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When are Poisson and Moyal Brackets equal?

Didier Robert∗

Abstract

In this paper we prove that if a given smooth Hamiltonian H on
the phase space R2d, with derivatives of moderate growth, satisfies
{A,H} = {A,H}⊛ for any observable A in the Schwartz space S(R2d),
then, as it is expected, H must be a polynomial of degree at most 2
in R2d.
Here {A,B} denotes the Poisson bracket of two smooth classical ob-
servables and {A,B}⊛ their Moyal bracket, defined as the Weyl sym-
bol of i[Â, B̂], where Â is the Weyl quantization of A and [Â, B̂] =
ÂB̂ − B̂Â (commutator).
A related answer to this question is given in the Groenewold-van Hove
Theorem [9] concerning quantization of polynomial observables.
Moreover we revisit the paper [1] where the authors considered a for-
mal semi-classical approach of this question for the time dependent
evolution of observables and the Egorov theorem.

1 Introduction

Let H,A,B be smooth classical observables on R2d in the variables X =
(x, ξ). The Poisson brackets is defined following the Dirac convention as
{A,B} = ∂ξA · ∂xB − ∂xA · ∂ξB. So the classical time evolution of A deter-
mined by the Hamilton equation for H is solution of the equation:

d

dt
A(t) = {A(t), H} (1.1)

A(0) = A.
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The Weyl quantization Â of A is defined as the following operator, depending
on the Planck constant ℏ > 0,

Âf(x) := (Opw
ℏA)f(x) = (2πℏ)−d

∫
R2d

A

(
x+ y

2
, ξ

)
eiξ·(x−y)/ℏf(y) dy dξ

(1.2)
for any f ∈ S(Rd). Recall that f ∈ S(Rd) means that f ∈ C∞(Rd) and for
any multiindex α, β, xα∂βxf(x) is bounded on Rd.

The quantum time evolution of the quantum observable Â must satisfy the
Heisenberg equation (with the Dirac convention)

d

dt
Â(t) =

1

iℏ
[Â(t), Ĥ] (1.3)

Â(0) = Â (1.4)

where [Â, B̂] = ÂB̂ − B̂Â.
The Moyal bracket of the observables A,H is defined such that

1

iℏ
[Â, Ĥ] = Opw

ℏ ({A,H}⊛ℏ). (1.5)

Notice that it results from the Weyl quantization calculus with a small pa-
rameter ℏ that the semi-classical limit of the Moyal bracket is the Poisson
bracket :

lim
ℏ↘0

{A,H}⊛ℏ = {A,H}.

A natural question is to ask when the classical dynamics generated by the
Hamiltonian H (1.1) has an exact correspondence with the quantum dynam-
ics generated by Ĥ (1.3) (see below the quotation from Van Hove). In the
correspondence principle stated by N. Bohr the Planck constant ℏ is supposed
to be small. The question discussed here is for fixed ℏ > 0.

A well known trick to check the correspondence Bohr principle is to com-
pute the time evolution of Gaussian coherent states. Let us denote φY =
T̂Y φ0 the coherent state center in Y ∈ R2d and φ0(x) = (πℏ)−d/4e−|x|2/2ℏ

(T̂Y is defined in the next section). We have [3]

lim
ℏ↘0

⟨φY , ÂφY ⟩ = A(Y ).

Hence taking the average of (1.3) on φY and passing to the limit ℏ ↘ 0, we
recover (1.1).

To define the Moyal bracket, there is a more explicit definition by intro-
ducing the Moyal product A⊛ ℏB (see the next section) such that

(Opw
ℏA)(Opw

ℏB) = Opw
ℏ (A⊛ℏ B).
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Then we have

{A,B}⊛ℏ =
1

iℏ
(A⊛ℏ B −B ⊛ℏ A).

These definitions make sense for A,B ∈ S(R2d) and can be extended to
suitable classes of symbols with moderate growth. To be more explicit we
introduce the classes Sµ

δ , for δ < 1, µ ∈ R. A ∈ Sµ
δ iff A ∈ C∞(R2d) and for

any multiindex γ ∈ N2d we have:

|∂γXA(X)| ≤ Cγ⟨X⟩µ+δ|γ|

Using Theorem A.1 in [2], we can see that A ⊛ℏ H is a smooth symbol if
H ∈ Sµ

δ and A ∈ Sν
δ where µ, ν ∈ R and δ < 1/2. Our aim here is to prove

the following result.

Theorem 1.1. Assume that ℏ > 0 is fixed (for example ℏ = 1). Let be
H ∈ Sµ

δ for some µ ∈ R and δ < 1/2. Assume that for any A ∈ S(R2d) we
have {A,H}⊛ℏ = {A,H}. Then H(X) must be a polynomial in X = (x, ξ)
of degree at most 2.

Remark 1.2. It is well known that if H is a polynomial of degree at most 2
then {A,H}⊛ℏ = {A,H} for any A ∈ Sν

0. This is an easy consequence of the
Weyl calculus.

Remark 1.3. The usual proofs of the Groenewold-van Hove Theorem on
the phase space R2d concern more general quantization procedures but are
restricted to polynomial symbols A,H.
A quotation from [9] p.66-67:
”On établit ensuite qu’une correspondance biunivoque entre grandeurs clas-
siques et quantiques, ayant le caractère d’un isomorphisme entre algèbres de
Lie, existe entre les grandeurs représentées par des polynômes de degré 0, 1,
2 en les variables p1, · · · pN , q1, · · · qn mais ne peut être étendue sans perdre
ses propriétés essentielles à l’ensemble de toutes les grandeurs classiques”
The Theorem of Groenewold-van Hove is detailed p.76 and the quadratic case
p.87 of [9].
Notice that the quadratic case is related with the metaplectic representation
[5].

Let us consider now the time dependent consequence of theorem 1.1.
Assume that H is real and generates a classical flow Φt

H on R2d such that for
any γ ∈ N2d we have

|∂γXΦ
t
H(X)| ≤ Cγ⟨X⟩m, ∀X ∈ R2d, |t| ≤ ϵ0,
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for some m ≥ 0 and ϵ0 > 0.
The solution of (1.1) is Acl(t,X) := A (Φt

H(X)) and for |t| ≤ ϵ0 with A(t) ∈
S(R2d) if A(0) ∈ S(R2d) .
On the quantum side assume that Ĥ is essentially self-adjoint in L2(Rd). The

solution of the Heisenberg equation (1.3) is Âquant(t) = e−
i
ℏ ĤÂe

i
ℏ Ĥ .

Corollary 1.4. Under the conditions of Theorem 1.1, for a given ℏ > 0 we
have

Âqant(t) = opw
ℏ (Acl(t)), ∀A ∈ S(R2d), |t| < ϵ0,

if and only if H(X) is a polynomial in X of degree at most 2.

Remark 1.5. In [1] the authors consider the semi-classical expansion (ℏ ↘
0) in the Egorov theorem using a formal algebraic approach, and Bargman
transform. In the Appendix C of this paper we give a variant of the proof of
the main result of [1] which is stated below (proposition 1.6).

Recall that according the semiclassical Egorov theorem [8] the following
asymptotic formula holds true as ℏ ↘ 0 and uniformly in t ∈ [−T, T ]:

Âquant(t) := e
i
ℏ ĤÂe−

i
ℏ Ĥ =

∑
0≤k≤N

ℏ2jÂ2j(t) +O(ℏ2N+2), (1.6)

where the symbol of the coefficient A2j(t) can be computed by induction [2]
and A.1.

Proposition 1.6. [1] Let us consider the formal serie of symbols in ℏ:∑
j≥0

A2j(t,X)ℏ2j where the coefficient A2j(t,X) are defined by (A.2).

If for some j0 ≥ 1 we have A2j0(t,X) ≡ 0 for (t,X) ∈]− ε, ε[×R2d, for some
ε > 0, then H must be a polynomial of degree at most 2. In particular if in
a neigborhood of 0 in t we have Âquant(t) = Âcl(t) +O(ℏ3) then H must be a
polynomial of degree at most 2.

Remark 1.7. The above Proposition may be a little surprising: if one term
of possible large order ≥ 2 in the asymptotic expansion (1.6) vanishes then
H must be a polynomial of degree ≤ 2 and all the terms vanish excepted the
leading term of order 0.

Remark 1.8. For ℏ > 0 given a well known connection between classical and
quantum mechanics was established by Ehrenfest (1927) for the Schrödinger
Hamiltonian Ĥ = − ℏ2

2m
△+ V (x) (see a discussion about the Ehrenfest theo-

rem in [10].
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2 Weyl calculus

2.1 Introduction to the Weyl quantization

In this section, we recall some basic properties of the Weyl calculus (for more
details see [7]).
Weyl quantization starts by quantization of exponent of linear forms LY (X) =
σ(Y,X) = η · x − y · ξ with X = (x, ξ), Y = (y, η). Apart the usual prop-
erties asked for an admissible quantization, Weyl quantization is uniquely

determined by imposing that the Weyl symbol of eiL̂Y is eiLY where L̂Y =
η · x− y · ℏ

i
∇x.

Recall that T̂ (Y ) := e−iL̂Y is the Weyl-Heisenberg translation operator by Y
in the phase space R2d. In other words the Weyl quantization A 7→ Â has to

satisfy eiL̂Y = (̂eiLY ). Then for any observable A, using a Fourier transform,
the Weyl quantization A is defined for any ψ ∈ S(Rd), as

Âψ = (2π)−d

∫
R2d

Ãσ(Y )T̂ (Y )ψdY (2.1)

where Ãσ(Y ) =
∫
R2d A(z)e

−iσ(Y,z)dz is the symplectic Fourier transform of A
(in the sense of distributions). So that the family {T (Y )}Y ∈R2d is an over-
complete basis for operators between the Schwartz spaces S(Rd) and S ′(Rd).
Ãσ is the covariant symbol of Â and A the contravariant symbol of Â.

Remark 2.1. Notice that from (2.1) for any symbol A and for any linear
form LZ we get

[Â, L̂Z ] = iℏ ̂{A,LZ}. (2.2)

It is enough to prove (2.2) for Â = T̂ (Y ). This is done using the translation
property of the Heisenberg unitary operators T̂ (Y ) where Y = (y, η), Dx =
i−1∇x, we have:

T̂ (sY )∗
(

x
ℏDx

)
T̂ (sY ) =

(
x− sy

ℏDx − sη

)
, s ∈ R, (2.3)

s 7→ (x− sy, ξ − sη) is the classical translation motion for the linear Hamil-
tonian L(Y ).
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For quadratic Hamiltonians the classical flow is a time dependent linear sym-
plectic map and the extension of (2.2) and (2.3) to quadratic Hamiltonians
can be proved by the same method [3, Theorem 15, p.65].

2.2 The Moyal Product

We first recall the formal product rule for quantum observables with Weyl
quantization. Let A,B ∈ S(R2d). The Moyal product C := A ⊛ℏ B is the

observable C such that Â · B̂ = Ĉ. Some computations with the Fourier
transform give the following well known formulas [7] (see also [8])

(A⊛ℏ B)(X) = (πℏ)−2d

∫ ∫
R2d×R2d

e
2i
ℏ σ(u,v)A(X + u)B(X + v)dudv. (2.4)

Some more computations with the Fourier transform give the following for-
mula :

(A⊛ℏB)(x, ξ) = exp

(
iℏ
2
σ(Dq, Dp;Dq′ , Dp′)

)
A(q, p)B(q′, p′)|(q,p)=(q′,p′)=(x,ξ),

(2.5)
where σ is the symplectic bilinear form σ((q, p), (q′, p′)) = p · q′ − p′ · q and
D = i−1ℏ∇. By expanding the exponential term in a formal power series in
ℏ we get

C(x, ξ) =
∑
j≥0

ℏj

j!

(
i

2
σ(Dq, Dp;Dq′ , Dp′)

)j

A(q, p)B(q′, p′)|(q,p)=(q′,p′)=(x,ξ).

(2.6)
Hence C(x, ξ) is a formal power series in ℏ with coefficients given by

Cj(A,B;x, ξ) = (2i)−j
∑

|α+β|=j

(−1)|α|

α!β!
(∇β

x∇α
ξA).(∇α

x∇
β
ξB)(x, ξ). (2.7)

Furthermore we need remainder estimates for the expansion of the Moyal

product.
For every N ≥ 1 we introduce

RN(A,B;X) := A⊛ℏ B(X)−
∑

0≤j≤N

ℏjCj(X). (2.8)

The following estimate is a particular case of Theorem A.1 in [2] see also
Remark A.3.
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Lemma 2.2. Let be A ∈ SµA

δ and B ∈ SµB

δ , δ < 1/2, then for any N ≥ 1,
γ ∈ N2d, M ≥M0 there exists CN,γ,M > 0(independent of (A,B)) such that

|∂γXRN(A,B;X)| ≤ CN,γ,MℏN+1
∑

|α+β|=N+1
|µ+ν|≤M+|γ|

(2.9)

supu,v∈R2d(1 + |u|2 + |v|2)(M0−M)/2|∂(α,β)+µ
u A(X + u)||∂(β,α)+ν

v B(X + v)|

In particular RN(A,B,X) ∈ SµAB

δ for some µAB ≥ µA + µB.

For proving this lemma one assumes first that A,B ∈ S(R2d). For the
general case we put Aε(X) = e−ϵ|X|2A(X), Bε(X) = e−ϵ|X|2B(X) and pass
to the limit for ε ↘ 0. In the appendix we give more details. We also need
to use the following lemma.

Lemma 2.3. Let A ∈ SµA

δ and B ∈ SµB

δ , δ < 1/2. Then uniformly in every
compact of R2d

X , we have

lim
ϵ↘0

(Aϵ ⊛ℏ B)(X) = lim
ϵ↘0

(A⊛ℏ Bϵ)(X) = (A⊛ℏ B)(X).

In particular we have

lim
ϵ↘0

{Aϵ, B}⊛ℏ(X) = {A,B}⊛ℏ(X).

For completeness a proof is given in the appendix B.

3 Proof of Theorem 1.1

Here ℏ = 1 for simplicity. Notice first that from Lemma 2.3 we also have
for any A ∈ S0

0, {A,H}⊛ = {A,H}. So it is enough to consider the test
observables
A = TY := e−iLY (Y ∈ R2d).
We have

T̂Y ĤT̂
∗
Y = [T̂Y , Ĥ]T̂ ∗

Y + Ĥ

Using the assumption of Theorem 1.1 and Lemma 2.3 we get

1

i
({T ∗

T , H}⊛ TY )(X) = H(X + Y )−H(X),∀X, Y ∈ R2d. (3.1)

Computing the Poisson bracket in (3.1) gives

(((y ·∂xH+η ·∂ξH)T ∗
Y )⊛TY )(X) = H(X+Y )−H(X), ∀X, Y ∈ R2d. (3.2)
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Our aim is to prove that (3.2) implies that H(X) is a polynomial of degree
at most 2. For that purpose we shall compute the asymptotic expansion as
Y → 0 of the left hand side of (3.2) and compare it with the Taylor expansion
for H(X+Y ) modulo O(|Y |4). From that we shall conclude that all the third
order derivatives of H vanish for X in any bounded subset of R2d, hence the
conclusion will follow.

We have
∂αx∂

β
ξ TY = i−|α+β|ηαyβTY

Let us denote by C(X, Y ) the left hand side in (3.2). So using Lemma 2.2
uniformly in every compact in X ∈ R2d, we have

C(X, Y ) =
∑

0≤j≤2

Cj(X, Y ) +O(|Y |4),

where

C0(X, Y ) = Y · ∇XH(X) (3.3)

C1(X, Y ) =
1

2
Y · ∇2

XH(X)Y, (3.4)

where ∇2
XH(X) is the Hessian matrix of H.

Let us compute now C2(X, Y ), which is an homogeneous polynomial of degree
3 in Y .
For simplicity let us consider the 1-D case. The same computation can clearly
be done for d > 1.
Using (2.6) we get with Y = (y, η),

C2(X, Y ) =
1

8

(
y3∂3xH + η3∂3ηH − y2η∂ξ∂

2
xH − yη2∂2ξ∂xH

)
. (3.5)

According (3.2), C2(X, Y ) must coincide with the term of order 3 in Y of
the Taylor expansion in X for H(X + Y )−H(X). But this is possible only
if ∂3xH = ∂3ηH = ∂ξ∂

2
xH = ∂2ξ∂xH = 0 for any (x, ξ) ∈ R2. So H must be a

polynomial of degree ≤ 2. □

4 Extension to polynomials of arbitrary de-

gree

The asymptotic expansion in ℏ in the Moyal product suggests to introduce
the following semi-classical approximations of the Moyal bracket:

{A,B}⊛ℏ,m = {A,B}+ ℏ2{A,B}3 + · · ·+ ℏ2m{A,B}2m+1,
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where {A,B}j = i
ℏ(Cj(A,B)−Cj(B,A)) (notation of (2.7)). More explicitly

we have

{A,B}j = (2i)−j
∑

|α+β|=j

(−1)|α| − (−1)|β|

α!β!
(∇β

x∇α
ξA).(∇α

x∇
β
ξB)(x, ξ). (4.1)

Notice that {A,B}j = 0 for j even. In particular if A = TY we have if
j = 2k + 1, with Y = (y, η),

T ∗
Y {TY , B}2k+1(x, ξ) = (2)−2k

∑
|α+β|=2k+1

yαηβ

α!β!
.(∇α

x∇
β
ξB)(x, ξ). (4.2)

It is clear that if H is a polynomial of degree at most 2m + 2 then we
have {A,H}⊛ℏ,m = {A,H}⊛ℏ for any A. Conversely we have

Theorem 4.1. Assume ℏ = 1 and H ∈ Sµ
δ , µ ∈ R, δ < 1/2. If for any

A ∈ S(R2d) we have {A,H}⊛,m = {A,H}⊛ then H must be a polynomial of
degree at most 2m+ 2.

Proof. Here we give a proof different from the case m = 0, without
connection with the Taylor formula, for simpler computations.
Using Lemma 2.2 we have, uniformly in every compact in X ∈ R2d,

T ∗
Y ({TY , H}⊛(X)− {TY , H}⊛,m(X)) = O(|Y |2m+3), Y → 0. (4.3)

Moreover from (2.7) we get:

T ∗
Y {TY , H}2j+1(X) =

1

2j+1

∑
|α+β=2j+1

yαηβ

α!β!
∂αx∂

β
ξH(X). (4.4)

Using the assumption of Theorem 4.1. and (4.3) we get that

T ∗
Y {TY , H}2m+3(X) = OX(|Y |2m+5).

But T ∗
Y {TY , H}2m+3 is an homogeneous polynomial of degree 2m+3 in Y so

we get that this polynomial is 0 and from (4.4) we get that ∂αx∂
β
ξH(X) = 0

for |α + β| = 2m + 3. Then we can conclude that H(X) is a polynomial of
degree at most 2m+ 2 in X ∈ R2d. □.

A Proof of proposition 1.6

Let us recall the statement of the semiclassical Egorov theorem (see [2, 8] for
a proof). For simplicity we consider here subquadratic Hamiltonians.
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Theorem A.1. Let us assume that H is a subquadratic Hamiltonian, that
means here that for |α|+ |β| ≥ 2 there exists Cα,β such that

|∂αx∂
β
ξH(x, ξ)| ≤ Cα,β, ∀(x, ξ) ∈ R2d.

For any A ∈ S0
0 we have, for the operator norm in L2(Rd) and for every

N ≥ 0,

Âquant(t) = e−
i
ℏ ĤÂe

i
ℏ Ĥ =

∑
0≤k≤N

ℏ2jÂ2j(t) +O(ℏ2N+2). (A.1)

In particular we have A0(t,X) = A(Φt
H(X)) := Acl(t,X) and for j ≥ 1,

A2j(t,X) is defined by induction on j such that A2j(0) = 0 and

∂tA2j+2(t)− {A2j+2, H}1 =
∑

k+ℓ=j+1,k≤j

{A2k(t), H}2ℓ+1. (A.2)

Let us remark that here the expansion is even in ℏ because H is reduced
to its principal part (no perturbative term in ℏ).
A2 ≡ 0 hence H is a polynomial of degree at most 2. We can recover easily
here these results.
Proof of proposition 1.6.

From (A.2) we get

∂tA2j(t)− {A2j(t), H}1 =
∑

k+ℓ=j,k≤j−1

{A2k(t), H}2ℓ+1 (A.3)

If for j = j0 we have ∂tA2j0(t) − {A2j0(t), H}1 ≡ 0, so taking t = 0 in the
r.h.s of (A.3) we get {A,H}2j0+1 = 0. Hence using the observables A = TY ,
like in (4.4), we get that H is a polynomial of degree at most 2j0.
If j0 = 1 we are done. Let us Now we shall prove by induction on m that H
is a polynomial of degree less than 2j0 − 2m as far as m ≤ j0 − 2. This will
follow by computing the time derivatives at t = 0 in (A.2). By induction in
ℓ ≥ 1 we get easily for any k ≥ 1,

∂ℓtA2k(0) =
∑

j1+j2+···jℓ=k

{· · · {A,H}2j1+1, H}2j2+1, · · · , H}2jℓ+1. (A.4)

Moreover using that ∂mt A2j0(0) = 0, A2k(0) = 0 for k ≥ 1 and A0(0) = A, we
get the formula ∑

j1+j2=j0,j1≤j0−1

{{A,H}2j1+1, H}2j2+1 = 0. (A.5)
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Apply this equation with A = TY . Then T
−1
Y (

∑
j1+j2=j0

{{TY , H}2j1+1, H}2j2+1)

is a polynomial in Y of degree ≤ 2j0 + 2.
Let us begin with the cases j0 = 2, 4. If j0 = 2 the sum (A.5) with A = TY
gives

T−1
Y {{TY , H}3, H}3 = 0,

hence computing the term of degree 6 in Y ∈ R2d we get∑
|γ|=3

Y γ

γ!
∂γXH

2

= 0.

hence the polynomial H is of degree 2.
If j0 = 4 , applying (A.5), we have

{{A,H}5, H}3 + {{A,H}3, H}5 = 0.

Taking A = TY , using the notation

Πk(Y,X) =
∑
|γ|=k

Y γ

γ!
∂γXH,

and computing the part of maximal degree 8 in Y we get

Π5(Y,X)Π3(Y,X) = 0.

Then we get that the degree of H is ≤ 4. Now computing ∂2tA6(0) (A.4)
with A = TY , we conclude that Π3(Y,X) = 0 so H ∈ H2.
For j0 ≥ 4 it seems more convenient to use as observables A polynomials in
P5,6 of degree 5 and 6 to start with the induction argument. We know that
H ∈ P2j0 . So for any A ∈ P6 we have

∂2tA2j0(0) = {{A,H}3, H}2j0−1 ≡ 0. (A.6)

As in [1] we deduce that H ∈ P2j0−2 by contradiction, in the following way.
We have

H(X) =
∑

|µ|≤2j0−2

cµX
µ +

∑
|µ|=2j0−1

cµX
µ +

∑
|µ|=2j0

cµX
µ.

Let us first assume that there exists |µ0| = 2j0 such that cµ0 ̸= 0. Then we can
get ν0 ∈ N2d, |ν0| = 5 such that for A(X) = Xν0 we have {{A,H}3, H}2j0−1 ̸=
0, which contradicts (A.6).
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Now if cµ = 0 for all |µ| = 2j0 and cµ0 ̸= 0 for some |µ0| = 2j0−1 then we can
get ν0 such that |ν0| = 6 and for A(X) = Xν0 we have {{A,H}3, H}2j0−1 ̸= 0,
which again contradicts (A.6).

For the next step we use (A.4) with ℓ = 3. So for any A ∈ P6 we have

∂3tA2j0(0) = {{{A,H}3, H}3, H}2j0−3 ≡ 0

Hence as above we obtain that H ∈ P2j0−4. So doing, after 2j0 − 2 steps,
using (A.4) at each step with k = j0, ℓ = 3, · · · , 2j0− 3, we get that H ∈ P2.
For the last part of the proposition we notice that from the assumption we
get that A2(t,X) ≡ 0. □

B Proofs for formulas (2.4) and (2.5)

It is enough to assume that A,B ∈ S(R2d).
Recall first the relationship between Weyl symbols and integral kernel of Â.
We have

KÂ(x, y) = (2πℏ)−d

∫
Rd

e
i
ℏ (x−y)·ηA(

x+ y

2
, η)dη

and

A(x, ξ) =

∫
Rd

e−
i
ℏ ξ·tKÂ(x+ t/2, x− t/2)dt.

Using these formulas and the relation KÂB̂(x, z) =
∫
Rd KÂ(x, y)KB̂(y, z)dy

we get

(A⊛ℏ B)(X) = (2πℏ)−2d
∫
R4d exp

(
i
ℏ(−t · ξ + (x− y − t/2) · η + (y − x+ t/2)) · ζ

)
.

.A((x+ y)/2 + t/4, η)B((x+ y)/2− t/4, ζ)dζdηdydt. (B.1)

Then after the change of variables in the integral vξ = ζ − ξ, uξ = η − ξ,
ux = (y − x)/2 + t/4, vx = (y − x)/2 − t/4, we get formula (2.4), with
u = (ux, uξ), v = (vx, vξ),

(A⊛ℏ B)(X) = (πℏ)−2d

∫
R2d×R2d

e
2i
ℏ σ(u,v)A(X + u)B(X + v)dudv.

To get formula (2.5) we notice that (u, v) 7→ 2σ(u, v) is non degenerate and

its matrix is G :=

(
0 −J
J 0

)
, so G−1 = G. Hence using Fourier transform in

(u, v) and the Fourier multiplier formula we get (2.5). □
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C Proofs for Lemmas 2.2 and 2.3

C.1 Proof of lemma 2.3

Using (2.4) for Aϵ ⊛ℏ B we split the integral in two pieces :
1 = χ0(|u|2+|v|2)+χ1(|u|2+|v|2), where χ0 ∈ C∞

0 (R), χ0(t) = 1 for |t| ≤ 1/2.
On the support of χ0 we can obviously pass to the limit in ϵ. On the support
of χ1 we first perform integrations by parts with the differential operator L
to get a uniformly and absolutely convergent integral,

L =
Ju · ∂v − Jv · ∂u

|u|2 + |v|2
,

using that Le
2i
ℏ σ(u,v) = Le

2i
ℏ σ(u,v) = 2i

ℏ e
2i
ℏ σ(u,v). On the support of χ1, perform-

ing 4d+1 integrations by parts for gaining enough decay to ensure integrabil-
ity in (u, v) ∈ R4d. Then passing to the limit in ϵ we get limϵ↘0(Aϵ⊛B)(X) =
(A⊛B)(X) and the same for limϵ↘0(A⊛Bε)(X) = {A,B}⊛(X).
The other properties follow. □

C.2 Proof of Lemma 2.2

From (2.4), by Fourier transform computations and application of the Taylor
formula, we get the following formula for the remainder,

RN(A,B,X) =
1

N !

(
iℏ
2

)N+1 ∫ 1

0

(1− t)NRN,t(X; ℏ)dt, (C.1)

where

RN,t(X; ε) =

(2πt̄)−2d

∫ ∫
R2d×R2d

exp

(
− i

2tℏ
σ(u, v)

)
σN+1(Du, Dv)A(u+X)B(v +X)dudv.

Notice that the integral is an oscillating integral as we shall see below. So
we shall use the following lemma :

Lemma C.1. There exists a constant Cd > 0 such that for any F ∈ S(R2d×
R2d) the integral

I(λ) = λ2d
∫ ∫

R2d×R2d

exp[−iλσ(u, v)]F (u, v)dudv (C.2)

satisfies the following estimate:
for any M > 0 there exists CM > 0, independent of F such that
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|I(λ| ≤ CM sup
u,v∈R2d

|α+β|≤M+4d+1

(1 + |u|2 + |v|2)(4d+1−M)/2|∂αu∂βvF (u, v)|. (C.3)

A proof will be given later in the next section.
Using this lemma for A,B ∈ S(R2d) with the integrand

FN,γ(X;u, v) = π−2d ∂γX
(
σN+1(Du, Dv)A(u+X)B(v +X)

)
and the parameter λ = 1/(2tℏ), we then have that

|∂γXRN,t(X; ε)| ≤ Cd sup
u,v∈R2d

|α|+|β|≤4d+1

|∂αu∂βvFN,γ(X;u, v)|.

Moreover, we have the elementary estimate

|σN+1(Du, Dv)A(u)B(v)| ≤ (2d)N+1 sup
|α|+|β|=N+1

|∂αx∂
β
ξA(x, ξ)∂

β
y ∂

α
ηB(y, η)|.

(C.4)

Together with the Leibniz formula, we then get the claimed result with uni-
versal constants. For symbols A ∈ Sµ

0 and B ∈ Sν
0 we argue by localisation.

We use Aϵ(u) = e−ϵu2
A(u) and Bϵ(v) = e−ϵv2B(v) for ϵ > 0 and pass to the

limit as ϵ→ 0.

C.3 Proof of the Lemma C.1

We consider the same cut-off χ0 as above. We split I(λ) into two pieces and
write I(λ) = I0(λ) + I1(λ) with

I0(λ) = λ2d
∫ ∫

R2d×R2d

exp[−iλσ(u, v)]χ0((u
2 + v2))F (u, v)dudv,

I1(λ) = λ2d
∫ ∫

R2d×R2d

exp[−iλσ(u, v)](1− χ0)(u
2 + v2))F (u, v)dudv.

We notice that (u, v) 7→ σ(u, v) is a quadratic non-degenerate real form on
R4d.
Let us estimate I1(λ). We can integrate by parts with the differential operator

L =
i

|u|2 + |v|2

(
Ju · ∂

∂v
− Jv · ∂

∂u

)
,
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using that Le−iλσ(u,v) = Le−iλJu·v = λe−iλσ(u,v). For I1(λ), the integrand is
supported outside the ball of radius 1/

√
2 in R4d. Performing 4d+1 integra-

tions by parts for gaining enough decay to ensure integrability in (u, v) ∈ R4d,
we get a constant cd such that

|I1(λ)| ≤ cd sup
u,v∈R2d

|µ|+|ν|≤4d+1

|∂µu∂νvF (u, v)|. (C.5)

But we need to control the behaviour for u2 + v2 large, so with M more
integrations by parts we get

|I1(λ)| ≤ CM sup
u,v∈R2d

|α+β|≤M

(1 + |u|2 + |v|2)(4d+1−M)/2|∂αu∂βvF (u, v)| (C.6)

To estimate I0(λ) we apply the stationary phase theorem. The symmetric
matrix of the quadratic form σ(u, v) is

Aσ =

(
0 −J
J 0

)
.

So by the stationary phase theorem ([7], Vol.I, section 7.7), noticing that the
leading term in the stationary phase theorem is of order λ−2d, we get

|I0(λ)| ≤ c′d sup
u,v∈R2d

|µ|+|ν|≤2d+3

|∂µu∂νvF (u, v)|. (C.7)

For the last part of the proposition we notice that from the assumption
we get that A2(t,X) ≡ 0. □
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