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In the present paper, two new approximations to evaluate the ψ-Caputo fractional derivative are developed using the linear and the quadratic polynomial interpolations. We present a study of the pointwise error for each approximation and illustrate some particular cases that correspond to approximations of the well known fractional derivatives, such as: Caputo, Katugampola and Hadamard fractional derivatives. In order to elucidate the investigated results, we present some examples for each approximation. For concreteness, we show some applications where we solve initial value problems and problems involving fractional sub-diffusion equations. Finally, some concluding remark are presented.

Introduction and Motivation

In recent years, fractional calculus has gained a great deal of development both in theory and in application. As we know, fractional derivatives have several types of definitions, among which the Riemann-Liouville fractional derivative and the Caputo fractional derivative are two of the most important in applications [START_REF] Anguraj | Mild solutions of Riemann-Liouville fractional differential equations with fractional impulses[END_REF]3,[START_REF] Alikhanov | A new difference scheme for the time fractional diffusion equation[END_REF]. Other formulations of fractional derivatives can be found in the works [21][22][START_REF] Sousa | On the ψ-Hilfer fractional derivative[END_REF][START_REF] Teodoro | A review of definitions of fractional derivatives and other operators[END_REF]. Numerical solution of fractional differential equations (FDE) is a topic of concern for many researchers around the world, and one of the reasons for this is that FDE can provide a better explanation for many natural physical phenomena and facilitate the description of dynamical systems [6,17]. For example, FDE can be used to characterize complex systems related to memory and heritable properties such as viscoelastic deformation, anomalous diffusion, signal processing, and the stock market [START_REF] Anguraj | Mild solutions of Riemann-Liouville fractional differential equations with fractional impulses[END_REF]. A modern engineering and science challenge is to obtain more realistic models and improve [START_REF] Almeida | A numerical method to solve higher-order fractional differential equations[END_REF]6] processes and, as a consequence, mathematical models tend to be more complex and difficult to implement.

Using fractional derivatives to try to model physical phenomena has been the subject of studies over the last 20 years, exponentially. However, it is not an easy and simple task to try to approximate a fractional model of physical phenomena, since it requires a huge amount of variables in order to adjust to reality. Another way to overcome this type of situation is to use fractional mathematical models involving discretization and often of variable order.

In 2014 Gao et al. [START_REF] Gao | A new fractional numerical differentiation formula to approximate the Caputo fractional derivative and its applications[END_REF] investigated a new fractional numerical differentiation formula called the L1 -2 formula to approximate Caputo fractional derivative of order α. In addition, quadratic interpolation approximation and linear interpolation approximation are discussed. Some examples and applications are presented in order to elucidate the results investigated. Also, it is highlighted that by the finite difference method via the L1 formula, the new L1 -2 formula is much more effective and more accurate than the L1 formula when investigating fractional differential equations. Em 2015 Alikhanov [START_REF] Pulido | Universidade Federal do ABC, Centro de Matemática, Computac ¸ão e Cognic ¸ão[END_REF], construct a new difference analog to the Caputo fractional derivative so-called the L2 -1 σ formula. In this sense, we investigated some properties of this difference operator and discussed stability and convergence results in the L2-norm grid with the rate equal to the order of the approximation error are proved. Finally, numerical tests were discussed in order to elucidate the investigated result. In the following year, Li et al. [START_REF] Li | High-order approximation to Caputo derivatives and Caputo-type advection-diffusion equations (III)[END_REF], presented new high-order numerical approximations to the Caputo fractional derivative of order α which is constructed using the interpolation approximation of degree r for the integral function. Continuing, they investigated the truncation error, stability and convergence to the advection-diffusion equation of the Caputo type with Dirichlet boundary conditions. See also the work by Cao et al. [5], who also investigated high-order approximation to Caputo fractional derivative and Caputo-type advection-diffusion equations. For a more detailed reading on applications involving fractional derivatives via numerical approaches and approximations, see [7,[START_REF] Gao | Three-point combined compact difference schemes for time-fractional advection-diffusion equations with smooth solutions[END_REF]11,[START_REF] Cao | High-order approximation to Caputo derivatives and Caputo-type advection-diffusion equations (II)[END_REF][START_REF] Chen | Numerical algorithm to solve system of nonlinear fractional differential equations based on wavelets method and the error analysis[END_REF][START_REF] Ren | A fourth-order extrapolated compact difference method for time-fractional convection-reaction-diffusion equations with spatially variable coefficients[END_REF]20,26,27] and the references therein.

As highlighted by the works above, using fractional derivatives in order to break down barriers and discuss physical problems is indeed an important tool. Over the years, numerous theoretical and practical problems have been addressed via fractional derivatives with variable and non-variable order. In addition, new approaches and numerical approaches were discussed. However, it is still possible to present new approximations and numerical approaches for fractional derivatives, not the classic ones, such as Caputo, Riemann-Liouville, Hilfer, among others, but involving fractional derivatives with the implicit kernels.

Motivated by the works above, in particular [START_REF] Gao | A new fractional numerical differentiation formula to approximate the Caputo fractional derivative and its applications[END_REF][START_REF] Sun | A fully discrete difference scheme for a diffusion-wave system[END_REF] and by the open problems and the difficulties in discussing more general results, in this present paper one of the main contributions is to provide new tools in order to solve problems of fractional differential equations. In order to make the development of this paper clear and efficient, and what are the main contributions, below we will highlight point by point:

(1) We investigated new approximations for the ψ-Caputo fractional derivatives, that is, the approximations L1 ψ-Caputo and L1-2 ψ-Caputo;

(2) From the particular choice of the ψ(•) function, we discussed some particular cases for the investigated approximations present in the literature; (3) We investigated the approximation error L1 ψ-Caputo fractional derivative and L1-2 ψ-Caputo fractional derivative; (4) We presented examples involving numerical and exact derivatives and plot graphs comparing them. Furthermore, the error rate and convergence of each example are presented in the form of tables; (5) We discussed some applications, in particular, involving fractional sub-diffusion equations of the approximations L1 ψ-Caputo and L1-2 ψ-Caputo. In this sense, we plotted the graphs comparing the exact and numerical solutions of each example, as well as tables with errors and convergence rates.

In the rest, the paper is divided as follows: Section 2, we present some definitions and approximations of the first and second derivatives. In Section 3, our main goal is to investigate the new approximations for the ψ-Caputo fractional derivatives, that is, the approximations L1 ψ-Caputo and L1-2 ψ-Caputo, we discuss particular cases and the approximation error L1 ψ-Caputo fractional derivative and L1-2 ψ-Caputo fractional derivative. Section 4 is intended for applications involving fractional differential equations, graphical analysis, error and convergence rates of the exact solution compared to the numerical solution. Finally, concluding remarks close the paper.

Preliminaries

In this section, we present some very important comments and definitions throughout the paper. Take a uniform mesh with points t 0 , t 1 , • • • , t N from an interval [a, b], with ∆t the temporal step length, t k = k∆t and t k+1/2 = t k+1 +t k 2 for 0 < k ≤ N and a continuous function u in [a, b]. We introduce the following operators:

• Centered approximation of the first derivative in the middle points of the mesh

δ t u k-1/2 = u(t k ) -u(t k-1 ) ∆t . (2.1)
• Centered approximation of the second derivative in the points of the mesh

δ 2 t u k = 1 ∆t δ t u k+1/2 -δ t u k-1/2 . (2.2)
On the other hand, denote the polynomial interpolation of the first degree (linear) of the function u in the interval [t j-1 , t j ], 1 ≤ j ≤ N , by

Π 1,j u(t) = u(t j-1 ) (t j -t) ∆t + u(t j ) (t -t j-1 ) ∆t ,
and, the polynomial interpolation of the second degree (quadratic) of the function u in the interval

[t j-1 , t j ], 1 ≤ j ≤ N , by Π 2,j u(t) =u(t j-2 ) (t -t j-1 )(t -t j ) 2∆t 2 + u(t j-1 ) (t -t j-2 )(t j -t) ∆t 2 + u(t j ) (t -t j-1 )(t -t j-2 ) 2∆t 2 =Π 1,j u(t) + 1 2 (δ 2 t u j-1 )(t -t j-1 )(t -t j ).
Note that,

(Π 1,j u(t)) ′ = u(t j ) -u(t j-1 ) ∆t = δ t u j-1/2 , (2.3) and, 
(Π 2,j u(t)) 

′ =δ t u j-1/2 + 1 2 (δ 2 t u j-1 )(2t -t j-1 -t j ) = δ t u j-1/2 + (δ 2 t u j-1 )(t -t j-1/2 ). (2.4) Definition 2.1. [12] Let (a, b) (-∞ ≤ a < t < b ≤ ∞) be a
I α;ψ a u(t) = 1 Γ(α) t a ψ ′ (ξ)(ψ(t) -ψ(ξ)) α-1 u(ξ)dξ, where Γ(•) is a Gamma function [18]. Definition 2.2. [3] Let α > 0, n ∈ N, I = [a, b] is the interval (-∞ ≤ a < t < b ≤ ∞), f, ψ ∈ C n ([a, b], R
) two functions such that ψ is increasing and ψ ′ (t) ̸ = 0, for all x ∈ I. The ψ-Caputo fractional derivative of u of order α, is given by

c D α;ψ a u(t) = I n-α;ψ a 1 ψ ′ (t) d dt n u(t),
where n = [α] + 1 for α / ∈ N and n = α for α ∈ N.

Development of approximations for the ψ-Caputo fractional derivative

In this section, we discussed the main contribution of this paper, i.e., through the approximations L1 formula and L1-2 formula obtained in [START_REF] Gao | A new fractional numerical differentiation formula to approximate the Caputo fractional derivative and its applications[END_REF][START_REF] Sun | A fully discrete difference scheme for a diffusion-wave system[END_REF], we get approximations for ψ-Caputo fractional derivative.

3.1. L1 ψ-Caputo approximation. By the Definition 2.2, we have

c D α;ψ a u(t) t=t k = 1 Γ(n -α) t k a ψ ′ (ξ)(ψ(t k ) -ψ(ξ)) n-α-1 1 ψ ′ (ξ) d dξ n u(ξ)dξ. Consider a = t 0 and 0 < α < 1, thus c D α;ψ t0 u(t) t=t k = 1 Γ(1 -α) t k t0 (ψ(t k ) -ψ(ξ)) -α u ′ (ξ)dξ = 1 Γ(1 -α) k j=1 tj tj-1 (ψ(t k ) -ψ(ξ)) -α u ′ (ξ)dξ, (3.1)
Using the polynomial interpolation for u given by Eq.(2.3) in the interval [t j-1 , t j ], yields

c D α;ψ t0 u(t) t=t k ≈ 1 Γ(1 -α) k j=1 tj tj-1 (ψ(t k ) -ψ(ξ)) -α (Π 1,j u(ξ)) ′ dξ = 1 Γ(1 -α) k j=1 δ t u j-1/2 tj tj-1 (ψ(t k ) -ψ(ξ)) -α dξ ≈ 1 Γ(2 -α) k j=1 δ t u j-1/2 δ t ψ j-1/2 (ψ(t k ) -ψ(t j-1 )) 1-α -(ψ(t k ) -ψ(t j )) 1-α . Definition 3.1. Let 0 < α < 1, I = [a, b], u ∈ C 3 (I, R
) and ψ ∈ C(I, R) be two functions such that ψ is increasing and ψ ′ (t) ̸ = 0, for all t ∈ I. Given a uniform mesh of points t 0 , t 1 , • • • , t N in the interval I, such that t 0 = a, t k = k∆t for 0 < k ≤ N , where ∆t is the temporal step length. The L1 ψ-Caputo fractional derivative approximation of u in the point t k of order α, is given by c1 D α;ψ t0 u(t)

t=t k = 1 Γ(2 -α) k j=1 δ t u j-1/2 δ t ψ j-1/2 (ψ(t k ) -ψ(t j-1 )) 1-α -(ψ(t k ) -ψ(t j )) 1-α ,
where Γ(•) is a Gamma function.

3.2. L1-2 ψ-Caputo approximation. Taking the Eq.(3.1) and rewriting it, we obtain c D α;ψ t0 u(t)

t=t k = 1 Γ(1 -α)   t1 t0 (ψ(t k ) -ψ(ξ)) -α u ′ (ξ)dξ + k j=2 tj tj-1 (ψ(t k ) -ψ(ξ)) -α u ′ (ξ)dξ   .
Using the approximation for Eq.( 2.3) in the first integral and Eq.(2.4) in the second term, yields

c D α;ψ t0 u(t) t=t k ≈ 1 Γ(1 -α)   t1 t0 (ψ(t k ) -ψ(ξ)) -α (Π 1,1 u(ξ)) ′ dξ + k j=2 tj tj-1 (ψ(t k ) -ψ(ξ)) -α (Π 2,j u(ξ)) ′ dξ   = 1 Γ(1 -α) δ t u 1/2 t1 t0 (ψ(t k ) -ψ(ξ)) -α dξ + k j=2 tj tj-1 (ψ(t k ) -ψ(ξ)) -α δ t u j-1/2 + (δ 2 t u j-1 )(ξ -t j-1/2 ) dξ   = 1 Γ(1 -α)   k j=1 δ t u j-1/2 tj tj-1 (ψ(t k ) -ψ(ξ)) -α dξ + k j=2 (δ 2 t u j-1 ) tj tj-1 (ψ(t k ) -ψ(ξ)) -α ξ -t j-1/2 dξ   ≈ 1 Γ(1 -α)   k j=1 δ t u j-1/2 δ t ψ j-1/2 (1 -α) (ψ(t k ) -ψ(t j-1 )) 1-α -(ψ(t k ) -ψ(t j )) 1-α + k j=2 δ 2 t u j-1 tj tj-1 (ψ(t k ) -ψ(ξ)) -α ξ -t j-1/2 dξ   = 1 Γ(2 -α) k j=1 δ t u j-1/2 δ t ψ j-1/2 (ψ(t k ) -ψ(t j-1 )) 1-α -(ψ(t k ) -ψ(t j )) 1-α - 1 Γ(2 -α) k j=2 δ 2 t u j-1 2δ t ψ j-1/2 ∆t(ψ(t k ) -ψ(t j-1 )) 1-α + ∆t(ψ(t k ) -ψ(t j )) 1-α + 1 Γ(3 -α) k j=2 δ 2 t u j-1 (δ t ψ j-1/2 ) 2 (ψ(t k ) -ψ(t j-1 )) 2-α -(ψ(t k ) -ψ(t j )) 2-α . (3.2) Definition 3.2. Let 0 < α < 1, I = [a, b], u ∈ C 3 (I, R
) and ψ ∈ C 2 (I, R) be two functions such that ψ is increasing and ψ ′ (t) ̸ = 0, for all t ∈ I. Given a uniform mesh of points t 0 , t 1 , • • • , t N in the interval I, such that t 0 = a, t k = k∆t for 0 < k ≤ N , where ∆t is the temporal step length. The L1-2 ψ-Caputo fractional derivative approximation of u in the point t k of order α, is given by c2 D α;ψ t0 u(t)

t=t k = 1 Γ(2 -α) k j=1 δ t u j-1/2 δ t ψ j-1/2 (ψ(t k ) -ψ(t j-1 )) 1-α -(ψ(t k ) -ψ(t j )) 1-α - ∆t Γ(2 -α) k j=2 δ 2 t u j-1 2δ t ψ j-1/2 (ψ(t k ) -ψ(t j-1 )) 1-α + (ψ(t k ) -ψ(t j )) 1-α + 1 Γ(3 -α) k j=2 δ 2 t u j-1 (δ t ψ j-1/2 ) 2 (ψ(t k ) -ψ(t j-1 )) 2-α -(ψ(t k ) -ψ(t j )) 2-α ,
where Γ(•) is a Gamma function.

3.3. Particular Cases. In the following, three particular cases are shown for each of the previously defined approximations. In these cases, we will take ψ(t) = t, ψ(t) = t ρ , ρ > 0 and ψ(t) = ln(t), through them we will obtain approximations for the Caputo fractional derivative, Katugampola fractional derivative and Hadamard fractional derivative, respectively. Case 1. For ψ(t) = t and note that, δ t ψ j-1/2 = 1, then we have

c1 D α;t t0 u(t) t=t k = ∆t 1-α Γ(2 -α) k j=1 a (α) k-j δ t u j-1/2 , c2 D α;t t0 u(t) t=t k = ∆t 1-α Γ(2 -α) k j=1 a (α) k-j δ t u j-1/2 + ∆t 2-α Γ(2 -α) k j=2 b (α) k-j δ 2 t u j-1 , where, a (α) j 
= (j + 1) 1-α -j 1-α and b

(α) j = (j + 1) 2-α -j 2-α (2 -α) - (j + 1) 1-α + j 1-α 2 .
Case 2. For ψ(t) = t ρ , ρ > 0 and note that,

δ t ψ j-1/2 = t ρ j -t ρ j-1 ∆t = ∆t ρ-1 (j ρ -(j -1) ρ ), yields c1 D α;t ρ t0 u(t) t=t k = ∆t 1-αρ Γ(2 -α) k j=1 a (α),ρ k,j δ t u j-1/2 , c2 D α;t ρ t0 u(t) t=t k = ∆t 1-αρ Γ(2 -α) k j=1 a (α),ρ k,j δ t u j-1/2 + ∆t 2-αρ Γ(2 -α) k j=2 b (α),ρ k,j δ 2 t u j-1 ,
where,

a (α),ρ k,j = (k ρ -(j -1) ρ ) 1-α -(k ρ -j ρ ) 1-α (j ρ -(j -1) ρ ) and b (α),ρ k,j = (k ρ -(j -1) ρ ) 2-α -(k ρ -j ρ ) 2-α (2 -α)(j ρ -(j -1) ρ ) 2 - (k ρ -(j -1) ρ ) 1-α + (k ρ -j) ρ ) 1-α 2(j ρ -(j -1) ρ ) .
Case 3. Choosing ψ(t) = ln(t), t > 0 and note that δ t ψ j-1/2 = ln(tj )-ln(tj-1) ∆t

= ln( j j-1 ) ∆t , yields c1 D α;ln(t) t0 u(t) t=t k = ∆t Γ(2 -α) k j=1 c (α) k,j δ t u j-1/2 , c2 D α;ln(t) t0 u(t) t=t k = ∆t Γ(2 -α) k j=1 c (α) k,j δ t u j-1/2 + ∆t 2 Γ(2 -α) k j=2 d (α) k,j δ 2 t u j-1 ,
where,

c (α) k,j = ln k j-1 1-α -ln k j 1-α ln j j-1 , and 
d (α) k,j = ln k j-1 2-α -ln k j 2-α (2 -α) ln j j-1 2 - ln k j-1 1-α + ln k j 1-α 2 ln j j-1
.

3.4. The error of the approximations. Next, an analytical study is realized for the error of each approximations defined in this work, thus the objective of this section is to find a bound or a limiting for the module of difference between the exact derivative (ψ-Caputo fractional derivative Definition 2.2) and each one of approximate derivative (L1 ψ-Caputo Definition 3.1 and L1-2 ψ-Caputo Definition 3.2).

Lemma 3.3. The L1 ψ-Caputo fractional derivative approximation defined in Definition 3.1 can be written as

c1 D α;ψ t0 u(t) t=t k = 1 Γ(1 -α) k j=1 tj tj-1 (ψ(t k ) -ψ(ξ)) -α ψ ′ (ξ) δ t ψ j-1/2 (Π 1,j u(ξ)) ′ dξ.
Proof. Using the Definition 3.1, yields c1 D α;ψ t0 u(t)

t=t k = 1 Γ(2 -α) k j=1 δ t u j-1/2 δ t ψ j-1/2 (ψ(t k ) -ψ(t j-1 )) 1-α -(ψ(t k ) -ψ(t j )) 1-α = 1 Γ(1 -α) k j=1 δ t u j-1/2 δ t ψ j-1/2 tj tj-1 (ψ(t k ) -ψ(ξ)) -α ψ ′ (ξ)dξ = 1 Γ(1 -α) k j=1 tj tj-1 (ψ(t k ) -ψ(ξ)) -α ψ ′ (ξ) δ t ψ j-1/2 (Π 1,j u(ξ)) ′ dξ,
which is the desired result. □ Lemma 3.4. The L1-2 ψ-Caputo fractional derivative approximation defined in Definition 3.2 can be written as

c2 D α;ψ t0 u(t) t=t k = 1 Γ(1 -α) t1 t0 (ψ(t k ) -ψ(ξ)) -α ψ ′ (ξ) δ t ψ 1/2 (Π 1,1 u(ξ)) ′ dξ + 1 Γ(1 -α) k j=2 tj tj-1 (ψ(t k ) -ψ(ξ)) -α ψ ′ (ξ) δ t ψ j-1/2 (Π 2,j u(ξ)) ′ dξ + 1 Γ(2 -α) k j=2 tj tj-1 (ψ(t k ) -ψ(ξ)) 1-α δ 2 t u j-1 ψ ′ (ξ) (δ t ψ j-1/2 ) 2 - δ 2 t u j-1 δ t ψ j-1/2 dξ.
Proof. Using the Definition 3.2, we obtain

c D α;ψ t0 u(t) t=t k = 1 Γ(1 -α) k j=1 δ t u j-1/2 δ t ψ j-1/2 tj tj-1 (ψ(t k ) -ψ(ξ)) -α ψ ′ (ξ)dξ + 1 Γ(1 -α) k j=2 δ 2 t u j-1 δ t ψ j-1/2 - tj tj-1 d dξ (ξ -t j-1/2 ) (ψ(t k ) -ψ(ξ)) 1-α 1 -α dξ + 1 Γ(2 -α) k j=2 δ 2 t u j-1 (δ t ψ j-1/2 ) 2 tj tj-1 (ψ(t k ) -ψ(ξ)) 1-α ψ ′ (ξ)dξ = 1 Γ(1 -α) δ t u 1/2 δ t ψ 1/2 t1 t0 (ψ(t k ) -ψ(ξ)) -α ψ ′ (ξ)dξ + 1 Γ(1 -α) k j=2 δ t u j-1/2 δ t ψ j-1/2 tj tj-1 (ψ(t k ) -ψ(ξ)) -α ψ ′ (ξ)dξ + 1 Γ(1 -α) k j=2 δ 2 t u j-1 δ t ψ j-1/2 - tj tj-1 (ψ(t k ) -ψ(ξ)) 1-α 1 -α -(ξ -t j-1/2 )(ψ(t k ) -ψ(ξ)) -α ψ ′ (ξ) dξ + 1 Γ(2 -α) k j=2 δ 2 t u j-1 (δ t ψ j-1/2 ) 2 tj tj-1 (ψ(t k ) -ψ(ξ)) 1-α ψ ′ (ξ)dξ = 1 Γ(1 -α) t1 t0 (ψ(t k ) -ψ(ξ)) -α ψ ′ (ξ) δ t ψ 1/2 (Π 1,1 u(ξ)) ′ dξ + 1 Γ(1 -α) k j=2 tj tj-1 (ψ(t k ) -ψ(ξ)) -α ψ ′ (ξ) δ t ψ j-1/2 (Π 2,j u(ξ)) ′ dξ + 1 Γ(2 -α) k j=2 tj tj-1 (ψ(t k ) -ψ(ξ)) 1-α δ 2 t u j-1 ψ ′ (ξ) (δ t ψ j-1/2 ) 2 - δ 2 t u j-1 δ t ψ j-1/2 dξ,
which is the desired result. □

Given the L1 ψ-Caputo approximation in the point t k and the ψ-Caputo fractional derivative discretized, we called the pointwise error, i.e, the error in the point t k , as

|e k | = c D α;ψ t0 u(t) t=t k -c1 D α;ψ t0 u(t) t=t k . (3.3) Lemma 3.5. Let 0 < α < 1, I = [a, b], u ∈ C 2 (I, R) and ψ ∈ C 2 (I, R)
be two functions such that ψ is increasing and ψ ′ (t) ̸ = 0, for all t ∈ I. Let be the L1 ψ-Caputo approximation as in the Definition 3.1 and the ψ-Caputo fractional derivative of the Definition 2.2 discretized in the points of the mesh t 0 , t 1 , • • • , t N , as in the Eq.(3.1) and the pointwise error as in the Eq.(3.3), then

|e k | ≤ |L| ∆t 2 4 (ψ(t k ) -ψ(t 0 )) -α , where L = max t1≤j≤t k-1 u ′′ (ε j ) 2 - ψ ′′ (η j )δ t u j-1/2 2δ t ψ j-1/2 , ηj , εj ∈ (t j-1 , t j ).
Proof. Applying the Eq.(3.3), we get

|e k | = 1 Γ(1 -α) k j=1 tj tj-1 (ψ(t k ) -ψ(ξ)) -α u ′ (ξ) - ψ ′ (ξ) δ t ψ j-1/2 (Π 1,1 u(ξ)) ′ dξ .
To continue, let recall the polynomial interpolation error, which is given, in our case, by [13] 

u(ξ) -Π 1,j u(ξ) = u ′′ (ε j ) 2 (ξ -t j-1 )(ξ -t j ), ξ ∈ [t j-1 , t j ], ε j ∈ (t j-1 , t j ). (3.4)
On the other hand,

ψ(ξ) -Π 1,j ψ(ξ) = ψ ′′ (η j ) 2 (ξ -t j-1 )(ξ -t j ), ξ ∈ [t j-1 , t j ], η j ∈ (t j-1 , t j ) ψ ′ (ξ) -(Π 1,j ψ(ξ)) ′ = ψ ′′ (η j ) 2 ((ξ -t j-1 )(ξ -t j )) ′ , ξ ∈ [t j-1 , t j ], η j ∈ (t j-1 , t j ), thus, ψ ′ (ξ) δ t ψ j-1/2 = 1 + ψ ′′ (η j ) 2δ t ψ j-1/2 (2ξ -t j-1 -t j ) , ξ ∈ [t j-1 , t j ], η j ∈ (t j-1 , t j ), (3.5) 
so that,

|e k | = 1 Γ(1 -α) k j=1 tj tj-1 (ψ(t k ) -ψ(ξ)) -α u ′ (ξ) -(Π 1,1 u(ξ)) ′ dξ - 1 Γ(1 -α) k j=1 tj tj-1 (ψ(t k ) -ψ(ξ)) -α ψ ′′ (η j ) 2δ t ψ j-1/2 (2ξ -t j-1 -t j ) (Π 1,1 u(ξ)) ′ dξ = 1 Γ(1 -α) k j=1 tj tj-1 (ψ(t k ) -ψ(ξ)) -α u ′′ (ε j ) 2 (2ξ -t j-1 -t j ) dξ - 1 Γ(1 -α) k j=1 ψ ′′ (η j )δ t u j-1/2 2δ t ψ j-1/2 t1 t0 (ψ(t k ) -ψ(ξ)) -α (2ξ -t j-1 -t j ) dξ = 1 Γ(1 -α) k j=1 u ′′ (ε j ) 2 - ψ ′′ (η j )δ t u j-1/2 2δ t ψ j-1/2 tj tj-1 (ψ(t k ) -ψ(ξ)) -α (2ξ -t j-1 -t j ) dξ ≤ L Γ(1 -α) t k t0 (ψ(t k ) -ψ(ξ)) -α (2ξ -t j-1 -t j ) dξ ≤ |L| Γ(1 -α) t k t0 (ψ(t k ) -ψ(ξ)) -α (2ξ -t j-1 -t j ) dξ .
Using integration by parts, with u = (ψ(t k ) -ψ(ξ)) -α and dv = (2ξ -t j-1 -t j ) dξ, yields

|e k | = |L| Γ(1 -α) α t k t0 (ψ(t k ) -ψ(ξ)) -α-1 ψ ′ (ξ) (ξ -t j-1 ) (t j -ξ) dξ ≤ α |L| ∆t 2 4 t k t0 (ψ(t k ) -ψ(ξ)) -α-1 ψ ′ (ξ)dξ ≤ |L| ∆t 2 4 (ψ(t k ) -ψ(t 0 )) -α , where L = max t1≤j≤t k-1 u ′′ (ε j ) 2 - ψ ′′ (η j )δ t u j-1/2 2δ t ψ j-1/2 , ηj , εj ∈ (t j-1 , t j ). □ Example 3.6. [Case: ψ(t) = t] Let 0 < α < 1, I = [a, b] and u ∈ C 2 (I, R
) be a function. We consider the L1 ψ-Caputo approximation as in the Definition 3.1 and the ψ-Caputo fractional derivative of the Definition 2.2 discretized in the points of the mesh t 0 , t 1 , • • • , t N , as in the Eq.(3.1) and the pointwise error as in the Eq.(3.3), then

|e k | ≤ k -α |L| 8 ∆t 2-α , where L = max t1≤j≤t k-1 {u ′′ (ε j )}, εj ∈ (t j-1 , t j ).
Given the L1-2 ψ-Caputo approximation in the point t k and the ψ-Caputo fractional derivative discretized, we call the pointwise error, i.e, the error in the point t k , as

|e k | = c D α;ψ t0 u(t) t=t k -c2 D α;ψ t0 u(t) t=t k . (3.6) Lemma 3.7. Let 0 < α < 1, I = [a, b], u ∈ C 3 (I, R
) and ψ ∈ C 2 (I, R) be two functions such that ψ is increasing and ψ ′ (t) ̸ = 0, for all t ∈ I. We consider the L1-2 ψ-Caputo approximation as in the Definition 3.2 and the ψ-Caputo fractional derivative of the Definition 2.2 discretized in the points of the mesh t 0 , t 1 , • • • , t N , as in the Eq.(3.1) and the pointwise error as in the Eq.(3.6), then

|e 1 | ≤ M Γ(2 -α) u ′′ (ε) 2 - ψ ′′ (η)δ t u 1/2 2δ t ψ 1/2 (ψ(t 1 ) -ψ(t 0 )) 1-α , |e k | ≤ M Γ(2 -α) u ′′ (ε) 2 - ψ ′′ (η)δ t u 1/2 2δ t ψ 1/2 (ψ(t k ) -ψ(t 0 )) 1-α + 1 Γ(1 -α) |u ′′′ (ϵ)| ∆t 3 12 + |M 1 | ∆t 2 4 + |M 2 | ∆t 3 6 (ψ(t k ) -ψ(t k-1 )) -α + |M 3 | Γ(1 -α) (ψ(t k ) -ψ(t k-1 )) 1-α + |M 4 | ∆t 2 4Γ(2 -α) (ψ(t k ) -ψ(t k-1 )) 1-α + |M 5 | Γ(3 -α) (ψ(t k ) -ψ(t k-1 )) 2-α , 2 ≤ k ≤ N, where M = max t0≤ζ≤t1 2ζ-t0-t1 ψ ′ (ζ) , M 1 = max t1≤j≤t k-1 ψ ′′ (ηj )δtu j-1/2 2δtψ j-1/2 , M 2 = max t1≤j≤t k-1 ψ ′′ (ηj )δ 2 t uj-1 4δtψ j-1/2 , M 3 = u ′′′ (ε k )C1 6 - ψ ′′ (η k )δtu k-1/2 C2 2δtψ k-1/2 - ψ ′′ (η k )δ 2 t u k-1 C3 4δtψ k-1/2 , M 4 = max t1≤j≤t k-1 ψ ′′ (ηj )δ 2 t u j-1/2 2(δtψ j-1/2 ) 2 , M 5 = δ 2 t u k-1 ψ ′′ (η k )C2 2(δtψ k-1/2 ) 2 , C 1 = max t k-1 ≤ζ≤t k ((ζ-t k-2 )(ζ-t k-1 )(ζ-t k )) ′ ψ ′ (ζ)
,

C 2 = max t k-1 ≤ζ≤t k (2ζ-t k-1 -t k ) ψ ′ (ζ) , C 3 = max t k-1 ≤ζ≤t k (2ζ-t k-1 -t k ) 2 ψ ′ (ζ) , ε, η ∈ (t 0 , t 1 ), ϵ ∈ (t 0 , t k-1 ), ηj ∈ (t j-1 , t j ), εk ∈ (t k-2 , t k ) and ηk ∈ (t k-1 , t k ).
Proof. We start by calculating the pointwise error in the first interval, i.e, in the interval [t 0 , t 1 ]. For this, using the Lemma 3.4, we obtain

|e 1 | = c D α;ψ t0 u(t) t=t1 -c2 D α;ψ t0 u(t) t=t1 = 1 Γ(1 -α) t1 t0 (ψ(t 1 ) -ψ(ξ)) -α u ′ (ξ)dξ - 1 Γ(1 -α) t1 t0 (ψ(t 1 ) -ψ(ξ)) -α ψ ′ (ξ) δ t ψ 1/2 (Π 1,1 u(ξ)) ′ dξ = 1 Γ(1 -α) t1 t0 (ψ(t 1 ) -ψ(ξ)) -α u ′ (ξ) - ψ ′ (ξ) δ t ψ 1/2 (Π 1,1 u(ξ)) ′ dξ ,
using the result obtained in Eq.(3.5), yields

|e 1 | = 1 Γ(1 -α) t1 t0 (ψ(t 1 ) -ψ(ξ)) -α u ′ (ξ) -(Π 1,1 u(ξ)) ′ dξ - 1 Γ(1 -α) t1 t0 (ψ(t 1 ) -ψ(ξ)) -α ψ ′′ (η 1 ) 2δ t ψ 1/2 (2ξ -t 0 -t 1 ) (Π 1,1 u(ξ)) ′ dξ = 1 Γ(1 -α) t1 t0 (ψ(t 1 ) -ψ(ξ)) -α u ′′ (ε 1 ) 2 (2ξ -t 0 -t 1 ) dξ - 1 Γ(1 -α) ψ ′′ (η)δ t u 1/2 2δ t ψ 1/2 t1 t0 (ψ(t 1 ) -ψ(ξ)) -α (2ξ -t 0 -t 1 ) dξ ≤ M Γ(1 -α) u ′′ (ε) 2 - ψ ′′ (η)δ t u 1/2 2δ t ψ 1/2 t1 t0 (ψ(t 1 ) -ψ(ξ)) -α ψ ′ (ξ)dξ ≤ M Γ(2 -α) u ′′ (ε) 2 - ψ ′′ (η)δ t u 1/2 2δ t ψ 1/2 (ψ(t 1 ) -ψ(t 0 )) 1-α , where M = max t0≤ζ≤t1 2ζ -t 0 -t 1 ψ ′ (ζ)
and ε, η ∈ (t 0 , t 1 ).

To study and evaluate the error at any point t k , k ≥ 2 of the mesh, we calculate

|e k | = c D α;ψ t0 u(t) t=t k -c D α;ψ t0 u(t) t=t k
, for this, we use the Eq.(3.1) and the L1-2 ψ-Caputo approximation presented in Lemma 3.4. Thus

|e k | = 1 Γ(1 -α) t1 t0 (ψ(t k ) -ψ(ξ)) -α u ′ (ξ)dξ - 1 Γ(1 -α) t1 t0 (ψ(t k ) -ψ(ξ)) -α ψ ′ (ξ) δ t ψ 1/2 (Π 1,1 u(ξ)) ′ dξ + 1 Γ(1 -α) k j=2 tj tj-1 (ψ(t k ) -ψ(ξ)) -α u ′ (ξ)dξ - 1 Γ(1 -α) k j=2 tj tj-1 (ψ(t k ) -ψ(ξ)) -α ψ ′ (ξ) δ t ψ j-1/2 (Π 2,j u(ξ)) ′ dξ - 1 Γ(2 -α) k j=2 tj tj-1 (ψ(t k ) -ψ(ξ)) 1-α δ 2 t u j-1 ψ ′ (ξ) (δ t ψ j-1/2 ) 2 - δ 2 t u j-1 δ t ψ j-1/2 dξ = 1 Γ(1 -α) t1 t0 (ψ(t k ) -ψ(ξ)) -α u ′ (ξ) - ψ ′ (ξ) δ t ψ 1/2 (Π 1,1 u(ξ)) ′ dξ + 1 Γ(1 -α) k j=2 tj tj-1 (ψ(t k ) -ψ(ξ)) -α u ′ (ξ) - ψ ′ (ξ) δ t ψ j-1/2 (Π 2,j u(ξ)) ′ dξ - 1 Γ(2 -α) k j=2 tj tj-1 (ψ(t k ) -ψ(ξ)) 1-α δ 2 t u j-1 ψ ′ (ξ) (δ t ψ j-1/2 ) 2 - δ 2 t u j-1 δ t ψ j-1/2 dξ ≤ 1 Γ(1 -α) t1 t0 (ψ(t k ) -ψ(ξ)) -α u ′ (ξ) - ψ ′ (ξ) δ t ψ 1/2 (Π 1,1 u(ξ)) ′ dξ + 1 Γ(1 -α) k j=2 tj tj-1 (ψ(t k ) -ψ(ξ)) -α u ′ (ξ) - ψ ′ (ξ) δ t ψ j-1/2 (Π 2,j u(ξ)) ′ dξ + 1 Γ(2 -α) k j=2 tj tj-1 (ψ(t k ) -ψ(ξ)) 1-α δ 2 t u j-1 ψ ′ (ξ) (δ t ψ j-1/2 ) 2 - δ 2 t u j-1 δ t ψ j-1/2
dξ .

(3.7)

Next, we will work each term separately. For the first integral, the results of the Eq.(3.4)-Eq.(3.5) are used to get

t1 t0 (ψ(t k ) -ψ(ξ)) -α u ′ (ξ) - ψ ′ (ξ) δ t ψ 1/2 (Π 1,1 u(ξ)) ′ dξ = t1 t0 (ψ(t k ) -ψ(ξ)) -α (u(ξ) -Π 1,1 u(ξ)) ′ dξ - t1 t0 (ψ(t k ) -ψ(ξ)) -α ψ ′′ (η 1 ) 2δ t ψ 1/2 (2ξ -t 0 -t 1 ) (Π 1,1 u(ξ)) ′ dξ ≤ M u ′′ (ε) 2 - ψ ′′ (η)δ t u 1/2 2δ t ψ 1/2 t1 t0 (ψ(t k ) -ψ(ξ)) -α ψ ′ (ξ)dξ ≤ M u ′′ (ε) 2 - ψ ′′ (η)δ t u 1/2 2δ t ψ 1/2 (ψ(t k ) -ψ(t 0 )) 1-α 1 -α , (3.8) 
where

M = max t0≤ζ≤t1 2ζ -t 0 -t 1 ψ ′ (ζ)
and ε, η ∈ (t 0 , t 1 ).

For the second term (integral), the results of the Eqs.(3.4)-Eq.(3.5) are used again along with the result of the Eq.(2.4), as follows

k j=2 tj tj-1 (ψ(t k ) -ψ(ξ)) -α f ′ (ξ) - ψ ′ (ξ) δ t ψ j-1/2 (Π 2,j u(ξ)) ′ dξ = k j=2 tj tj-1 (ψ(t k ) -ψ(ξ)) -α (u(ξ) -Π 2,j u(ξ)) ′ dξ - tj tj-1 (ψ(t k ) -ψ(ξ)) -α ψ ′′ (η j ) 2δ t ψ j-1/2 (2ξ -t j-1 -t j ) (Π 2,j u(ξ)) ′ dξ = k j=2 tj tj-1 (ψ(t k ) -ψ(ξ)) -α (u(ξ) -Π 2,j u(ξ)) ′ dξ - ψ ′′ (η j )δ t u j-1/2 2δ t ψ j-1/2 tj tj-1 (ψ(t k ) -ψ(ξ)) -α (2ξ -t j-1 -t j ) dξ - ψ ′′ (η j )δ 2 t u j-1 2δ t ψ j-1/2 tj tj-1 (ψ(t k ) -ψ(ξ)) -α (2ξ -t j-1 -t j ) (ξ -t j-1/2 )dξ = k-1 j=2 tj tj-1 (ψ(t k ) -ψ(ξ)) -α (u(ξ) -Π 2,j u(ξ)) ′ dξ - ψ ′′ (η j )δ t u j-1/2 2δ t ψ j-1/2 tj tj-1 (ψ(t k ) -ψ(ξ)) -α (2ξ -t j-1 -t j ) dξ - ψ ′′ (η j )δ 2 t u j-1 4δ t ψ j-1/2 tj tj-1 (ψ(t k ) -ψ(ξ)) -α (2ξ -t j-1 -t j ) 2 dξ + t k t k-1 (ψ(t k ) -ψ(ξ)) -α (u(ξ) -Π 2,k u(ξ)) ′ dξ - ψ ′′ (η k )δ t u k-1/2 2δ t ψ k-1/2 t k t k-1 (ψ(t k ) -ψ(ξ)) -α (2ξ -t k-1 -t k ) dξ (3.9) - ψ ′′ (η k )δ 2 t u k-1 4δ t ψ k-1/2 t k t k-1 (ψ(t k ) -ψ(ξ)) -α (2ξ -t k-1 -t k ) 2 dξ . (3.10) 
Remember that [13],

u(ξ) -Π 2,j u(ξ) = u ′′′ (ϵ j ) 3! (ξ -t j-2 )(ξ -t j-1 )(ξ -t j ), ξ ∈ [t j-1 , t j ], ϵ j ∈ (t j-2 , t j ).
(3.11)

• Using the integration by parts, where u = (ψ(t k ) -ψ(ξ)) -α and dv = (u(ξ) -Π 2,j u(ξ))

′ dξ, we have

k-1 j=2 tj tj-1 (ψ(t k ) -ψ(ξ)) -α (u(ξ) -Π 2,j u(ξ)) ′ dξ = k-1 j=2 αu ′′′ (ε j ) 6 tj tj-1 (ψ(t k ) -ψ(ξ)) -α-1 ψ ′ (ξ)(ξ -t j-2 )(ξ -t j-1 )(t j -ξ)dξ ≤ k-1 j=2 αu ′′′ (ε j )∆t 3 12 tj tj-1 (ψ(t k ) -ψ(ξ)) -α-1 ψ ′ (ξ)dξ ≤ αu ′′′ (ϵ)∆t 3 12 t k-1 t1 (ψ(t k ) -ψ(ξ)) -α-1 ψ ′ (ξ)dξ ≤ |u ′′′ (ϵ)| ∆t 3 12 (ψ(t k ) -ψ(t k-1 )) -α , ϵ ∈ (t 0 , t k-1
).

(3.12)

• Using integration by parts again, with u = (ψ(t k ) -ψ(ξ)) -α and dv = (2ξ -t j-1 -t j ) dξ, we have

k-1 j=2 ψ ′′ (η j )δ t u j-1/2 2δ t ψ j-1/2 tj tj-1 (ψ(t k ) -ψ(ξ)) -α (2ξ -t j-1 -t j ) dξ ≤ |M 1 | k-1 j=2 α tj tj-1 (ψ(t k ) -ψ(ξ)) -α-1 ψ ′ (ξ) (ξ -t j-1 ) (t j -ξ) dξ ≤ α |M 1 | ∆t 2 4 t k-1 t1 (ψ(t k ) -ψ(ξ)) -α-1 ψ ′ (ξ)dξ ≤ |M 1 | ∆t 2 4 (ψ(t k ) -ψ(t k-1 )) -α , (3.13) 
where

M 1 = max t1≤j≤t k-1 ψ ′′ (ηj )δtu j-1/2 2δtψ j-1/2
, ηj ∈ (t j-1 , t j ). • Following the same steps as in previous items, we have

- k-1 j=2 ψ ′′ (η j )δ 2 t u j-1 4δ t ψ j-1/2 tj tj-1 (ψ(t k ) -ψ(ξ)) -α ψ ′ (ξ) (2ξ -t j-1 -t j ) 2 dξ ≤ -M 2 k-1 j=2   (ψ(t k ) -ψ(ξ)) -α (2ξ -t j-1 -t j ) 3 6 tj tj-1 - α 6 tj tj-1 (ψ(t k ) -ψ(ξ)) -α-1 (2ξ -t j-1 -t j ) 3 dξ ≤ αM 2 ∆t 3 6 t k-1 t1 (ψ(t k ) -ψ(ξ)) -α-1 ψ ′ (ξ)dξ ≤ |M 2 | ∆t 3 6 (ψ(t k ) -ψ(t k-1 )) -α , (3.14) 
where

M 2 = max t1≤j≤t k-1 ψ ′′ (ηj )δ 2 t uj-1 4δtψ j-1/2
, ηj ∈ (t j-1 , t j ).

• Applying the identity given by Eq.(3.11), we get

t k t k-1 (ψ(t k ) -ψ(ξ)) -α (u(ξ) -Π 2,k u(ξ)) ′ dξ - ψ ′′ (η k )δ t u k-1/2 2δ t ψ k-1/2 t k t k-1 (ψ(t k ) -ψ(ξ)) -α (2ξ -t k-1 -t k ) dξ - ψ ′′ (η k )δ 2 t u k-1 4δ t ψ k-1/2 t k t k-1 (ψ(t k ) -ψ(ξ)) -α (2ξ -t k-1 -t k ) 2 dξ ≤ u ′′′ (ε k ) 6 t k t k-1 (ψ(t k ) -ψ(ξ)) -α ((ξ -t k-2 )(ξ -t k-1 )(ξ -t k )) ′ dξ - ψ ′′ (η k )δ t u k-1/2 C 2 2δ t ψ k-1/2 t k t k-1 (ψ(t k ) -ψ(ξ)) -α ψ ′ (ξ)dξ - ψ ′′ (η k )δ 2 t u k-1 C 3 4δ t ψ k-1/2 t k t k-1 (ψ(t k ) -ψ(ξ)) -α ψ ′ (ξ)dξ ≤ u ′′′ (ε k )C 1 6 - ψ ′′ (η k )δ t u k-1/2 C 2 2δ t ψ k-1/2 - ψ ′′ (η k )δ 2 t u k-1 C 3 4δ t ψ k-1/2 t k t k-1 (ψ(t k ) -ψ(ξ)) -α ψ ′ (ξ)dξ ≤ |M 3 | 1 -α (ψ(t k ) -ψ(t k-1 )) 1-α , (3.15) 
where

C 1 = max t k-1 ≤ζ≤t k ((ζ-t k-2 )(ζ-t k-1 )(ζ-t k )) ′ ψ ′ (ζ)
,

C 2 = max t k-1 ≤ζ≤t k (2ζ-t k-1 -t k ) ψ ′ (ζ) , C 3 = max t k-1 ≤ζ≤t k (2ζ-t k-1 -t k ) 2 ψ ′ (ζ)
and

M 3 = u ′′′ (ε k )C1 6 - ψ ′′ (η k )δtu k-1/2 C2 2δtψ k-1/2 - ψ ′′ (η k )δ 2 t u k-1 C3 4δtψ k-1/2 ; εk ∈ (t k-2 , t k ), ηk ∈ (t k-1 , t k ).
Replacing the results given in Eq.(3.12), Eq.(3.13), Eq.(3.14) and Eq.(3.15) in the Eq.(3.10), we obtain

k j=2 tj tj-1 (ψ(t k ) -ψ(ξ)) -α f ′ (ξ) - ψ ′ (ξ) δ t ψ j-1/2 (Π 2,j u(ξ)) ′ dξ ≤ |u ′′′ (ϵ)| ∆t 3 12 + |M 1 | ∆t 2 4 + |M 2 | ∆t 3 6 (ψ(t k ) -ψ(t k-1 )) -α + |M 3 | 1 -α (ψ(t k ) -ψ(t k-1 )) 1-α (3.16)
Finally, to address the third integral in Eq.(3.7), we use the result of Eq.(3.5), so

k j=2 tj tj-1 (ψ(t k ) -ψ(ξ)) 1-α δ 2 t u j-1 ψ ′ (ξ) (δ t ψ j-1/2 ) 2 - δ 2 t u j-1 δ t ψ j-1/2 dξ = k j=2 δ 2 t u j-1 δ t ψ j-1/2 tj tj-1 (ψ(t k ) -ψ(ξ)) 1-α ψ ′ (ξ) δ t ψ j-1/2 -1 dξ = k j=2 δ 2 t u j-1 δ t ψ j-1/2 tj tj-1 (ψ(t k ) -ψ(ξ)) 1-α 1 + ψ ′′ (η j ) 2δ t ψ j-1/2 (2ξ -t j-1 -t j ) -1 dξ = k j=2 δ 2 t u j-1 ψ ′′ ( ηj ) 2(δ t ψ j-1/2 ) 2 tj tj-1 (ψ(t k ) -ψ(ξ)) 1-α (2ξ -t j-1 -t j ) dξ ≤ k-1 j=2 δ 2 t u j-1 ψ ′′ ( ηj ) 2(δ t ψ j-1/2 ) 2 tj tj-1 (ψ(t k ) -ψ(ξ)) 1-α (2ξ -t j-1 -t j ) dξ + δ 2 t u k-1 ψ ′′ ( ηk ) 2(δ t ψ k-1/2 ) 2 t k t k-1 (ψ(t k ) -ψ(ξ)) 1-α (2ξ -t k-1 -t k ) dξ (3.17)
• To limit the first term, we use integration by parts as in the previous steps to obtain

k-1 j=2 δ 2 t u j-1 ψ ′′ ( ηj ) 2(δ t ψ j-1/2 ) 2 tj tj-1 (ψ(t k ) -ψ(ξ)) 1-α (2ξ -t j-1 -t j ) dξ = k-1 j=2 δ 2 t u j-1 ψ ′′ ( ηj )(α -1) 2(δ t ψ j-1/2 ) 2 tj tj-1 (ψ(t k ) -ψ(ξ)) -α ψ ′ (ξ) (ξ -t j-1 ) (t j -ξ) dξ ≤ (α -1)M 4 ∆t 2 4 t k-1 t1 (ψ(t k ) -ψ(ξ)) -α ψ ′ (ξ)dξ ≤ |M 4 | ∆t 2 4 (ψ(t k ) -ψ(t k-1 )) 1-α , (3.18) 
where

M 4 = max t1≤j≤t k-1 ψ ′′ (η j )δ 2 t u j-1/2 2(δ t ψ j-1/2 ) 2
, ηj ∈ (t j-1 , t j ).

• Manipulating the second term, we obtain

δ 2 t u k-1 ψ ′′ ( ηk ) 2(δ t ψ k-1/2 ) 2 t k t k-1 (ψ(t k ) -ψ(ξ)) 1-α (2ξ -t k-1 -t k ) dξ ≤ δ 2 t u k-1 ψ ′′ ( ηk )C 2 2(δ t ψ k-1/2 ) 2 t k t k-1 (ψ(t k ) -ψ(ξ)) 1-α ψ ′ (ξ)dξ ≤ |M 5 | (2 -α) (ψ(t k ) -ψ(t k-1 )) 2-α , (3.19) 
where

M 5 = δ 2 t u k-1 ψ ′′ (η k )C2 2(δtψ k-1/2 ) 2 , C 2 = max t k-1 ≤ζ≤t k (2ζ-t k-1 -t k ) ψ ′ (ζ)
and ηk ∈ (t k-1 , t k ).

Substituting the result given by Eq.(3.18)-Eq.(3.19) in the Eq.(3.17), we have

k j=2 tj tj-1 (ψ(t k ) -ψ(ξ)) 1-α δ 2 t u j-1 ψ ′ (ξ) (δ t ψ j-1/2 ) 2 - δ 2 t u j-1 δ t ψ j-1/2 dξ ≤ |M 4 | ∆t 2 4 (ψ(t k ) -ψ(t k-1 )) 1-α + |M 5 | (2 -α) (ψ(t k ) -ψ(t k-1 )) 2-α . (3.20)
Therefore, using the results of the Eq.(3.8), Eq.(3.16) and Eq.(3.20), we finally get

|e k | ≤ M Γ(2 -α) u ′′ (ε) 2 - ψ ′′ (η)δ t u 1/2 2δ t ψ 1/2 (ψ(t k ) -ψ(t 0 )) 1-α + 1 Γ(1 -α) |u ′′′ (ϵ)| ∆t 3 12 + |M 1 | ∆t 2 4 + |M 2 | ∆t 3 6 (ψ(t k ) -ψ(t k-1 )) -α + |M 3 | Γ(1 -α) (ψ(t k ) -ψ(t k-1 )) 1-α + |M 4 | ∆t 2 4Γ(2 -α) (ψ(t k ) -ψ(t k-1 )) 1-α + |M 5 | Γ(3 -α) (ψ(t k ) -ψ(t k-1 )) 2-α , which is the desired result. □ Example 3.8. [Case: ψ(t) = t] Let 0 < α < 1, I = [a, b
] and u ∈ C 3 (I, R). We consider the L1-2 ψ-Caputo approximation as in the Definition 3.2 and the ψ-Caputo fractional derivative of the Definition 2.2 discretized in the points of the mesh t 0 , t 1 , • • • , t N , as in the Eq.(3.1) and the pointwise error as in the Eq.(3.6), then

|e 1 | ≤ |u ′′ (ε)| 2Γ(2 -α) ∆t 2-α , |e k | ≤ |u ′′ (ε)| k 1-α 2Γ(2 -α) ∆t 2-α + |u ′′′ (ϵ)| 12Γ(1 -α) ∆t 3-α + |u ′′′ (ε k )| 3Γ(1 -α) ∆t 3-α , 2 ≤ k ≤ N,
where ε ∈ (t 0 , t 1 ), ϵ ∈ (t 0 , t k-1 ) and εk ∈ (t k-2 , t k ).

Examples of the approximations.

Example 3.9. We compute the ψ-Caputo fractional derivative of order α = 0.8 of the function u(t) = t 2+α with ψ(t) = t, using the Definition 3.1 and Definition 3.2. Note that, the analytical solution is known and is given by

c D α;t 0 t 2+α = Γ(3 + α) 2 t 2 .
In the Figure 1 In the other hand, the Table 1 is shown a study for several refinements of ∆t (∆t = 1/10, 1/20, 1/40, 1/80, 1/160, 1/320, 1/640, 1/1280) with order α = 0.8 of the error in the max-norm and convergence rate ( [13]) for the L1 and L1-2 ψ-Caputo approximations.

It is important to point out that the computational efficiency and numerical accuracy of the L1-2 ψ-Caputo approximation are superior to that L1 ψ-Caputo approximation, where the convergence rate for the first one reaches 3 -α and the second one reaches 2 -α as expected (See Example 3.6 and Example 3.8). Example 3.10. We will compute the ψ-Caputo fractional derivative of order α = 0.5 of the function u(t) = t 2+α with ψ(t) = t ρ , ρ = 0.6 and ρ = 1.5, using the Definition 3.1 and Definition 3.2. Note that, the analytical solution is given by

c D α;t ρ 0 t 2+α = Γ( 2+α ρ ) Γ( ρ(1-α)+2+α ρ ) t 2+α(1-ρ) .
In Figures 2,3 we show the numerical results obtained when the Definition 3.1 and Definition 3.2 are applied. We also present the numerical results of the analytic solution, in order to visually compare the results. In the Figure 2 was take ρ = 0.6 and in the Figure 3 was take ρ = 1.5, in a mesh grid refinement ∆t = 1/10, ∆t = 1/80 with order α = 0.5. In the Table 2 is shown a study for several refinements ∆t and order α = 0.5 of the error in the max-norm and convergence rate for the L1 and L1-2 ψ-Caputo approximations.

Through informations obtained in the Table 2, the convergence rate reaches 2 -α for the L1 and L1-2 ψ-Caputo approximations, it is not possible to observe a significant difference between the approximations. But the L1 ψ-Caputo approximation is more consistent.

Example 3.11. Compute the ψ-Caputo fractional derivative of order α = 0.2 of the function u(t) = e 2t with ψ(t) = ln(t), using the Definition 3.1 and Definition 3.2. Note that, the analytical solution is also known and is given by

c D α;ln(t) ∆t e 2t =2t ∞ k=0 (k + 1) α-1 (2t) k k! ,
In the Eq.( 4), the numerical results are shown along with the analytic solution for α = 0.2 and two grid spacing ∆t = 1/10 and ∆t = 1/80. 

ρ = 0.6 ρ = 1.5 α = 0.5 L1 L1-2 L1 L1-2 ∆t Error ∥•∥ ∞ Rate Error ∥•∥ ∞ Rate Error ∥•∥ ∞ Rate
Error ∥•∥ ∞ Rate 0.10000 1.97611e+00 1.42351 2.49570e+00 1.64733 1.33912e+00 1.41954 1.78096e+00 1.28053 0.05000 2.05911e+00 1.45055 2.78415e+00 1.56020 1.37347e+00 1.44738 2.09608e+00 1.39080 0.02500 2.08767e+00 1.46733 2.87760e+00 1.52079 1.38445e+00 1.46443 2.25457e+00 1.43878 0.01250 2.09773e+00 1.47802 2.91090e+00 1.50412 1.38815e+00 1.47555 2.33801e+00 1.46336 0.00625 2.10129e+00 1.48501 2.92377e+00 1.49780 1.38943e+00 1.48303 2.38242e+00 1.47711 0.00313 2.10256e+00 1.48967 2.92910e+00 1.49597 1.38987e+00 1.48815 2.40606e+00 1.48524 0.00156 2.10301e+00 1.49283 2.93144e+00 1.49594 1.39003e+00 1.49170 2.41863e+00 1.49026 0.00078 2.10317e+00 1.49500 2.93251e+00 1.49654 1.39008e+00 1.49417 2.42528e+00 1.49345 The Eq.( 3) presents a study of the error and convergence rate as in the Example 3.9 and Example 3.11. It's an important remark that the convergence rate, in this case, is 1st order accurate for both approximations. And, the same form that in the Example 3.10, it's not possible to talk which is better. 

α = 0.8 L1 L1-2 ∆t Error ∥•∥ ∞ Rate
Error ∥•∥ ∞ Rate 0.10000 6.07047e+00 1.32983 6.07047e+00 1.32404 0.05000 6.88436e+00 1.24990 7.98317e+00 1.20645 0.02500 7.17097e+00 1.18522 8.63023e+00 1.13522 0.01250 7.28727e+00 1.13451 8.87385e+00 1.09229 0.00625 7.33824e+00 1.09709 8.97599e+00 1.06610 0.00313 7.36162e+00 1.07082 9.02163e+00 1.04977 0.00156 7.37266e+00 1.05296 9.04285e+00 1.03932 0.00078 7.37796e+00 1.04101 9.05296e+00 1.03242

Applications

Since we are interested in solving FDE with the approximations developed, in this section we will take another approach; for this purpose, it will be necessary to rewrite the Definition 3.1 and Definition 3.2, so that we can obtain a system of linear equations and find the solution to the given problems. We will address problems dependent on a single variable (time) and dependent on two variables (space-time).

Applications dependent on a single variable (time).

In this section we will address initial value problems that depend solely on the temporal variable, for this, we will first make some adjustments in the definitions of the approximations defined in this work and then we will show some respective applications.

Rewriting the Definition 3.1 and Definition 3.2, it's possible to get

c1 D α;ψ t0 u(t) t=t k = 1 ∆t 2 Γ(2 -α)   k j=1 ∆ta k,j (u j -u j-1 )   c2 D α;ψ t0 u(t) t=t k = 1 ∆t 2 Γ(2 -α)   k j=1 ∆ta k,j (u j -u j-1 ) + k j=2 b k,j (u j -2u j-1 + u j-2 )   (4.1)
where, a k,j =

(ψ k -ψj-1) 1-α -(ψ k -ψj ) 1-α δtψ j-1/2 , b k,j = (ψ k -ψj-1) 2-α -(ψ k -ψj ) 2-α (2-α)(δtψ j-1/2 ) 2 - ∆t((ψ k -ψj-1) 1-α +(ψ k -ψj ) 1-α ) 2δtψ j-1/2
, ψ j = ψ(t j ) and u j ≈ u(t j ).

Observe that, from Eq.(4.1), it's possible to get a system of k linear equations with k + 1 unknowns variables, next, we write some of them. In this sense, we have

c2 D α;ψ t0 u(t) t=t1 = 1 ∆t 2 Γ(2 -α) [-∆ta 1,1 u 0 + ∆ta 1,1 u 1 ] c2 D α;ψ t0 u(t) t=t2 = 1 ∆t 2 Γ(2 -α) [(-∆ta 2,1 + b 2,2 )u 0 + (∆ta 2,1 -∆ta 2,2 -2b 2,2 )u 1 + (∆ta 2,2 + b 2,2 )u 2 ] c2 D α;ψ t0 u(t) t=t3 = 1 ∆t 2 Γ(2 -α) [(-∆ta 3,1 + b 3,2 )u 0 + (∆ta 3,1 -∆ta 3,2 -2b 3,2 + b 3,3 )u 1 +(∆ta 3,2 -∆ta 3,3 + b 3,2 -2b 3,3 )u 2 + (∆ta 3,3 + b 3,3 )u 3 ] c2 D α;ψ t0 u(t) t=t4 = 1 ∆t 2 Γ(2 -α) [(-∆ta 4,1 + b 4,2 )u 0 + (∆ta 4,1 -∆ta 4,2 -2b 4,2 + b 4,3 )u 1 + (∆ta 4,2 -∆ta 4,3 + b 4,2 -2b 4,3 + b 4,4 )u 2 + (∆ta 4,3 -∆ta 4,4 + b 4,3 -2b 4,4 )u 3 +(∆ta 4,4 + b 4,4 )u 4 ]
. . .

For the case L1 ψ-Caputo approximation is very similar, just choose take b k,j = 0 in the Eq.(4.1).

Therefore, since c2 D α;ψ t0 u(t) = f (t), discretization the domain in k + 1 points, we have the linear system

MU = F, M ∈ R k,k+1 , U ∈ R k+1,1 and F ∈ R k+1,1 , (4.2) 
with

M = 1 ∆t 2 Γ(2 -α)          m 11 m 12 0 0 • • • 0 0 m 21 m 22 m 23 0 • • • 0 0 m 31 m 32 m 33 m 34 • • • 0 0 . . . . . . . . . . . . . . . . . . . . . m k-1,1 m k-1,2 m k-1,3 m k-1,4 • • • m k-1,k 0 m k,1 m k,2 m k,3 m k,4 • • • m k,k m k,k+1         
, where,

• Some points:

m 11 = -∆ta 1,1 , m 12 = ∆ta 1,1 , m 22 = ∆ta 2,1 -∆ta 2,2 -2b 2,2 . • First row: m i1 = -∆ta i,1 + b i,2 , for 2 ≤ i ≤ k. • Second row: m i2 = ∆ta i,1 -∆ta i,2 -2b i,2 + b i,3 , for 3 ≤ i ≤ k. • Above the diagonal: m i,i+1 = ∆ta i,i + b i,i , for 2 ≤ i ≤ k. • Diagonal: m i,i = ∆ta i,i-1 -∆ta i,i + b i,i-1 -2b i,i , for 3 ≤ i ≤ k. • Other points: m ij = ∆ta i,j-1 -∆ta i,j + b i,j-1 -2b i,j + b i,j+1 , for 4 ≤ i ≤ k e 3 ≤ j ≤ k -1. U =          u 0 u 1 u 2 . . . u k-1 u k          , F =          f 0 f 1 f 2 . . . f k-1 f k          .
Note that our linear system has k + 1 unknowns. For guarantee the existence of the solution to the problems we will address, we will need to know the initial condition, that is, u(t 0 ) = u 0 = σ, σ ∈ R. The system of Eq.(4.2), is transformed into

M Ũ = F , M ∈ R k,k , Ũ ∈ R k,1 and F ∈ R k,1 ,
where M is the sub-matrix of M , such that

M = 1 ∆t 2 Γ(2 -α)          m 12 0 0 • • • 0 0 m 22 m 23 0 • • • 0 0 m 32 m 33 m 34 • • • 0 0 . . . . . . . . . . . . . . . . . . m k-1,2 m k-1,3 m k-1,4 • • • m k-1,k 0 m k,2 m k,3 m k,4 • • • m k,k m k,k+1          , and, Ũ =          u 1 u 2 u 3 . . . u k-1 u k          , F =          f 1 -σm 11 f 2 -σm 21 f 3 -σm 31 . . . f k-1 -σm k-1,1 f k -σm k,1          . Application 4.1. Find u(t) such that    c D α;t t0 u(t) = 2t 2-α Γ(3 -α) , t ∈ [0, 1], α ∈ (0, 1)
u(t 0 ) = 0, using the Definition 3.1 and Definition 3.2. Noting, the exact solution of this initial value problem is u(t) = t 2 .

The Figure 5 presents comparative results between the numerical solutions using the Definition 3.1 and Definition 3.2 and the analytic solution for the initial value problem of the Application 4.1, we use α = 0.3 and grid spacings ∆t = 1/10 and ∆t = 1/80. In the Table 4, we study the error and the convergence rate in the max-norm for the Application 4.1. 

α = 0.3 L1 L1-2 ∆t Error ∥•∥ ∞ Rate
Error ∥•∥ ∞ Rate 0.10000 5.45690e-03 1.50198 1.76471e-03 2.93349 0.05000 1.78104e-03 1.58218 4.41176e-04 2.79461 0.02500 5.73020e-04 1.62141 1.10294e-04 2.74413 0.01250 1.82501e-04 1.64391 2.75735e-05 2.72134 0.00625 5.76932e-05 1.65822 6.89338e-06 2.71049 0.00313 1.81360e-05 1.66800 1.72335e-06 2.70520 0.00156 5.67644e-06 1.67504 4.30836e-07 2.70259 0.00078 1.77070e-06 1.68030 1.07709e-07 2.70129

Application 4.2. Find u(t) such that    c D α;t ρ t0 u(t) = 4t 1-αρ ρ ∞ k=0 Γ( k+1 ρ ) k! (4t) k Γ( k+1+ρ(1-α) ρ ) , t ∈ [0, 1], α ∈ (0, 1) u(t 0 ) = 1,
using the Definition 3.1 and Definition 3.2. Note that, the exact solution is given by u(t) = e 4t .

Figures 6 and 7 present the numerical results obtained for the L1 and L1-2 ψ-Caputo approximations and exact solution of the Application 4.2, both with grid spacings ∆t = 1/10 and ∆t = 1/80, and α = 0.6. In the Table 5, we study the error and convergence rate for the Application 4.2 in the max-norm. u(t) = (4 + α) α t 4+α , t ∈ (0, 1], α ∈ (0, 1) u(t 0 ) = u(∆t) = ∆t 4+α , using the Definition 3.1 and Definition 3.2. For this example, the exact solution is u(t) = t 4+α .

It's important to remark that in this example, the initial point in the mesh is ∆t, because the function ψ(t) = ln(t) is not defined in zero.

In Figure 8 we exhibit the numerical results for the different solutions using of Definitions 3.1 and Definition 3.2 and exact solution with α = 0.9 and grid spacings ∆t = 1/10 and ∆t = 1/80. Also, In this application, the exact solution is not know, but we hope that the exact solution to be such close to the numerical results using the L1 and L1-2 ψ-Caputo approximations. In this case only we present the Figure 9 where we take α = 0.5 and the functions ψ(t) given in the above. Here, in addition to the temporal variable, we will work on applications with spatial variables and we will address in particular problems given by fractional sub-diffusion equations in a limited spatial domain. We will first discuss the general problem and then show some applications.

ρ = 0.4 ρ = 2 α = 0.6 L1 L1-2 L1 L1-2 ∆t Error ∥•∥ ∞ Rate Error ∥•∥ ∞ Rate Error ∥•∥ ∞ Rate Error ∥•∥ ∞ Rate 0.
We will now discuss results involving fractional sub-diffusion equations in a limited spatial domain, that is, we will solve problems of the form

   c D α;ψ(t) t0 u(x, t) = ∂ 2 u(x,t) ∂x 2 + f (x, t), x ∈ (0, 1), t ∈ (0, T ], α ∈ (0, 1) u(0, t) = ϕ(t), u(1, t) = φ(t), t ∈ (0, T ] u(x, 0) = u 0 (x), x ∈ [0, 1], (4.3)
where α is the anomalous diffusion exponent f (x, t), ϕ(t), φ(t) and u 0 (t) are given functions. To prove the finite difference approximations, take two positive integers M , N and define a as Ω h × Ω ∆t , where

Ω h = {x i : x i = x 0 + ih, 0 ≤ i ≤ M + 1, x 0 = 0, x M +1 = 1} Ω ∆t = {t k : t k = t 0 + k∆t, 0 ≤ k ≤ N + 1, t 0 = 0, t N = T }.
Discretizing the problem Eq.( 4.3), we obtain

   c D α;ψ(t) t0 u k i = δ 2 x u k i + f k i , 1 ≤ i ≤ M, 1 ≤ k ≤ N, α ∈ (0, 1) u(0, t k ) = ϕ(t k ), u(1, t k ) = φ(t k ), 1 ≤ k ≤ N u(x i , 0) = u 0 (x i ), 0 ≤ i ≤ M + 1, (4.4)
In the Figure 10, the mesh Ω h × Ω ∆t and the points known for the functions ϕ(t), φ(t), u 0 (x) can be observed. 

k i = 1 ∆t 2 Γ(2 -α)   k j=1 ∆ta k,j (u j i -u j-1 i ) + k j=2 b k,j (u j i -2u j-1 i + u j-2 i )   ,
and Eq.(2.1)-Eq.(2.2),

δ 2 x u k i = u k i-1 -2u k i + u k i+1 h 2 . Thus, c D α;ψ(t) t0 u k i = δ 2 x u k i + f k i → c D α;ψ(t) t0 u k i -δ 2 x u k i = f k i , this is, 1 ∆t 2 Γ(2 -α)   k j=1 ∆ta k,j (u j i -u j-1 i ) + k j=2 b k,j (u j i -2u j-1 i + u j-2 i )   - u k i-1 -2u k i + u k i+1 h 2 = f k i . (4.5)
Note that Eq.( 4.5) provides a system of linear equations, which can be illustrated as follows

• k = 1 c D α;ψ(t) t0 u 1 1 -δ 2 x u 1 1 = f 1 1 → ∆ta 1,1 ∆t 2 Γ(2 -α) + 2 h 2 u 1 1 - u 1 2 h 2 = ∆ta 1,1 ∆t 2 Γ(2 -α) u 0 1 + u 1 0 h 2 + f 1 1 c D α;ψ(t) t0 u 1 2 -δ 2 x u 1 2 = f 1 2 → - u 1 1 h 2 + ∆ta 1,1 ∆t 2 Γ(2 -α) + 2 h 2 u 1 2 - u 1 3 h 2 = ∆ta 1,1 ∆t 2 Γ(2 -α) u 0 2 + f 1 2 . . . c D α;ψ(t) t0 u 1 M -1 -δ 2 x u 1 M -1 = f 1 M -1 → - u 1 M -2 h 2 + ∆ta 1,1 ∆t 2 Γ(2 -α) + 2 h 2 u 1 M -1 - u 1 M h 2 = ∆ta 1,1 ∆t 2 Γ(2 -α) u 0 M -1 + f 1 M -1 c D α;ψ(t) t0 u 1 M -δ 2 x u 1 M = f 1 M → - u 1 M -1 h 2 + ∆ta 1,1 ∆t 2 Γ(2 -α) + 2 h 2 u 1 M = ∆ta 1,1 ∆t 2 Γ(2 -α) u 0 M + u 1 M +1 h 2 + f 1 M . • k = 2 c D α;ψ(t) t0 u 2 1 -δ 2 x u 2 1 = f 2 1 , → ∆ta 2,1 -∆ta 2,2 -2b 2,2 ∆t 2 Γ(2 -α) u 1 1 + ∆ta 2,2 + b 2,2 ∆t 2 Γ(2 -α) + 2 h 2 u 2 1 - u 2 2 h 2 = ∆ta 2,1 -b 2,2 ∆t 2 Γ(2 -α) u 0 1 + u 2 0 h 2 + f 2 1 c D α;ψ(t) t0 u 2 2 -δ 2 x u 2 2 = f 2 2 , → ∆ta 2,1 -∆ta 2,2 -2b 2,2 ∆t 2 Γ(2 -α) u 1 2 - u 2 1 h 2 + ∆ta 2,2 + b 2,2 ∆t 2 Γ(2 -α) + 2 h 2 u 2 2 - u 2 3 h 2 = ∆ta 2,1 -b 2,2 ∆t 2 Γ(2 -α) u 0 2 + f 2 2 . . . c D α;ψ(t) t0 u 2 M -1 -δ 2 x u 2 M -1 = f 2 M -1 , → ∆ta 2,1 -∆ta 2,2 -2b 2,2 ∆t 2 Γ(2 -α) u 1 M -1 - u 2 M -2 h 2 + ∆ta 2,2 + b 2,2 ∆t 2 Γ(2 -α) + 2 h 2 u 2 M -1 - u 2 M h 2 = ∆ta 2,1 -b 2,2 ∆t 2 Γ(2 -α) u 0 M -1 + f 2 M -1 c D α;ψ(t) t0 u 2 M -δ 2 x u 2 M = f 2 M , → ∆ta 2,1 -∆ta 2,2 -2b 2,2 ∆t 2 Γ(2 -α) u 1 M - u 2 M -1 h 2 + ∆ta 2,2 + b 2,2 ∆t 2 Γ(2 -α) + 2 h 2 u 2 M = ∆ta 2,1 -b 2,2 ∆t 2 Γ(2 -α) u 0 M + u 2 M +1 h 2 + f 2 M .
Following the process, we obtain a system of the form

P W = H, P ∈ R M N,M N , W ∈ R M N,1 and H ∈ R M N,1 . (4.6) with P =          T 1 ∅ ∅ • • • ∅ ∅ D 21 T 2 ∅ • • • ∅ ∅ D 31 D 32 T 3 • • • ∅ ∅ . . . . . . . . . . . . . . . . . . D N -1,1 D N -1,2 D N -1,3 • • • T N -1 ∅ D N,1 D N,2 D N,3 • • • D N,N -1 T N          W =          u {1} u {2} u {3} . . . u {N -1} u {N }          , H =          h {1} h {2} h {3} . . . h {N -1} h {N }          where T j ∈ R M,M , D i,j ∈ R M,M , ∅ ∈ R M,M , u {j} ∈ R M,1 and h {j} ∈ R M,1 are defined by T j =          θ j ζ 0 • • • 0 0 ζ θ j ζ • • • 0 0 0 ζ θ j • • • 0 0 . . . . . . . . . . . . . . . . . . 0 0 0 • • • θ j ζ 0 0 0 • • • ζ θ j          , θ j = m j,j+1 ∆t 2 Γ(2 -α) + 2 h 2 , 1 ≤ j ≤ N, ζ = - 1 h 2 , D i,j =          d i,j 0 0 • • • 0 0 0 d i,j 0 • • • 0 0 0 0 d i,j • • • 0 0 . . . . . . . . . . . . . . . . . . 0 0 0 • • • d i,j 0 0 0 0 • • • 0 d i,j          , d i,j = m i,j+1 ∆t 2 Γ(2 -α) , 2 ≤ i ≤ N, 1 ≤ j ≤ N -1, u {j} =           u j 1 u j 2 u j 2 . . . u j M -1 u j M           , h {j} =             -m(j,1) ∆t 2 Γ(2-α) u 0 1 + u j 0 h 2 + f j 1 -m(j,1) ∆t 2 Γ(2-α) u 0 2 + f j 2 -m(j,1) ∆t 2 Γ(2-α) u 0 3 + f j 3 . . . -m(j,1) ∆t 2 Γ(2-α) u 0 M -1 + f j M -1 -m(j,1) ∆t 2 Γ(2-α) u 0 M + u j M +1 h 2 + f j M             , 1 ≤ j ≤ N,
noting that, ∅ is an empty matrix and the components m i,j are elements of the matrix M defined in Eq.(4.2). + e x t 2 2t -α Γ(3-α) -1 , x ∈ (0, 1), t ∈ (0, 1], α ∈ (0, 1) u(0, t) = t 2 , u(1, t) = et 2 , t ∈ (0, 1] u(x, 0) = 0, x ∈ [0, 1], using the system of the linear equations given by Eq.(4.6). The exact solution is u(x, t) = e x t 2 . Error ∥•∥ ∞ Rate 0.10000 2.55404e-02 0.46240 3.42980e-03 1.38997 0.05000 1.85804e-02 0.45901 1.32052e-03 1.37702 0.02500 1.33607e-02 0.47578 5.11572e-04 1.36809 0.01250 9.57290e-03 0.48097 2.01744e-04 1.34241 0.00625 6.83744e-03 0.48550 8.12822e-05 1.31152 using the system of the linear equations given by Eq.(4.6). Note that, the exact solution is given by u(x, t) = e x t 4+α .

The Figure 12 shows the numerical results obtained for Application 4.6 using the Definition 3.1 and Definition 3.2 with α = 0.3, ρ = 0.9 and ∆t = 1/40. Table 8 presents the error and convergence rate for this Application. + e x t 4+α ((4 + α) α -1) , x ∈ (0, 1), t ∈ (∆t, 1] u(0, t) = t 4+α , u(1, t) = et 4+α , t ∈ (∆t, 1], α ∈ (0, 1) u(x, ∆t) = e x ∆t 4+α , x ∈ [0, 1], 3.31788e+01 0.90541 3.36598e+01 0.87289 0.02500 6.37727e+01 0.94268 6.41019e+01 0.92934 0.01250 1.24754e+02 0.96807 1.24971e+02 0.96315 0.00625 2.46581e+02 0.98298 2.46723e+02 0.98130 using the system given by Eq.(4.6). Observe that, the exact solution is u(x, t) = e x t 4+α .

In the Figure 13, we present the numerical results obtained using the Definitions 3.1 and Definition 3.2. In Table 9, we study the error and convergence rate for the Application 4.7. Note that, we use α = 0.7 and ∆t = 1/40. Error ∥•∥ ∞ Rate 0.10000 1.43417e-01 0.39157 5.59774e-02 0.83297 0.05000 1.14274e-01 0.32772 3.51443e-02 0.67155 0.02500 9.18961e-02 0.31443 2.40566e-02 0.54686 0.01250 7.45087e-02 0.30259 1.77114e-02 0.44176 0.00625 6.05914e-02 0.29830 1.36552e-02 0.37523

Conclusion

In this paper was presented two approximations for the ψ-Caputo fractional derivative namely L1 ψ-Caputo approximation and L1-2 ψ-Caputo approximation. The L1-2 ψ-Caputo approximation is a modification of the L1 ψ-Caputo approximation, where from the second interval of the mesh, i.e, (t j-1 , t j ), j ≤ 2, we use the polynomial interpolation quadratic to approach f ′ (t). The order of accuracy of the L1-2 ψ-Caputo approximation is greater than the order of accuracy of the L1-2 ψ-Caputo approximation, in the particular case where ψ(t) = t, being 3 -α and 2 -α, respectively. Nonetheless, in other cases studied in this manuscript, there is no significant difference in this aspect between the two approximations.

The order of accuracy when working only in the time direction is more than one in all cases, presented in this work, this indicates that we are achieving good results, or rather, that our approximations provide numerical schemes that can efficiently approximate the exact solution of initial value problem, which satisfied the conditions imposed in the Definitions 3.1 and 3.2. When working with two temporalspatial variables, we still observe a good numerical resolution, but with an order of precision less than one.

  finite or infinite interval of the real line R and α > 0. Also let ψ(x) be an increasing and positive function on (a, b], having a continuous derivative ψ ′ (x) on (a, b). Then, the fractional integral of a function u with respect to another function ψ on [a, b] is defined by

  numerical results are shown in comparison to the analytic solution by the aid of the Definition 3.1 and Definition 3.2 with two grid spacing ∆t = 1/10 and ∆t = 1/80, with order α = 0.8.

Figure 1 .

 1 Figure 1. Exact and numerical derivatives of the Example 3.9 for α = 0.8 with ∆t = 1/10 (left) and ∆t = 1/80 (right).

Figure 2 .

 2 Figure 2. Exact and numerical derivatives of Example 3.10 for α = 0.5 and ρ = 0.6 with ∆t = 1/10 (left) and ∆t = 1/80 (right).

Figure 3 .

 3 Figure 3. Exact and numerical derivatives of Example 3.10 for α = 0.5 and ρ = 1.5 with ∆t = 1/10 (left) and ∆t = 1/80 (right).

Figure 4 .

 4 Figure 4. Exact and numerical derivatives of Example 3.11 for α = 0.2 with ∆t = 1/10 (left) and ∆t = 1/80 (right).

Figure 5 .

 5 Figure 5. Exact and numerical solutions of the Application 4.1 for α = 0.3 with ∆t = 1/10 (left) and ∆t = 1/80 (right).

Table 4 .

 4 Error and convergence rate of the Application 4.1.

Application 4 . 3 .

 43 Find u(t) such that c D α;ln(t) t0

Figure 6 .Figure 7 .

 67 Figure 6. Exact and numerical solutions of Application 4.2 for ρ = 0.4 and α = 0.6 with ∆t = 1/10 (left) and ∆t = 1/80 (right)

  10000 4.51714e+00 0.82815 1.70141e+00 1.31939 2.22232e+00 0.46809 4.51487e-01 0.03937 0.05000 1.80822e+00 1.06543 5.44585e-01 1.43431 9.06576e-01 0.93671 2.93781e-01 0.62773 0.02500 7.16310e-01 1.20624 1.86678e-01 1.44530 3.60663e-01 1.15651 1.41466e-01 0.99229 0.01250 2.81141e-01 1.28428 6.83322e-02 1.40487 1.41095e-01 1.26849 6.03581e-02 1.18716 0.00625 1.09632e-01 1.32624 2.62354e-02 1.36081 5.45858e-02 1.32760 2.43221e-02 1.28825 0.00313 4.25908e-02 1.34798 1.03835e-02 1.32806 2.09638e-02 1.35946 9.52402e-03 1.34062 0.00156 1.65199e-02 1.35838 4.46515e-03 1.30567 8.01303e-03 1.37692 3.67439e-03 1.36795 0.00078 6.40805e-03 1.36232 2.22428e-03 1.289641 3.05343e-03 1.38664 1.40644e-03 1.38237Table6shows an analysis of the error and convergence rate in the max-norm for the Application 4.3. Application 4.4. Find u(t) such that c D α;ψ t0 u(t) = e t , t ∈ [t 0 , 1], α ∈ (0, 1) u(t 0 ) = 0, using the Definition 3.1 and Definition 3.2, with ψ(t) = t 1.3 and ψ(t) = ln(t).

Figure 8 .

 8 Figure 8. Exact and numerical solutions of the Application 4.3 for α = 0.9 with ∆t = 1/10 (left) and ∆t = 1/80 (right)Table 6. Error and convergence rate of the Application 4.3.α = 0.9 L1 L1-2 ∆t Error ∥•∥ ∞ Rate Error ∥•∥ ∞ Rate 0.10000 2.60645e-01 1.19209 9.50656e-02 1.58748 0.05000 1.18490e-01 1.13731 3.48226e-02 1.44890 0.02500 5.47783e-02 1.11309 1.37985e-02 1.33551 0.01250 2.54921e-02 1.10355 5.83368e-03 1.24204 0.00625 1.18906e-02 1.10023 2.57696e-03 1.17874 0.00313 5.54977e-03 1.09933 1.16816e-03 1.14143 0.00156 2.59037e-03 1.09927 5.37028e-04 1.12117 0.00078 1.20893e-03 1.09944 2.48690e-04 1.11065

Figure 9 .

 9 Figure 9. Numerical solution of the Application 4.4 with order α = 0.5 and grid spacing ∆t = 1/80, ψ(t) = t 1.3 (left) and ψ(t) = ln(t)

Figure 10 .

 10 Figure 10. Mesh Ω h × Ω ∆t

Application 4 . 5 .

 45 Find u(x, t) such that      c D α;t 0 u(x, t) = ∂ 2 u(x,t) ∂x 2

Figure 11 2 +Figure 11 .

 11211 Figure 11 presents the numerical solution using the Definition 3.1 and Definition 3.2 with parameters α = 0.5 and ∆t = 1/40. And, Table7shows a study about the error and convergence rate for the Application 4.5. Application 4.6. Find u(x, t) such that    

Figure 12 .

 12 Figure 12. Numerical solutions of the Application 4.6 with α = 0.3, ∆t = 1/40, L1 ψ-Caputo approximation (left) and L1-2 ψ-Caputo approximation (right).

Application 4 . 7 .

 47 Find u(x, t) such that    c D α;ln(t) t0 u(x, t) = ∂ 2 u(x,t) ∂x 2

Figure 13 .

 13 Figure 13. Numerical solutions of the Application 4.7 with α = 0.7, ∆t = 1/40, L1 ψ-Caputo approximation (left) and L1-2 ψ-Caputo approximation (right)

Table 1 .

 1 Error and convergence rate of the Example 3.9.

	α = 0.8	L1		L1-2	
	∆t	Error ∥•∥ ∞	Rate	Error ∥•∥ ∞	Rate
	0.10000 2.07642e+00 1.14324 2.96476e+00 2.22215
	0.05000 2.22792e+00 1.16994 3.29253e+00 2.20990
	0.02500 2.29485e+00 1.18374 3.42139e+00 2.20468
	0.01250 2.32425e+00 1.19109 3.47576e+00 2.20227
	0.00625 2.33713e+00 1.19508 3.49980e+00 2.20112
	0.00313 2.34275e+00 1.19727 3.51079e+00 2.20055
	0.00156 2.34520e+00 1.19847 3.51592e+00 2.20028
	0.00078 2.34626e+00 1.19915 3.51836e+00 2.20014

Table 2 .

 2 Error and convergence rate of the Example 3.10.

Table 3 .

 3 Error and convergence rate of the Example 3.11.

Table 5 .

 5 Error and convergence rate of the Application 4.2.

Table 8 .

 8 Error and convergence rate of the Application 4.6.

	α = 0.3, ρ = 0.9	L1		L1-2	
	h = ∆t	Error ∥•∥ ∞	Rate	Error ∥•∥ ∞	Rate
	0.10000	1.77136e+01 0.86896 1.83799e+01 0.80233
	0.05000				
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