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In this paper, we investigate the existence of weak solutions for fractional Dirichlet boundary value problem in the sense of the ψ-Hilfer fractional operator with p-Laplacian and Hardy-type singularity term using the Nehari manifold in the ψfractional space E α,β;ψ p (Ω).

Introduction

Consider the fractional Dirichlet boundary value problem with p-Laplacian and Hardy-type singularity term, given by eq1 eq1 (1.1) H L α,β;ψ T ξ(x) = K(x)ξ(x) τ , in Ω := (0, T ) × (0, T ) × (0, T ) with

H L α,β;ψ T ξ(x) := H C D α,β;ψ + H D α,β;ψ + ξ(x) p-2 H D α,β;ψ + ξ(x) +λξ(x) p-1 +µ |x| 2 ξ(x) p-1 + mξ(x) p-1 |x| p-1
and lim x→T I

1-α)(1-β);ψ + ξ(x) = lim x→0 I 1-α)(1-β);ψ +
ξ(x) = 0, where ξ(x) p-1 := |u| p-2 ξ(x) and K(x) = K(|x|) is a nonnegative non-decreasing continuous radial function in R 3 , λ > 0, µ ≥ 0, -1 C(p, 2) p/(p-1) := -m 0 < m ≤ 0, τ > 1 and p ∈ (1,[START_REF] Kilbas | Theory and applications of fractional differential equations[END_REF]. Furthermore, H C D α,β;ψ + (•) and H D α,β;ψ + (•) are Hilfer-Caputo and ψ-Hilfer fractional derivatives of order 1 p < α ≤ 1 and type 0 ≤ β ≤ 1. The fractional operators with respect to another function which was introduced in the work of Kilbas et al. [START_REF] Kilbas | Theory and applications of fractional differential equations[END_REF] then developed by Almeida [START_REF] Almeida | A Caputo fractional derivative of a function with respect to another function[END_REF], Sousa and Oliveira [1] have been receiving a lot of attention among researchers because they contain a wide class of fractional derivatives.

In the last years, the interest for fractional differential equations with p-Laplacian has grown more and more. The theory of fractional differential equations with p-Laplacian involving the ψ-Hilfer fractional operator, started in 2020 with the work investigated by Sousa et al. [START_REF] Sousa | The Nehari manifold for a ψ-Hilfer fractional p-Laplacian[END_REF] about the existence of weak solutions via Nehari manifold and fibration application. Motivated by this work, other researchers have addressed fractional differential equation problems involving p-Laplacian and the Nehari manifold [START_REF] Sousa | Nehari manifold and bifurcation for a ψ-Hilfer fractional p-Laplacian[END_REF][START_REF] Ezati | Existence of solutions to a Kirchhoff ψ-Hilfer fractional p-Laplacian equations[END_REF][START_REF] Sousa | A variational approach for a problem involving a ψ-Hilfer fractional operator[END_REF][START_REF] Sousa | Existence and Regularity of Weak Solutions for ψ-Hilfer Fractional Boundary Value Problem[END_REF].

In 2021 Ma [START_REF] Ma | On nonlocal Hénon type problems with the fractional Laplacian[END_REF], investigate the existence of positive solutions to a semilinear nonlocal Hénon type elliptic problem with the fractional s-Laplacian on R n 1 2 < s < n 2 of the follows problem

(-∆) s u(x) + |x| 2 u(x) = |x| b u(x) p , u ≥ 0, in R n , n ≥ 2 with s ∈ ( 1 2 , n 2 ), p > 1 and the real number b is for -n + (n/2 -s)(p + 1) < b < σ := 2 + ( n 2-s )(p -1
). In the same year, Ma [START_REF] Ma | On the Poisson equation of p-Laplacian and the nonlinear Hardy-type problems[END_REF], discussed the existence of result of the ground state for the following nonlinear super-linear elliptic problem with Hardy-type singularity term

-∆ p u(x) + λu(x) p-1 + µ|x| 2 u(x) p-1 + mu(x) p-1 |x| p-1 = K(x)u(x) r .
For more details, see [START_REF] Ma | On the Poisson equation of p-Laplacian and the nonlinear Hardy-type problems[END_REF]. We refer some work that about existence and regularity of weak solutions involving p-Laplacian operator [START_REF] Li | Extremals to new Gagliardo-Nirenberg inequality and ground states[END_REF][15][16][17][18].

As highlighted above, results on fractional differential equations with p-Laplacian involving the ψ-Hilfer fractional operator, are still very restricted, which allows the investigation of new results. On the other hand, tools to tackle open problems are restricted and require the need to find or provide new techniques to get the desired results.

In this sense, motivated by the work above, in this paper, we use the variational method to consider the existence of nonnegative H α,β;ψ p (Ω), 1 < p < 3 weak solutions to Eq.(1.1). In other words, let's investigate the following result:

principal Theorem 1.1. Assume that p ∈ (1, 3) and τ > 1. Assume that K(x) = K(|x|) is a nonnegative continuous radial function in Ω and it is non-increasing in r = |x|. Suppose that K(|x|) satisfies the condition eq2 eq2 (1.2) K(|x|)|x| (p-2)(τ +1)/2 ∈ L 1 ψ(x) (Ω).
Then there is a positive radially symmetric H α,β;ψ p (Ω) weak solution to Eq.(1.1).

In the rest, section 2 is intended to present tools to be used in the investigation of the main result of the paper. In section 3, we investigate some essential results and the main result, that is, the existence of a weak solution for Eq.(1.1).

Mathematical background-auxiliary results

Let p ∈ [1, ∞). The space of p-integrate functions with respect to a function ψ is defined as [START_REF] Sousa | The Nehari manifold for a ψ-Hilfer fractional p-Laplacian[END_REF] (2.1)

L p ψ (Ω) := u : Ω → R : Ω |ξ(x)| p ψ ′ (x)dx < ∞ with norm (2.2) ∥u∥ L p ψ (Ω) = Ω |ξ(x)| p ψ ′ (x)dx 1 p and L ∞ ψ (Ω)
is the Banach space of essentially bounded function from Ω to R equipped with the norm

(2.3) ∥u∥ L ∞ ψ (Ω) = ess sup x∈Ω |ψ ′ (x)ξ(x)|. Let θ = (θ 1 , θ 2 , ..., θ N ), T = (T 1 , T 2 , ..., T N ) and α = (α 1 , α 2 , ..., α N ) where 0 < α 1 , α 2 , ..., α N < 1 with θ j < T j , for all j ∈ {1, 2, ..., N }, N ∈ N. Also put Ω = I 1 × I 2 × • • • × I N = [θ 1 , T 1 ] × [θ 2 , T 2 ] × • • • × [θ N , T N ]
where T 1 , T 2 , ..., T N and θ 1 , θ 2 , ..., θ N positive constants. Consider also ψ(•) be an increasing and positive monotone function on (θ 1 , T 1 ), (θ 2 , T 2 ), ..., (θ N , T N ), having a continuous derivative

ψ ′ (•) on (θ 1 , T 1 ], (θ 2 , T 2 ], ..., (θ N , T N ]. The ψ-Riemann-Liouville fractional partial integral of order α of N -variables ξ = (ξ 1 , ξ 2 , ..., ξ N ) ∈ L 1 (Ω) denoted by I α,ψ θ,x j (•), is defined by [4] I α,ψ θ,x j ξ(x j ) = 1 Γ(α j ) • • • Ω ψ ′ (s j )(ψ(x j ) -ψ(s j )) α j -1 ξ(s j )ds j with ψ ′ (s j )(ψ(x j ) -ψ(s j )) α j -1 = ψ ′ (s 1 )(ψ(x 1 ) -ψ(s 1 )) α 1 -1 ψ ′ (s 2 )(ψ(x 2 ) - ψ(s 2 )) α 2 -1 • • • ψ ′ (s N )(ψ(x N ) -ψ(s N )) α N -1 where Γ(α j ) = Γ(α 1 )Γ(α 2 ) • • • Γ(α N ), ξ(s j ) = ξ(s 1 )ξ(s 2 ) • • • ξ(s N ), ds j = ds 1 ds 2 • • • ds N , for all j ∈ {1, 2, ..., N }.
Analogously, it is defined I α,ψ T,x j (•). On the other hand, let ξ, ψ ∈ C n (Ω) two functions such that ψ is increasing and ψ ′ (x j ) ̸ = 0 j ∈ {1, 2, ..., N }, x j ∈ Ω. The ψ-Hilfer fractional partial derivative of N -variables, denoted by H D α,β;ψ θ,x j (•), of order α and type β (0 ≤ β ≤ 1), is defined by [START_REF] Sousa | On the stability of a hyperbolic fractional partial differential equation[END_REF] derivada derivada (2.4)

H D α,β;ψ θ,x j ξ(x j ) = I β(1-α),ψ θ,x j 1 ψ ′ (x j ) ∂ N ∂x j I (1-β)(1-α),ψ θ,x j ξ(x j ) with ∂x j = ∂x 1 , ∂x 2 • • • ∂x N and ψ ′ (x j ) = ψ ′ (x 1 )ψ ′ (x 2 ) • • • ψ ′ (x N ), for all j ∈ {1, 2, ..., N }. Analogously it is defined H D α,β;ψ T,x j (•). The definition of the Caputo-Hilfer fractional derivative H C D α,β;ψ + (•)
is just to change the order of the integrals of the Definition 2.4 [START_REF] Ledesma | Fractional integration by parts and Sobolev type inequalities for ψ-fractional operators[END_REF].

During the paper we will use the following notation

H D α,β;ψ θ,x j := H D α,β;ψ + . The ψ-fractional space H α,β;ψ p (Ω) is defined by (2.5) H α,β;ψ p (Ω) = u ∈ L p ψ (Ω) : H D α,β;ψ + u ∈ L p ψ (Ω), lim x→T I 1-α)(1-β);ψ + ξ(x) = lim x→0 I 1-α)(1-β);ψ + ξ(x) = 0 equipped with the norm (2.6) ∥u∥ H α,β;ψ p (Ω) = ∥u∥ p L p ψ (Ω) + H D α,β;ψ + u p L p ψ (Ω) 1/p . Let 0 < α < 1, p ∈ (1, ∞) and 1 p + 1 q ≤ 1 + α. If u ∈ L q ψ (Ω) and v ∈ L p ψ (Ω)
, then the following integration by parts [START_REF] Ledesma | Fractional integration by parts and Sobolev type inequalities for ψ-fractional operators[END_REF] (2.7)

Ω I α;ψ + v(x) ξ(x)ψ ′ (x)dx = Ω v(x)I α;ψ -ξ(x)ψ ′ (x)dx. Theorem2.1 Theorem 2.1. [9] Let 0 < α < 1, 0 ≤ β ≤ 1, u, v ∈ AC(Ω) and - 1 ψ ′ (•) I α;ψ -u ∈ L 2 ψ (Ω). Then, Ω H C D α,β;ψ - ξ(x)v(x)ψ ′ (x)dx = -lim x→T I (1-α)(1-β);ψ + v(x) I β(1-α);ψ - ξ(x) + lim x→0 I (1-α)(1-β);ψ + v(x) I β(1-α);ψ - ξ(x) + Ω ξ(x) H D α,β;ψ + v(x)ψ ′ (x)dx. (2.8)
Now we want to derive the variational framework to problem Eq.(1.1), to this end left φ ∈ C ∞ 0 (Ω) and u be a solution of Eq.(1.1). Multiplying the inequality in Eq.(1.1) by φ and weighted integrate in Ω, yields

Ω H C D α,β;ψ + H D α,β;ψ + ξ(x) p-2 H D α,β;ψ + ξ(x) φ(x)ψ ′ (x)dx I (2.9) = Ω K(x)ξ(x) τ -λξ(x) p-1 -µ |x| 2 ξ(x) p-1 - mξ(x) p-1 |x| p-1 φ(x)ψ ′ (x)dx. (2.10) By Theorem 2.1 with lim x→T I (1-α)(1-β);ψ + φ(x) = 0, lim x→0 I (1-α)(1-β);ψ + φ(x) = 0, yields Ω H C D α,β;ψ + H D α,β;ψ + ξ(x) p-2 H D α,β;ψ + ξ(x) φ(x)ψ ′ (x)dx II (2.11) = Ω H D α,β;ψ + ξ(x) p-2 H D α,β;ψ + ξ(x) H D α,β;ψ + φ(x)ψ ′ (x)dx. (2.12)
Therefore, combining Eq.(2.9) and Eq.(2.11), we have

Ω H D α,β;ψ + ξ(x) p-2 H D α,β;ψ + ξ(x) H D α,β;ψ + φ(x)ψ ′ (x)dx = Ω K(x)ξ(x) τ -λξ(x) p-1 -µ |x| 2 ξ(x) p-1 - mξ(x) p-1 |x| p-1 φ(x)ψ ′ (x)dx. III (2.13) Consider φ = u in Eq.(2.13), yields IV IV (2.14) Ω H D α,β;ψ + ξ(x) p ψ ′ (x)dx = Ω K(x)ξ(x) τ +1 -λξ(x) p -µ |x| 2 ξ(x) p - mξ(x) p |x| p-1 ψ ′ (x)dx.
So from Eq.(2.14), we have the functional associated to problem Eq.(1.1), is given by

E λ (t) = 1 p Ω H D α,β;ψ + ξ(x) p + λ |ξ(x)| p + µ |x| 2 |ξ(x)| p + m |ξ(x)| p |x| p-1 ψ ′ (x)dx - 1 τ + 1 Ω K(x) |ξ(x)| τ +1 ψ ′ (x)dx. Consider (2.15) E α,β;ψ p =        u ∈ L 1 loc,ψ (Ω) : Ω H D α,β;ψ + ξ(x) p + λ |ξ(x)| p + µ |x| 2 |ξ(x)| p + m |ξ(x)| p |x| p-1 ψ ′ (x)dx - Ω K(x) |ξ(x)| τ +1 ψ ′ (x)dx < ∞, lim x→T I 1-α)(1-β);ψ + ξ(x) = lim x→0 I 1-α)(1-β);ψ + ξ(x) = 0        with norm (2.16) ∥u∥ E α,β;ψ p := Ω H D α,β;ψ + ξ(x) p + λ |ξ(x)| p + µ |x| 2 |ξ(x)| p ψ ′ (x)dx 1/p .
We may look for solutions in the class L r ψ (Ω) of non-increasing radially symmetric functions in Ω. Define E α,β;ψ r = E α,β;ψ p ∩ L r ψ (Ω).

Existence of positive solutions

Lemma3 Lemma 3.1. [START_REF] Ma | On the Poisson equation of p-Laplacian and the nonlinear Hardy-type problems[END_REF] Let {u j } ⊂ H α,β;ψ p (Ω) be a bounded sequence such that up to a subsequence, u j converges weakly in H α,β;ψ p (Ω) to u ∈ H α,β;ψ p (Ω) and strong converges in L p loc,ψ (Ω) to u. Then we have

(3.1) Ω ψ ′ (x) |u j (x)| p |x| p-1 dx → Ω ψ ′ (x) |ξ(x)| p |x| p-1 dx as j → ∞. Theorem3.2 Theorem 3.2. Let u ∈ L p ψ (a, b), u(a) = 0, H D α,β;ψ + u ∈ L p ψ (a, b) and p > 1.
Then, for the ψ-Hilfer fractional derivative H D α,β;ψ + (•) of order α ∈ (1/p, 1) and type 0 ≤ β ≤ 1, we have the inequality

8 8 (3.2) ∥u∥ L ∞ ψ (a,b) ≤ (ψ (b) -ψ (a)) α-1/p αp p -1 - 1 p -1 p -1 p H D α,β;ψ + u L p ψ (a,b)
.

Proof. Let u ∈ L p ψ (a, b), u(a) = 0, H D α,β;ψ + u ∈ L p ψ (a, b
) and consider the function

u(t) = I α;ψ + H D α,β;ψ + u(t).
Using the Holder inequality with 1 p + 1 q = 1, yields

I α;ψ + H D α,β;ψ + u(t) ≤ 1 Γ (α) t a ψ ′ (s) (ψ(t) -ψ(s)) α-1 H D α,β;ψ + u(s) ds ≤ 1 Γ (α) t a ψ ′ (s) (ψ(t) -ψ(s)) (α-1)q ds 1 q + 1 Γ (α) t a ψ ′ (s) H D α,β;ψ + u(s) p ds p ≤ (ψ (b) -ψ (a)) α-1/p Γ (α) αp p -1 - 1 p -1 p -1 p H D α,β;ψ + u L p ψ (a,b) 8 (3.3)
where q = p p -1 > 1. Therefore, we concluded that 

(3.4) ∥u∥ L p ψ (a,b) ≤ (ψ (b) -ψ (a)) α-1/p Γ (α) αp p -1 - 1 p -1 p -1 p H D α,β;ψ + u L p ψ (
(3.5) u x L p ψ (a,b) ≤ a -1 (ψ (b) -ψ (a)) α Γ (α) αp p -1 - 1 p -1 p -1 p H D α,β;ψ + u L p ψ (a,b) with ψ(b) ̸ = ψ(a), ∀a, b ∈ R. Proof. From a < x < b, we have 1 b < 1 x < 1 a . By using Theorem 3.2, yields b a ψ ′ (x) |ξ(x)| p x p dx 1 p ≤ a -1 ∥u∥ L p ψ (a,b) ≤ a -1 (ψ (b) -ψ (a)) α Γ (α) αp p -1 - 1 p -1 p -1 p H D α,β;ψ + u L p ψ (a,b) . (3.6)
By the fractional Hardy inequality Eq.(3.2), yields for u ∈ E α,β;ψ r (Ω)

u(r) p r n-p ≤ c Br(0) ψ ′ (x) |ξ(x)| p |x| p dx ≤ c Ω ψ ′ (x) H D α,β;ψ + ξ(x) p dx. 9 (3.7)
Recall that we have assumed m ∈ (-m 0 , 0] and λ > 0. We now define the Nehari functional and the Nehari manifold. Define the Nehari functional in E α,β;ψ r (Ω)

N λ (u) = Ω H D α,β;ψ + ξ(x) p + λ |ξ(x)| p + µ |x| 2 |ξ(x)| p + m |ξ(x)| p |x| p-1 ψ ′ (x)dx - Ω K(x)|ξ(x)| τ -1 ψ ′ (x)dx
and define the Nehari manifold by

S λ = u ∈ E α,β;ψ p (Ω); u ̸ = 0, N λ (u) = 0 .
□ Now let's discuss the main result of this paper.

Proof. (Theorem 1.1) Note that the assumption Eq.(1.2) implies that for any u ∈ E α,β;ψ p (Ω) we automatically have

(3.8) K(|x|)|ξ(x)| τ +1 ≤ cK(|x|)|x| (p-3)(τ +1)/2 |u| τ +1 H ∈ L 1 ψ (Ω)
. This estimate is useful for us to use the Lebesgue convergence theorem for minimizing sequence of the functional E λ on S λ defined below. By holder inequality, yields

Ω ψ ′ (x) |ξ(x)| p |x| p-1 dx ≤ Ω ψ ′ (x)|ξ(x)| p dx (p-1)/p Ω ψ ′ (x) |ξ(x)| p |x| p dx 1/p .
This estimative implies that the term

Ω ψ ′ (x) |ξ(x)| p |x| p-1 dx.
For any u ∈ S λ , yields

E λ (u) = 1 p - 1 τ + 1 Ω H D α,β;ψ + ξ(x) p + λ |ξ(x)| p + µ |x| 2 |ξ(x)| p + m |ξ(x)| p |x| p-1 ψ ′ (x)dx
which is the restriction of E λ on the Nehari manifold S λ and on S λ , we also have

E λ (u) = 1 p - 1 τ + 1 Ω K(x)|ξ(x)| τ -1 ψ ′ (x)dx ≥ 0.
We remark that by the assumption about m, we obtain

Ω H D α,β;ψ + ξ(x) p + λ |ξ(x)| p + µ |x| 2 |ξ(x)| p + m |ξ(x)| p |x| p-1 ψ ′ (x)dx ≥ c Ω H D α,β;ψ + ξ(x) p + |ξ(x)| p + µ |x| 2 |ξ(x)| p ψ ′ (x)dx
for some uniform constant c > 0. On the other hand, we define the height of E λ (•) on the Nehari manifold S λ by (3.9)

d = inf u∈S λ E λ (u).
Now, we will prove that d > 0. Note that for u ∈ S λ , we may let u * be the radially rearrangement of u, which is in L r ψ (Ω). Since

B R (R 2 -|x| 2 )|ξ(x)| p dx ≤ B R (R 2 -|x| 2 )|u * (x)| p dx for any R > 0, follows that B R |x| 2 |ξ(x)| p dx ≥ B R |x| 2 |u * (x)| p dx. Since R > 0 is arbitrary, yields B R |x| 2 |u * (x)| p dx ≤ B R |x| 2 |ξ(x)| p dx.
In this sense, we obtain

E λ (u) ≥ E λ (u * )
and

Ω K(x)|ξ(x)| τ -1 ψ ′ (x)dx ≤ Ω K(x)|u * (x)| τ -1 ψ ′ (x)dx.
So, we have E λ (u * ) ≤ 0 and u * ∈ E α,β;ψ r (Ω). In this sense, as E λ (u * ) ≤ 0, we discuss two cases, as follows: Case 1: If E λ (u * ) = 0, we have u * ∈ S λ , So we assume that u = u * ∈ E α,β;ψ r (Ω). By the above estimate, yields

Ω K(x)|ξ(x)| τ -1 ψ ′ (x)dx ≤ c ∥u∥ 1+τ E α,β;ψ r (Ω) and ∥u∥ 2 E α,β;ψ r (Ω) ≤ c ∥u∥ 1+τ E α,β;ψ r (Ω)
which implies that ∥u∥ 2 E α,β;ψ r (Ω) ≥ c > 0 for some c > 0 (constant). Then, follows that

d ≥ 1 2 - 1 τ + 1 c > 0.
CASE 2: E λ (u * ) < 0. In this case, we way choose λ ∈ (0, 1) such that u = λu * , E λ ( u) = 0 and repeat the above argument we obtain ∥u∥ 2 E α,β;ψ r (Ω) ≥ c > 0. Then, in this sense, we have c.Thus, the assertion has been proved. We now choose a minimizing sequence (u j ) ⊂ S λ such that E λ (u j ) → d, we know that u j is uniformly bounded in E α,β;ψ r (Ω) and we way choose an E α,β;ψ r -weakly convergent subsequence of u j still denoted by (u j ) with its weak limit in E α,β;ψ r (Ω) denoted by u such that u j → u almost everywhere and converges in L p loc,ψ (Ω) to u. Using Eq.(3.10), we may further assume that all u j ∈ E α,β;ψ r (Ω). Otherwise, we just take u j as a nee minimizing sequence. Applying the Lebesgue dominated convergence theorem to u j ∈ S λ , Lemma 3.1 and applying the estimate Eq.(3.7), we know that d = E λ (u). This implies that u ̸ = 0. By the weakly semi-continuity of the E α,β;ψ r -norm, we know that E λ (u) < 0, then we may find a real number λ ∈ (0, 1) as in case two such that λu ∈ S λ and E λ (λu) ≥ d. Then we obtain E λ (λu) = λ p E λ (u) = λ p d < 0, which is a contradiction. Hence, we have u ∈ S λ and E λ (u) = d. By means of the Lagrange multiplier method, we know that up to a recalling, u satisfies Eq.(1.1) in E α,β;ψ p -weak sense. □
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Theorem3. 3

 3 Theorem 3.3. (Fractional Hardy inequality) Let a > 0, u(a) = 0 and H D α,β;ψ + u ∈ L p ψ (a, b) with p > 1 and α ∈ (1/p, 1]. Then, for the ψ-Hilfer fractional derivative H D α,β;ψ + (•), we have the inequality

  c ≤ E λ (λu * ) = λ p E λ (u * ) ≤ E λ (u * ) ≤ E λ (u)and again we have d ≥

Bartsch [15] Bartsch, T., Wang, Z. Q. Existence and multiplicity results for some superlinear elliptic problems on R