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When Poisson and Moyal Brackets are equal?

Didier Robert∗,

Abstract

In the phase space R
2d, let us denote {A,B} the Poisson bracket

of two smooth classical observables and {A,B}⊛ their Moyal bracket,
defined as the Weyl symbol of i[A,B], where Â is the Weyl quanti-
zation of A and [Â, B̂] = ÂB̂ − B̂Â (commutator). In this note we
prove that if a smooth Hamiltonian H on the phase space R

2d, with
derivatives of moderate growth, satisfies {A,H} = {A,H}⊛ for any
smooth and bounded observable A then H must be a polynomial of
degree at most 2.
This is related with the Groenewold-van Hove Theorem [3, 4, 6] con-
cerning quantization of polynomial observables.

1 Introduction

Let H,A,B be smooth classical observables on R2d in the variables X =
(x, ξ). The Poisson brackets is defined as {A,B} = ∂ξA ·∂xB−∂xA ·∂ξB. So
the classical time evolution of A determined by the Hamilton equation for H
is solution of the equation:

d

dt
A(t) = {A(t), H} (1.1)

A(0) = A.

The Weyl quantization Â of A is defined as as the following operator:

Âf(x) := Opw
~
f(x) = (2π~)−d

∫

R2d

A

(
x+ y

2
, ξ

)
eiξ·(x−y)/~f(y) dy dξ (1.2)
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for any f ∈ S(Rd).

The quantum time evolution of the quantum observable Â must satisfy the
Heisenberg equation

d

dt
Â(t) =

i

~
[Â(t), Ĥ] (1.3)

Â(0) = Â (1.4)

where [Â, B̂] = ÂB̂ − B̂Â.
The Moyal bracket of the observables A,H is defined such that

i

~
[Â, Ĥ] = Opw

~
({A,H}⊛. (1.5)

Notice that it results from the Weyl quantization calculus with a small pa-
rameter ~ that we have

lim
~ց0

{A,H}⊛ = {A,H}.

There is an equivalent definition by introducing the Moyal product A⊛B

(see the next section) such that

(Opw
~
A)(Opw

~
B) = Opw

~
(A⊛B).

Then we have

{A,B}⊛ =
i

~
(A⊛ B − B ⊛ A).

These definitions make sense for A,B ∈ S(R2d) and can be extended to
suitable classes of symbols with moderate growth. To be more explicite we
introduce the classes Sµ

δ , for δ < 1, µ ∈ R. A ∈ S
µ
δ iff A ∈ C∞(R2d) and for

any multiindex γ ∈ N
2d we have:

|∂γXA(X)| ≤ Cγ〈X〉µ+δ|γ|

Using Theorem A.1 in [1], we can see that A ⊛ H is a smooth symbol if
H ∈ S

µ
δ and A ∈ S0

0. Our aim here is to prove the following result.

Theorem 1.1. Assume that ~ is fixed (~ = 1). Let be H ∈ S
µ
δ for some

µ ∈ R and δ < 1. Assume that for any A ∈ S0
0 we have {A,H}⊛ = {A,H}.

Then H(X) is a polynomial in X = (x, ξ) of degree at most 2.

Remark 1.2. It is well known that if H is a polynomial of degree at most 2
then {A,H}⊛ = {A,H} for any A ∈ Sν

0. I do not know any reference for a
proof of the converse statement. The proof given here is a direct consequence
of basic properties of the Weyl quantization.
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Remark 1.3. The usual proofs of the Groenewold-van Hove Theorem on
the phase space R2d concern more general quantization procedures but are
restricted to polynomial symbols A,H.
A quotation from [6] p.66-67:
”On établit ensuite qu’une correspondance biunivoque entre grandeurs clas-
siques et quantiques, ayant le caractère d’un isomorphisme entre algèbres de
Lie, existe entre les grandeurs représentées par des polynômes de degré 0, 1,
2 en les variables p1, · · · pN , q1, · · · qn mais ne peut être étendue sans perdre
ses propriétés essentielles à l’ensemble de toutes les grandeurs classiques”
The Theorem of Groenewold-van Hove is detailed p.76 and the quadratic case
p.87 of [6].
Notice that the quadratic case is related with the metaplectic representation
[3].

2 Weyl calculus

2.1 Introduction to the Weyl quantization

In this section, we recall some basic properties of the Weyl calculus (for more
details see [5]).
Weyl quantization start by quantization of exponent of linear forms LY (X) =
σ(Y,X) = η · x − y · ξ with X = (x, ξ), Y = (y, η). Apart the usual prop-
erties asked for an admissible quantization, Weyl quantization is uniquely

determined by imposing that the Weyl symbol of eiL̂Y is eiLY . Recall that

T̂ (Y ) := e−
i

~
L̂Y is the Weyl-Heisenberg translation operator by Y in the

phase space R2d. Then for any observable A, using a Fourier transform, the
Weyl quantization A is defined for any ψ ∈ S(Rd), as

Âψ = (2π)−d

∫

R2d

Ãσ(Y )T (Y )ψdY

where Ãσ(Y ) =
∫
R2d A(z)e

−iσ(Y,z)dz is the symplectic Fourier transform of A
(in the sense of distributions). So that the family {T (Y )}Y ∈R2d is an over-
complete basis for operators between the Schwartz spaces S(Rd) and S ′(Rd)

2.2 The Moyal Product

We first recall the formal product rule for quantum observables with Weyl
quantization. Let A,B ∈ S(R2d). The Moyal product C := A ⊛ B is the

observable C such that Â · B̂ = Ĉ. Some computations with the Fourier
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transform give the following well known formula [5]

C(x, ξ) = exp

(
i~

2
σ(Dq, Dp;Dq′, Dp′)

)
A(q, p)B(q′, p′)|(q,p)=(q′,p′)=(x,ξ), (2.1)

where σ is the symplectic bilinear form σ((q, p), (q′, p′)) = p · q′ − p′ · q and
D = i−1~∇. By expanding the exponential term in a formal power series in
~ we get

C(x, ξ) =
∑

j≥0

~j

j!

(
i

2
σ(Dq, Dp;Dq′, Dp′)

)j

A(q, p)B(q′, p′)|(q,p)=(q′,p′)=(x,ξ).

(2.2)
So that C(x, ξ) is a formal power series in ~ with coefficients given by

Cj(A,B; x, ξ) =
1

2j

∑

|α+β|=j

(−1)|β|

α!β!
(Dβ

x∂
α
ξ A).(D

α
x∂

β
ξB)(x, ξ). (2.3)

Furthermore we need a remainder estimates for the expansion of the Moyal

product.
For every N ≥ 1. we denote

RN(A,B; z) := A⊛ B(z)−
∑

0≤j≤N

~
jCj(z). (2.4)

The following estimate is a particular case of Theorem A.1 in [1] see also
Remark A.3.

Lemma 2.1. Let be A ∈ S
µA

δ and B ∈ S
µB

δ then for any N ≥ 1, γ ∈ N2d,
M ≥M0 there exists CN,γ,M > 0(independent of (A,B)) such that

|∂γzRN(A,B; z)| ≤ CN,γ,M~
N+1

∑

|α+β|=N+1
|µ+ν|≤M+|γ|

(2.5)

sup
u,v∈R2d

(1 + |u|2 + |v|2)(M0−M)/2|∂(α,β)+µ
u A(z + u)||∂(β,α)+ν

v B(z + v)| (2.6)

In particular RN (A,B, z) ∈ S
µAB

δ for some µAB ≥ µA + µB.

For proving this Lemma one assume first that A,B ∈ S(R2d). For the
general case we put Aε(X) = e−ǫ|X|2A(X), Bε(X) = e−ǫ|X|2B(X) and pass
to the limit for εց 0.
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3 Proof of Theorem(1.1)

Here ~ = 1. It is enough to consider the test observables TY := e−iLY

(Y ∈ R2d).
We have

T̂Y ĤT̂
∗
Y = [T̂Y , Ĥ]T̂ ∗

Y + Ĥ

Using the assumption of Theorem(1.1) we get

1

i
({T ∗

T , H}⊛ TY )(X) = H(X + Y )−H(X), ∀X, Y ∈ R
2d. (3.1)

Computing the Poisson bracket in (3.1) gives

(((y ·∂xH+η ·∂ξH)T ∗
Y )⊛TY )(X) = H(X+Y )−H(X), ∀X, Y ∈ R

2d. (3.2)

Our aim is to prove that (3.2) implies that H(X) is a polynomial of degree
at most 2. For that purpose we shall compute the asymptotic expansion as
Y → 0 of the left hand side of (3.2) and compare it with the Taylor expansion
for H(X+Y ) modulo O(|Y |4). From that we shall conclude that all the third
order derivatives of H vanish in X hence the conclusion will follow.

We have
∂αx ∂

β
ξ TY = i−|α+β|ηαyβTY

Let us denote by C(X, Y ) the left hand side in (3.2). So using Lemma(2.1)
we have

C(X, Y ) =
∑

0≤j≤2

(Cj(X, Y ) +O(|Y |4),

where

C0(X, Y ) = Y · ∇XH(X) (3.3)

C1(X, Y ) =
1

2
Y · ∇2

XH(X)Y, (3.4)

where ∇2
XH(X) is the Hessian matrix of H .

Let us compute now C2(X, Y ), which is an homogeneous polynomials of
degree 3 in Y .
For simplicity let us consider the 1-D case. The same computation can clearly
be done for d > 1.
Using (2.2) we get with Y = (y, η),

C2(X, Y ) =
1

8

(
y3∂3xH + η3∂3ηH − y2η∂ξ∂

2
xH − yη2∂2ξ∂xH

)
. (3.5)

According (3.2), C2(X, Y ) must coincide with the term of order 3 in Y of
the Taylor expansion in X for H(X + Y )−H(X). But this is possible only
if ∂3xH = ∂3ηH = ∂ξ∂

2
xH = ∂2ξ∂xH = 0 for any (x, ξ) ∈ R2. So H must be a

polynomial of degree ≤ 2. �
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4 Extension to polynomials of arbitrary de-

gree

The asymptotic expansion in ~ in the Moyal product suggest to introduce
the following semi-classical approximations of the Moyal bracket:

{A,B}⊛,m = {A,B}+ ~
2{A,B}3 + · · ·+ ~

2m{A,B}2m+1,

where {A,B}j = i
~
(Cj(A,B) − Cj(B,A)) (notation of (2.3)). Notice that

{A,B}j = 0 for j even.
It is clear that if H is a polynomial of degree at most 2m + 2 then we have
{A,H}⊛,m = {A,H}⊛ for any A. Conversely we have

Theorem 4.1. Assume ~ = 1. If for any A ∈ S0
0 we have {A,H}⊛,m =

{A,H}⊛ then H must be a polynomial of degree at most 2m+ 2.

Proof. Here we give a proof different from the case m = 0, without
connection with the Taylor formula, for simpler computations.
Using Lemma 2.1 we have

T ∗
Y ({TY , H}⊛ − {TY , H}⊛,m) = O(|Y |2m+3), Y → 0. (4.1)

Moreover from (2.3) we get:

T ∗
Y {TY , H}2j+1 =

1

2j+1

∑

|α+β=2j+1

yαηβ

α!β!
∂αx∂

β
ξH (4.2)

Using the assumption of Theorem 4.1. and (4.1) we get that

T ∗
Y {TY , H}2m+3 = O(|Y |2m+5)

But T ∗
Y {TY , H}2m+3 is an homogeneous polynomial of degree 2m + 3 in Y

so we get that this polynomial is 0 and from (4.2) we get that ∂αx ∂
β
ξH = 0

for |α + β| = 2m + 3. Then we can conclude that H(X) is a polynomial of
degree at most 2m+ 2 in X ∈ R2d. �.
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