacian equation with critical growth[END_REF], Fan [START_REF] Fan | Eigenvalues of 𝑝 ( 𝑥)-Laplacian Dirichlet problem[END_REF], Rabinowitz [START_REF] Rabinowitz | Minimax methods in critical point theory with applications to differential equations[END_REF], Ambrosetti [START_REF] Ambrosetti | Combined effects of concave and convex nonlinearities in some elliptic problems[END_REF], Winkert [START_REF] Winkert | 𝐿 ∞ -estimates for nonlinear elliptic Neumann boundary value problems[END_REF], Pucci [START_REF] Piersanti | Existence theorems for fractional 𝑝-Laplacian problems[END_REF], Motreanu [START_REF] Motreanu | Positive solutions and multiple solutions at non-resonance, resonance and near resonance for hemivariational inequalities with 𝑝-Laplacian[END_REF], Papageorgiou [START_REF] Papageorgiou | Positive solutions for weighted singular 𝑝-Laplace equations via Nehari manifolds[END_REF], Bisci [START_REF] Figueiredo | The effect of the domain topology on the number of solutions of fractional Laplace problems[END_REF], Repovs [START_REF] Repovš | The behavior of solutions of a parametric weighted ( 𝑝, 𝑞)-Laplacian equation[END_REF], among other researchers, have dedicated themselves to investigating cutting-edge problems using operators 𝑝(𝑥)-Laplacian and performing applications.

In 2006 Mihailescu [START_REF] Mihailescu | Existence and multiplicity of solutions for an elliptic equation with-growth conditions[END_REF] investigated the existence of solutions for a boundary value problem of the type -𝑑𝑖𝑣(|∇𝑢| 𝑝 ( 𝑥)-2 ∇𝑢) = 𝑓 (𝑥, 𝑢) in Ω 𝑢(𝑥) = 0 on 𝜕Ω where Ω ⊂ R 𝑁 (𝑁 ≥ 3) is a bounded domain with smooth boundary, 1 < 𝑝(𝑥) and 𝑝(𝑥) ∈ 𝐶 (Ω). For more details see. Another interesting work on the existence of solutions involving 𝑝(𝑥)-Laplacian was investigated by Alves and Barreiro [START_REF] Alves | Existence and multiplicity of solutions for a 𝑝 ( 𝑥)-Laplacian equation with critical growth[END_REF]. In 2015, Chabrowski and Fu [START_REF] Chabrowski | Existence of solutions for 𝑝 ( 𝑥)-Laplacian problems on a bounded domain[END_REF], considered the existence of solutions in 𝑊 1, 𝑝 ( 𝑥) 0 (Ω) for the 𝑝(𝑥)-Laplacian problems in the superlinear and sublinear cases using the mountain pass theorem technique.

In 2007 Wu [START_REF] Wu | Multiplicity of positive solution of 𝑝-Laplacian problems with sign-changing weight functions[END_REF] investigated the multiplicity of solutions using in Nehari manifold for the elliptic equation

-Δ 𝑝 𝑢 = 𝜆 𝑓 (𝑥)|𝑢| 𝑞-2 𝑢 + 𝑔(𝑥)|𝑢| 𝑟-2 𝑢 in Ω 𝑢(𝑥) = 0 on 𝜕Ω (1.1)
where 1 < 𝑞 < 𝑝 < 𝑟 < 𝑝 * , Ω ⊂ R 𝑁 is a bounded domain, 𝜆 ∈ R/{0}, and the weight functions 𝑓 , 𝑔 ∈ 𝐶 (Ω) are satisfying 𝑓 ± = 𝑚𝑎𝑥 {± 𝑓 , 0} ≠ 0 and 𝑔 ± = 𝑚𝑎𝑥 {±𝑔, 0} ≠ 0. For more details, see [START_REF] Wu | Multiplicity of positive solution of 𝑝-Laplacian problems with sign-changing weight functions[END_REF].

On the other hand, in recent years increasing attention has been paid to the study of fractional differential equations [START_REF] Diethelm | Analysis of fractional differential equations[END_REF][START_REF] Kilbas | Theory and applications of fractional differential equations[END_REF][START_REF] Lakshmikantham | Basic theory of fractional differential equations[END_REF][START_REF] Zhou | Basic theory of fractional differential equations[END_REF]. Such equations are used to model phenomena in medicine, physics, engineering, biology, among other areas (see for instance [START_REF] Diethelm | Analysis of fractional differential equations[END_REF][START_REF] Kilbas | Theory and applications of fractional differential equations[END_REF][START_REF] Lakshmikantham | Basic theory of fractional differential equations[END_REF][START_REF] Zhou | Basic theory of fractional differential equations[END_REF][START_REF] Sousa | A new approach to the validation of an ESR fractional model[END_REF][START_REF] Almeida | Modeling some real phenomena by fractional differential equations[END_REF] and the references therein). Recently, fractional differential equation problems involving 𝑝-Laplacian have gained attention from some researchers, in particular, involving the 𝜓-Hilfer fractional operator [START_REF] Ledesma | Boundary value problem with fractional 𝑝-Laplacian operator[END_REF][START_REF] Torres | Impulsive fractional boundary value problem with 𝑝-Laplace operator[END_REF][START_REF] Sousa | A variational approach for a problem involving a 𝜓-Hilfer fractional operator[END_REF][START_REF] Sousa | Nehari manifold and bifurcation for a 𝜓-Hilfer fractional 𝑝-Laplacian[END_REF][START_REF] Saoudi | A singular System Involving the Fractional 𝑝-Laplacian Operator via the Nehari Manifold Approach[END_REF][START_REF] Truong | The Nehari manifold for fractional 𝑝-Laplacian equation with logarithmic nonlinearity on whole space[END_REF][START_REF] Biswas | Nehari Manifold approach for fractional 𝑝 (•)-Laplacian system involving concave-convex nonlinearities[END_REF].

In 2020, Sousa et al. [START_REF] Sousa | The Nehari manifold for a 𝜓-Hilfer fractional 𝑝-Laplacian[END_REF] motivated by the 𝜓-Hilfer fractional operator introduce the space 𝜓-fractional and a variational structure. In this sense, we investigated the existence and nonexistence of weak solutions for the fractional 𝑝-Laplacian via combination of the Nehari manifold and the application of fibration, of the following problem

       H D 𝛼,𝛽;𝜓 𝑇 H D 𝛼,𝛽;𝜓 0+ 𝜉 (𝑥) 𝑝-2 H D 𝛼,𝛽;𝜓 0+ 𝜉 (𝑥) = 𝜆|𝜉 (𝑥)| 𝑝-2 𝜉 (𝑥) + 𝑏(𝑥)|𝜉 (𝑥)| 𝑞-1 𝜉 (𝑥) 𝐼 𝛽 (𝛽-1);𝜓 0+ 𝑢 (0) = 𝐼 𝛽 (𝛽-1);𝜓 𝑇 𝑢 (𝑇) = 0. (1.2)
For more details on the fractional problem Eq.(1.2), see the paper [START_REF] Sousa | The Nehari manifold for a 𝜓-Hilfer fractional 𝑝-Laplacian[END_REF].

Before presenting the main problem to be addressed in this paper, we highlight the concepts of fractional integral with respect to another function and the 𝜓-Hilfer partial fractional derivative.

Let 𝜃 = (𝜃 1 , 𝜃 2 , ..., 𝜃 𝑁 ), 𝑇 = (𝑇 1 , 𝑇 2 , ..., 𝑇 𝑁 ) and 𝛼 = (𝛼 1 , 𝛼 2 , ..., 𝛼 𝑁 ) where 0 < 𝛼 1 , 𝛼 2 , ..., 𝛼 𝑁 < 1 with 𝜃 𝑗 < 𝑇 𝑗 , for all 𝑗 ∈ {1, 2, ..., 𝑁 }, 𝑁 ∈ N. Also put 

Ω = 𝐼 1 × 𝐼 2 × • • • × 𝐼 𝑁 = [𝜃 1 , 𝑇 1 ] × [𝜃 2 , 𝑇 2 ] × • • • × [𝜃 𝑁 , 𝑇 𝑁 ] where 𝑇 1 , 𝑇
I 𝛼, 𝜓 𝜃 , 𝑥 𝑗 𝑢(𝑥 𝑗 ) = 1 Γ(𝛼 𝑗 ) ∫ ∫ • • • ∫ Ω 𝜓 ′ (𝑠 𝑗 ) (𝜓(𝑥 𝑗 ) -𝜓(𝑠 𝑗 )) 𝛼 𝑗 -1 𝑢(𝑠 𝑗 )𝑑𝑠 𝑗 with 𝜓 ′ (𝑠 𝑗 ) (𝜓(𝑥 𝑗 )-𝜓(𝑠 𝑗 )) 𝛼 𝑗 -1 = 𝜓 ′ (𝑠 1 ) (𝜓(𝑥 1 )-𝜓(𝑠 1 )) 𝛼 1 -1 𝜓 ′ (𝑠 2 ) (𝜓(𝑥 2 )-𝜓(𝑠 2 )) 𝛼 2 -1 • • • 𝜓 ′ (𝑠 𝑁 ) (𝜓(𝑥 𝑁 )- 𝜓(𝑠 𝑁 )) 𝛼 𝑁 -1 where Γ(𝛼 𝑗 ) = Γ(𝛼 1 )Γ(𝛼 2 ) • • • Γ(𝛼 𝑁 ), 𝑢(𝑠 𝑗 ) = 𝑢(𝑠 1 )𝑢(𝑠 2 ) • • • 𝑢(𝑠 𝑁 ), 𝑑𝑠 𝑗 = 𝑑𝑠 1 𝑑𝑠
H D 𝛼,𝛽;𝜓 𝜃 , 𝑥 𝑗 𝑢(𝑥 𝑗 ) = I 𝛽 (1-𝛼), 𝜓 𝜃 ,x j 1 𝜓 ′ (𝑥 𝑗 ) 𝜕 𝑁 𝜕𝑥 𝑗 I (1-𝛽) (1-𝛼) , 𝜓 𝜃 ,x j 𝑢(𝑥 𝑗 ) (1.3) 
with 𝜕𝑥 𝑗 = 𝜕𝑥 1 , 𝜕𝑥 The natural question arises whether it is possible to extend the classical variable exponent case to include the fractional one. Motivated by the above works, in the present paper, we consider the fractional Dirichlet problem involving the 𝑝(𝑥)-Laplacian equation given by The corresponding Euler functional of our problem (1.4) is defined by

       H D 𝛼,𝛽;𝜓 𝑇 H D 𝛼,𝛽;𝜓 0+ 𝑢(𝑥) 𝑝 ( 𝑥)-2 H D 𝛼,𝛽;𝜓 0+ 𝑢(𝑥) = 𝜆𝑎(𝑥)|𝑢| 𝑞 ( 𝑥)-2 𝑢 + 𝑏(𝑥)|𝑢| ℎ( 𝑥)-2 𝑢 in Ω 𝑢(𝑥) = 0 on 𝜕Ω (1.4) where 𝑝, 𝑞, ℎ ∈ 𝐶 (Ω) such that 1 < 𝑞(𝑥) < 𝑝(𝑥) < ℎ(𝑥) < 𝑝 * 𝛼 (𝑥), 𝑝 * 𝛼 (𝑥) = 2 𝑝 ( 𝑥) 2-𝛼 𝑝 ( 𝑥) if 2 > 𝛼𝑝(𝑥); 𝑝 * 𝛼 (𝑥) = ∞ if 2 ≤ 𝑝(𝑥), 1 < 𝑝 -:= ess inf 𝑥 ∈Ω 𝑝(𝑥) ≤ 𝑝(𝑥) ≤ 𝑝 + := ess sup 𝑥 ∈Ω 𝑝(𝑥) < ∞, 1 < 𝑞 -≤ 𝑞 + < 𝑝 -≤ 𝑝 + < ℎ -≤ ℎ + , 𝜆 > 0 ∈ R
E 𝜆 (𝑢) = ∫ Ω 1 𝑝(𝑥) H D 𝛼,𝛽;𝜓 0+ 𝑢 𝑝 ( 𝑥) d𝑥 -𝜆 ∫ Ω 1 𝑞(𝑥) 𝑎(𝑥)|𝑢| 𝑞 ( 𝑥) d𝑥 - ∫ Ω 1 ℎ(𝑥) 𝑏(𝑥)|𝑢| ℎ( 𝑥) d𝑥.
(1.5)

We are now in a position to present the main contributions and consequences of our paper, which becomes clearer in detail as follows:

(1) One of the main results of the paper is to continue the study of this new class of 𝜓-fractional spaces with variable exponents and nonlocal 𝜓-Hilfer fractional operators; (2) First, we present a broad class of fractional differential equations with 𝑝(𝑥)-Laplacian of variable exponents as detailed by Eq.(1.4); (3) We prove some coercivity results and minimization of the Euler energy functional Eq.(1.5); (4) We prove a new version of Harnack inequality for the 𝜓-Hilfer fractional operator. The Harnack inequality is of paramount importance to guarantee the existence of positive solutions of Eq.(1.4); [START_REF] Alves | Existence and multiplicity of solutions for a 𝑝 ( 𝑥)-Laplacian equation with critical growth[END_REF] We establish the multiplicity results of positive solutions for Eq.(1.4) with nonnegative weight functions; [START_REF] Edmunds | Sobolev embeddings with variable exponent[END_REF] We prove that the fractional problem Eq.(1.4) has at least two positive solutions. (7) A special case of fractional problems is that in the limit 𝛼 → 1, we get the classic case. To investigate the main results as highlighted above, we use of the Nehari manifold technique. The rest of the article is divided as follows: In Section 2, we present some important concepts and results for use throughout the paper, in particular, we highlight the proof of an extension of the Harnack inequality for the 𝜓-Hilfer fractional operator. In Section 3, we investigate the main results of the paper, i.e, we discuss the existence and multiplicity of positive solutions to Eq.(1.4) using the Nehari manifold and the Harnack inequality.

Mathematical background -auxiliary results

In this section, we will give a brief presentation of the definitions and essential results for the development of this paper.

We discussed our problem Eq.(1.4) in the variable exponent 𝜓-fractional space H 𝛼,𝛽;𝜓 𝑝 ( 𝑥) (Ω), so we need some theorems and basic properties in the spaces 𝐿 𝑝 ( 𝑥) (Ω) and

H 𝛼,𝛽;𝜓 𝑝 ( 𝑥) (Ω). Write, 𝐿 ∞ = 𝑝 ∈ 𝐿 ∞ (Ω), 𝑝 -> 1 .
For any 𝑝 ∈ 𝐿 𝑝 ( 𝑥) (Ω), we denote the variable exponent Lebesgue (weight) space by [START_REF] Fan | Eigenvalues of 𝑝 ( 𝑥)-Laplacian Dirichlet problem[END_REF][START_REF] Edmunds | Sobolev embeddings with variable exponent[END_REF] 

𝐿 𝑝 ( 𝑥) (Ω) = 𝑢 ∈ 𝑈 (Ω) : ∫ Ω |𝑢(𝑥)| 𝑝 ( 𝑥) d𝑥 < ∞ ,
which is equipped with the norm, so-called Luxemburg norm

∥𝑢∥ 𝑝 ( 𝑥) = inf 𝛿 > 0 : ∫ Ω 𝑢(𝑥) 𝛿 𝑝 ( 𝑥)
d𝑥 ≤ 1 and 𝐿 𝑝 ( 𝑥) (Ω), ∥ • ∥ 𝑝 ( 𝑥) becomes a Banach space, we call it as variable exponent Lebesgue space.

Let 𝑐(𝑥) be a measurable real valued function and 𝑢(𝑥) > 0 for 𝑥 ∈ Ω. Then the weight variable exponent Lebesgue space 𝐿 𝑝 ( 𝑥) 𝑢( 𝑥) (Ω) is defined by which is equipped with the norm [START_REF] Fan | Eigenvalues of 𝑝 ( 𝑥)-Laplacian Dirichlet problem[END_REF][START_REF] Edmunds | Sobolev embeddings with variable exponent[END_REF] ∥𝑢∥ ( 𝑝 ( 𝑥),𝑐 ( 𝑥)) = inf 𝛿 > 0 :

∫ Ω 𝑐(𝑥) 𝑢(𝑥) 𝛿 𝑝 ( 𝑥) d𝑥 ≤ 1 . Definition 2.1. Let 0 < 𝛼 ≤ 1, 0 ≤ 𝛽 ≤ 1 and 𝑝 ∈ 𝐶 + (Ω). The left-sided 𝜓-fractional derivative space H 𝛼,𝛽;𝜓 𝑝 ( 𝑥) := H 𝛼,𝛽;𝜓 𝑝 ( 𝑥) (Ω) is defined as the closure of 𝐶 ∞ 0 (Ω) with the following norm ∥𝑢∥ H 𝛼𝛽;𝜓 𝑝 ( 𝑥) = inf 𝑘 > 0 : ∫ Ω 𝑢(𝑥) 𝑘 𝑝 ( 𝑥) + H D 𝛼,𝛽;𝜓 0+ 𝑢(𝑥) 𝑘 𝑝 ( 𝑥) d𝑥 ≤ 1 ,
where H D 𝛼,𝛽;𝜓 0+ (•) is the 𝜓-Hilfer fractional partial derivative with 0 < 𝛼 ≤ 1 and type 0 ≤ 𝛽 ≤ 1 (see Eq.(1.3)), which is given by

H 𝛼,𝛽;𝜓 𝑝 ( 𝑥) = 𝑢 ∈ 𝐿 𝑝 ( 𝑥) (Ω) : H D 𝛼,𝛽;𝜓 𝜃 𝑢 ∈ 𝐿 𝑝 ( 𝑥) (Ω), 𝑢(Ω) = 0 .
The space H 𝛼,𝛽;𝜓

𝑝 ( 𝑥) (Ω) is denoted by the closure of 𝐶 ∞ 0 (Ω) in H 𝛼,𝛽;𝜓 𝑝 ( 𝑥) (Ω). We will use ∥𝑢∥ H 𝛼,𝛽;𝜓 𝑝 ( 𝑥) (Ω) = H D 𝛼,𝛽;𝜓 0+ 𝑢 𝑝 ( 𝑥)
for 𝑢 ∈ H 𝛼,𝛽;𝜓 𝑝 ( 𝑥) (Ω) in the following discussion. Next, we will present the integration by parts of the 𝜓-Riemann-Liouville fractional integral and 𝜓-Hilfer fractional derivative.

Let 𝛼 ∈ (0, 1), 𝑝 ∈ (1, ∞) and 1 𝑝 + 1 𝑞 ≤ 1 + 𝛼. If 𝑢 ∈ 𝐿 𝑞 𝜓 [0, 𝑇] and 𝑣 ∈ 𝐿 𝑝 𝜓 [0, 𝑇],
then the following integration by parts [START_REF] Sousa | The Nehari manifold for a 𝜓-Hilfer fractional 𝑝-Laplacian[END_REF][START_REF] Sousa | A variational approach for a problem involving a 𝜓-Hilfer fractional operator[END_REF][START_REF] Sousa | Nehari manifold and bifurcation for a 𝜓-Hilfer fractional 𝑝-Laplacian[END_REF]]

∫ 𝑏 𝑎 I 𝛼;𝜓 0+ 𝑣 (𝑥) 𝑢 (𝑥) 𝜓 ′ (𝑥)𝑑𝑥 = ∫ 𝑏 𝑎 𝑣 (𝑥) I 𝛼;𝜓 𝑇 𝑢 (𝑥) 𝜓 ′ (𝑥) 𝑑𝑥 (2.1)
holds.

Let 𝜓(•) be an increasing and positive monotone function on [0, 𝑇], having a continuous derivative 𝜓 ′ (•) ≠ 0 on (0, 𝑇). If 0 < 𝛼 ≤ 1 and 0 ≤ 𝛽 ⩽ 1, then [START_REF] Sousa | The Nehari manifold for a 𝜓-Hilfer fractional 𝑝-Laplacian[END_REF][START_REF] Sousa | A variational approach for a problem involving a 𝜓-Hilfer fractional operator[END_REF][START_REF] Sousa | Nehari manifold and bifurcation for a 𝜓-Hilfer fractional 𝑝-Laplacian[END_REF] ∫ 

Then 𝑢 𝑘 → 𝑢 in 𝐶 (Ω, R), i.e., ∥𝑢 -𝑢 𝑘 ∥ ∞ → 0 as 𝑘 → ∞.
Proposition 2.3. [START_REF] Sousa | A variational approach for a problem involving a 𝜓-Hilfer fractional operator[END_REF][START_REF] Sousa | Nehari manifold and bifurcation for a 𝜓-Hilfer fractional 𝑝-Laplacian[END_REF][START_REF] Sousa | Existence and uniqueness of solutions for the fractional differential equations with 𝑝-Laplacian in H 𝜈, 𝜂;𝜓 𝑝[END_REF] The conjugate space of Proposition 2.6. [START_REF] Fan | Eigenvalues of 𝑝 ( 𝑥)-Laplacian Dirichlet problem[END_REF][START_REF] Edmunds | Sobolev embeddings with variable exponent[END_REF][START_REF] Sousa | A variational approach for a problem involving a 𝜓-Hilfer fractional operator[END_REF][START_REF] Sousa | Existence and uniqueness of solutions for the fractional differential equations with 𝑝-Laplacian in H 𝜈, 𝜂;𝜓 𝑝[END_REF] If 𝑝 -> 1 and 𝑝 + < ∞, then the spaces 𝐿 𝑝 ( 𝑥) (Ω), 𝐿 𝑝 ( 𝑥) 𝑐 ( 𝑥) (Ω) and H 𝛼,𝛽;𝜓 𝑝 ( 𝑥) (Ω) are separable and reflexive Banach spaces. Proposition 2.7. [START_REF] Edmunds | Sobolev embeddings with variable exponent[END_REF] Let 𝑝(𝑥) and 𝑞(𝑥) be measurable functions such that 𝑝(𝑥) ∈ 𝐿 ∞ (Ω) and

𝐿 𝑝 ( 𝑥) (Ω) is 𝐿 𝑝 ′ ( 𝑥) (Ω), where 1 𝑝 ′ ( 𝑥) + 1 𝑝 ( 𝑥) = 1. For any 𝑢 ∈ 𝐿 𝑝 ( 𝑥) (Ω) and 𝑣 ∈ 𝐿 𝑝 ′ ( 𝑥) (Ω), we have ∫ Ω 𝑢(𝑥)𝑣(𝑥)d𝑥 ≤ 1 𝑝 -+ 1 ( 𝑝 ′ ) -∥𝑢∥ 𝑝 ( 𝑥) ∥𝑣∥ 𝑝 ′ ( 𝑥) ≤ 2∥𝑢∥ 𝑝 ( 𝑥) ∥𝑣∥ 𝑝 ′ ( 𝑥) . Proposition 2.4. [1, 6] Denote 𝜌(𝑢) = ∫ Ω |𝑢(𝑥)| 𝑝 ( 𝑥) d𝑥, ∀𝑢 ∈ 𝐿 𝑝 ( 𝑥) (Ω), then we have (1) ∥𝑢∥ 𝑝 ( 𝑥) < 1 (= 1, > 1) ⇐⇒ 𝜌(𝑢) < 1; (2) ∥𝑢∥ 𝑝 ( 𝑥) > 1 ⇒ ∥𝑢∥ 𝑝 - 𝑝 ( 𝑥) ≤ 𝜌(𝑢) ≤ ∥𝑢∥ 𝑝 + 𝑝 ( 𝑥) ; (3) ∥𝑢∥ 𝑝 ( 𝑥) < 1 ⇒ ∥𝑢∥ 𝑝 - 𝑝 ( 𝑥) ≤ 𝜌(𝑢) ≤ ∥𝑢∥ 𝑝 + 𝑝 ( 𝑥) ; Proposition 2.5. [1, 6] If 𝑢, 𝑢 𝑛 ∈ 𝐿 𝑝 ( 𝑥) (Ω), 𝑛 = 1,
1 ≤ 𝑝(𝑥)𝑞(𝑥) ≤ ∞ for 𝑢 ∈ 𝑥 ∈ Ω. Let 𝑢 ∈ 𝐿 𝑞 ( 𝑥) (Ω), 𝑢 ≠ 0. Then |𝑢| 𝑝 ( 𝑥)𝑞 ( 𝑥) ≤ 1 ⇒ |𝑢| 𝑝 + 𝑝 ( 𝑥)𝑞 ( 𝑥) ≤ |𝑢| 𝑝 ( 𝑥) 𝑞 ( 𝑥) ≤ |𝑢| 𝑝 - 𝑝 ( 𝑥)𝑞 ( 𝑥) |𝑢| 𝑝 ( 𝑥)𝑞 ( 𝑥) ≥ 1 ⇒ |𝑢| 𝑝 - 𝑝 ( 𝑥)𝑞 ( 𝑥) ≤ |𝑢| 𝑝 ( 𝑥) 𝑞 ( 𝑥) ≤ |𝑢| 𝑝 + 𝑝 ( 𝑥)𝑞 ( 𝑥)
. Theorem 2.8. [START_REF] Mashiyev | The Nehari manifold approach for Dirichlet problem involving the 𝑝 ( 𝑥)-Laplacian equation[END_REF] Assume that the boundary of Ω possesses the cone property and

𝑝 ∈ 𝐶 (Ω). Suppose that 𝑏 ∈ 𝐿 𝑝 ( 𝑥) (Ω), 𝑏(𝑥) > 0 for 𝑥 ∈ Ω, 𝛽 ∈ 𝐶 (Ω) and 𝛽 -> 1, 𝛽 - 0 ≤ 𝛽 0 (𝑥) ≤ 𝛽 + 0 1 𝛽 ( 𝑥) + 1 𝛽 0 ( 𝑥) = 1 . If ℎ ∈ 𝐶 (Ω) and 1 < ℎ(𝑥) < 𝛽(𝑥) -1 𝛽(𝑥) 𝑝 * 𝛼 , ∀𝑥 ∈ Ω (2.3) or 1 < 𝛽(𝑥) < 𝑁 𝑝(𝑥) 𝑁 𝑝(𝑥) -ℎ(𝑥) (𝑁 -𝑝(𝑥) • then the embedding from 𝑊 1; 𝑝 ( 𝑥) (Ω) to 𝐿 ℎ( 𝑥) 𝑏 ( 𝑥) (Ω) is compact. Moreover, there is a constant 𝐶 5 > 0 such that the inequality ∫ Ω 𝑏(𝑥)|𝑢| ℎ( 𝑥) d𝑥 ≤ 𝐶 5 ∥𝑢∥ ℎ -+ ∥𝑢∥ ℎ + (2.4)
holds.

Theorem 2.9. [START_REF] Mashiyev | The Nehari manifold approach for Dirichlet problem involving the 𝑝 ( 𝑥)-Laplacian equation[END_REF] Assume that the boundary of Ω possesses the cone property and 𝑝 ∈ 𝐶 (Ω). Suppose

that 𝑎 ∈ 𝐿 𝛼( 𝑥) (Ω), 𝑎(𝑥) > 0 for 𝑥 ∈ Ω, 𝛼 ∈ 𝐶 (Ω) and 𝛼 -> 1, 𝛼 - 0 ≤ 𝛼 0 (𝑥) ≤ 𝛼 + 0 1 𝛼(𝑥) + 1 𝛼 0 (𝑥) = 1 .
If 𝑞 ∈ 𝐶 (Ω), 𝑝(𝑥) < 𝛼(𝑥) 𝛼(𝑥) -1 𝑞(𝑥) and

1 < 𝑞(𝑥) < 𝛼(𝑥) -1 𝛼(𝑥) 𝑝 * 𝛼 (𝑥), ∀𝑥 ∈ Ω or 𝑁 𝑝(𝑥) 𝑁 𝑝(𝑥) -𝑞(𝑥) (𝑁 -𝑝(𝑥)) < 𝛼(𝑥) < 𝑝(𝑥) 𝑝(𝑥) -𝑞(𝑥) , then the embedding from 𝑊 1; 𝑝 ( 𝑥) (Ω) to 𝐿 𝑞 ( 𝑥) 𝑎 ( 𝑥) (Ω) is compact. Moreover, there is a constant 𝐶 7 > 0 such that the inequality ∫ Ω 𝑎(𝑥)|𝑢| 𝑞 ( 𝑥) d𝑥 ≤ 𝐶 7 ∥𝑢∥ 𝑞 -+ ∥𝑢∥ 𝑞 + .
Proposition 2.10. [START_REF] Mashiyev | The Nehari manifold approach for Dirichlet problem involving the 𝑝 ( 𝑥)-Laplacian equation[END_REF] Assume that the conditions of Theorem 2.8 and Theorem 2.9 hold, respectively. Let 𝑢 ∈ 𝑊 0; 𝑝 ( 𝑥) (Ω) then there are positive constants 𝐶 8 , 𝐶 9 , 𝐶 10 , 𝐶 11 > 0 such that the following inequalities hold

∫ Ω 𝑏(𝑥)|𝑢| ℎ( 𝑥) d𝑥 ≤ 𝐶 8 ∥𝑢∥ ℎ + , if ∥𝑢∥ > 1, 𝐶 9 ∥𝑢∥ ℎ - , if ∥𝑢∥ < 1, (2.5) 
and

∫ Ω 𝑎(𝑥)|𝑢| 𝑞 ( 𝑥) d𝑥 ≤ 𝐶 10 ∥𝑢∥ 𝑞 + , if ∥𝑢∥ > 1, 𝐶 11 ∥𝑢∥ 𝑞 - , if ∥𝑢∥ < 1.
( 

(𝜓(𝜏)) 𝛽-1 Γ(𝛽) 𝜓 ′ (𝜏)𝑑𝜏. (2.7) 
Making the following variable change 𝑢 = 𝜓(𝜏) in Eq.(2.7), we have

𝑔 𝜓 𝛼 * 𝜓 𝑔 𝜓 𝛽 = (𝜓(𝑡)) 𝛼-1 Γ(𝛼)Γ(𝛽) ∫ 𝜓 (𝑡) 0 1 - 𝑢 𝜓(𝑡) 𝛼-1 𝑢 𝛽-1 𝑑𝑢.
(2.8)

Again, making another variable change 𝑣 = 𝑢 𝜓(𝑡) in Eq.(2.9), we have

𝑔 𝜓 𝛼 * 𝜓 𝑔 𝜓 𝛽 = (𝜓(𝑡)) 𝛼-1 Γ(𝛼)Γ(𝛽) ∫ 1 0 (1 -𝑣) 𝛼-1 (𝑣𝜓(𝑡)) 𝛽-1 𝑑𝑣 = (𝜓(𝑡)) 𝛼-1 Γ(𝛼)Γ(𝛽) ∫ 1 0 (1 -𝑣) 𝛼-1 𝑣 𝛽-1 𝑑𝑣 = (𝜓(𝑡)) 𝛼+𝛽-1 Γ(𝛼 + 𝛽) = 𝑔 𝜓 𝛼+𝛽 .
(2.9)

For the discussion of the results, we will use the following function notations.

𝑔 𝜓 𝛾 (𝑥 -𝑠) =        (𝜓(𝑥) -𝜓(𝑠)) 𝛾-1 Γ (𝛾) , (𝑥, 𝑠) > 0, 𝜓(𝑥) -𝜓(𝑠) > 0 0 , (𝑥, 𝑠) ≤ 0, 𝜓(𝑥) -𝜓(𝑠) ≤ 0 , 𝛾 > 0.
and

𝑔 𝜓 𝛾 (𝑥) =        (𝜓(𝑥)) 𝛾-1 Γ (𝛾) , 𝑥 > 0, 𝜓(𝑥) > 0 0 , 𝑥 ≤ 0, 𝜓(𝑥) ≤ 0 , 𝛾 > 0.
Next we will present a version of the Harnack inequality with respect to the function 𝜓.

Theorem 2.12. Let 𝑡 * ≥ 0, 0 < 𝜎 1 < 𝜎 2 < 𝜎 3 and 𝜌 > 0. Let further 𝛼 ∈ (0, 1), 0 ≤ 𝛽 ≤ 1, 𝜓(0) = 0 and 𝑢 0 ≥ 0. 

∫ 𝑡 0 𝑔 𝜓 1-𝛾 (𝑡 -𝜏)𝑢(𝜏)𝑑𝜏.
(2.13) Note that Eq.(2.13) can be written as

𝜕 𝛾;𝜓 𝑡 𝑢(𝑡) = 𝜕 𝛾;𝜓 𝑠 𝑢(𝑠) + ∫ 𝑡 * 0 𝜕 𝑡 𝜓 ′ (𝑡) 𝜓 ′ (𝜏)𝑔 𝜓 1-𝛾 (𝑡 -𝜏)𝑢(𝜏)𝑑𝜏. (2.14) 
Thus, from Eq.(2.12) and Eq.(2.14), we have (2.16)

𝜕 𝛾;𝜓 𝑠 𝑢(𝑠) = 𝜕 𝛾;𝜓 𝑡 𝑢 0 (𝑡) - ∫ 𝑡 * 0 𝜕 𝑡 𝜓 ′ (𝑡) 𝜓 ′ (𝜏)𝑔
Remembering that 𝑡 = 𝑠 + 𝑡 * , so Eq.(2.16) can be written as follows with 𝑠 ∈ (0, 𝜎 3 𝜌).

𝜕 𝛼,𝛽;𝜓 𝑠 𝑢(𝑠) = 𝑢 0 𝑔 𝜓 1-𝛼 (𝑠 + 𝑡 * ) + ℎ 𝜓 (𝑠) (2.17) where ℎ 𝜓 (𝑠) = -𝐼 𝛾-𝛼;𝜓 0+ ∫ 𝑡 * 0 𝜕 𝑡 𝜓 ′ (𝑡) 𝜓 ′ (𝜏)𝑔
The first term of Eq.(2.18) can be written as

𝑔 𝜓 1-𝛼 (• + 𝑡 * ) * 𝜓 𝑔 𝜓 𝛼 (𝑠) = ∫ 𝑠 0 𝑔 𝜓 𝛼 𝜓 -1 (𝜓 (𝑠) -𝜓(𝜏)) 𝜓 ′ (𝜏)𝑔 𝜓 1-𝛼 (𝜏 + 𝑡 * )𝑑𝜏 = 1 Γ (𝛼) Γ (1 -𝛼) ∫ 𝑠 0 𝜓 ′ (𝜏) (𝜓 (𝑠) -𝜓(𝜏)) 𝛼-1 (𝜓(𝜏 + 𝑡 * )) -𝛼 𝑑𝜏. (2.19)
Making the following variable change 𝜏 = 𝑟 𝑠 in Eq.(2.19), we have

𝑔 𝜓 1-𝛼 (• + 𝑡 * ) * 𝜓 𝑔 𝜓 𝛼 (𝑠) = 𝑠 ∫ 1 0 𝜓 ′ (𝑟 𝑠) (𝜓 (𝑠) -𝜓(𝑟 𝑠)) 𝛼-1 Γ (𝛼) (𝜓(𝑟 𝑠 + 𝑡 * )) -𝛼 Γ (1 -𝛼) 𝑑𝑟 = 𝑠 ∫ 1 0 𝜓 ′ (𝑟 𝑠)𝑔 𝜓 𝛼 (𝑠 -𝑟 𝑠)𝑔 𝜓 1-𝛼 (𝑟 𝑠 + 𝑡 * )𝑑𝑟 = : Φ (𝑠) (2.20)
with 𝑠 ∈ (0, 𝜎 3 𝜌).

Similarly, we have for the second term, with 𝑠 ∈ (0, 𝜎 3 𝜌).

ℎ 𝜓 * 𝜓 𝑔 𝜓 𝛼 (𝑠) = ∫ 𝑠 0 𝑔 𝜓 𝛼 𝜓 -1 (𝜓 (𝑠) -𝜓(𝜏)) 𝜓 ′ (𝜏)ℎ 𝜓 (𝜏)𝑑𝜏 = ∫ 𝑠 0 𝜓 ′ (𝜏) (𝜓 (𝑠) -𝜓(𝜏)) 𝛼-1 Γ (𝛼) ℎ 𝜓 (𝜏)𝑑𝜏 = ∫ 𝑠 0 𝜓 ′ (𝜏) (𝜓 (𝑠) -𝜓(𝜏)) 𝛼-1 Γ (𝛼) -𝐼 𝛾-𝛼;𝜓 0+ ∫ 𝑡 * 0 𝜕 𝑡 𝜓 ′ (𝑡) 𝜓 ′ (𝜎)𝑔
Consequently, the Eq.(2.18) is equivalent to 

𝑢(𝑠) = 𝑢 0 Φ(𝑠) + Ψ(𝑠), 𝑠 ∈ (0, 𝜎 3 𝜌). ( 2 
Ψ(𝑠) ≤ 𝑠 ∫ 1 0 𝜓 ′ (𝑟 𝑠) (𝜓 (𝑠) -𝜓(𝑟 𝑠)) 𝛼-1 Γ (𝛼) -𝐼 𝛾-𝛼;𝜓 0+ ∫ 𝑡 * 0 𝜕 𝑡 𝜓 ′ (𝑡) 𝜓 ′ (𝜎)𝑔 𝜓 1-𝛾 (𝜓(𝑟 𝑠 + 𝑡 * -𝜎)𝑢(𝜎)𝑑𝜎 𝑑𝑟 ≤ 𝜎 1 𝜌 ∫ 1 0 𝜓 ′ (𝑟𝜎 1 𝜌) (𝜓 (𝜎 2 𝜌) -𝜓(𝑟𝜎 2 𝜌)) 𝛼-1 Γ (𝛼) -𝐼 𝛾-𝛼;𝜓 0+ ∫ 𝑡 * 0 𝜕 𝑡 𝜓 ′ (𝑡) 𝜓 ′ (𝜎)𝑔 𝜓 1-𝛾 (𝜓(𝑟𝜎 2 𝜌 + 𝑡 * -𝜎)𝑢(𝜎)𝑑𝜎 𝑑𝑟 ≤ 𝜎 1 𝜎 3 𝑠 ∫ 1 0 𝜓 ′ (𝑟 𝑠) (𝜓 (𝑠) -𝜓(𝑟 𝑠)) 𝛼-1 Γ (𝛼) -𝐼 𝛾-𝛼;𝜓 0+ ∫ 𝑡 * 0 𝜕 𝑡 𝜓 ′ (𝑡) 𝜓 ′ (𝜎)𝑔 𝜓 1-𝛾 (𝑟 𝑠 + 𝑡 * -𝜎)𝑢(𝜎)𝑑𝜎 𝑑𝑟 = 𝜎 1 𝜎 3 Ψ(𝑠).
By positivity of 𝑢 0 , we thus obtain 𝑢(𝑠) ≤ 𝜎 1 𝜎 3 𝑢(𝑠), which immediately implies inequality Eq. (2.11). This complete the proof of Theorem. □

Existence and multiplicity of positive solutions

Consider the Euler functional defined by Eq.(1.5). Then, by Theorem 2.8 and Theorem 2.9 and Proposition 2.4, yields

E 𝜆 (𝑢) ≥ 1 𝑝 + ∫ Ω H D 𝛼,𝛽;𝜓 0+ 𝑢 𝑝 ( 𝑥) d𝑥 - 𝜆 𝑞 - ∫ Ω 𝑎(𝑥)|𝑢| 𝑞 ( 𝑥) d𝑥 - 1 ℎ - ∫ Ω 𝑏(𝑥)|𝑢| ℎ( 𝑥) d𝑥 ≥ 1 𝑝 + ∥𝑢∥ 𝑝 -- 𝜆 𝑞 -𝐶 7 ∥𝑢∥ 𝑞 -+ ∥𝑢∥ 𝑞 + . Since 𝑞 + < 𝑝 -≤ 𝑝 + < ℎ -≤ ℎ + , this shows E 𝜆 (•)
is not bounded below on whole H 𝛼,𝛽;𝜓 𝑝 ( 𝑥) (Ω). However, we shall it is bounded on the Nehari manifold N 𝜆 (Ω) which is given by

N 𝜆 (Ω) = 𝑢 ∈ H 𝛼,𝛽;𝜓 𝑝 ( 𝑥) (Ω) {0} : ⟨E ′ 𝜆 (𝑢), 𝑢⟩ = 0 .
It is clear that all critical points of E 𝜆 must be on N 𝜆 (Ω) and local minimizes on E 𝜆 (Ω) are usually critical points of E 𝜆 . Thus, 𝑢 ∈ N 𝜆 (Ω) if, and only if,

I 𝜆 (𝑢) := ⟨E ′ 𝜆 (𝑢), 𝑢⟩ = ∫ Ω H D 𝛼,𝛽;𝜓 0+ 𝑢 𝑝 ( 𝑥) d𝑥 -𝜆 ∫ Ω 𝑎(𝑥)|𝑢| 𝑞 ( 𝑥) d𝑥 - ∫ Ω 𝑏(𝑥)|𝑢| ℎ( 𝑥) d𝑥 = 0. ( 3.1) 
Then, for 𝑢 ∈ N 𝜆 (Ω), yields

⟨I ′ 𝜆 (𝑢), 𝑢⟩ = ∫ Ω 𝑝(𝑥) H D 𝛼,𝛽;𝜓 0+ 𝑢 𝑝 ( 𝑥) d𝑥 -𝜆 ∫ Ω 𝑞(𝑥)𝑎(𝑥)|𝑢| 𝑞 ( 𝑥) d𝑥 - ∫ Ω ℎ(𝑥)𝑏(𝑥)|𝑢| ℎ( 𝑥) d𝑥 ≤ ( 𝑝 + -𝑞 -)𝜆 ∫ Ω 𝑎(𝑥)|𝑢| 𝑞 ( 𝑥) d𝑥 -( 𝑝 + -ℎ -) ∫ Ω 𝑏(𝑥)|𝑢| ℎ( 𝑥) d𝑥.
Now let's decompose the Nehari manifold N 𝜆 (Ω) into three parts

N + 𝜆 (Ω) = 𝑢 ∈ N 𝜆 (Ω) : ⟨I ′ 𝜆 (𝑢), 𝑢⟩ = 0 N - 𝜆 (Ω) = 𝑢 ∈ N 𝜆 (Ω) : ⟨I ′ 𝜆 (𝑢), 𝑢⟩ = 0 N 0 𝜆 (Ω) = 𝑢 ∈ N 𝜆 (Ω) : ⟨I ′ 𝜆 (𝑢), 𝑢⟩ = 0 . Theorem 3.1. Suppose that 𝑢 0 is a local maximum or minimum for E 𝜆 on N 𝜆 (Ω). If 𝑢 0 ∉ N 0 𝜆 (Ω), then 𝑢 0 is a critical point of E 𝜆 .

Lemma 3.2. The energy functional E 𝜆 is coercive and bounded below on N 𝜆 (Ω).

Proof. Let 𝑢 ∈ N 𝜆 (Ω) and ∥𝑢∥ > 1. Then, using (3.1) and Propositions 2.4 and 2.10, yields

E 𝜆 (𝑢) = ∫ Ω 1 𝑝(𝑥) H D 𝛼,𝛽;𝜓 0+ 𝑢 𝑝 ( 𝑥) d𝑥 -𝜆 ∫ Ω 1 𝑞(𝑥) 𝑎(𝑥)|𝑢| 𝑞 ( 𝑥) d𝑥 - ∫ Ω 1 ℎ(𝑥) 𝑏(𝑥)|𝑢| ℎ( 𝑥) d𝑥 ≥ 1 𝑝 + ∫ Ω H D 𝛼,𝛽;𝜓 0+ 𝑢 𝑝 ( 𝑥) d𝑥 - 𝜆 𝑞 - ∫ Ω 𝑎(𝑥)|𝑢| 𝑞 ( 𝑥) d𝑥 - 1 ℎ - ∫ Ω H D 𝛼,𝛽;𝜓 0+ 𝑢 𝑝 ( 𝑥) -𝜆 ∫ Ω 𝑎(𝑥)|𝑢| 𝑞 ( 𝑥) d𝑥 ≥ 1 𝑝 + - 1 ℎ - ∫ Ω H D 𝛼,𝛽;𝜓 0+ 𝑢 𝑝 ( 𝑥) d𝑥 + 𝜆 1 ℎ -- 1 𝑞 - ∫ Ω 𝑎(𝑥)|𝑢| 𝑞 ( 𝑥) d𝑥 ≥ ℎ --𝑝 + ℎ -𝑝 + ∥𝑢∥ 𝑝 --𝐶 10 𝜆 ℎ --𝑞 - ℎ -𝑞 -∥𝑢∥ 𝑞 + . Since 𝑝 -> 𝑞 + , so E 𝜆 (𝑢) → ∞ as ∥𝑢∥ → ∞.
This implies E 𝜆 is coercive and bounded below on E 𝜆 (Ω). □ Lemma 3.3. There exists 𝜆 1 > 0 such that for 0 < 𝜆 < 𝜆 1 we have

N 0 𝜆 = ∅. Proof. Suppose otherwise, this is, N 0 𝜆 = ∅ for all 𝜆 ∈ R \ {0}. Let 𝑢 ∈ N 0 𝜆 (Ω) such that ∥𝑢∥ > 1.
Then, using Eq.(3.1), Eq.(2.5) and definition of

N 0 𝜆 (Ω), yields 0 = ⟨I ′ 𝜆 (𝑢), 𝑢⟩ = ∫ Ω 𝑝(𝑥) H D 𝛼,𝛽;𝜓 0+ 𝑢 𝑝 ( 𝑥) d𝑥 -𝜆 ∫ Ω 𝑞(𝑥)𝑎(𝑥)|𝑢| 𝑞 ( 𝑥) d𝑥 - ∫ Ω ℎ(𝑥)𝑏(𝑥)|𝑢| ℎ( 𝑥) d𝑥 ≥ 𝑝 - ∫ Ω H D 𝛼,𝛽;𝜓 0+ 𝑢 𝑝 ( 𝑥) d𝑥 -𝑞 + ∫ Ω H D 𝛼,𝛽;𝜓 0+ 𝑢 𝑝 ( 𝑥) d𝑥 - ∫ Ω 𝑏(𝑥)|𝑢| ℎ( 𝑥) d𝑥 -ℎ + ∫ Ω 𝑏(𝑥)|𝑢| ℎ( 𝑥) d𝑥 ≥ ( 𝑝 --𝑞 + ) ∫ Ω H D 𝛼,𝛽;𝜓 0+ 𝑢 𝑝 ( 𝑥) d𝑥 + (𝑞 + -ℎ + ) ∫ Ω 𝑏(𝑥)|𝑢| ℎ( 𝑥) d𝑥.
By Proposition 2.10, yields

0 ≥ ( 𝑝 --𝑞 + ) ∥𝑢∥ 𝑝 -+ 𝐶 8 (𝑞 + -ℎ + ) ∥𝑢∥ ℎ + ∥𝑢∥ ≥ 𝐶 12 𝑝 --𝑞 + ℎ + -𝑞 + 1 ℎ + -𝑝 - • (3.2) 
Similarly, 

0 = ⟨I ′ 𝜆 (𝑢), 𝑢⟩ = 𝑝 + ∫ Ω H D 𝛼,𝛽;𝜓 0+ 𝑢 𝑝 ( 𝑥) d𝑥 -𝜆𝑞 - ∫ Ω 𝑎(𝑥)|𝑢| 𝑞 ( 𝑥) d𝑥 -ℎ - ∫ Ω 𝑏(𝑥)|𝑢| ℎ( 𝑥) d𝑥 ≤ 𝑝 + ∫ Ω H D 𝛼,𝛽;𝜓 0+ 𝑢 𝑝 ( 𝑥) d𝑥 -𝜆𝑞 - ∫ Ω 𝑎(𝑥)|𝑢| 𝑞 ( 𝑥) d𝑥 -ℎ - ∫ Ω H D 𝛼,𝛽;𝜓 0+ 𝑢 𝑝 ( 𝑥) d𝑥 -𝜆 ∫ Ω 𝑎(𝑥)|𝑢| 𝑞 ( 𝑥) d𝑥 . Using Proposition 2.10, yields 0 ≤ ( 𝑝 + -ℎ -) ∥𝑢∥ 𝑝 -+ 𝜆𝐶 10 (ℎ --𝑞 -) ∥𝑢∥ 𝑞 + ∥𝑢∥ ≥ 𝐶 13 𝜆 ℎ --𝑞 - ℎ --𝑝 + 1 𝑝 --𝑞 + • (3.3) If 𝜆 is sufficiently small 𝜆 = ℎ --𝑝 + ℎ --𝑞 - 𝑝 --𝑞 + ℎ + -𝑞 + 𝑝 --𝑞 + ℎ + -𝑝 -
𝑢 + 0 𝑝 ( 𝑥) d𝑥 < lim 𝑛→∞ inf ∫ Ω H D 𝛼,𝛽;𝜓 0+ 𝑢 + 𝑛 𝑝 ( 𝑥) d𝑥.
Moreover, by the compact embeddings, yields

∫ Ω 𝑎(𝑥)|𝑢 + 0 | 𝑞 ( 𝑥) d𝑥 = lim 𝑛→∞ inf ∫ Ω 𝑎(𝑥)|𝑢 + 𝑛 | 𝑞 ( 𝑥) d𝑥 ∫ Ω 𝑏(𝑥)|𝑢 + 0 | ℎ( 𝑥) d𝑥 = lim 𝑛→∞ inf ∫ Ω 𝑏(𝑥)|𝑢 + 𝑛 | ℎ( 𝑥) d𝑥.
Using the fact that ⟨E ′ 𝜆 (𝑢 + 𝑛 ), 𝑢 + 𝑛 ⟩ = 0 and Theorem 2.9, we can write the followings

E 𝜆 (𝑢 + 𝑛 ) ≥ 1 𝑝 + - 1 ℎ - ∫ Ω H D 𝛼,𝛽;𝜓 0+ 𝑢 + 𝑛 𝑝 ( 𝑥) d𝑥 + 𝜆 1 ℎ -- 1 𝑞 - ∫ Ω 𝑎(𝑥)|𝑢 + 𝑛 | 𝑞 ( 𝑥) d𝑥 lim 𝑛→∞ E 𝜆 (𝑢 + 𝑛 ) ≥ 1 𝑝 + - 1 ℎ -lim 𝑛→∞ ∫ Ω H D 𝛼,𝛽;𝜓 0+ 𝑢 + 𝑛 𝑝 ( 𝑥) d𝑥 + 𝜆 1 ℎ -- 1 𝑞 -lim 𝑛→∞ ∫ Ω 𝑎(𝑥)|𝑢 + 𝑛 | 𝑞 ( 𝑥) d𝑥 𝛼 + 𝜆 = inf 𝑢∈N + 𝜆 E 𝜆 (𝑢) > 1 𝑝 + - 1 ℎ -∥𝑢 + 0 ∥ 𝑝 -+ 𝐶 7 𝜆 1 ℎ -- 1 
𝑞 -∥𝑢 + 0 ∥ 𝑞 -+ ∥𝑢 + 0 ∥ 𝑞 + , since 𝑝 -> 𝑞 + , for ∥𝑢 + 0 ∥ > 1, yields 𝛼 + 𝜆 = inf 𝑢∈N + 𝜆 E 𝜆 (𝑢) > 0.
However, in Lemma 3.4, it was showed that for any

𝑢 ∈ N + 𝜆 (Ω), E 𝜆 (𝑢) < 0. So this is a contradiction. Hence, 𝑢 ∈ N + 𝜆 (Ω) in H 𝛼,𝛽;𝜓 𝑝 ( 𝑥) (Ω) and E 𝜆 (𝑢 + 0 ) = lim 𝑛→∞ E 𝜆 (𝑢 + 𝑛 ) = inf 𝑢∈N + 𝜆 E 𝜆 (𝑢). Thus, 𝑢 + 0 is a minimizer for E 𝜆 on N + 𝜆 (Ω). □ Lemma 3.6. If 0 < 𝜆 < 𝜆 1 , then for all 𝑢 ∈ N - 𝜆 (Ω), E 𝜆 (𝑢) > 0. Proof. Let 𝑢 ∈ N 𝜆 (Ω). By definition of E 𝜆 (Ω) and (3.1), yields E 𝜆 (𝑢) ≥ 1 𝑝 + ∫ Ω H D 𝛼,𝛽;𝜓 0+ 𝑢 𝑝 ( 𝑥) d𝑥 - 𝜆 𝑞 -𝑎(𝑥)|𝑢| 𝑞 ( 𝑥) d𝑥 - 1 ℎ - ∫ Ω 𝑏(𝑥)|𝑢| ℎ( 𝑥) d𝑥 (3.8) and ∫ Ω 𝑏(𝑥)|𝑢| ℎ( 𝑥) d𝑥 = ∫ Ω H D 𝛼,𝛽;𝜓 0+ 𝑢 𝑝 ( 𝑥) d𝑥 -𝜆 ∫ Ω 𝑎(𝑥)|𝑢| 𝑞 ( 𝑥) d𝑥. ( 3.9) 
Using Eq.(3.8)-Eq.(3.9), Propositions 2.4 and 2.10 and the condition 𝑝 -> 𝑞 + , yields

E 𝜆 (𝑢) ≥ 1 𝑝 + ∫ Ω H D 𝛼,𝛽;𝜓 0+ 𝑢 𝑝 ( 𝑥) d𝑥 - 𝜆 𝑞 - ∫ Ω 𝑎(𝑥)|𝑢| 𝑞 ( 𝑥) d𝑥 - 1 ℎ - ∫ Ω H D 𝛼,𝛽;𝜓 0+ 𝑢 𝑝 ( 𝑥) d𝑥 -𝜆 ∫ Ω 𝑎(𝑥)|𝑢| 𝑞 ( 𝑥) d𝑥 ≥ 1 𝑝 + - 1 ℎ - ∫ Ω H D 𝛼,𝛽;𝜓 0+ 𝑢 𝑝 ( 𝑥) d𝑥 + 𝜆 1 ℎ -- 1 𝑞 - ∫ Ω 𝑎(𝑥)|𝑢| 𝑞 ( 𝑥) d𝑥 ≥ 1 𝑝 + - 1 ℎ -∥𝑢∥ 𝑝 -+ 𝐶 10 𝜆 1 ℎ -- 1 
𝑞 -∥𝑢∥ 𝑞 + ≥ ℎ --𝑝 + 𝑝 + ℎ -+ 𝐶 10 𝑞 --ℎ - ℎ -𝑞 -∥𝑢∥ 𝑝 - .
So, if we choose 𝜆 < 𝑞 -(ℎ --𝑝 + ) 𝐶 10 𝑝 + (ℎ --𝑞 -) , we get E 𝜆 (𝑢) > 0. Moreover, if we consider the facts (1.4). Finally, by the Harnack inequality (Theorem 2.12), we obtain that 𝑢 ± 0 are positive solutions of (1.4).

N 𝜆 (Ω) = N + 𝜆 (Ω) ∪ N - 𝜆 (Ω) (see Lemma 3.3), N + 𝜆 (Ω) ∩ N - 𝜆 (Ω) = ∅,

  𝑗 (•) and H D 𝛼,𝛽;𝜓 𝑇 (•) := H D 𝛼,𝛽;𝜓 𝑇 ,𝑥 𝑗 (•).

  𝑢(𝑥) , in which 𝑝(𝑥) = 𝑝 > 1.

  2, . . ., then the follows statements are equivalent to each other: (1) lim 𝑛→∞ ∥𝑢 𝑛 -𝑢∥ 𝑝 ( 𝑥) = 0; (2) lim 𝑛→∞ 𝜌(𝑢 𝑛 -𝑢) = 0; (3) 𝑢 𝑛 → 𝑢 in measure on Ω and lim 𝑛→∞ 𝜌(𝑢 𝑛 ) = 𝜌(𝑢).

. 6 ) 2 . 11 .

 6211 Definition[START_REF] Jarad | Generalized fractional derivatives and Laplace transform[END_REF] Let 𝑓 and ℎ be of 𝜓-exponential order, piecewise continuous functions over each finite interval [0, 𝑇]. Then, the 𝜓-convolution of 𝑓 and ℎ, denoted by 𝑓 * 𝜓 ℎ is given by𝑓 * 𝜓 ℎ =∫ 𝑡 0 𝑓 (𝜓 -1 (𝜓(𝑡) -𝜓(𝜏)))𝜓 ′ (𝜏)ℎ(𝜏)𝑑𝜏. Consider 𝜓(0) = 0. Then we have -1 (𝜓(𝑡) -𝜓(𝜏)))𝑔 𝜓 𝛽 (𝜏)𝜓 ′ (𝜏)𝑑𝜏 = ∫ 𝑡 0 (𝜓(𝑡) -𝜓(𝜏)) 𝛼-1 Γ(𝛼)

𝜓 1 -

 1 𝛾 (𝑡 -𝜏)𝑢(𝜏)𝑑𝜏. (2.15) Remembering that 𝜕 𝛼,𝛽;𝜓 𝑡 𝑢(𝑡) = H D 𝛼,𝛽;𝜓 0+ 𝑢(𝑡) = 𝐼 𝛾-𝛼;𝜓 0+ 𝑅𝐿 𝐷 𝛾;𝜓 0+ 𝑢(𝑡) with 𝛾 = 𝛼 + 𝛽(1 -𝛼). Applying 𝐼 𝛾-𝛼;𝜓 0+ (•) o both sides of Eq.(2.15), we have 𝜕 𝛼,𝛽;𝜓 𝑠 𝑢(𝑠) = 𝑢 0 𝐼 𝛾-𝛼;𝜓 0+ 𝑔 𝜓 1-𝛾 (𝑡) -𝐼 𝛾-𝛼;𝜓 0+ ∫ 𝑡 * 0 𝜕 𝑡 𝜓 ′ (𝑡) 𝜓 ′ (𝜏)𝑔 𝜓 1-𝛾 (𝑡 -𝜏)𝑢(𝜏)𝑑𝜏 = 𝑢 0 𝑔 𝜓 1-𝛼 (𝑡) -𝐼 𝛾-𝛼;𝜓 0+ ∫ 𝑡 * 0 𝜕 𝑡 𝜓 ′ (𝑡) 𝜓 ′ (𝜏)𝑔 𝜓 1-𝛾 (𝑡 -𝜏)𝑢(𝜏)𝑑𝜏 .

𝜓 1 - 1 *

 11 𝛾 (𝜓(𝑠 + 𝑡 * -𝜏)𝑢(𝜏)𝑑𝜏 . Since 𝑔 𝜓 1-𝛾 * 𝜓 𝑢 (0) = 0 and 𝑔 𝜓 1-𝛾 * 𝜓 𝑔 𝜓 𝑢 = 𝐼 𝛾-𝛼;𝜓 0+ 𝑢.So from the convolution of Eq.(2.17) with 𝑔 𝜓 𝛼 , we have 𝜕 𝛼,𝛽;𝜓 𝑠 𝑢(𝑠) * 𝜓 𝑔 𝜓 𝛼 = 𝑢 0 𝑔 𝜓 1-𝛼 (𝑠 + 𝑡 * ) + ℎ 𝜓 (𝑠) * 𝜓 𝑔 𝜓 𝛼 = 𝑢 0 𝑔 𝜓 1-𝛼 (• + 𝑡 * ) * 𝜓 𝑔 𝜓 𝛼 (𝑠) + ℎ 𝜓 * 𝜓 𝑔 𝜓 𝛼 (𝑠) (2.18)

𝜓 1 - 1 0 1 Γ 1 -

 1111 𝛾 (𝜓(𝜏 + 𝑡 * -𝜎)𝑢(𝜎)𝑑𝜎 𝑑𝜏. (2.21) Making the following variable change 𝜏 = 𝑟 𝑠 in Eq.(2.21), we have ℎ 𝜓 * 𝜓 𝑔 𝜓 𝛼 (𝑠) = 𝑠 ∫ 𝜓 ′ (𝑟 𝑠) (𝜓 (𝑠) -𝜓(𝑟 𝑠)) 𝛼-𝛾 (𝜓(𝑟 𝑠 + 𝑡 * -𝜎)𝑢(𝜎)𝑑𝜎 𝑑𝑟 = : Ψ(𝑠) (2.22)

,Lemma 3 . 4 .

 34 then from inequalities (3.2) and (3.3) we get ∥𝑢∥ < 1 which contradicts which our assumption. Hence, we conclude N 0 𝜆 = ∅. □ By Lemma 3.3, for 0 < 𝜆 < 𝜆 1 , we can write N 𝜆 (Ω) = N + 𝜆 (Ω) ∪ N - 𝜆 (Ω). Therefore, we ca let𝛼 + 𝜆 = inf 𝑢∈N + 𝜆 (Ω) E 𝜆 (𝑢) and 𝛼 - 𝜆 = inf 𝑢∈N - 𝜆 (Ω) = E 𝜆 (𝑢). If 0 < 𝜆 < 𝜆 1 , then for all 𝑢 ∈ N + 𝜆 (Ω), E 𝜆 (𝑢) < 0. Proof. Let 𝑢 ∈ N + 𝜆 (Ω). By definition of E 𝜆 (𝑢), we can writeE 𝜆 (𝑢) ≤ 1 𝑝 - )|𝑢| 𝑞 ( 𝑥) d𝑥 -)|𝑢| 𝑞 ( 𝑥) d𝑥ℎ - ∫ Ω 𝑏(𝑥)|𝑢| ℎ( 𝑥) d𝑥 > 0. (3.5) Now, if we multiply (3.1) by (-𝑞 -) and add with (3.5), yields ∫ Ω 𝑏(𝑥)|𝑢| ℎ( 𝑥) d𝑥 < 𝑝 + -𝑞 - ℎ --𝑞 -

𝑢Corollary 3 . 8 .

 38 𝑝 ( 𝑥) d𝑥 -𝜆 ∫ Ω 𝑞(𝑥)𝑎(𝑥)|𝑢| 𝑞 ( 𝑥) d𝑥 -∫ Ω ℎ(𝑥)𝑏(𝑥)|𝑢| ℎ( 𝑥) d𝑥, )𝑎(𝑥)|𝑡𝑢 - 0 | 𝑞 ( 𝑥) d𝑥 -∫ Ω ℎ(𝑥)𝑏(𝑥)|𝑡𝑢 - 0 | ℎ( 𝑥) d𝑥 ≥ 𝑡 𝑝 + 𝑝 + )|𝑢 - 0 | 𝑞 ( 𝑥) d𝑥 -𝑡 ℎℎ - ∫ Ω 𝑏(𝑥)|𝑢 - 0 | ℎ( 𝑥) d𝑥.Since 𝑞 -< 𝑝 + < ℎ -, and by the assumptions on 𝑎 and 𝑏, it follows I ′ 𝜆 (𝑡𝑢 - 0 ) < 0. Hence, by the definition ofN - 𝜆 (Ω), 𝑡𝑢 - 0 ∈ N - 𝜆 (Ω). Now, we shall show 𝑢 - 𝑛 → 𝑢 - 0 in H 𝛼,𝛽;𝜓 𝑝 ( 𝑥) (Ω). Then using the fact that ∫ )|𝑢 - 0 | 𝑞 ( 𝑥) d𝑥 -𝑡 ℎℎ - )|𝑢 - 𝑛 | 𝑞 ( 𝑥) d𝑥 -𝑡 ℎℎ - ∫ Ω 𝑏(𝑥)|𝑢 - 𝑛 | ℎ( 𝑥) d𝑥 ≤ lim 𝑛→∞ E 𝜆 (𝑡𝑢 - 𝑛 ) ≤ lim 𝑛→∞ E 𝜆 (𝑢 - 𝑛 ) = inf 𝑢∈N - 𝜆 (Ω) E 𝜆 (𝑢) = 𝛼 - 𝜆 .This implies that E 𝜆 (𝑡𝑢 - 0 ) < inf𝑢∈N - 𝜆 (Ω) E 𝜆 (𝑢) = 𝛼 - 𝜆 , which is a contradiction. Hence, 𝑢 - 𝑛 → 𝑢 - 0 in H 𝛼,𝛽;𝜓 𝑝 ( 𝑥) (Ω) and so E 𝜆 (𝑢 - 0 ) = lim 𝑛→∞ E 𝜆 (𝑢 - 𝑛 ) = inf 𝑢∈N - 𝜆 (Ω) E 𝜆 (𝑢).Thus, 𝑢 - 0 is a minimizer for E 𝜆 on N - 𝜆 (Ω).□ By Theorem 3.5 and Theorem 3.7, we conclude that there exists 𝑢 + 0 ∈ N + 𝜆 (Ω) and𝑢 - 0 ∈ N - 𝜆 (Ω) such that E 𝜆 (𝑢 + 0 ) = inf 𝑢∈N + 𝜆 (Ω) E 𝜆 (𝑢) and E 𝜆 (𝑢 - 0 ) = inf 𝑢∈N - 𝜆 (Ω) E 𝜆 (𝑢). Moreover, since E 𝜆 𝑢 ± 0 = E 𝜆 |𝑢 ± 0 | and |𝑢 ± 0 | ∈ N ± 𝜆(Ω), we may assume 𝑢 ± 0 ≥ 0. By Theorem 3.1, 𝑢 ± 0 are critical points of E 𝜆 on H 𝛼,𝛽;𝜓 𝑝 ( 𝑥) (Ω) and hence are weak solutions of

  2 , ..., 𝑇 𝑁 and 𝜃 1 , 𝜃 2 , ..., 𝜃 𝑁 positive constants. Consider also 𝜓(•) be an increasing and positive monotone function on (𝜃 1 , 𝑇 1 ), (𝜃 2 , 𝑇 2 ), ..., (𝜃 𝑁 , 𝑇 𝑁 ), having a continuous derivative 𝜓 ′ (•) on (𝜃 1 , 𝑇 1 ], (𝜃 2 , 𝑇 2 ], ..., (𝜃 𝑁 , 𝑇 𝑁 ]. The 𝜓-Riemann-Liouville fractional partial integral of order 𝛼 of 𝑁-variables 𝑢 = (𝑢 1 , 𝑢 2 , ..., 𝑢 𝑁 ) ∈ 𝐿 1 (Ω) denoted by I

	𝛼, 𝜓 𝜃 ,𝑥 𝑗 (•), is defined by [35, 36, 37]

  [START_REF] Chabrowski | Existence of solutions for 𝑝 ( 𝑥)-Laplacian problems on a bounded domain[END_REF] 

  On the other hand, let 𝑢, 𝜓 ∈ 𝐶 𝑛 (Ω) two functions such that 𝜓 is increasing and 𝜓 ′ (𝑥 𝑗 ) ≠ 0 𝑗 ∈ {1, 2, ..., 𝑁 }, 𝑥 𝑗 ∈ Ω. The 𝜓-Hilfer fractional partial derivative of 𝑁-variables, denoted by H D

• • • 𝑑𝑠 𝑁 , for all 𝑗 ∈ {1, 2, ..., 𝑁 }. Analogously, it is defined I 𝛼, 𝜓 𝑇 ,𝑥 𝑗 (•).

𝛼,𝛽;𝜓 𝜃 ,𝑥 𝑗 (•), of order 𝛼 and type 𝛽 (0 ≤ 𝛽 ≤ 1), is defined by

[START_REF] Sousa | On the 𝜓-Hilfer fractional derivative[END_REF][START_REF] Sousa | Leibniz type rule: 𝜓-Hilfer fractional operator[END_REF][START_REF] Sousa | Fractional order pseudoparabolic partial differential equation: Ulam-Hyers stability[END_REF] 

  [START_REF] Chabrowski | Existence of solutions for 𝑝 ( 𝑥)-Laplacian problems on a bounded domain[END_REF] 

  𝐴𝐶 1 and 𝜃 ∈ 𝐶 1 satisfying the boundary conditions 𝑢(0) = 𝑢(𝑇) = 0. Let 0 < 𝛼 ≤ 1, 0 ≤ 𝛽 ≤ 1 and 1 < 𝑝(𝑥) < ∞. Assume that 𝛼 > 1/𝑝(𝑥) and the sequence {𝑢 𝑘 } converges weakly to 𝑢 in H

	𝑎	𝑏	H D	𝛼,𝛽;𝜓 0+	𝑢(𝑡) 𝑣(𝑡)𝑑𝑡 =	∫ 𝑏 𝑎	𝑢(𝑡)𝜓 ′ (𝑡) H D 𝑇 𝛼,𝛽;𝜓	𝑣(𝑡) 𝜓 ′ (𝑡)	𝑑𝑡	(2.2)
	for any 𝑢 ∈ Proposition 2.2. [28, 29, 30]						

𝛼,𝛽;𝜓 𝑝 ( 𝑥) (Ω; R) i.e., 𝑢 𝑘 ⇀ 𝑢.

  Then for any function 𝑢 ∈ 𝑍 (𝑡 * , 𝑡 * + 𝜎 3 𝜌) and that satisfies 𝑢 0 ) (𝑡) = 0, a.a.t ∈ (𝑡 * , 𝑡 * + 𝜎 3 𝜌) where 𝑊-= (𝑡 * + 𝜎 1 𝜌, 𝑡 * + 𝜎 2 𝜌) e 𝑊+ = (𝑡 * + 𝜎 2 𝜌, 𝑡 * + 𝜎 3 𝜌).Proof. Suppose 𝑢 ∈ 𝑍 = (𝑡 * , 𝑡 * + 𝜎 3 𝜌) is nonnegative on (0, 𝑡 * + 𝜎 3 𝜌) and satisfies Eq.(2.10). We introduce the shifted time 𝑠 = 𝑡 -𝑡 * , and define the function 𝑢 by means of 𝑢(𝑠) = 𝑢(𝑠 + 𝑡 * ), 𝑠 ∈ (0, 𝜎 3 𝜌).

		𝜕 𝑡 𝛼,𝛽;𝜓	(𝑢 -(2.10)
	there holds the inequality			
					sup	≤ 𝜎 3 𝜎 1 inf	𝑢	(2.11)
					𝑊-	𝑊+
	Then Eq.(2.10) implies that (𝑡 = 𝑠 + 𝑡 * )
			𝜕 𝑡 𝛾;𝜓	𝑢(𝑡) -𝜕 𝑡 𝛾;𝜓	𝑢 0 (𝑡) = 0	(2.12)
	𝛾;𝜓 𝑡 implies 𝜕			
	𝜕 𝑡 𝛾;𝜓	𝑢(𝑡) := 𝑅𝐿 𝐷	𝛾;𝜓 0+ 𝑢(𝑡) =	𝜕 𝑡 𝜓 ′ (𝑡)

𝑢(𝑠

+ 𝑡 * ) = 𝜕 𝛾;𝜓 𝑡 𝑢 0 (𝑠 + 𝑡 * ), 𝑠 ∈ (0, 𝜎 3 𝜌) where

  Proof. Since E 𝜆 (•) is bounded below on N 𝜆 (Ω) and so on N + 𝜆 (Ω).

						Then, there exists a minimizing
	sequence {𝑢 + 𝑛 } ⊆ N + 𝜆 (Ω) such that	
				lim 𝑛→∞	E 𝜆 (𝑢 + 𝑛 ) = inf 𝑢∈N + 𝜆 (Ω)	E 𝜆 (𝑢) = 𝛼 + 𝜆 < 0.
	Since E 𝜆 is coercive, 𝑢 + 𝑛 is bounded in H	𝛼,𝛽;𝜓 𝑝 ( 𝑥) (Ω). Thus, we may assume that, without loss of generality,
	𝑢 + 𝑛 ⇀ 𝑢 + 0 in H	𝛼,𝛽;𝜓 𝑝 ( 𝑥) (Ω) and by the compact embeddings we have
						𝑢 + 𝑛 → 𝑢 + 0 in 𝐿 𝑞 ( 𝑥) 𝑎 ( 𝑥) (Ω)
	and				
						𝑢 + 𝑛 → 𝑢 + 0 in 𝐿 ℎ( 𝑥) 𝑏 ( 𝑥) (Ω).
	Now, we shall prove 𝑢 + 𝑛 → 𝑢 + 0 in H	𝛼,𝛽;𝜓 𝑝 ( 𝑥) (Ω). Otherwise, suppose 𝑢 + 𝑛 ↛ 𝑢 + 0 in H	𝛼,𝛽;𝜓 𝑝 ( 𝑥) (Ω). Then,
		∫ Ω	H D	𝛼,𝛽;𝜓 0+
						1 ℎ +	∫ Ω	𝑏(𝑥)|𝑢| ℎ( 𝑥) d𝑥	(3.7)
	and applying (3.6) in (3.7), it follows
			E 𝜆 (𝑢) < -	( 𝑝 --𝑞 + ) (ℎ + -𝑝 -) ℎ + 𝑝 -𝑞 +	H ∥𝑢∥ 𝑝	𝑝 ( 𝑥) 𝛼,𝛽;𝜓	< 0.
	Hence, we have 𝛼 + 𝜆 = inf 𝑢∈N + 𝜆 (Ω)		

E 𝛼 (𝑢) < 0. □ Theorem 3.5. If 0 < 𝜆 < 𝜆 1 , these exists a minimizer of E 𝜆 on N + 𝜆 (Ω).

  and Lemma 3.4, we must have 𝑢 ∈ N - 𝜆 (Ω). □ Theorem 3.7. If 0 < 𝜆 < 𝜆 1 , there exists a minimizer of E 𝜆 (•) on N - 𝜆 (Ω). Proof. Since E 𝜆 is bounded below on N 𝜆 (Ω) and so onN - 𝜆 is coercive, 𝑢 - 𝑛 is bounded in H 𝛼,𝛽;𝜓 𝑝 ( 𝑥) (Ω). Thus, we may assume that without loss of generality, 𝑢 - 𝑛 ⇀ 𝑢 - 0 in H 𝛼,𝛽;𝜓 𝑝 ( 𝑥) (Ω) and by the compact embeddings, we have𝑢 - 𝑛 → 𝑢 - 0 in 𝐿 𝑞 ( 𝑥) 𝑎 ( 𝑥), 𝜓 (Ω) and 𝑢 - 𝑛 → 𝑢 - 0 in 𝐿 ℎ( 𝑥) 𝑏 ( 𝑥), 𝜓 (Ω). Moreover, if 𝑢 - 0 ∈ N - 𝜆 (Ω), then there is a constant 𝑡 > 0 such that 𝑡𝑢 - 0 ∈ N - 𝜆 (Ω) and E 𝜆 (𝑢 - 0 ) ≥ E 𝜆 (𝑡𝑢 - 0 ).

	{𝑢 -𝑛 } ⊆ N -𝜆 (Ω) such that		𝜆 (Ω), then there exists a minimizing sequence
				lim 𝑛→∞	E 𝜆 (𝑢 -𝑛 ) = inf 𝑢∈N -𝜆 (Ω)	E 𝜆 (Ω) = 𝛼 -𝜆 > 0.
	Since E Indeed, since			
	I ′ 𝜆 (𝑢) =	∫ Ω	𝑝(𝑥) H D	𝛼,𝛽;𝜓 0+