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We introduce a fractional derivative with respect to another function, the so-called g-Hilfer fractional derivative, on an arbitrary time scale. The fundamental properties of the new operator are investigated and, in particular, we prove an integration by parts formula. Using the Laplace transform and the obtained integration by parts formula, we then propose a g-Riemann-Liouville fractional integral on times scales. The applicability of the new operators is illustrated by considering a fractional initial value problem on an arbitrary time scale, for which we prove existence, uniqueness and controllability of solutions in a suitable Banach space. The obtained results are interesting and nontrivial even for particular choices: (i) of the time scale; (ii) of the order of differentiation; and/or (iii) function g; opening new directions of investigation.

Introduction

Fractional calculus is nowadays a well consolidated field of research with many applications in various areas of knowledge, which is interesting and important as it presents more refined results that are in line with reality [START_REF] Kilbas | Theory and applications of fractional differential equations[END_REF][START_REF] Lakshmikantham | Theory of fractional dynamic systems[END_REF][START_REF] Oliveira | Hilfer-Katugampola fractional derivatives[END_REF][START_REF] Podlubny | Fractional differential equations[END_REF][START_REF] Vanterler Da | On the ψ-Hilfer fractional derivative[END_REF][START_REF] Vanterler Da | Leibniz type rule: ψ-Hilfer fractional operator[END_REF][START_REF] Vanterler Da | A new approach to the validation of an ESR fractional model[END_REF][START_REF] Vanterler Da | ψ-Hilfer pseudo-fractional operator: new results about fractional calculus[END_REF][START_REF] Vanterler Da | The ψ-Hilfer fractional calculus of variable order and its applications[END_REF].

Although a well consolidated area, there are, however, still numerous open problems and paths to be unraveled [START_REF] Aghayan | Observer-based control approach for fractional-order delay systems of neutral type with saturating actuator[END_REF][START_REF] Aghayan | LMI-based stability analysis of fractional order systems of neutral type with time varying delays under actuator saturation[END_REF][START_REF] Hassani | An optimization technique for solving a class of nonlinear fractional optimal control problems: application in cancer treatment[END_REF][START_REF] Lopes | Multidimensional scaling analysis of generalized mean discrete-time fractional order controllers[END_REF]. A research path that some mathematicians have recently been interested consists to investigate fractional calculus on time scales [START_REF] Benkhettou | Existence and uniqueness of solution for a fractional Riemann-Liouville initial value problem on time scales[END_REF][START_REF] Kumar | Existence, uniqueness and stability of nonlinear implicit fractional dynamical equation with impulsive condition on time scales[END_REF][START_REF] Malik | Existence, stability and controllability results of coupled fractional dynamical system on time scales[END_REF][START_REF] Yan | Existence of solutions of boundary value problems for Caputo fractional differential equations on time scales[END_REF][START_REF] Zhu | Fractional Cauchy problem with Caputo nabla derivative on time scales[END_REF].

In 2007, Atici and Eloe investigated the fractional q-calculus on the quantum time scale [START_REF] Atici | Fractional q-calculus on a time scale[END_REF]. The authors presented a study on some properties of the fractional q-calculus and investigated the q-Laplace transform. In 2011, Bastos et al. investigated a class of fractional derivatives on times scales using the inverse Laplace transform [START_REF] Bastos | Fractional derivatives and integrals on time scales via the inverse generalized Laplace transform[END_REF]. Nowadays, the subject of fractional calculus on time scales is very rich and under strong current research [START_REF] Ahmadkhanlu | On the existence and uniqueness of solution of initial value problem for fractional order differential equations on time scales[END_REF][START_REF] Belaid | Stability by Krasnoselskii's fixed point theorem for nonlinear fractional dynamic equations on a time scale[END_REF][START_REF] Benkhettou | Existence and uniqueness of solution for a fractional Riemann-Liouville initial value problem on time scales[END_REF][START_REF] Kumar | Controllability results of fractional integro-differential equation with non-instantaneous impulses on time scales[END_REF][START_REF] Sidi Ammi | Existence and uniqueness results for a fractional Riemann-Liouville nonlocal thermistor problem on arbitrary time scales[END_REF][START_REF] Torres | Cauchy's formula on nonempty closed sets and a new notion of Riemann-Liouville fractional integral on time scales[END_REF][START_REF] Williams | Fractional calculus on time scales with Taylor's theorem[END_REF]. Here, we make use of the idea behind a ψ-Hilfer fractional derivative, that is, fractional differentiation of functions with respect to another function, which is a remarkable and relevant idea with a big impact on fractional calculus and its applications, in particular for problems described by fractional differential equations [START_REF] Shloof | Solving fractal-fractional differential equations using operational matrix of derivatives via Hilfer fractal-fractional derivative sense[END_REF]. The study of ψ-Riemann-Liouville fractional integrals with respect to a function ψ on time scales was initiated by Mekhalfi and Torres in 2017, where they introduced some generalized fractional operators on time scales of a function with respect to another function and carried out some applications to dynamic equations [START_REF] Mekhalfi | Generalized fractional operators on time scales with application to dynamic equations[END_REF]. Later, in 2018, Harikrishnana et al. proposed the ψ-Hilfer fractional operator on time scales as T ∆ α,β;g a+ h(x) = T I β(n-α);g a+

T ∆ T I n-γ;g a+ h(x) (1.1) 
with γ = α + β(n -α) and T ∆ = d dx [START_REF] Harikrishnana | An arbitrary order differential equation on times scales[END_REF]. However, we note that (1.1) does not comply with the standard fractional calculus. In fact, instead of T ∆ = d dx , we should have

T ∆ ψ = ∆ ψ ∆ (x)
. To see that the term T ∆ = d dx is inconsistent, one just needs to take T = R and β → 0 or β → 1, for which one does not obtain the ψ-Riemann-Liouville or the ψ-Caputo fractional derivative, as desired.

One of the problems when working with solutions of fractional differential equations on time scales is that the area is still under construction and some fundamental tools are still under discussion and investigation. Examples include the lack of existence, uniqueness, stability and controllability results, which prevent attacking more sophisticated problems. To fill the gap, and motivated by the above mentioned works, we provide here new tools and an extension of the fractional calculus on time scales. We claim that the results we now obtain contribute significantly to the field of fractional differential equations on time scales. Precisely, we consider the fractional initial value problem T ∆ α,β;g t0+ y(t) = f (t, y(t)), t ∈ [t 0 , t 0 + a] = J ⊆ T,

T I 1-γ;g t0 y(t 0 ) = y 0 ,

where T ∆ α,β;g t0+ (•) is the g-Hilfer fractional derivative on time scales of order α, 0 < α < 1, and of type 0 ≤ β ≤ 1 and f : J × T → R is a right-dense continuous function. Moreover, we will add an operator B and a control function u into problem (1.2), which results in T ∆ α,β;g t0+ y(t) = f (t, y(t)) + Bu(t), t ∈ [t 0 , t 0 + a] = J ⊂ T, T I 1-γ;g t0 y(t 0 ) = y 0 , (1.3) where B : R → R is assumed to be a bounded linear operator and where the control function u belongs to L 2 (J, R). Our main contributions may be summarized in three axes.

Firstly, we present an extension to the ψ-Hilfer fractional derivative in the sense of time scales and discuss the essential properties in formulating a fractional derivative. Furthermore, some properties for the ψ-Riemann-Liouville fractional integral on time scales are also given. In particular, we investigate Leibniz's rule, the Laplace transform and integration by parts for both integral and fractional derivatives on time scales, respectively in the sense of ψ-Riemann-Liouville and ψ-Hilfer.

Our second direction of contribution consists to investigate the question of existence and uniqueness of solution for the initial value problem (1.2). In concrete, we prove the following two results.

Theorem 1.1. Suppose J = [t 0 , t 0 + a] ⊆ T. Then, the initial value problem (1.2) has a unique solution on J if function f (t, y(t)) is a right-dense continuous function for which there exists M > 0 such that |f (t, y(t))| < M on J and the Lipschitz condition

∥f (t, x) -f (t, y)∥ ≤ L∥x -y∥
holds for some L > 0 and for all t ∈ J and x, y ∈ R.

Theorem 1.2. Suppose f : J × R → R is a right-dense continuous function such that there exists M > 0 with |f (t, y)| ≤ M for all t ∈ J, y ∈ R. Then problem (1.2) has a solution on J.

To better understand our third axle of novelty, let us first present our hypotheses. They are:

(A 1 ) Let f : J × T → R be a right-dense continuous function. (A 2 ) There exists M > 0 on [t 0 , t 0 + a] = J ⊂ T such that |f (t, y(t))| ≤ M . (A 3 ) Let D = {x ∈ C 1-γ (J, R) : ∥x∥ C1-γ ≤ ρ}. (A 4 ) The linear operator W u : L 2 (J, R) → R defined by W α u = 1 Γ(α) t t0 g ∆ (s)(g(t) -g(s)) α-1 (Bu)(s)∆s
has bounded invertible operators (W α u) -1 , which take values in L 2 (J, R), Ker/W α , and there exists positive constants M W such that ∥(W α ) -1 ∥ ≤ M W . Also, B is a continuous operator from R to R and there exists a positive constant M B such that ∥B∥ ≤ M B .

We investigate the solution controllability for (1.3). Precisely, we prove total controllability under hypotheses A i , i = 1, . . . , 4.

Theorem 1.3. If all assumptions (A 1 )-(A 4 ) hold, then the control system (1.3) is controllable on J provided M (g(t 0 + a) -g(t 0 )) 1-β(1-α) Γ(α + 1) < 1.
It should be noted that our results are interesting and nontrivial even in the particular cases of (i) the standard ψ-Hilfer fractional derivative (obtained by choosing T = R); (ii) the classical integer-order case (obtained with T = R and α = 1); and (iii) the standard time-scale calculus (obtained by considering α = 1). Moreover, for concrete particular choices of function ψ, we obtain new formulations involving fractional derivatives on time scales. This opens new directions of investigation and discussion. In particular, an open problem consists to compute the solutions to problems involving such operators by developing suitable numerical methods.

The article is organized as follows. In Section 2, we recall the necessary concepts and results from the literature that help us throughout the paper. In Section 3, we present our new extension involving the ψ-Hilfer fractional derivative on time scales. The fundamental properties of the new operator are investigated and, in particular, we obtain an integration by parts formula and a Leibniz rule. Then we investigate the corresponding Laplace transform in Section 4. We proceed by attacking the second main purpose of our paper, that is, to prove existence and uniqueness of a solution to problem (1.2). This is the subject of Section 5. Finally, we investigate the controllability of (1.3) in Section 6.

Preliminaries

Following [START_REF] Vanterler Da | A variational approach for a problem involving a ψ-Hilfer fractional operator[END_REF], for 0 ≤ γ ≤ 1 we define the weighted space C 1-γ,g (J, R) of continuous functions f on the the finite interval J = [t 0 , t 0 + a] ⊂ T by

C 1-γ,g [t 0 , t 0 + a] = f : (t 0 , t 0 + a] → R : (g(t) -g(t 0 )) 1-γ f (t) ∈ C([t 0 , t 0 + a]) with the norm ∥f ∥ C1-γ,g[t0,t0+a] = ∥(g(t) -g(t 0 )) 1-γ f (t)∥ C [t 0 ,t 0 +a] .
Definition 2.1 (See [START_REF] Agarwal | Basic calculus on time scales and some of its applications[END_REF][START_REF] Anastassiou | Principles of delta fractional calculus on time scales and inequalities[END_REF][START_REF] Bohner | Dynamic equations on time scales[END_REF]). A time scale T is an arbitrary nonempty closed subset of the real numbers. For t ∈ T, one defines the forward jump operator σ : T → T by

σ(t) = inf{s ∈ T : s > t}
while the backward jump operator ρ : T → T is defined by

ρ(t) = sup{s ∈ T : s < t}.
In addition, we put σ(max T) = max T if max T is finite and ρ(min T) = min T if there exists a finite min T.

Obviously, both σ(t) and ρ(t) are in T when t ∈ T. This is because of our assumption that T is a closed subset of R. Let t ∈ T. If σ(t) > t, then we say that t is right-scattered, while if ρ(t) < t, then we say that t is left-scattered. Also, if t < max T and σ(t) = t, then t is called right-dense, and if t > min T and ρ(t) = t, then t is called left-dense.

The derivative makes use of the set T κ , which is derived from the time scale T as follows: if T has left-scattered maximum M , then T κ := T \ {M }; otherwise, T κ := T. Definition 2.2 (Delta derivative [START_REF] Agarwal | Basic calculus on time scales and some of its applications[END_REF][START_REF] Anastassiou | Principles of delta fractional calculus on time scales and inequalities[END_REF][START_REF] Bohner | Dynamic equations on time scales[END_REF]). Assume f : T → R and let t ∈ T κ . One defines

f ∆ (t) = lim s→t f (σ(s)) -f (t) σ(s) -t , t ̸ = σ(s),
provided the limit exists. We will call f ∆ (t) the delta derivative of f at t. Moreover, we say that f is delta differentiable on T κ provided f ∆ (t) exists for all t ∈ T κ . The function f ∆ : T κ → R is then called the (delta) derivative of f on T κ . 

F (s) := f (s) if s ∈ T, f (t) if s ∈ (t, σ(t)) ̸ ⊂ T, then b a f (t)∆t ≤ b a F (t)dt. Let n -1 < α < n with n ∈ N, I = [a, b] be an interval such that -∞ ≤ a < b ≤ ∞ and f, g ∈ C n ([a, b],
R) be two functions such that g is increasing and g ′ (x) ̸ = 0 for all x ∈ I. The left-sided g-Hilfer fractional derivative H D α,β;g a+ (•) of function f of order α and type 0 ≤ β ≤ 1 is given by

H D α,β;g a+ f (x) = I β(n-α);g a+ 1 g ′ (x) d dx n I n-γ;g a+ f (x) (2.1)
where I δ,g a+ (•) is the Riemann-Liouville fractional integral with respect to another function g with δ = β(n-α) or δ = (1 -β)(n -α) and γ = α + β(n -α).

Lemma 2.6 (See [START_REF] Vanterler Da | On the ψ-Hilfer fractional derivative[END_REF]). Let Q 1 and Q 2 be two bounded sets in a Banach space X. Then, [START_REF] Agarwal | Basic calculus on time scales and some of its applications[END_REF] 

µ(Q 1 ) = 0 if and only if Q 1 is compact. (2) µ(Q 1 ) = µ(Q 1 ). (3) Q 1 ⊂ Q 2 implies µ(Q 1 ) ≤ µ(Q 2 ). ( 4 
) µ(Q 1 + Q 2 ) ≤ µ(Q 1 ) + µ(Q 2 ).
3. The g-Hilfer fractional derivative on times scales

In this section we introduce the g-Hilfer fractional derivative on times scales. For that we begin by recalling the notion of g-Riemann-Liouville fractional integral as introduced by Mekhalfi and Torres in [START_REF] Mekhalfi | Generalized fractional operators on time scales with application to dynamic equations[END_REF]. Definition 3.1 (See [START_REF] Mekhalfi | Generalized fractional operators on time scales with application to dynamic equations[END_REF]). Suppose T is a time scale, [a, b] is an interval of T, f is an integrable function on [a, b], and g is monotone having a delta derivative g ∆ with g ∆ (x) ̸ = 0 for any

x ∈ [a, b]. Let 0 < α < 1.
Then, the g-Riemann-Liouville fractional integral on times scales of order α of function f with respect to g is defined by

T I δ,g a+ f (x) = 1 Γ(α) x a g ∆ (s)(g(x) -g(s)) α-1 f (s)∆s. ( 3.1) 
Here we make use of (3.1) to define a version for (2.1) on the sense of times scales. 

T ∆ α,β;g a+ f (x) = T I β(n-α);g a+ ∆ g ∆ (x) (n) T I n-γ;g a+ f (x) (3.2) with γ = α + β(n -α). Remark 3.3. If T = R, then (3.
2) reduces to the g-Hilfer fractional derivative (2.1).

Remark 3.4. Taking the limit β → 0 on both sides of (3.2), we obtain the g-Riemann-Liouville fractional derivative on time scales given by

T RL ∆ α;g a+ f (x) = ∆ g ∆ (x) (n) T I n-α;g a+ f (x).
(3.3) Remark 3.5. Taking the limit β → 1 on both sides of (3.2), one has the g-Caputo fractional derivative on time scales given by

T C ∆ α;g a+ f (x) = T I n-α;g a+ ∆ g ∆ (x) (n) f (x).
(3.4)

Remark 3.6. Let T = R. Taking α = 1 and g(x) = x, we get the classical derivative.

Remark 3.7. Note that (3.2) can be written as Remark 3.8. With particular choices of g we obtain a wide class of fractional derivatives on time scales. For example, let us consider the g-Hilfer fractional derivative on time scales and function g

T ∆ α,β;g a+ f (x) = T I γ-α;g a+ T RL ∆ γ;g a+ f (x) and T ∆ α,β;g a+ f (x) = T C ∆ µ;g a+ T I n-γ;g a+ f (x) with γ = α + β(n -α) and µ = n(1 -β) + βα,
(x) = T I (1-β)(n-α);g a+ f (x).
In this case, we have

T ∆ α,β;g a+ f (x) = T I n-µ;g a+ ∆ g ∆ (x) (n) g(x) with µ = n(1 -β) + βα.
We proceed by proving several basic but fundamental properties. Proposition 3.9. For any integrable function h on [a, b], the g-Riemann-Liouville fractional integral on time scales satisfies T I α;g a+

T I β;g a+ f (t) = T I α+β;g a+ f (t) for any α, β > 0.
Proof. Using (3.1) of Definition 3.1 yields

T I α;g a+ T I β;g a+ f (t) = 1 Γ(α) t a g ∆ (s)(g(t) -g(s)) α-1 T I β;g a+ h(s) ∆s = 1 Γ(α) t a g ∆ (s)(g(t) -g(s)) α-1 1 Γ(β) s a g ∆ (τ )(g(s) -g(τ )) β-1 f (τ )∆τ ∆s = 1 Γ(α)Γ(β) t a s a g ∆ (s)(g(t) -g(s)) α-1 g ∆ (τ )(g(s) -g(τ )) β-1 f (τ )∆τ ∆s.
Now, we interchange the order of integration from Fubini's theorem to obtain

T I α;g a+ T I β;g a+ f (t) = 1 Γ(α)Γ(β) t a t τ g ∆ (s)(g(t) -g(s)) α-1 g ∆ (τ )(g(s) -g(τ )) β-1 ∆s f (τ )∆τ. Making the change of variable r = g(s) -g(τ ) g(t) -g(τ )
, r ∈ R, we have dr = g ∆ (s)∆s and when s → τ one has r → 0 and when s → t one has r → 1. Hence,

T I α;g a+ T I β;g a+ f (t) = 1 Γ(α)Γ(β) t a t τ g ∆ (s) 1 - g(s) -g(τ ) g(t) -g(τ ) α-1 (g(t) -g(τ )) α-1 g ∆ (τ )(g(s) -g(τ )) β-1 ∆s f (τ )∆τ = 1 Γ(α)Γ(β) t a 1 0 (1 -r) α-1 (g(t) -g(τ )) α-1 g ∆ (τ )(g(t) -g(τ ))r β-1 (g(t) -g(τ )) β-1 dr]f (τ )∆τ = 1 Γ(α)Γ(β) 1 0 (1 -r) α-1 r β-1 dr t a (g(t) -g(τ )) α+β-1 g ∆ (τ )f (τ )∆τ = B(α, β) Γ(α)Γ(β) t a (g(t) -g(τ )) α+β-1 g ∆ (τ )f (τ )∆τ = 1 Γ(α + β) t a (g(t) -g(τ )) α+β-1 g ∆ (τ )f (τ )∆τ. The proof is complete. □ Lemma 3.10. Let n -1 ≤ γ < n and t ∈ C γ [a, b]. Then, T I α;g a+ f (a) = lim x→a+ T I α;g a+ f (x) = 0, n -1 ≤ γ < α.
Proof. First, we have that

T I α;g a+ f (x) ∈ C γ [a, b] is bounded. Since f ∈ C γ [a, b], then (g(x) -g(a)) γ f (x) is continuous on [a, b] and thus (g(x) -g(a)) γ f (x) < M ⇒ |f (x)| < (g(x) -g(a)) -γ M, (3.5) 
x ∈ [a, b], for some positive constant M . Taking T I α;g a+ (•) on both sides of (3.5) yields

T I α;g a+ f (x) < T I α;g a+ (g(x) -g(a)) -γ M = M Γ(n -γ) Γ(α + n -γ) (g(x) -g(a)) α-γ .
Since γ < α, the right-sided tends to 0 as x tends to a+. Therefore, one has

T I α;g a+ f (a) = lim x→a+ T I α;g a+ f (x) = 0
and the result is proved. □ Theorem 3.11. Let 0 < α < 1 and g be monotone having a delta derivative g ∆ with g ∆ (x) ̸ = 0 for all x ∈ [a, b]. The g-Riemann-Liouville fractional integral on time scales is a bounded operator given by

T I α;g a+ f Cγ ,g ≤ L f Cγ ,g with L = (g(b) -g(a)) α Γ(α + 1) .
Proof. By (3.1) of Definition 3.1 it follows, using Proposition 2.5, that

T I α;g a+ f Cγ ,g = max x∈[a,b] (g(x) -g(a)) γ T I α;g a+ f (x) = max x∈[a,b] (g(x) -g(a)) γ 1 Γ(α) x a g ∆ (s)(g(t) -g(s)) α-1 f (s)∆s ≤ ∥f ∥ Cγ,g 1 Γ(α) x a g ∆ (s)(g(t) -g(s)) α-1 ∆s ≤ ∥f ∥ Cγ,g Γ(α) (g(b) -g(a)) α α = (g(b) -g(a)) α Γ(α + 1) ∥f ∥ Cγ,g = L∥f ∥ Cγ,g , where L = (g(b) -g(a)) α Γ(α + 1) . □ Theorem 3.12. Let f ∈ C([a, b]) and α > 0. In order that f ∈ T I α;g b-([a, b]
) it is necessary and sufficient that

T I 1-α;g a+ f ∈ C 1 [a, b] (3.6)
and

T I 1-α;g a+ f (t) t=a = 0. (3.7) Proof. Assume that f ∈ T I α;g a+ [a, b] and f (t) = T I α;g a+ g(t) for g ∈ C [a, b] . Using Proposition 3.9, T I 1-α;g a+ f (t) = T I 1-α;g a+ T I α;g a+ g(t) = T I 1;g a+ g(t) = t a g ∆ (s)g(s)∆s. Therefore, T I 1-α;g a+ f ∈ C [a, b] and T I 1-α;g a+ f (t) t=a = t a g ∆ (s)g(s)∆s = 0.
Conversely, assume that f ∈ C [a, b] satisfies (3.6) and (3.7). Then, by Taylor's formula applied to function T I 1-α;g a+ f , one has (3.6). Now, by Proposition 3.9, we have

T I 1-α;g a+ f (t) = t a ∆ ∆s T I 1-α;g a+ f (s)∆s, ∀t ∈ [a, b]. Let φ(t) = ∆ ∆t T I 1-α;g a+ f (t). Note that φ ∈ C [a, b] by
T I 1-α;g a+ f (t) = T I 1;g a+ φ(t) = T I 1-α;g a+ T I α;g a+ φ(t) and thus T I 1-α;g a+ f (t) -T I 1-α;g a+ T I α;g a+ φ(t) ≡ 0.
Then, T I 1-α;g a+ f (t) -T I α;g a+ φ(t) ≡ 0. From the uniqueness of solution to Abel's integral equation, this implies that f ≡ T I α;g a+ φ and f ∈ T I α;g a+ [a, b] and the proof is complete. □ Lemma 3.13. Let T be a time scale, (a, b] with -∞ ≤ a < b ≤ ∞ be an interval in the real line, α > 0, and g(x) be a monotone increasing and positive function in ∆ sense whose derivative is continuous in (a, b]. Then,

T I α;g a+ f (x) = ∞ n=0 -α n f ∆ (n) (x) (g(x) -g(a)) α+n Γ(α + n + 1) (3.8)
where f ∆ (n) (•) is the nth derivative on the time scale T and x > a.

Proof. We can write function f as follows:

f (t) = ∞ n=0 f ∆ (n) (x) n! (g(t) -g(x)) n . (3.9)
Applying T I α;g a+ on both sides of (3.9) yields

T I α;g a+ f (x) = 1 Γ(α) x a g ∆ (t)(g(x) -g(t)) α-1 f (t)∆t = 1 Γ(α) x a g ∆ (t)(g(x) -g(t)) α-1 ∞ n=0 f ∆ (n) (x) n! (g(t) -g(x)) n ∆t = ∞ n=0 f ∆ (n) (x) n! (-1) n Γ(α) x a g ∆ (t)(g(x) -g(t)) α+n-1 ∆t = ∞ n=0 f ∆ (n) (x) n! (-1) n Γ(α) (g(x) -g(a)) α+n Γ(α + n + 1) Γ(α + n).
Taking into account the identity

α n = (-1) n αΓ(n -α) Γ(1 -α)Γ(n + 1) , we have -α n = (-1) n-1 (-α)Γ(α + n) Γ(1 + α)Γ(n + 1) = (-1) n Γ(α + n) Γ(α)Γ(n + 1) .
We conclude that

T I α;g a+ f (x) = ∞ n=0 -α n f ∆ (n) (x) (g(x) -g(a)) α+n Γ(α + n + 1)
and the proof is complete. □ Now, we present the Leibniz rule associated with the g-Riemann-Liouville fractional integral on time scales. Theorem 3.14. Let T be a time scale, (a, b] with -∞ ≤ a < b ≤ ∞ be an interval in the real line, α > 0, and g(x) be a monotone increasing and positive function in ∆ sense whose derivative is continuous in (a, b]. The left fractional integral of the product of two functions is given by

T I α;g a+ (f h)(x) = ∞ k=0 f ∆ (k) (x) T I α;g a+ h(x),
where f ∆ (k) is the kth derivative on the time scale T and x > a.

Proof. Let f and h be two functions satisfying the condition of Lemma 3.13. Then, (3.8) can be written in the following form:

T I α;g a+ (f h)(x) = ∞ m=0 -α m (f h) ∆ (m) (x) (g(x) -g(a)) α+m Γ(α + m + 1) .
Using the Leibniz rule,

(f h) ∆ (m) (x) = m k=0 f ∆ (k) (x)h ∆ (m-k) (x) with m ∈ N and f, h ∈ C m ([a, b]
), which yields that

T I α;g a+ (f h)(x) = ∞ m=0 -α m m k=0 m k f ∆ (k) (x)h ∆ (m-k) (x) (g(x) -g(a)) α+m Γ(α + m + 1) = ∞ k=0 f ∆ (k) (x) ∞ m=k -α m m k h ∆ (m-k) (x) (g(x) -g(a)) α+m Γ(α + m + 1)
.

Considering n = m -k and using the identity

-α n + k n + k k = -α k -(α + k) n
we obtain that

T I α;g a+ (f h)(x) = ∞ k=0 f ∆ (k) (x) ∞ n=0 -α n + k n + k k h ∆ (n+k-k) (x) (g(x) -g(a)) α+n+k Γ(α + n + k + 1) = ∞ k=0 f ∆ (k) (x) -α k n=0 ∞ -(α + k) n h ∆ (n) (x) (g(x) -g(a)) α+n+k Γ(α + n + k + 1) = ∞ k=0 -α k f ∆ (k) (x) T I α+k;g a+ h(x).
This completes the proof of Theorem 3.14.

□ Proposition 3.15. Let 0 ≤ α ≤ 1 and 0 ≤ β ≤ 1. Then, (1) 
T ∆ α,β;g a+ λ 1 f (t) + λ 2 g(t) = λ 1 T ∆ α,β;g a+ f (t) + λ 2 T ∆ α,β;g a+ g(t), where λ 1 , λ 2 ∈ R. (2) T ∆ α,β;g a+ (g(x) -g(a)) δ-1 = Γ(δ) Γ(δ -α) (g(x) -g(a)) δ-α-1 .
Proof.

(1) Using the fact that T ∆ α,β;g a+ f (t) = T I γ-α;g a+ T RL ∆ γ;g a+ f (t) and because T I γ-α;g a+ (•) and T RL ∆ γ;g a+ (•) are linear, we have that T ∆ α,β;g a+ (•) is also linear.

(2) Remembering that T RL ∆ γ;g a+ (g(x) -g(a)) δ-1 = Γ(δ) Γ(δ -α) (g(x) -g(a)) δ-α-1 and T I α;g a+ (g(x) -g(a)) δ-1 = Γ(δ) Γ(δ + α) (g(x) -g(a)) δ+α-1 ,
we obtain that

T ∆ α,β;g a+ (g(x) -g(a)) δ-1 = T I γ-α;g a+ T RL ∆ γ;g a+ (g(x) -g(a)) δ-1 = T I γ-α;g a+ Γ(δ) Γ(δ -γ) (g(x) -g(a)) δ-γ-1 = Γ(δ) Γ(δ -α) (g(x) -g(a)) δ-α+1 .
The proof is complete.

□ Theorem 3.16. If f ∈ C n [a, b], n -1 < α < n, and 0 ≤ β ≤ 1, then T I α;g a+ T ∆ α,β;g a+ f (x) = f (x) - n k=1 (g(x) -g(a)) γ-k Γ(γ -k + 1) f ∆ g (n-k) T I n-γ;g a+ f (a).
Proof. Using the identity

T I α;g a+ T I γ;g a+ f (x) = T I α+γ;g a+ f (x), (3.10) 
we have

T I α;g a+ T ∆ α,β;g a+ f (x) = T I γ;g a+ T RL ∆ γ;g a+ f (x) (3.11) with γ = α + β(n -α).
Integrating by parts n-times, we get

T I γ;g a+ T RL ∆ γ;g a+ f (x) = T I γ-n;g a+ T I n-γ;g a+ f (x) - n k=1 (g(x) -g(a)) γ-k Γ(γ -k + 1) f ∆ g (n-k) T I n-γ;g a+ f (a).
From (3.10) and (3.11), we conclude that

T I γ;g a+ T ∆ α,β;g a+ f (x) = f (x) - n k=1 (g(x) -g(a)) γ-k Γ(γ -k + 1) f ∆ g (n-k) T I n-γ;g a+ f (a),
where

f ∆ g (n) := ∆ g ∆ (x) n f (x).
The result is proved. □ Proposition 3.17. For any integrable function h on [a, b] one has

T ∆ α,β;g a+ T I α;g a+ h(x) = h(x).
Proof. By definition of T ∆ α,β;g a+ (•), and using Proposition 3.9, Lemma 3.10 and Theorem 3.16, we can write that

T ∆ α,β;g a+ T I α;g a+ f (x) = T I γ-α;g a+ T RL ∆ γ-α;g a+ f (x) = f (x) - n k=1 (g(x) -g(a)) γ-k Γ(γ -k + 1) f ∆ g (n-k) T I n-γ;g a+ f (a) = f (x).
The proof is complete. □ Theorem 3.18. The g-Hilfer fractional derivative on time scales is a bounded operator for all n -1 < α < n and 0 ≤ β ≤ 1 with

T ∆ α,β;g a+ f Cγ,g ≤ L f ∆ (n) C n γ,g . 
Proof. Remembering that T ∆ α,β;g a+ f (x) = T I γ-α;g a+ T RL ∆ γ;g a+ f (x) yields

T ∆ α,β;g a+ f Cγ,g = T I γ-α;g a+ T RL ∆ γ;g a+ f (x) ≤ T RL ∆ γ;g a+ f Cγ,g Γ(γ -α) max x∈[a,b] x a g ∆ (t)(g(x) -g(t)) γ-α-1 ∆t ≤ (g(b) -g(a)) γ-α (γ -α)Γ(γ -α) T RL ∆ γ;g a+ f Cγ,g ≤ (g(b) -g(a)) γ-α (γ -α)Γ(γ -α) f ∆ (n) C n γ,g Γ(n -γ) max x∈[a,b] x a g ∆ (t)(g(x) -g(t)) n-γ-1 ∆t ≤ (g(b) -g(a)) n-α (n -γ)(γ -α)Γ(n -γ)Γ(γ -α) f ∆ (n) C n γ,g
, which proves the intended result. □ Theorem 3.19. Let α ∈ R and n -1 < α ≤ n, where n ∈ N. The g-Caputo fractional derivative on time scales and the g-Riemann-Liouville fractional derivative on time scales are related by

T RL ∆ α;g a+ f (t) = T C ∆ α;g a+ f (t) + n-1 k=0 (g(t) -g(a)) k-α Γ(k -α + 1) f ∆ g (k) (a).
Proof. Recalling Remark 3.4, we know that

T RL ∆ α;g a+ f (t) = ∆ g ∆ (x) (n) T I n-α;g a+ f (t).
Taking α = n in Theorem 3.16, ∆ (k) (a) with t > a, we get

T RL ∆ α;g a+ f (t) = ∆ g ∆ (x) (n) T I n-α;g a+ T I n;g a+ T ∆ n;g a+ f (t) + n-1 k=0 (g(t) -g(a)) k k! f ∆ g (k) (a) = ∆ g ∆ (x) (n) T I n-α;g a+ T I n;g a+ T ∆ n;g a+ f (t) + ∆ g ∆ (x) (n) T I n-α;g a+ n-1 k=0 (g(t) -g(a)) k k! f ∆ g (k) (a) = T I n-α;g a+ T ∆ n;g a+ f (t) + ∆ g ∆ (x) (n) n-1 k=0 f ∆ g (k) (a) k! T I n-α;g a+ (g(t) -g(a)) k = T C ∆ α;g a+ f (t) + n-1 k=0 f ∆ g (k) (a) Γ(k + 1 + n -α) T ∆ n;g a+ (g(x) -g(a)) n-α+k = T C ∆ α;g a+ f (t) + n-1 k=0 f ∆ g (k) (a) Γ(k + n -α + 1 -n) (g(t) -g(a)) k+n-α-n = T C ∆ α;g a+ f (t) + n-1 k=0 (g(t) -g(a)) k-α Γ(k -α + 1) f ∆ g (k) (a).
The proof is complete.

□ Theorem 3.20. Let n -1 < α < n, n ∈ N, 0 ≤ β ≤ 1, and f ∈ C n γ ([a, b]). Then, T ∆ α,β;g a+ ∆ g ∆ n f (x) = T C ∆ µ+γ;g a+ f (x)
and

T ∆ α,β;g a+ ∆ g ∆ n f (x) = T RL ∆ n+α;g a+ f (x) - n-1 k=0 (g(x) -g(a)) k-n-α Γ(k + 1 -n -α) f ∆ g (k) (a).
Proof. Indeed, we have

T ∆ α,β;g a+ f (x) = T C ∆ µ;g a+ T I n-γ;g a+ f (x) (3.12) with µ = n(1 -β) + βα. Considering f (x) = ∆ g ∆ (x) n g(x) yields T C ∆ µ;g a+ T I n-γ;g a+ ∆ g ∆ (x) n g(x) = T C ∆ µ;g a+ T C ∆ γ;g a+ g(x) = T C ∆ µ+γ;g a+ g(x).
On the other hand, using Theorem 3.19, one has

T C ∆ α;g a+ f (t) = T RL ∆ α;g a+ f (t) - n-1 k=0 (g(t) -g(a)) k-α Γ(k -α + 1) f ∆ g (k) (a). (3.13) 
Comparing (3.12) and (3.13), we conclude that

T ∆ α,β;g a+ f (t) = T RL ∆ α;g a+ f (x) - n-1 k=0 (g(x) -g(a)) k-α Γ(k -α + 1) f ∆ g (k) (a)
and the result is proved.

□ Theorem 3.21. Let f ∈ C 1 ([a, b]), α ≥ 0, δ ≥ 0 and 0 ≤ β ≤ 1. Then, T ∆ α,β;g a+ T I δ;g a+ f (x) = T I γ-δ;g a+ f (x) with α ≥ δ ≥ 0 and δ = α + 2β(1 -α).
Proof. We begin by noting that Definition 4.1. Let f, g : [0, ∞) → R be real valued functions such that g is a nonnegative increasing function with g(0) = 0. Then the Laplace transform of f with respect to g is defined by

T RL ∆ α;g a+ T I δ;g a+ f (x) = ∆ g ∆ (x) T I 1-α;g a+ T I δ;g a+ f (x) = ∆ g ∆ (x) T I δ-α+1;g a+ f (x) = T I α-δ;g a+ f (x).
L g (f (t)) = F (s) = ∞ 0 e -sg(t) g ′ (t)f (t)dt
for all s ∈ C for which this integral converges. Here, L g (•) denotes the Laplace transform with respect to g, which we call the generalized Laplace transform. 

Corollary 4.2. If f (t) is a function whose classical Laplace transform is F (s), then the generalized Laplace transform of function f • g = f (g(t)) is also F (s): L [f (t)] = F (s) ⇒ L g [f (g(t))] = F (s).
T L [f ](z) = F (z) := ∞ 0 f (t)g σ (t)∆t,
where g(t) = e θz (t, 0) g σ (t) = e θz (σ(t)) , that is,

T L [f ](z) = F (z) := ∞ 0 f (t)e θz (σ(t))∆t.
Theorem 4.4 (Inversion of the transform). Suppose that F (z) is analytic in the region Re µ (z) > Re µ (c) and F (z) → 0 as |z| → ∞ in this region. Furthermore, suppose F (z) has finitely many regressive poles of finite order {z 1 , z 2 , . . . , z n } and FR (z) is the transform of the function f (t) on R that correspondents to the transform

F (z) = F T (z) of f (t) on T. If c+i∞ c-i∞ | FR (z)||dz| < ∞, then f (t) = n i=1
Res z=zi e z (t, 0)F (z)

has transform F (z) for all z with Re(z) > c.

Our main purpose here is to propose an extension of the Laplace transform on time scales using g. The operators T ∆ α,β;g a+ , T RL ∆ α;g a+ , T C ∆ α;g a+ and T I α;g a+ can be written as the conjugation of the standard fractional operators with the operation of composition with g or g -1 , given by

T I α;g a+ = Q g • T I α;g(a) a+ • (Q g ) -1 , T RL ∆ α;g a+ = Q g • T RL ∆ α;g(a) a+ • (Q g ) -1 , T C ∆ α;g a+ = Q g • T C ∆ α;g(a) a+ • (Q g ) -1 , (4.2) 
and

T ∆ α,β;g a+ = Q g • T ∆ α,β;g(a) a+ • (Q g ) -1
, where the functional operator Q g is given by

(Q g f )(x) = f (g(x)).
Definition 4.5. Let f, g : T → R be such that g is a nonnegative increasing function with g(0) = 0. Then, the time scale generalized transform of f with respect to g is defined by

T L [f ](z) = F (z) := ∞ 0 f (t)g ∆ (t)g σ (t)∆t,
where g(g(t)) = e θz (g(t), 0) (g σ (g(t)) = e θz (σ(g(t))), that is,

T L [f ](z) = F (z) := ∞ 0 f (t)g ∆ (t)e θz (σ(g(t)))∆t.
Theorem 4.6. Let f, g : T → R be such that g is a nonnegative function with g(0) = 0. The inverse Laplace transform in the time scale T is given by

T L g = T L • Q -1 g with the functional operator (Q -1 g )(t) = f (g -1 (t)). Proof. Let f : t → f (t). One has Q -1 g f (t) : t → (Q -1 g f )(t) = f (g -1 (t)) and T L • Q -1 g f (t) : t → T L • (Q -1 g f )(t) = T L (Q -1 g f )(t) = ∞ 0 Q -1 g f (t)g σ (t)∆t = ∞ 0 f (g -1 (t))g σ (t)∆t = ∞ 0 f (g -1 (t)) e θz (t) 1 + µ(t)z ∆t.
Making the change of variable u = g -1 (t), for which ∆u = (g ∆ ) -1 (t)∆t and g ∆ (u)∆u = ∆t, it yields

T L (Q -1 g f )(t) = ∞ 0 f (u) e θz (g(u)) 1 + µ(g(u))z g ∆ (u)∆u = ∞ 0 f (u)g ∆ (u)e θz (g(u)σ(u))∆u
and the proof is complete. □ Theorem 4.7. Let α > 0, f be a piecewise continuous function on each interval [0, t], and g be exponential.

Then,

T L g T I α;g 0+ f (t) = s -α T L g (f (t)).
Proof. Using (4.1), (4.2), and Theorem 4.6, we obtain that

T L g • T I α;g 0+ = T L g • Q -1 g • T I α;g 0+ = T L g • Q -1 g • (Q g • T I α;g(a) 0+ • (Q g ) -1 ) = ( T L g • T I α;g(a) 0+ ) (Q g ) -1 .
Therefore, writing p = (Q g ) -1 f , so that f (t) = p(g(t)), it yields that

f : t → p(g(t)) Q -1 g f : t → p(t) T L g • T I α;g 0+ f : t → ( T L • T I α;g(a) 0+ )p(t) = s -α T L (p(t)),
where T L (p(t)) = T L g f (t). □

Next, we prove an integration by parts formula for the g-Riemann-Liouville fractional integral on times scales.

Theorem 4.8. Let α > 0, p, q ≥ 1 and 1 p + 1 q ≤ 1 + α, where p ̸ = 1 and q = 1 + n in the case when

1 p + 1 q = 1 + α. Moreover, let T I α;g a+ (L p ) = f : f = T I α;g a+ g, g ∈ L p (a, b) .
The following integration by parts formulas hold: if g ∈ L p (a, b) and g ∈ L q (a, b), then b a

T I α;g a+ ϕ(t) φ(t)∆t = b a ϕ(t)g ∆ (t) T I α;g b- φ(t) g ∆ (t) ∆t.
Proof. If φ ∈ L p (a, b) and ϕ ∈ L q (a, b), then, from (3.1) of Definition 3.1, it follows that b a

T I α;g a+ ϕ(t) φ(t)∆t = b a 1 Γ(α) t a g ∆ (s)(g(t) -g(s)) α-1 ϕ(s)∆s φ(t)∆t = b a 1 Γ(α) b t ϕ(t)g ∆ (t)(g(s) -g(t)) α-1 φ(t)∆t = b a ϕ(t)g ∆ (t) T I α;g b- φ(t) g ∆ (t)
∆t.

The proof is complete. □ Theorem 4.9. Let g(•) be an increasing and positive monotone function on [a, b] having a continuous derivative

g ′ (•) ̸ = 0 on [a, b]. Let 0 < α ≤ 1, 0 ≤ β ≤ 1, p, q ≥ 1, and 1 p + 1 q ≤ 1 + α, where p ̸ = 1 and q ̸ = 1 in the case 1 p + 1 q = 1 + α. If φ ∈ L p (a, b) and f ∈ L q (a, b), then b a T ∆ α,β;g 0+ f (t) φ(t)∆t = b a f (t)g ∆ (t) T ∆ α,β;g 0- φ(t) g ∆ (t) ∆t
with the boundary conditions f (a) = f (b) = 0.

Proof. Using Proposition 3.9 and Theorem 3.16, it follows that b a

f (t)g ∆ (t) T ∆ α,β;g 0- φ(t) g ∆ (t) ∆t = b a f (t)g ∆ t T I γ-α;g 0- T RL ∆ γ;g 0- φ(t) g ∆ (t) ∆(t) = b a g ∆ T I α;g 0+ T ∆ α,β;g 0+ f (t) + (g(t) -g(0)) γ-1 Γ(γ) dj × T I γ-α;g 0- T RL ∆ γ;g 0- φ(t) g ∆ (t) ∆t, where dj = ∆ g ∆ T I (1-β)(1-α);g 0+ f (0). Hence, b a f (t)g ∆ (t) T ∆ α,β;g 0- φ(t) g ∆ (t) ∆t = b a g ∆ (t) T I α;g 0+ T ∆ α,β;g 0+ f (t) T I γ-α;g 0- T RL ∆ γ;g 0- φ(t) g ∆ (t) + dj Γ(γ) b a g ∆ (t)(g(t) -g(0)) γ-1 T I γ-α;g 0+ T RL ∆ γ;g 0- φ(t) g ∆ (t) ∆(t) = b a g ∆ (t) T I α;g 0+ T ∆ α,β;g 0+ f (t) T I γ-α;g 0- T RL ∆ γ;g 0- φ(t) g ∆ (t) ∆(t) = b a g ∆ (t) T I α;g 0+ T ∆ α,β;g 0+ f (t) T I -α;g 0- φ(t) g ∆ (t) ∆t = b a T I -α;g 0+ T I α;g 0+ T ∆ α,β;g 0+ f (t) φ(t)∆t = b a T ∆ α,β;g 0+ f (t) φ(t)∆t
and the proof is complete. □

Existence and uniqueness

Now we investigate the question of existence and uniqueness of solution to problem (1.2).

Lemma 5.1. Let 0 < α < 1, J ⊆ T, and f :

J × R → R. Function y(t) is a solution of problem (1.
2) if and only if this function is a solution of the following integral equation:

y(t) = (g(t) -g(t 0 )) γ-1 Γ(γ) y 0 + 1 Γ(α) t t0 g ∆ (s)(g(t) -g(s)) α-1 f (s, y(s))∆s.
(5.1)

Proof. Applying the operator T ∆ α,β;g t0+ to both sides of (5.1) yields that

T ∆ α,β;g t0+ y(t) = T ∆ α,β;g t0+ y 0 + T ∆ α,β;g t0+ 1 Γ(α) t t0 g ∆ (s)(g(t) -g(s)) α-1 f (s, y(s))∆s = f (t, y(t)).
(

Now, applying the operator T I 1-γ;g t0 on both sides of (5.2), we get

y(t) = (g(t) -g(t 0 )) γ-1 Γ(γ) + 1 Γ(α) t t0 g ∆ (s)(g(t) -g(s)) α-1 f (s, y(s))∆s.
The proof is complete. □ Theorem 5.2. Suppose J = [t 0 , t 0 +a] ⊆ T. Then the initial value problem (1.2) has a unique solution on J if f (t, y(t)) is a right-dense continuous bounded function for which there exists M > 0 such that |f (t, y(t))| < M on J and the Lipschitz condition ∥f (t, x) -f (t, y)∥ ≤ L∥x -y∥ holds for some L > 0 and for all t ∈ J and x, y ∈ R.

Proof. Let S be the set of right-dense continuous functions and J ⊆ T. For y ∈ S, define

∥y∥ C1-γ,g = sup t∈J ∥(g(t) -g(t 0 )) 1-γ y(t)∥ C .
It is easy to see that S is a Banach space with this norm. Define the subset S g (ρ) and the operator Θ by

S g (ρ) = x ∈ S : ∥x s ∥ C1-γ,g ≤ ρ and Θ(y) = (g(t) -g(t 0 )) γ-1 Γ(γ) y 0 + 1 Γ(α) t t0 g ∆ (s)(g(t) -g(s)) α-1 f (s, y(s))∆s.
Using Proposition 2.4, we obtain that

|(g(t) -g(t 0 )) 1-γ Θ(y(t))| = y 0 Γ(γ) + (g(t) -g(t 0 )) 1-γ Γ(α) t t0 g ∆ (s)(g(t) -g(s)) α-1 f (s, y(s))∆s ≤ ∥y 0 ∥ Γ(γ) + (g(t) -g(t 0 )) 1-γ Γ(α) t t0 g ∆ (s)(g(t) -g(s)) α-1 |f (s, y(s))|∆s ≤ ∥y 0 ∥ Γ(γ) + M (g(t) -g(t 0 )) 1-γ Γ(α) t t0 g ∆ (s)(g(t) -g(s)) α-1 ∆s.
Since g ∆ (s)(g(t) -g(s)) α-1 is an increasing function, by Proposition 2.5 it follows that

t t0 g ∆ (s)(g(t) -g(s)) α-1 ∆s ≤ t t0 g ′ (s)(g(t) -g(s)) α-1 ds.
Consequently, one has

|(g(t) -g(t 0 )) 1-γ Θ(y(t))| ≤ ∥y 0 ∥ Γ(γ) + M (g(t) -g(t 0 )) 1-γ Γ(α) t t0 g ′ (s)(g(t) -g(s)) α-1 ds = ∥y 0 ∥ Γ(γ) + M Γ(α) (g(t) -g(t 0 )) α α (g(t) -g(t 0 )) 1-γ ≤ ∥y 0 ∥ Γ(γ) + M (g(t 0 + a) -g(t 0 )) 1-β(1-α) Γ(α + 1) , that is, ∥Θy∥ C1-γ,g ≤ ∥y 0 ∥ Γ(γ) + M (g(t 0 + a) -g(t 0 )) 1-β(1-α) Γ(α + 1
) .

Now, we consider

ρ = ∥y 0 ∥ Γ(γ) + M (g(t 0 + a) -g(t 0 )) 1-β(1-α) Γ(α + 1) .
We have that Θ is an operator from S g (ρ) to S g (ρ). Moreover, for x, y ∈ S g (ρ), we have

∥(g(t) -g(t 0 )) 1-γ (Θx(t) -Θy(t))∥ ≤ (g(t) -g(t 0 )) 1-γ Γ(α) t t0 g ∆ (s)(g(t) -g(s)) α-1 |f (s, x(s)) -f (s, y(s))|∆s ≤ L ∥x -y∥ ∞ (g(t) -g(t 0 )) 1-γ Γ(α) t t0 g ∆ (s)(g(t) -g(s)) α-1 ∆s ≤ L ∥x -y∥ C1-γ,g (g(t) -g(t 0 )) 1-γ Γ(α) t t0 g ′ (s)(g(t) -g(s)) α-1 ds = L ∥x -y∥ C1-γ,g Γ(α) (g(t) -g(t 0 )) 1-β(1-α) α ≤ L (g(t 0 + a) -g(t 0 )) α Γ(α + 1) ∥x -y∥ C1-γ,g . (5.3) 
It follows that

∥Θx -Θy∥ C1-γ,g ≤ L (g(t 0 + a) -g(t 0 )) α Γ(α + 1) ∥x -y∥ C1-γ,g . (5.4) 
Indeed, evaluating the supremum, for t ∈ [t 0 , t 0 + a] of both sides of (5.3), and using the definition of the norm in the weighted space, we have (5.4). If L (g(t 0 + a) -g(t 0 )) α Γ(α + 1) < 1, then this will be a contraction map and we obtain the desired existence and uniqueness of solution to problem (1.2). □ Proof. We prove the result in four steps.

Step 1: Θ is continuous. Let y n be a sequence such that y n → y in C(J, R). Then, for each t ∈ J,

|(g(t) -g(t 0 )) 1-γ (Θ(y n )(t) -Θ(y)(t))| ≤ (g(t) -g(t 0 )) 1-γ Γ(α) t t0 g ∆ (s)(g(t) -g(s)) α-1 |f (s, y n (s)) -f (s, y(s))|∆s ≤ (g(t) -g(t 0 )) 1-γ Γ(α) t t0 g ∆ (s)(g(t) -g(s)) α-1 sup s∈J |f (s, y n (s)) -f (s, y(s))|∆s ≤ ∥f (•, y n (•)) -f (•, y(•))∥ C1-γ,g Γ(α) t t0 g ∆ (s)(g(t) -g(s)) α-1 ∆s ≤ ∥f (•, y n (•)) -f (•, y(•))∥ C1-γ,g Γ(α) t t0 g ′ (s)(g(t) -g(s)) α-1 ds ≤ ∥f (•, y n (•)) -f (•, y(•))∥ C1-γ,g Γ(α) (g(t 0 + a) -g(t 0 )) α .
Since f is a continuous function, we obtain that

∥Θy n -Θy∥ C1-γ,g ≤ (g(t 0 + a) -g(t 0 )) α Γ(α + 1) ∥f (•, y n (•)) -f (•, y(•))∥ C1-γ,g → 0 as n → ∞.
Step 2: The map Θ sends bounded sets into bounded sets in C(J, R). To see that, it is enough to show that for any ρ, there exists a positive constant ℓ such that for each y ∈ B ρ = {y ∈ C 1-γ,g (J, R) : ∥y∥ C1-γ,g ≤ ρ} we have ∥Θy∥ C1-γ,g ≤ ℓ. Indeed, by hypothesis, for each t ∈ J one has

∥(g(t) -g(t 0 )) 1-γ Θy(t)∥ ≤ (g(t) -g(t 0 )) 1-γ Γ(α) t t0 g ∆ (s)(g(t) -g(s)) α-1 |f (s, y(s))|∆s ≤ M (g(t) -g(t 0 )) 1-γ Γ(α) t t0 g ∆ (s)(g(t) -g(s)) α-1 ∆s ≤ M (g(t) -g(t 0 )) 1-γ Γ(α) t t0 g ′ (s)(g(t) -g(s)) α-1 ds ≤ M Γ(α + 1) (g(t 0 + a) -g(t 0 )) 1-β(1-α) = ℓ.
Step 3: The map Θ sends bounded sets into equicontinuous sets of C(J, R). Let t 1 , t 2 ∈ J, t 1 < t 2 , B ρ be a bounded set of C(J, R) as in Step 2, and y ∈ B ρ . Then,

|(Θy)(t 2 ) -(Θy)(t 1 )| ≤ (g(t 2 ) -g(t 0 )) 1-γ Γ(α) t1 t0 g ∆ (s)(g(t 1 ) -g(s)) α-1 |f (s, y(s))|∆s - (g(t 1 ) -g(t 0 )) 1-γ Γ(α) t2 t0 g ∆ (s)(g(t 2 ) -g(s)) α-1 |f (s, y(s))|∆s ≤ M (g(t 2 ) -g(t 0 )) 1-γ Γ(α) t1 t0 g ∆ (s)[(g(t 1 ) -g(s)) α-1 -(g(t 2 ) -g(s)) α-1 ]∆s +M (g(t 1 ) -g(t 0 )) 1-γ Γ(α) t2 t1 g ∆ (s)(g(t 2 ) -g(s)) α-1 ∆s ≤ M (g(t 2 ) -g(t 0 )) 1-γ Γ(α) t1 t0 g ′ (s)[(g(t 1 ) -g(s)) α-1 -(g(t 2 ) -g(s)) α-1 ]ds +M (g(t 1 ) -g(t 0 )) 1-γ Γ(α) t2 t1 g ′ (s)(g(t 2 ) -g(s)) α-1 ds ≤ M (g(t 2 ) -g(t 0 )) 1-γ Γ(α) (g(t 2 ) -g(t 1 )) α + (g(t 1 ) -g(t 0 )) α -(g(t 2 ) -g(t 0 )) α +M (g(t 1 ) -g(t 0 )) 1-γ Γ(α) (g(t 2 ) -g(t 1 )) α = 2M Γ(α + 1) (g(t 2 ) -g(t 0 )) α (g(t 2 ) -g(t 0 )) 1-γ -(g(t 1 ) -g(t 0 )) 1-γ + M Γ(α + 1) (g(t 2 ) -g(t 0 )) 1-γ (g(t 1 ) -g(t 0 )) α -(g(t 2 ) -g(t 0 )) α .
As t 1 → t 2 , the right-hand side of the above inequality tends to zero. As a consequence of Steps 1 to 3, together with the Arzelà-Ascoli theorem, we can conclude that Θ : C 1-γ;g (J, R) → C 1-γ,g (J, R) is continuous and completely continuous.

Step 4: A priory bounds. Now it remains to show that Ω = {y ∈ C(J, R) : y = λΘ(y); 0 < λ < 1} is a bounded set. Let y ∈ Ω. Then, y = λΘ(y) for some 0 < λ < 1. Thus, for each t ∈ J, it yields that

y(t) = λ 1 Γ(α) t t0 g ∆ (s)(g(t) -g(s)) α-1 f (s, y(s))∆s .
We can complete this step by considering the estimation in Step 2. As a consequence of Schauder's fixed point theorem, we conclude that Θ has a fixed point, which is a solution of problem (1.2). □

Controllability

Now, we investigate the question of controllability for (1.3). Definition 6.1. We say that (1.3) is controllable on J if, for any given initial state y 0 and any given final state ȳ, there exists a piecewise right-dense continuous function u ∈ L 2 (J, U ) such that the solution y of (1.3) satisfies y(t 0 + a) = ȳ. Definition 6.2. A function y ∈ C(J, R) is a solution of (1.3) if and only if this function is a solution of the following integral equation:

y(t) = (g(t) -g(t 0 )) γ-1 Γ(γ) y 0 + 1 Γ(α) t t0 g ∆ (s)(g(t) -g(s)) α-1 f (s, y(s)) + (Bu)(s) ∆s, ( 6.1) 
t ∈ [t 0 , t 0 + a] = J ⊂ T.

Lemma 6.3. Let the assumptions (A 1 )-(A 4 ) be satisfied and y(t 0 ) ∈ R be an arbitrary point. Then the solution y(t) of system (1.3) on [t 0 , t 0 + a] is defined by the control function

u(t) = (W α ) -1 y 1 - (g(t) -g(t 0 )) γ-1 Γ(γ) y 0 - 1 Γ(α) t t0 g ∆ (s)(g(t) -g(s)) α-1 f (s, y(s))∆s , t ∈ [t 0 , t 0 + a]. Moreover, the control function u(t) has an estimate ∥u(t)∥ ≤ M • u with M • u = |y 1 | + (g(t) -g(t 0 )) γ-1 Γ(γ) + M Γ(α + 1) (g(t) -g(t 0 )) α .
Proof. Consider the solution y(t) of system (1.3) on [t 0 , t 0 + a] ⊂ T defined by (6.1). Then,

y(t) = (g(t) -g(t 0 )) γ-1 Γ(γ) y 0 + 1 Γ(α) t t0 g ∆ (s)(g(t) -g(s)) α-1 f (s, y(s)) + (Bu)(s) ∆s = (g(t) -g(t 0 )) γ-1 Γ(γ) y 0 + 1 Γ(α) t t0 g ∆ (s)(g(t) -g(s)) α-1 f (s, y(s))∆s + 1 Γ(α) t t0 g ∆ (s)(g(t) -g(s)) α-1 B(W α ) -1 y 1 - (g(t) -g(t 0 )) γ-1 Γ(γ) y 0 - 1 Γ(α) t t0 g ∆ (ξ)(g(t) -g(ξ)) α-1 f (ξ, y(ξ))∆ξ ∆s = (g(t) -g(t 0 )) γ-1 Γ(γ) y 0 + 1 Γ(α) t t0 g ∆ (s)(g(t) -g(s)) α-1 f (s, y(s))∆s +W α (W α ) -1 y 1 - (g(t) -g(t 0 )) γ-1 Γ(γ) y 0 + 1 Γ(α) t t0 g ∆ (ξ)(g(t) -g(ξ)) α-1 f (ξ, y(ξ))∆ξ = y 1 .
Also, we can find the control estimate as follows:

|u(t)| = (W α ) -1 y 1 - (g(t) -g(t 0 )) γ-1 Γ(γ) y 0 - 1 Γ(α) t t0 g ∆ (s)(g(t) -g(s)) α-1 f (s, y(s))∆s ≤ |(W α ) -1 |y 1 | + (g(t) -g(t 0 )) γ-1 Γ(γ) |y 0 | + 1 Γ(α) t t0 g ∆ (s)(g(t) -g(s)) α-1 |f (s, y(s))|∆s ≤ M • W |y 1 | + (g(t) -g(t 0 )) γ-1 Γ(γ) |y 0 | + M Γ(α) t t0 g ∆ (s)(g(t) -g(s)) α-1 ∆s ≤ M • W |y 1 | + (g(t) -g(t 0 )) γ-1 Γ(γ) |y 0 | + M Γ(α) t t0 g ′ (s)(g(t) -g(s)) α-1 ds = M • W |y 1 | + (g(t) -g(t 0 )) γ-1 Γ(γ) + M Γ(α + 1) (g(t) -g(t 0 )) α = M • u . The proof is complete. □ Theorem 6.4. If all assumptions (A 1 )-(A 4 ) hold, then the control system (1.3) is controllable on J provided M (g(t 0 + a) -g(t 0 )) 1-β(1-α) Γ(α + 1) < 1. (6.2)
Proof. Consider the subset D g,δ ⊆ C 1-γ,g (J, R) as follows:

D g,δ = x ∈ C 1-γ,g (J, R) : ∥x∥ C1-γ,g ≤ δ .
We define the operator K : D g,δ → D g,δ as

(Ky)(t) = (g(t) -g(t 0 )) γ-1 Γ(γ) y 0 + 1 Γ(α) t t0 g ∆ (s)(g(t) -g(s)) α-1 f (s, y(s)) + (Bu)(s) ∆s.
Note that the operator K is well defined and the fixed points of K are solutions to (1.3). Indeed, x ∈ D g,δ is a solution of (1.3) if, and only if, it is a solution of the operator equation x = Kx. Therefore, the existence of a solution of (1.3) is equivalent to determine a positive constant δ such that K has a fixed point on D g,δ . We decompose the operator K into two operators K 1 and K 2 , K = K 1 + K 2 on D g,δ , where

(K 1 y)(t) = 1 Γ(α) t t0 g ∆ (s)(g(t) -g(s)) α-1 Bu(s)∆s, t ∈ [t 0 , t 0 + a] = J ⊂ T and (K 2 y)(t) = (g(t) -g(t 0 )) γ-1 Γ(γ) y 0 + 1 Γ(α) t 0 g ∆ (s)(g(t) -g(s)) α-1 f (s, u(s))∆s.
Step 1: The operator K 1 maps D g,δ into itself. For each t ∈ J and x ∈ D g,δ , it follows from Lemma 6.3 that ≤ δ, which implies that ∥K 1 y∥ C1-γ,g ≤ δ. Thus, K 1 maps D g,δ into itself.

(g(t) -g(t 0 )) 1-γ (K 1 x)(t) = (g(t) -g(t 0 )) 1-γ Γ(α) t t0 g ∆ (s)(g(t) -g(s)) α-1 (Bu)(s)∆s ≤ (g(t) -g(t 0 )) 1-γ Γ(α) t t0 g ∆ (s)(g(t) -g(s)) α-1 ∥B∥∥u(s)∥∆s ≤ (g(t) -g(t 0 )) 1-γ Γ(α) M B t t0 g ∆ (s)(g(t) -g(s)) α-1 M • W × |y 1 | + (g(s) -g(t 0 )) γ-1 Γ(γ) + M Γ(α + 1) (g(
Step 2: The operator K 2 is continuous. Let {y n } be a sequence in D g,δ satisfying y n → y as n → ∞. Then, for each t ∈ J, one has (g(t) -g(t 0 ))

1-γ (K 2 y n )(t) -(K 2 y)(t) C ≤ (g(t) -g(t 0 )) 1-γ Γ(α) t t0
g ∆ (s)(g(t) -g(s)) α-1 ∥f (s, y n (s)) -f (s, y(s))∥∆s ≤ (g(t) -g(t 0 )) 1-γ Γ(α) t t0 g ′ (s)(g(t) -g(s)) α-1 ∥f (s, y n (s)) -f (s, y(s))∥ds ≤ ∥f (• , y n (•)) -f (• , y(•))∥ C1-γ,g (g(t) -g(t 0 )) 1-β(1-α) Γ(α + 1) .

By the Lebesgue dominated convergence theorem, we know that ∥K 2 y n -K 2 y∥ C1-γ,g → 0 as n → ∞. This means that K 2 is continuous.

Step 3: Now we show that K 2 (D g,δ ) ⊂ D g,δ . We prove this by contradiction, supposing that there exists a function η(•) ∈ D g,δ such that ∥(K 2 y)∥ C1-γ,g > δ. Thus, under such assumption, for each t ∈ J we get δ < (g(t) -g(t 0 )) g ′ (s)(g(t) -g(s)) α-1 ∥f (s, η(s))∥ds ≤ ∥y 0 ∥ Γ(γ) + M (g(t 0 + a) -g(t 0 )) 1-β(1-α) Γ(α + 1) δ.

Dividing both sides by δ, and taking the limit as K → ∞, we get M (g(t 0 + a) -g(t 0 )) 1-β(1-α) Γ(α + 1) ≥ 1, which contradicts (6.2). This shows that K 2 (D g,δ ) ⊂ D g,δ .

Step 4: Now we show that K 2 (D g,δ ) is bounded and equicontinous. From Step 3, it is clear that K 2 (D g,δ ) is bounded. It remains to show that K 2 (D g,δ ) is equicontinuous. Indeed, we have (g(t 2 ) -g(t 0 )) 1-γ (K 2 y)(t 2 ) -(g(t 1 ) -g(t 0 )) 1-γ (K 1 y)(t 1 ) = (g(t 2 ) -g(t 0 )) 1-γ Γ(α) t2 t0 g ∆ (s)(g(t 2 ) -g(s)) α-1 f (s, y(s))∆s -(g(t 1 ) -g(t 0 )) 1-γ Γ(α) t1 t0 g ∆ (s)(g(t 1 ) -g(s)) α-1 f (s, y(s))∆s ≤ (g(t 2 ) -g(t 0 )) 1-γ -(g(t 1 ) -g(t 0 )) 1-γ Γ(α) t2 t0 g ∆ (s)(g(t 2 ) -g(s)) α-1 f (s, y(s))∆s

+ 1 Γ(α)
(g(t 1 ) -g(t 0 )) 1-γ t2 t1 g ∆ (s)(g(t 2 ) -g(s)) α-1 f (s, y(s))∆s

+ 1 Γ(α)
(g(t 1 ) -g(t 0 )) 1-γ t1 t0 g ∆ (s)(g(t 1 ) -g(s)) α-1 f (s, y(s))∆s ≤ (g(t 2 ) -g(t 0 )) 1-γ -(g(t 1 ) -g(t 0 )) 1-γ Γ(α) M t2 t0 g ′ (s)(g(t 2 ) -g(s)) α-1 ds + (g(t 1 ) -g(t 0 )) 1-γ Γ(α) M t2 t1 g ′ (s)(g(t 2 ) -g(s)) α-1 ds + (g(t 1 ) -g(t 0 )) 1-γ Γ(α) M t1 t0 g ′ (s) (g(t 2 ) -g(s)) α-1 -(g(t 1 ) -g(s)) α-1 ds ≤ (g(t 2 ) -g(t 0 )) 1-γ -(g(t 1 ) -g(t 0 )) 1-γ Γ(α + 1) M (g(t 2 ) -g(t 0 )) α + (g(t 1 ) -g(t 0 )) 1-γ Γ(α + 1) M (g(t 2 ) -g(t 1 )) α + (g(t 1 ) -g(t 0 )) 1-γ Γ(α + 1) M (g(t 2 ) -g(t 0 )) α -(g(t 1 ) -g(t 0 )) α → 0 as t 2 → t 1 . It follows that ∥K 2 y -K 1 y∥ C1-γ,g → 0 as t 2 → t 1 . Hence, K 2 (D g,δ ) is equicontinuous. As a consequence of Steps 2-4, together with the Arzelà-Ascoli theorem, one has that K 2 is compact. Hence, from Steps 1-4 and Lemma 2.6, we conclude that K = K 1 + K 2 is continuous and takes bounded sets into bounded sets. Also, one can verify the validity of µ K 2 (D g,δ ) = 0 since K 2 (D g,δ ) is relatively compact. It follows from the inclusion K 1 (D g,δ ) ⊂ D g,δ and the equality µ K 2 (D g,δ ) = 0 that µ K(D g,δ ) ≤ µ K 1 (D g,δ ) + µ K 2 (D g,δ ) ≤ µ(D g,δ )

for every bounded set D g,δ of C 1-γ,g (J, R) with µ(D g,δ ) > 0. Since K(D g,δ ) ⊂ D g,δ for the convex, closed and bounded set D g,δ of C 1-γ,g (J, R), all conditions of the Sadovskii fixed point theorem are satisfied and we conclude that the operator K has a fixed point x ∈ D g,δ that is a solution of (1.3) with y(t 0 + a) = y 1 . Therefore, (1.3) is controllable on J.

□

Definition 2 . 3 (

 23 See[START_REF] Agarwal | Basic calculus on time scales and some of its applications[END_REF][START_REF] Anastassiou | Principles of delta fractional calculus on time scales and inequalities[END_REF][START_REF] Bohner | Dynamic equations on time scales[END_REF]). Let [a, b] denote a closed bounded interval in T.A function F : [a, b] → R is called a delta anti-derivative of function f : [a, b) → R provided F is continuous on [a, b], delta differentiable on [a, b), and F ∆ (t) = f (t) for all t ∈ [a, b).Then, we define the ∆-integral of f from a to b by b a f (t)∆t := F (b) -F (a).

Proposition 2 . 4 (Proposition 2 . 5 (

 2425 See[START_REF] Agarwal | Basic calculus on time scales and some of its applications[END_REF][START_REF] Anastassiou | Principles of delta fractional calculus on time scales and inequalities[END_REF][START_REF] Bohner | Dynamic equations on time scales[END_REF]). Suppose a, b ∈ T, a < b, and f (t) is continuous on [a, b]. Then, See[START_REF] Agarwal | Basic calculus on time scales and some of its applications[END_REF][START_REF] Anastassiou | Principles of delta fractional calculus on time scales and inequalities[END_REF][START_REF] Bohner | Dynamic equations on time scales[END_REF]). Suppose T is a time scale and f is an increasing continuous function on [a, b]. If F is the extension of f to the real interval [a, b] given by

Definition 3 . 2 .

 32 Let n -1 < α < n with n ∈ N. Suppose T is a time scale, [a, b] is an interval of T, and f, ϕ ∈ C n ([a, b]) are two functions such that g is increasing having a delta derivative g ∆ with g ∆ (x) ̸ = 0 for all x ∈ [a, b]. The g-Hilfer fractional derivative on time scales of order α and type 0 ≤ β ≤ 1 is given by

  where T I γ-α;g a+ (•) and T RL ∆ γ;g a+ (•) are defined by (3.1) and (3.3), respectively.

(3. 14 ) 4 .F

 144 Using the relationT ∆ α,β;g a+ f (x) = T I α-δ;g a+ T RL ∆ α;g a+ f (x) with γ = α + β(1 -α) and (3.14), we get thatT ∆ α,β;g a+ T I δ;g a+ f (x) = T I γ-α;g a+ T RL ∆ γ;g a+ T I δ;g a+ f (x) = T I γ-α;g a+ T I γ-δ;g a+ f (x) = T I 2γ-α-δ;g a+ f (x) = T I γ-δ;g a+ f (x)with γ = α + 2β(1 -α), which proves the intended equality.□ The ∆-Laplace transform on times scales Let α > 0, T be a time scale, and f : T → R. The fractional integral of f of order α on the time scale T is denoted by T L ( T I α a+ ) =

Definition 4 . 3 .

 43 For f : T → R, the time-scale or generalized transform of f , denoted by L [f ] or F (z), is given by

Remark 5 . 3 .Theorem 5 . 4 .

 5354 (i) Taking the limit β → 0 in (1.2), we obtain a g-Caputo fractional derivative problem on times scales. Using Theorem 5.2, a solution to such problem exists and is unique. (ii) Taking β → 1 in (1.2), we get a corresponding problem on time scales in the g-Riemann-Liouville fractional derivative sense. Under the conditions of Theorem 5.2, we conclude that such problem admits a unique solution. (iii) From the choice of g(•), we obtain numerous particular cases for problem (1.2), for which our Theorem 5.2 provides a sufficient condition for existence of a unique solution. Suppose f : J × R → R is a right-dense continuous function such that there exists M > 0 with |f (t, y)| ≤ M for all t ∈ J, y ∈ R. Then problem (1.2) has a solution on J.

  s) -g(t 0 )) α ∆s ≤ (g(t 0 + a) -g(t 0 )) 1-γ Γ(α) M • W M B |y 1 | + (g(t 0 + a) -g(t 0 )) t 0 + a) -g(t 0 )) α t t0 g ′ (s)(g(t) -g(s)) α-1 ds ≤ (g(t 0 + a) -g(t 0 )) 1-β(1-α) Γ(α + 1) M • W M B |y 1 | + (g(t 0 + a) -g(t 0 )) γ-1 Γ(γ) + M Γ(α + 1)(g(t 0 + a) -g(t 0 )) α
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