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Let Ω be a bounded domain of R n+1 with n ≥ 1. We assume that the boundary Γ of Ω is Lipschitz. Consider the Dirichlet-to-Neumann operator N0 associated with a system in divergence form of size m with real symmetric and Hölder continuous coefficients. We prove L p (Γ) → L q (Γ) off-diagonal bounds of the form 1F e -tN 0 1Ef q (t ∧ 1)

1Ef p for all measurable subsets E and F of Γ. If Γ is C 1+κ for some κ > 0 and m = 1, we obtain a sharp estimate in the sense that 1

can be replaced by

. Such bounds are also valid for complex time. For n = 1, we apply our off-diagonal bounds to prove that the Dirichlet-to-Neumann operator associated with a system generates an analytic semigroup on L p (Γ) for all p ∈ (1, ∞). In addition, the corresponding evolution problem has L q (L p )-maximal regularity.

Introduction

Let Ω be a bounded Lipschitz domain of R d for some d ≥ 2. Denote by Γ its boundary. We consider an elliptic system L of size m ≥ 1 with bounded coefficients A αβ : Ω → C d×d for α, β = 1, . . . , m. We assume the usual ellipticity condition: There exists λ > 0 such that Re m α,β=1

A αβ (x)ξ α • ξ β ≥ λ|ξ| 2 (x ∈ Ω, (ξ α ) m α=1 = ξ ∈ C dm ).
We define formally the associated Dirichlet-to-Neumann operator N 0 on H 1 /2 (Γ; C m ) as follows. For f = (f α ) α ∈ H 1 /2 (Γ; C m ), one solves the Dirichlet problem Lu = 0 on Ω, u = f on Γ, with a unique u ∈ W 1,2 (Ω; C m ), and then sets

(N 0 f ) α = d i,j=1 m β=1 A α,β ij ∂u β ∂x j n i ,
where (n i ) i denotes the outer normal to Ω. The Dirichlet-to-Neumann operator plays a fundamental role in many topics such as Calderón's inverse problem, homogenization problems of elliptic systems with oscillating coefficients or spectral theory. We do not aim to give a detailed account on these and instead refer the reader to the survey paper by Uhlmann [START_REF] Uhlmann | Electrical impedance tomography and Calderón's problem[END_REF] for Calderón's inverse problem, to Kenig, Lin and Shen [START_REF] Kenig | Periodic homogenization of Green and Neumann functions[END_REF] for homogenization, and to Friedlander [START_REF] Friedlander | Some inequalities between Dirichlet and Neumann eigenvalues[END_REF] or Arendt and Mazzeo [START_REF] Arendt | Spectral properties of the Dirichlet-to-Neumann operator on Lipschitz domains[END_REF] for the use of the Dirichlet-to-Neumann operator in comparison of eigenvalues of Dirichlet and Neumann Laplacians.

Many other questions concerning the Dirichlet-to-Neumann operator have emerged in recent years. This concerns, among other problems, possible extrapolation of the semigroup {e -tN 0 } t≥0 from L 2 (Γ) to L p (Γ) for some p = 2, L p → L q smoothing properties, qualitative estimates for the corresponding heat kernel, and many more. In the scalar case, that is to say m = 1, with real coefficients A αβ ij = A ij , the semigroup {e -tN 0 } t≥0 is Markovian and hence extrapolates to a semigroup on L p (Γ) for all p ∈ [1, ∞], which is strongly continuous for p ∈ [1, ∞). This fact, together with Sobolev embeddings, imply L p (Γ) → L q (Γ) bounds for all 1 ≤ p ≤ q ≤ ∞. For all this, we refer to ter Elst and Ouhabaz [START_REF] Ter Elst | Dirichlet-to-Neumann and elliptic operators on C 1+κdomains: Poisson and Gaussian bounds[END_REF]. To the contrary, if one considers the case of complex coefficients or the case of a real system of size m ≥ 2, Sobolev embeddings still provide L p → L q bounds for appropriate p and q close to 2, but no L p -extrapolation results for the semigroup {e -tN 0 } t≥0 are available in the literature.

In this paper, we will take some first steps in closing this gap. To this end, we upgrade L p → L q bounds to so-called off-diagonal estimates in the spirit of Davies-Gaffney. To be more precise, we show L p → L q bounds for 1 F e -tN 0 1 E in term of t and the distance between given subsets E and F of Γ. Eventually, these allow us to extrapolate the semigroup {e -tN 0 } t≥0 to L p spaces in some special cases. It turns out that, even for scalar equations with real coefficients, the question of off-diagonal estimates is delicate when the domain is merely Lipschitz. The reason is that no qualitative pointwise bounds for the associated heat kernel are available in this setting. For systems with real, symmetric and Hölder continuous coefficients, we prove the following.

Theorem (Off-diagonal estimates -Lipschitz domain). Put s = 2n /n-1. For 1 < p ≤ 2 ≤ q < ∞ such that s ≤ p and q ≤ s one has

1 F e -tN 0 1 E f q (t ∧ 1) n /q-n /p 1 + d(E, F ) t -1 1 E f p .
Theorem (Off-diagonal estimates -smooth domain). Suppose that Ω is a C 1+κ domain for some κ > 0 and that m = 1. Then for all 1 ≤ p ≤ q ≤ ∞ one has

1 F e -tN 0 1 E f q (t ∧ 1) n /q-n /p 1 + d(E, F ) t -(1+ n /p-n /q) 1 E f p .
Theorem (L p -bounds -Lipschitz domain). Suppose that n = 1. Then {e -tN 0 } t≥0 extrapolates to an analytic semigroup on L p for all p ∈ (1, ∞), and the corresponding evolution equation has maximal regularity.

We should mention that for an elliptic operator L with complex coefficients on a domain Ω, the classical way to extend the semigroup to L p (Ω) for appropriate p < 2 is to use off-diagonal bounds. In that case, these bounds have exponential decay of the form

1 F e -tL 1 E f 2 (t ∧ 1) (n+1) /4-(n+1) /2p e -c d(E,F ) 2 t 1 E f p . (1)
The idea to prove such bounds is to consider a perturbed semigroup of the form e -λϕ e -tL e λϕ for a scalar λ and a Lipschitz function ϕ on Ω. The fact that the domain of the sesquilinear form of L 1 is stable under multiplication by e λϕ allows us to define again the perturbed operator using a form. One proves L 2 → L q estimates for this perturbed semigroup and then optimizes over λ and ϕ. This uses Sobolev embeddings together with the fact that the perturbation only induces terms of lower order. The latter argument does not work for the Dirichlet-to-Neumann operator since it is not a differential operator. By the same reason, one cannot expect a decay of any order. Instead, we rely on L 2 commutator estimates for N 0 with a given Lipschitz function g on Γ. For instance, such estimates were proved by Shen [START_REF] Shen | Commutator estimates for the Dirichlet-to-Neumann map in Lipschitz domains[END_REF] for bounded Lipschitz domains and by Hofmann and Zhang [START_REF] Hofmann | L 2 estimates for commutators of the Dirichlet-to-Neumann map associated to elliptic operators with complex-valued bounded measurable coefficients on R n+1 +[END_REF] for the half-space. This way, we can still derive L p → L q off-diagonal estimates in the Lipschitz setting. We present these arguments in Section 3. The improvement to L p → L q off-diagonal estimates of optimal order when Ω is C 1+κ and m = 1 is due to the fact that in this case the heat kernel of N 0 satisfies a Poisson bound, and that the commutator fulfills L p -estimates, according to [START_REF] Ter Elst | Dirichlet-to-Neumann and elliptic operators on C 1+κdomains: Poisson and Gaussian bounds[END_REF]. Details will be presented in Section 4. It is a known fact (see for example Auscher [4,Lem. 3.3]) that if one has an off-diagonal estimate with decay γ in the sense that

1 F e -tN 0 1 E f q (t ∧ 1) n /q-n /p 1 + d(E, F ) t -γ 1 E f p
with γ > n, then the semigroup extrapolates to L p . In our situation, we do not have sufficient decay to employ this result, but in the abstract setting of a metric measure space of "dimension n" we manage to prove that if {T (z)} z∈U is a family of operators satisfying L s → L q off-diagonal bounds of order γ > n/s, then {T (z)} z∈U extrapolates to a bounded family on L s . Our condition is less restrictive if s > 1. In addition, this family is R-bounded on L s . The details are presented in Section 5. This allows us to conclude the extrapolation of e -zN 0 to L s (for complex z in a certain sector) when n = 1, so that we obtain the maximal regularity property.

We conclude this introduction with the following list of open problems. We hope that the ideas and techniques used in this paper can be extended to eventually solve some of them.

Problem 1. Suppose that Ω is merely Lipschitz and consider either the scalar or system case with real symmetric and Hölder continuous coefficients. Do we have L 2 → L q offdiagonal bounds of order 1 + n( 1 /2 -1 /q), at least for q ≤ 2n n-1 ? As we have mentioned above, this is the case if Ω is C 1+κ , m = 1 and the coefficients are real and Hölder continuous. In our proof for off-diagonal bounds of order 1, we use L 2 -estimates for the commutator [N 0 , g] for smooth functions g. An idea to reach an order γ > 1 is to use some multi-commutator estimates. 

Problem 2. Is it possible to remove the Hölder regularity assumption on the coefficients?

Is it possible to prove some off-diagonal bounds when the coefficients are complex? Problem 3. Suppose n ≥ 2, Ω is Lipschitz and the coefficients are real symmetric and Hölder continuous. Does the semigroup {e -tN 0 } t≥0 extrapolates to L p for all p ∈ (1, ∞)?

The same question arrises for p = 1, as well as on the space C(Γ). For these two cases, the answer is yes in the scalar case when Ω is C 1+κ , see [START_REF] Ter Elst | Analyticity of the Dirichlet-to-Neumann semigroup on continuous functions[END_REF].

Notation. For p ∈ [1, ∞],
we define p * and p * by the equations 1 /p * = 1 /p -1 /n and 1 /p * = 1 /p + 1 /n, respectively. If 1 ≤ p < n, then p * and p * are the usual upper and lower Sobolev conjugate exponents relative to the boundary dimension. If p ≥ n, then p * ≤ 0. Given numbers 1 ≤ p ≤ q ≤ ∞, and θ ∈ [0, 1], the number [p, q] θ ∈ [p, q] is fixed by the identity 1 /[p,q] θ = (1-θ) /p + θ /q. Write (• | •) 2 and • 2 for the inner product and norm of L 2 , respectively. It will be clear from the context if the L 2 space on Ω or on Γ is meant. The same is true for the norm • p of the respective L p spaces, p ∈ [1, ∞]. Given a (bounded) function g, we also use the symbol g to denote its associated multiplication operator. For two vectors ξ and η in C put ξ • η := i ξ i η i . For subsets E and F of a given metric space, d(E, F ) denotes the distance between E and F , and diam(E) denotes the diameter of E.

Preliminaries

Elliptic systems and harmonic functions.

Let Ω ⊆ R n+1 , n ≥ 1, be a Lipschitz domain. We consider an elliptic system L of size m ≥ 1 with bounded leading coefficients A αβ : Ω → C (n+1)×(n+1) for α, β = 1, . . . , m. The case m = 1 means that L is associated with an elliptic equation. We will omit the size of the system in the notation for Sobolev space, that is to say, we mean W 1,2 (Ω; C m ) when we write W 1,2 (Ω), for instance. We impose ellipticity in the following sense. There exists λ > 0 such that Re m α,β=1

A αβ (x)ξ α • ξ β ≥ λ|ξ| 2 (x ∈ Ω, (ξ α ) m α=1 = ξ ∈ C dm ).
To give a precise meaning to the system L, consider the bounded sesquilinear form

a : W 1,2 (Ω) × W 1,2 (Ω) → C given by a(u, v) = m α,β=1 n+1 i,j=1 Ω A αβ ij ∂ j u β • ∂ i v α dx (u, v ∈ W 1,2 (Ω)).
Then L : W 1,2 (Ω) → (W 1,2 (Ω)) * is the bounded operator determined by Lu, v = a(u, v).

Given a system L, we also consider the system L 0 subject to Dirichlet boundary conditions, obtained from L by systematically replacing W 1,2 (Ω) with W 1,2 0 (Ω). The latter space is defined as the closure of C ∞ 0 (Ω) in W 1,2 (Ω).

Definition 2.1. A function u ∈ W 1,2 (Ω) is called L-harmonic if a(u, ϕ) = 0 for all ϕ ∈ C ∞ 0 (Ω)
. Write H L (Ω) for the subspace of all such functions. If the system L is clear from the context, simply say that u is harmonic, and write H(Ω) for the subspace of harmonic functions.

Recall the following lemma from [START_REF] Arendt | Spectral properties of the Dirichlet-to-Neumann operator on Lipschitz domains[END_REF] and [START_REF] Ter Elst | Dirichlet-to-Neumann and elliptic operators on C 1+κdomains: Poisson and Gaussian bounds[END_REF] in the real and scalar case. We reproduce the proof for the reader's convenience.

Lemma 2.2. The subspace H(Ω) of W 1,2 (Ω) is closed, and W 1,2 (Ω) decomposes into the direct topological sum W 1,2 (Ω) = H(Ω) ⊕ W 1,2 0 (Ω).

Proof. To begin with, we show that H(Ω) is a closed subspace. To this end, let

u n ∈ H(Ω) such that u n → u in W 1,2 (Ω). Since the form a is bounded, we deduce for ϕ ∈ C ∞ 0 (Ω) that a(u, ϕ) = lim n a(u n , ϕ) = 0, therefore u ∈ H(Ω).
Next, fix u ∈ W 1,2 (Ω). We seek a decomposition u = (u -u 0 ) + u 0 , where u 0 is some suitable solution of the system L 0 . To this end, define the auxiliary antilinear functional

F : W 1,2 0 (Ω) v → a(u, v) ∈ C. Owing to the Poincaré inequality, the Lax-Milgram lemma provides a unique solution u 0 ∈ W 1,2 0 (Ω) of the equation L 0 u 0 = F . For ϕ ∈ C ∞ 0 (Ω), we readily check a(u -u 0 , ϕ) = a(u, ϕ) -F (ϕ) = 0 by definition of F . Hence, u -u 0 ∈ H(Ω) as desired.
To show that the decomposition is direct, let u ∈ H(Ω) ∩ W 1,2 0 (Ω). Since u is harmonic and a is continuous, we find that a(u, v) = 0 for v ∈ W 1,2 0 (Ω). Specializing to v = u, we deduce a(u, u) = 0, which yields u = 0 by ellipticity of a and the Poincaré inequality. Finally, F ≤ u W 1,2 (Ω) by boundedness of a, so using that L 0 is an isomorphism we find

u 0 W 1,2 (Ω) F u W 1,2 (Ω)
, hence the decomposition is topological. Definition 2.4. Call the space H 1 /2 (Γ) the trace space of W 1,2 (Ω). Given some function f ∈ H 1 /2 (Γ), write E(f ) for the unique function u ∈ H(Ω) with Tr(u) = f . The function E(f ) is called the harmonic lifting of f . 2.2. Dirichlet-to-Neumann operators. We are going to properly define the Dirichletto-Neumann operator associated with L. For this, we will need the following coercivity result.

Lemma 2.5.

There exist µ > 0 and ω > 0 such that one has the estimate

Re a(u, u) + ω Tr u 2 L 2 (Γ) ≥ µ u 2 W 1,2 (Ω) (u ∈ H(Ω)). (2)
Proof. Observe that the embedding W 1,2 (Ω) ⊆ L 2 (Ω) is compact by the Kondrashov embedding theorem [14, Cor. 6.1 & Cor. 6.2], and that the trace operator Tr : H(Ω) → L 2 (Γ) is bounded and injective according to Proposition 2.3. Hence, according to [START_REF] Arendt | Spectral properties of the Dirichlet-to-Neumann operator on Lipschitz domains[END_REF], for every ε > 0 there exists ω > 0 such that

ω Tr u 2 L 2 (Γ) + ε u 2 W 1,2 (Ω) ≥ u 2 L 2 (Ω) (u ∈ H(Ω)). (3) Moreover, since L is elliptic, there is some c > 0 such that Re a(u, u) ≥ c ∇u 2 L 2 (Ω) (u ∈ W 1,2 (Ω)). ( 4 
)
Adding ( 3) and ( 4), we find Re a(u, u)

+ ω Tr u 2 L 2 (Γ) + ε u 2 W 1,2 (Ω) ≥ min(1, c) u 2 W 1,2 (Ω)
for all u ∈ H(Ω). Finally, choose 2ε ≤ min(c, 1) and absorb ε u 2 W 1,2 (Ω) into the righthand side to conclude.

We have seen so far that Tr : H(Ω) → L 2 (Γ) is bounded and has dense range, and that the form a : H(Ω) × H(Ω) is j-elliptic according to Lemma 2.5, where j = Tr. For further information on these notions and their applicability to Dirichlet-to-Neumann operators, the reader can consult [5, Sec. 2] and [START_REF] Ter Elst | Sectorial forms and degenerate differential operators[END_REF]. This allows to define the Dirichlet-to-Neumann operator associated with L as the operator in L 2 (Γ) associated with the Tr-elliptic form a. Alternatively, one defines the Dirichlet-to-Neumann operator as the operator associated with the sesquilinear form

b(f, g) = a(E(f ), E(g)) (f, g ∈ H 1 /2 (Γ)).
We refer the reader to [START_REF] Ter Elst | Analysis of the heat kernel of the Dirichlet-to-Neumann operator[END_REF] or [START_REF] Ter Elst | Dirichlet-to-Neumann and elliptic operators on C 1+κdomains: Poisson and Gaussian bounds[END_REF] for more details.

Definition 2.6. The Dirichlet-to-Neumann operator N 0 associated with L is defined as follows:

For f ∈ H 1 /2 (Γ) and g ∈ L 2 (Γ), [f ∈ D(N 0 ) & N 0 f = g] ⇐⇒ a(E(f ), v) = (g | Tr(v)) L 2 (Γ) for all v ∈ H(Ω).
Note that by boundedness of a and (2),

| Im(N 0 f | f ) L 2 (Γ) | = | Im a(E(f ), E(f ))| E(f ) 2 W 1,2 (Ω) Re((N 0 f | f ) L 2 (Γ) + ω f 2 L 2 (Γ) ),
which means that the operator N = N 0 + ω is sectorial in the sense that its numerical range is contained in a closed sector of C + with some angle θ ∈ [0, π /2). Therefore, N is m-θ-sectorial in L 2 (Γ), and in particular -N generates an analytic semigroup of contractions {e -zN } z∈Sπ /2-θ on L 2 (Γ). This semigroup is of course also strongly continuous at zero.

2.3.

Off-diagonal estimates. We introduce the central notion of this article.

Definition 2.7 (Off-diagonal estimates). Let X be a metric measure space, n a positive number, U ⊆ C \ {0}, {T (z)} z∈U be a family of operators on L 2 (X), and let 1 ≤ p ≤ q ≤ ∞. Say that {T (z)} z∈U satisfies L p → L q off-diagonal estimates of order γ ≥ 0, if for all z ∈ U , f ∈ L p (X) ∩ L 2 (X), and measurable sets E, F ⊆ X one has the estimate

1 F T (z)1 E f q (|z| ∧ diam(X)) n /q-n /p 1 + d(E, F ) |z| -γ 1 E f p . (5)
In the case γ = 0 we simply speak about L p → L q boundedness. Finally, if p = q, our nomenclature reduces to L p off-diagonal estimates (of order γ) and L p -boundedness.

Remark 2.8. We make the following two observations. (i) If diam(X) is infinite, then the prefactor in (5) reduces to |z| n /q-n /p . Otherwise, when diam(X) is finite, we could have written (|z| ∧ 1) n /q-n /p instead, but our version is better suited to derive estimates that are independent of diam(X) later on.

(ii) Typically, the number n is the dimension of X and the above estimate is adapted to operators of order 1, compare with (1).

Proposition 2.9. Define s through the relation

1 /s = 1 /2 -1 /2n. Let q ∈ (2, ∞) with q ≤ s, and let ϕ ∈ [0, π /2 -θ).
Then, {e -tN 0 } t>0 and {e -zN } z∈Sϕ are L 2 → L q bounded.

A proof for this result was already given in [START_REF] Ter Elst | Analysis of the heat kernel of the Dirichlet-to-Neumann operator[END_REF]Thm. 2.6]. Here, we give a proof which does not distinguish between d = 2 and d ≥ 3.

Proof. Fix ϕ ∈ (0, π /2 -θ), let q ∈ (2, s] ∩ (2, ∞), and put 1 -θ = -2n( 1 /q -1 /2). Then one has the fractional Gagliardo-Nirenberg inequality

g L q (Γ) g 1-θ H 1 /2 (Γ) g θ L 2 (Γ) (g ∈ H 1 /2 (Γ)). (6)
For the Euclidean space, this inequality is well-known. Furthermore, it translates to Γ using localization of the boundary.

We aim to apply estimate (6) to g = e -zN f , where z ∈ S ϕ and f ∈ L 2 (Γ). As a preparation, we investigate the term e -zN f H 1 /2 (Γ) . By definition of the harmonic lifting, one has e -zN f = Tr(E(e -zN f )). Using Proposition 2.3, this leads to e

-zN f H 1 /2 (Γ) E(e -zN f ) W 1,2 (Ω) . Now apply Lemma 2.5 to derive e -zN f 2 H 1 /2 (Γ) E(e -zN f ) 2 W 1,2 (Ω) Re a(E(e -zN f ), E(e -zN f )) + ω e -zN f 2 L 2 (Γ) .
Since e -zN f ∈ D(N 0 ), the definition of N 0 yields that the last term on the right-hand side above coincides with

Re(N 0 e -zN f | e -zN f ) L 2 (Γ) + ω e -zN f 2 L 2 (Γ) = Re(N e -zN f | e -zN f ) L 2 (Γ) .

Using analyticity and contractivity of the semigroup reveals

Re(N e -zN f | e -zN f ) L 2 (Γ) |z| -1 f 2 L 2 (Γ) .
Altogether, this gives for all z ∈ S ϕ the estimate

e -zN f H 1 /2 (Γ) |z| -1 /2 f L 2 (Γ) .
Consequently, we derive from ( 6) with g = e -zN f , using once more that the semigroup is contractive, that

e -zN f L q (Γ) e -zN f 1-θ H 1 /2 (Γ) e -zN f θ L 2 (Γ) |z| -(1-θ) /2 f L 2 (Γ) . Observe that -(1-θ) /2 = n /q -n /2. Hence, if |z| ≤ diam(X), this is precisely the definition of L 2 → L q boundedness. If |z| ≥ diam(X), then |z| n /q-n /2 ≤ diam(X) n /q-n /2 .
In particular, for t > 0, e -tN 0

L 2 →L q (t ∧ D) n /q-n /2 e tω . ( 7 
)
Hence, for t ≤ D, e tω ≤ e Dω , which gives L 2 → L q boundedness. For t > D, we use the semigroup property, [START_REF] Ter Elst | Analyticity of the Dirichlet-to-Neumann semigroup on continuous functions[END_REF], and contractivity on L 2 , to estimate

e -tN 0 f L q (Γ) = e -DN 0 e -(t-D)N 0 f L q (Γ) e Dω D n /q-n /2 e -(t-D)N 0 f L 2 (Γ) ≤ e Dω D n /q-n /2 f L 2 (Γ) ,
which completes the case t > 0.

Remark 2.10. For the operator N , we actually proved an L 2 → L q estimate in terms of |z| n /q-n /2 for all z ∈ S ϕ , which is a better decay than diam(X) n /q-n /2 for large |z|.

Off-diagonal bounds follow from commutator estimates

Throughout this section, Ω ⊆ R n+1 is a bounded Lipschitz domain and N 0 the Dirichletto-Neumann operator as defined in Section 2.2, and N = N 0 + ω is its shifted version. If 1 ≤ p ≤ r ≤ q ≤ ∞ are given, then we introduce the following set of assumptions.

Assumption (C).

For any Lipschitz function g on Γ, D(N 0 ) is invariant under multiplication by g, and the commutator

[N 0 , g] := N 0 g -gN 0 satisfies the bound [N 0 , g]f r ∇g ∞ f r for all f ∈ D(N 0 ) ∩ L r (Γ).
Remark 3.1. Observe that we do not require in Assumption (C) that the commutator extends to a bounded operator on L r (Γ). In fact, we cannot guarantee this, since density of D(N 0 ) ∩ L r (Γ) in L r (Γ) is not clear. 

Assumption (H).

The family {e -tN 0 } t>0 is L p → L r and L r → L q bounded in the sense of Definition 2.7.

Example 3.4 (Hypercontractivity for real equations). Suppose that L is associated with a real symmetric equation. Then Assumption (H) holds for all 1 ≤ p ≤ r ≤ q ≤ ∞, see [START_REF] Ter Elst | Dirichlet-to-Neumann and elliptic operators on C 1+κdomains: Poisson and Gaussian bounds[END_REF]Thm. 2.3]. Note that in this setting, the semigroup {e -tN 0 } t≥0 is sub-Markovian, and it is this property which allows to extends the L p → L q bounds in Proposition 2.9 to all p, q, r as above.

Now we state the main result of this section. We have already introduced the notation r * and r * and we recall here that 1 /r * ≤ 0 if r ≥ n. In this case, the inequality 1 /r ≥ 1 /q > 1 /r * in the next theorem reduces to q ≥ r. We also recall that N is m-θ-sectorial for some θ ∈ [0, π /2).

Theorem 3.5. Fix p, q, r ∈ [1, ∞] such that 1 /r * > 1 /p ≥ 1 /r ≥ 1 /q > 1 /r * .
(i) If Assumption (C) and Assumption (H) are satisfied for p, q, r as above, then {e -tN 0 } t>0 satisfies L p → L q off-diagonal estimates of order 1.

(ii) Let ϕ ∈ [0, π /2 -θ).
If Assumption (C) and Assumption (H) are satisfied with r = 2, then {e -zN } z∈Sϕ satisfies L p → L q off-diagonal estimates of order 1.

Implicit constants depend on n, p, q, r, and the implied constants from the Assumptions (C) and (H) in the first assertion and also on ϕ and θ in the second assertion.

Proof. For convenience, abbreviate D = diam(Γ) throughout the proof. Let α > 0 and g a positive Lipschitz function on Γ, both to be specified in the course of this proof. We start with the proof of (i). To this end, define the operator

N α,g := (1 + αg)N 0 (1 + αg) -1 .
Note that N α,g is by construction similar to N 0 , and in particular, N α,g generates an analytic semigroup on L 2 (Γ).

By similarity, we have for

f ∈ L 2 (Γ) that e -tNα,g f = (1 + αg)e -tN 0 (1 + αg) -1 f = [1 + αg, e -tN 0 ] + e -tN 0 (1 + αg) (1 + αg) -1 f = α[g, e -tN 0 ](1 + αg) -1 f + e -tN 0 f. ( 8 
)
To estimate the first term on the right-hand side of (8), we claim the identity

[g, e -tN 0 ]h = t 0 e -(t-s)N 0 [N 0 , g]e -sN 0 h ds (h ∈ L 2 (Γ)). (9)
Indeed, keep in mind that -N 0 e -sN 0 h = ∂ s e -sN 0 h and use partial integration to find

- t 0 e -(t-s)N 0 gN 0 e -sN 0 h ds = e -(t-s)N 0 ge -sN 0 h s=t s=0 - t 0 N 0 e -(t-s)N 0 ge -sN 0 h ds = [g, e -tN 0 ]h - t 0 e -(t-s)N 0 N 0 ge -sN 0 h ds.
In the last step, we have used that ge -sN 0 h ∈ D(N 0 ), which is a consequence of the invariance property in Assumption (C). Rearranging terms gives [START_REF] Friedlander | Some inequalities between Dirichlet and Neumann eigenvalues[END_REF]. Now, take f from L p (Γ) ∩ L 2 (Γ) and let s > 0. Then again (1 + αg) -1 f ∈ L p (Γ) ∩ L 2 (Γ), and by Assumption (H) we see that e -sN 0 (1 + αg) -1 f ∈ D(N 0 ) ∩ L r (Γ). In particular, Assumption (C) applies to the function e -sN 0 (1 + αg) -1 f . We take the L q -norm in [START_REF] Fefferman | Some Maximal Inequalities[END_REF]. For the first part of its right-hand side we use [START_REF] Friedlander | Some inequalities between Dirichlet and Neumann eigenvalues[END_REF], Assumption (H) twice, and Assumption (C) to give

α[g, e -tN 0 ](1 + αg) -1 f q ≤ α t 0 e -(t-s)N 0 [N 0 , g]e -sN 0 (1 + αg) -1 f q ds α t 0 ((t -s) ∧ D) n /q-n /r [N 0 , g]e -sN 0 (1 + αg) -1 f r ds α ∇g ∞ t 0 ((t -s) ∧ D) n /q-n /r e -sN 0 (1 + αg) -1 f r ds α ∇g ∞ t 0 ((t -s) ∧ D) n /q-n /r (s ∧ D) n /r-n /p ds (1 + αg) -1 f p ≤ α ∇g ∞ t 0 ((t -s) ∧ D) n /q-n /r (s ∧ D) n /r-n /p ds f p .
Split the integral in the latest inequality as t 0 = t /2 0 + t t /2 . In the former case, t-s ≥ t/2, so we can bound (up to a constant) ((t -s) ∧ D) n /q-n /r by (t ∧ D) n /q-n /r . The remaining integral is then split a second time, and due to the restriction p > r * we can give

t /2∧D 0 (s ∧ D) n /r-n /p ds + t /2 t /2∧D (s ∧ D) n /r-n /p ds ≤ t /2∧D 0 s n /r-n /p ds + t /2 t /2∧D ( t /2 ∧ D) n /r-n /p ds (t ∧ D) n /r-n /p+1 + t(t ∧ D) n /r-n /p .
In total, we obtain the bound

t /2 0 ((t -s) ∧ D) n /q-n /r (s ∧ D) n /r-n /p ds t(t ∧ D) n /q-n /p .
The integral t t /2 has the same estimate in virtue of the restriction

1 q > 1 r * . In summary, α[g, e -tN 0 ](1 + αg) -1 f q α ∇g ∞ t(t ∧ D) n /q-n /p f p (f ∈ L p (Γ) ∩ L 2 (Γ)).
For the second term on the right-hand side of (8), compose the L p → L r with the L r → L q boundedness of {e -tN 0 } t>0 to conclude L p → L q boundedness of that operator family.

Combining both estimates, we find e -tNα,g f q

(1 + α ∇g ∞ t)(t ∧ D) n /q-n /p f p (f ∈ L p (Γ) ∩ L 2 (Γ)). ( 10 
)
Now, let E, F ⊆ Γ be measurable, f ∈ L p ∩ L 2 , and put g = d( • , E). For t > 0, set S(t) := e -tN 1 /t,g . Recall that S(t) = (1 + g /t)e -tN 0 (1 + g /t) -1 . By definition of S(t) and by choice of g along with the support property, we have

1 F e -tN 0 1 E f = 1 F (1 + g /t) -1 S(t)(1 + g /t)1 E f = 1 F (1 + g /t) -1 S(t)1 E f. (11)
We take the L q -norm in [START_REF] Kenig | Periodic homogenization of Green and Neumann functions[END_REF] and use [START_REF] Hofmann | L 2 estimates for commutators of the Dirichlet-to-Neumann map associated to elliptic operators with complex-valued bounded measurable coefficients on R n+1 +[END_REF] with α = 1 /t together with the crude estimate

1 F (1 + g /t) -1 ∞ ≤ (1 + d(E,F ) /t) -1 to derive 1 F e -tN 0 1 E f q ≤ (1 + d(E,F ) /t) -1 S(t)1 E f q (t ∧ D) n /q-n /p (1 + d(E,F ) /t) -1 1 E f p ,
which concludes the proof of the first assertion. Note that the implicit constants depend only on n, p, q, r, and the implied constants from the Assumptions (C) and (H).

Now we prove (ii). Let ϕ ∈ (ϕ, π /2 -θ). There exists δ > 0 depending only on ϕ and ϕ such that for every z ∈ S ϕ we have z = δt + z 0 with t = Re z and z 0 ∈ S ϕ . Hence, e -zN = e -δtN e -z 0 N = e -z 0 N e -δtN . From this and the fact that e -z 0 N is a contraction on L 2 (Γ), it follows that

e -zN f q (t ∧ D) n /q-n /2 e -z 0 N f 2 (|z| ∧ D) n /q-n /2 f 2 ,
and similarly,

e -zN f 2 (|z| ∧ D) n /2-n /p f p .
This means that {e -zN } z∈Sϕ satisfies Assumption (H) with r = 2. In other words, if |ν| < ϕ and N = e iν N , then {e -tN } t>0 satisfies this assumption. Note also that

[N , g] = e iν [N 0 , g]
which shows that N satisfies Assumption (C) with r = 2. Now we can repeat the proof of the first assertion with N 0 replaced by N and we obtain the desired L p → L q off-diagonal bounds of order 1 for {e -zN } z∈Sϕ .

Corollary 3.6 (Real equations on Lipschitz domains).

Assume that N 0 is associated with a real equation. Let r ∈ [1, ∞] be such that Assumption (C) holds, and let p, q ∈ [1, ∞] be such that 1 /r * > 1 /p ≥ 1 /r ≥ 1 /q > 1 /r * . Then {e -tN 0 } t>0 satisfies L p → L q off-diagonal estimates of order 1.

Proof. We appeal to Theorem 3.5. Hence, we only have to check Assumption (H). This is verified according to Example 3.4.

Corollary 3.7 (Real systems on Lipschitz domains).

Assume that N 0 is associated with a real system on a Lipschitz domain whose coefficients are symmetric and Hölder continuous. Let ϕ ∈ [0, π /2), and let 1 < p ≤ 2 ≤ q < ∞ be such that 1 /p ≤ 1 /s and 1 /q ≥ 1 /s, where 1 /s = 1 /2 -1 /2n. Then {e -tN 0 } t>0 and {e -zN } z∈Sϕ satisfy L p → L q off-diagonal estimates of order 1.

Proof. First, observe that 1 /s > 1 /2 * , and hence 1 /q ≥ 1 /s > 1 /2 * . Similarly, 1 /p < 1 /2 * . Consequently, we can appeal to Theorem 3.5 with these choices of p and q when r = 2.

It remains to verify Assumption (C) and Assumption (H), both with r = 2. Assumption (C) is directly provided by Shen's result mentioned in Example 3.2. Next, the L 2 → L q boundedness in Assumption (H) is a direct consequence of Proposition 2.9, whereas the L p → L 2 boundedness follows by duality.

Scalar equations in sufficiently smooth domains

In this section we consider scalar equations and slightly smoother domains. We shall see that optimal L p → L q off-diagonal estimates are valid for C 1+κ -domains. The approach is based on Poisson bounds for the heat kernel of the Dirichlet-to-Neumann operator.

We write again D = diam(Γ). The following theorem is shown in [START_REF] Ter Elst | Dirichlet-to-Neumann and elliptic operators on C 1+κdomains: Poisson and Gaussian bounds[END_REF]Thm. 1.1].

Theorem 4.1 (Poisson kernel bounds for e -tN 0 ). Suppose that Ω ⊆ R n+1 is a bounded domain with C 1+κ -boundary Γ for some κ > 0, and suppose that L is associated with a real symmetric equation with Hölder continuous coefficients. Let t > 0. Then e -tN 0 is given by a kernel K(t, x, y) which fulfills the bound

|K(t, x, y)| (t ∧ D) -n 1 + |x -y| t -n-1 (x, y ∈ Γ). ( 12 
)
We state the next results for {e -tN 0 } t>0 instead of {e -zN } z∈Sϕ for clarity of exposition. Note that the Poisson bound ( 12) is also valid for the kernel of e -zN , z ∈ S ϕ , for any fixed ϕ ∈ (0, π /2), see [START_REF] Ter Elst | Analyticity of the Dirichlet-to-Neumann semigroup on continuous functions[END_REF]. One uses then the same approach to deal with L p → L q off-diagonal bounds.

Corollary 4.2 (L 1 → L ∞ off-diagonal estimates). In the situation of Theorem 4.1, the family {e -tN 0 } t>0 satisfies L 1 → L ∞ off-diagonal estimates of order n + 1.
Proof. Let f ∈ L 2 (Γ), a dense subclass of L 1 (Γ), and let E, F ⊆ Γ be measurable. According to Theorem 4.1, write

e -tN 0 1 E f (x) = Γ∩E K(t, x, y)f (y) dσ(y) (x ∈ Γ).
For x ∈ F and y ∈ E we deduce from (12) the bound

|K(t, x, y)| (t ∧ D) -n 1 + d(E, F ) t -n-1 .
Consequently,

1 F e -tN 0 1 E f ∞ ≤ sup x∈F Γ∩E |K(t, x, y)||f (y)| dσ(y) (t ∧ D) -n 1 + d(E, F ) t -n-1 1 E f 1 .
The assertion then follows by density.

Theorem 4.3 (L p → L q off-diagonal estimates). Suppose that Ω ⊆ R n+1 is a bounded domain with C 1+κ -boundary Γ for some κ > 0, and suppose that L is associated with a real symmetric equation with Hölder continuous coefficients. Let 1 < p ≤ q < ∞, then {e -tN 0 } t>0 satisfies L p → L q off-diagonal estimates of order 1 + n /p -n /q.

Proof. The proof divides into two steps.

Step 1: L s off-diagonal estimate of order 1 for all s ∈ (1, ∞).

We appeal to Theorem 3.5, this time with p = q = r = s, where s is any number in (1, ∞). Assumption (H) is verified due to Example 3.4 and is even true in Lipschitz domains. Assumption (C) relies on the smoothness of Γ and was shown in [START_REF] Ter Elst | Dirichlet-to-Neumann and elliptic operators on C 1+κdomains: Poisson and Gaussian bounds[END_REF]Thm. 7.3].

Step 2: Interpolation with L 1 → L ∞ off-diagonal estimates.

Let 1 < p ≤ q < ∞. We aim to interpolate the L 1 → L ∞ off-diagonal estimates from Corollary 4.2 with the L s off-diagonal estimates from Step 1 for a suitable choice of s ∈ (1, ∞). To this end, consider the identities

1 p = 1 -θ 1 + θ s & 1 q = θ s .
Solving for s ∈ (1, ∞) and θ ∈ [0, 1] leads to

s = 1 + q - q p & θ = 1 + 1 q - 1 p .
Observe that s = 1 or s = ∞ are excluded due to p > 1 and q < ∞. Now, fix E, F ⊆ Γ measurable and t > 0. According to Corollary 4.2 and Step 1, the operator

1 F e -tN 0 1 E is L 1 → L ∞ and L s -bounded with operator norms controlled by (t ∧ D) -n (1 + d(E,F ) /t) -n-1 and (1 + d(E,F ) /t) -1 , respectively. Consequently, observing that (1 -θ)(n + 1) + θ = 1 + n /p -n /q, and that (1 -θ)n = n /p -n /q, Riesz-Thorin interpolation gives 1 F e -tN 0 1 E f q (t ∧ D) n /q-n /p 1 + d(E, F ) t -(1+ n /p-n /q) 1 E f p .
Including terms of order zero. In this subsection, we discuss briefly the Dirichletto-Neumann operator with a positive potential. Let L be an elliptic operator associated with a scalar equation on a bounded Lipschitz domain Ω and let 0 ≤ V ∈ L ∞ (Ω) be a non trivial potential. The operator L + V is given by the form a

V (u, v) = a(u, v) + (V u | v) 2 ,
where the form a is defined as in Section 2.1. Definitions 2.1 and 2.6 are as before upon replacing a by a V . We denote by N V the corresponding Dirichlet-to-Neumann operator. Moreover, Lemmas 2.2, 2.5 and Example 3.4 stay valid.

Suppose that L is associated with a symmetric form, then N V is symmetric on L 2 (Γ). Denote by λ 1 the smallest eigenvalue of N V . Then λ 1 > 0 as soon as V is non trivial on Ω. To see this, assume for a contradiction that λ 1 = 0. Then there exists a non trivial f ∈ D(N V ) such that N V f = 0. Taking the scalar product with f and using the definition of the form defining N V (as in Definition 2.6), it follows that

a(E(f ), E(f )) + Ω V |E(f )| 2 dx = 0.
From this and the ellipticity condition we obtain that the function E(f ) is constant and

Ω V |E(f )| 2 dx = 0. Thus, Ω V dx = 0 since E(f ) is a non-zero constant.
The latter equality implies that V must be trivial.

Suppose now that Ω is a C 1+κ -domain for some κ > 0 and that L is associated with a real symmetric equation with Hölder continuous coefficients. Then the kernel K V (t, x, y) of e -tN V satisfies the Poisson bound

|K V (t, x, y)| (t ∧ D) -n e -tλ 1 1 + |x -y| t -n-1 (x, y ∈ Γ, t > 0),
see again [START_REF] Ter Elst | Dirichlet-to-Neumann and elliptic operators on C 1+κdomains: Poisson and Gaussian bounds[END_REF]Thm. 1.1]. Comparing to [START_REF] Kunstmann | Maximal Lp-regularity for parabolic equations, Fourier multiplier theorems and H ∞ -functional calculus[END_REF], the gain here is the additional exponential decay when t → ∞.

Next, the commutator [N V , g] is bounded on L r (Γ) for all r ∈ (1, ∞) by [START_REF] Ter Elst | Dirichlet-to-Neumann and elliptic operators on C 1+κdomains: Poisson and Gaussian bounds[END_REF]Thm. 7.3]. Thus, we can apply the proof of Theorem 3.5 to obtain L s off-diagonal bounds for e -tN V for all s ∈ (1, ∞) and all t > 0. As for Theorem 4.3, we interpolate between L 1 → L ∞ and L s off-diagonal bounds to derive for all t > 0 and f ∈ L 2 (Γ) ∩ L p (Γ),

1 F e -tN V 1 E f q (t ∧ D) n /q-n /p e -λ 1 ( 1 /p-1 /q) 1 + d(E, F ) t -(1+ n /p-n /q) 1 E f p .
In particular, the family e -tN V t>0 satisfies L p → L q off-diagonal estimates of 1 + n /pn /q.

Two-dimensional systems

As a slight abuse of notation, we use the symbol n in Definition 5.1 and Proposition 5.8 to denote an arbitrary dimension for metric measure spaces. However, in the scope of this article, we will only apply Proposition 5.8 in the case when n is the boundary dimension of Ω.

The aim of this section is to prove extrapolation results for a family of operators satisfying off-diagonal bounds with limited order. In [START_REF] Kunstmann | Maximal Lp-regularity for parabolic equations, Fourier multiplier theorems and H ∞ -functional calculus[END_REF], such results are proved in the setting of spaces of homogeneous type, however the operators are assumed to have exponential off-diagonal decay. We follow their arguments, but we work with operators having only polynomial decay. To do so, we have to consider spaces of fixed dimension in the sense of Definition 5.1. Definition 5.1. Let X be a metric space, µ a Borel measure on X, and let n > 0. Call (X, µ) an n-regular space, if one has

∀x ∈ X, ∀r > 0 : µ(B(x, r)) ≈ (r ∧ diam(X)) n . ( 13 
)
Example 5.2. The boundary Γ of a bounded Lipschitz domain Ω ⊆ R d = R n+1 is nregular. To see this, cover Γ by finitely many neighborhoods in which, up to a rotation, Γ is given as a Lipschitz graph. Let r 0 be a Lebesgue number for this covering. Then the surface measure of a ball B(x, r) as in [START_REF] Mclean | Strongly elliptic systems and boundary integral equations[END_REF] with r ≤ r 0 can be computed using one such chart, and the implicit constants are determined by the Lipschitz constant of the respective chart. Finally, (13) can be extended to radii r ≤ diam(X) by standard covering arguments. For 1 ≤ s, q < ∞, x ∈ X, t > 0, and f locally in L s or L q , define the q-average Avg q,t f (x) := |B(x, t)| -1 /q 1 B(x,t) f q and the associated s-maximal function M s f (x) := sup t>0 Avg s,t f (x). Note that M s f (x) = (M(|f | s )(x))

1 /s , where M = M 1 is the usual centered Hardy-Littlewood maximal operator. Lemma 5.3. Let (X, µ) be an n-regular space, let 1 ≤ s ≤ q, and let {T (z)} z∈U be a family of bounded operators on L 2 (X) that satisfies L s → L q off-diagonal estimates of order γ > n /s, where U ⊆ C \ {0} is some index set. Then

Avg q,|z| (T (z)f ) M s f (z ∈ U ),
where the implicit constant depends on n, s, γ, and the implied constant from L s → L q off-diagonal estimates.

Proof. Fix z ∈ U and x ∈ X, and put B = B(x, |z|). For brevity, put D = diam(X) and

r = |z|. If D = ∞, put k 0 = ∞, otherwise let k 0 denote the largest integer such that 2 k 0 r ≤ D. Given 2 ≤ j ≤ k 0 , define the annuli C 1 (B) = 4B and C j (B) = 2 j+1 B \ 2 j B.
The family {C j (B)} k 0 ∨1 j=1 is a decomposition of X, and satisfies d(B, C j (B)) 2 j r for all j ≥ 2. Now, using L s → L q off-diagonal estimates and the decomposition into annuli, estimate

Avg q,r (T (z)f )(x) ≈ (r ∧ D) -n /q 1 B T (z)f q ≤ (r ∧ D) -n /q 1 B T (z)1 C 1 (B) f q + k 0 j=2 1 B T (z)1 C j (B) f q (r ∧ D) -n /s 1 C 1 (B) f s + k 0 j=2 (1 + 2 j ) -γ 1 C j (B) f s .
The first term in the last inequality can be controlled by

(r ∧ D) -n /s (4r ∧ D) n /s - 4B |f | s 1 /s M s f (x).
For the second term, note that the sum is only non-empty if r ≤ D, so we can bound it (up to a constant) by

r -n /s k 0 j=2 (1 + 2 j ) -γ (2 j+1 r ∧ D) n /s - 2 j+1 B |f | s 1 /s M s f (x) k 0 j=2 2 -j(γ-n /s) .
The sum is finite by assumption on γ, so we are left with

Avg q,|z| (T (z)f )(x) M s f (x).
Dependence of implicit constants is readily verified, which completes the proof. 

∈ L p (X) ∩ L 2 (X) one has j |T (z j )f j | 2 1 /2 p j |f j | 2 1 /2 p . ( 14 
)
Remark 5.5. Specialising k = 1 reveals L p -boundedness of the family {T (z)} z∈U . If we write S(z) for the continuous extension of T (z) on L p (X) ∩ L 2 (X) to L p (X), then by density, the family {S(z)} z∈U satisfies ( 14) for all f 1 , . . . , f k ∈ L p (X). The latter property is equivalent to R-boundedness of the family {S(z)} z∈U of bounded operators on L p (X), see for instance [START_REF] Weis | Operator-valued Fourier multiplier theorems and maximal Lp-regularity[END_REF]Remark 2.2].

We complement Lemma 5.3 by the following square function estimates for p-maximal functions and q-averages. The estimate for M 1 on the Euclidean space is the classical Fefferman-Stein inequality [START_REF] Fefferman | Some Maximal Inequalities[END_REF]. For a version on homogeneous spaces, see for instance [START_REF] Grafakos | Vector-valued singular integrals and maximal functions on spaces of homogeneous type[END_REF]Thm. 2]. The extension from p = 1 to p ≥ 1 and estimates for q-averages are explained in [START_REF] Kunstmann | Maximal Lp-regularity for parabolic equations, Fourier multiplier theorems and H ∞ -functional calculus[END_REF]Prop. 8.13].

Lemma 5.6. Let 1 ≤ s < 2 < q < ∞ and let p ∈ (s, q). Then the singleton {M s } satisfies square function estimates on L p , and the family {Avg q,t } t>0 satisfies the following reverse inequality: For all t 1 , . . . , t k > 0 and measurable functions f 1 , . . . , f k on X one has the inequality

j |f j | 2 1 /2 p j |Avg q,t j f j | 2 1 /2 p . ( 15 
)
Remark 5.7. In [START_REF] Kunstmann | Maximal Lp-regularity for parabolic equations, Fourier multiplier theorems and H ∞ -functional calculus[END_REF], the lemma is only stated for

f = (f j ) k j=1 ∈ L p (X) k . Otherwise, fix x 0 ∈ X and define the set A m = x ∈ B(x 0 , m) : |f (x)| C k ≤ m ,
and apply [START_REF] Grafakos | Vector-valued singular integrals and maximal functions on spaces of homogeneous type[END_REF] to the functions 1 Am f . Since Avg q,t f ≥ Avg q,t g if f ≥ g, the claim follows if we take the limit m → ∞.

Combining the foregoing lemma with Lemma 5.3 leads to the following central extrapolation result. Proposition 5.8. Let (X, µ) be an n-regular space, let 1 ≤ s < 2 < q < ∞, p ∈ (s, q), and let {T (z)} z∈U be a family of bounded operators on L 2 (X) that satisfies L s → L q offdiagonal estimates of order γ > n /s, where U ⊆ C\{0} is some index set. Then {T (z)} z∈U satisfies square function estimates on L p . Proof. For z 1 , . . . , z k ∈ U and f 1 , . . . , f k ∈ L p (Γ)∩L 2 (Γ), estimate with Lemma 5.6 applied twice (here, it is crucial that ( 15) is valid for all measurable functions), and Lemma 5. Proof. Let p ∈ (1, ∞) and chose 1 < s < 2 < q < ∞ such that p ∈ (s, q). According to Corollary 3.7, the family {e -zN } z∈Sϕ satisfies L s → L q off-diagonal estimates of order 1.

Observe that 1 > 1 /s = n /s. Keeping Example 5.2 in mind, we can invoke Proposition 5.8 to deduce square function estimates on L p (Γ) for {e -zN } z∈Sϕ . On the one hand, ( 14) with k = 1 reveals L p -boundedness of the family {e -zN } z∈Sϕ . In particular, for z ∈ S ϕ fixed, the operator e -zN can be extended from L p (Γ) ∩ L 2 (Γ) to an operator on L p (Γ). Write S(z) for this extension. So, {S(z)} z∈Sϕ is a family of operators on L p (Γ). On the other hand, we use a density argument to obtain the square function estimate Moreover, we claim that the family {S(z)} z∈Sϕ is a strongly continuous and analytic semigroup on L p (Γ), which is R-bounded as a family of operators on L p (Γ). The semigroup property is a consequence of the semigroup property of {e -zN } z∈Sϕ on L 2 (Γ) and density. This argument works likewise for analyticity, using the characterization of analyticity by strong analyticity on a dense subspace, see [START_REF] Arendt | Vector-valued Laplace Transforms and Cauchy Problems[END_REF]Prop. A.3]. Strong continuity is a consequence of the standard L p -interpolation inequality.

Owing to Example 3.2, a concrete instance of Theorem 5.9 is the following.

Corollary 5.10. Suppose that n = 1, and we are given a Dirichlet-to-Neumann operator N 0 associated with a real system on a Lipschitz domain whose coefficients are symmetric and Hölder continuous. Let p ∈ (1, ∞) and ϕ ∈ (0, π /2). Then {e -zN } z∈Sϕ extends from L p (Γ) ∩ L 2 (Γ) to a strongly continuous and analytic semigroup {S(z)} z∈Sϕ on L p (Γ) that is R-bounded on L p (Γ).

Write N p for the generator of the semigroup {S(t)} t≥0 in the preceding corollary. Owing to Weis' seminal characterization of maximal regularity using R-boundedness [START_REF] Weis | Operator-valued Fourier multiplier theorems and maximal Lp-regularity[END_REF]Thm. 4.2], we obtain the following maximal regularity result.

Corollary 5.11. Let p, q ∈ (1, ∞). Then the operator N p on L p (Γ) satisfies L q -maximal regularity, that is to say, for T > 0 and f ∈ L q (0, T ; L p (Γ)), the problem ∂ t u(t) + N p u(t) = f (t), t ∈ (0, T ) u(0) = 0 admits a unique solution u which satisfies the estimate u L q (0,T ;L p (Γ)) + ∂ t u L q (0,T ;L p (Γ)) + N p u L q (0,T ;L p (Γ)) f L q (0,T ;L p (Γ)) .

Corollary 5.10 also yields the following extension of Corollary 3.7 when n = 1.

1

  i.e., W1,2 if L is subject to Neumann boundary conditions and W 1,2 0 for the Dirichlet ones.

Proposition 2 . 3 .

 23 The trace operator Tr : W 1,2 (Ω) → H 1 /2 (Γ) is bounded and onto. Restricted to H(Ω), the trace operator is moreover one-to-one. Proof. Boundedness of the trace operator is shown in [13, Thm. 3.37]. Now let u ∈ H(Ω) with Tr(u) = 0. The null space of Tr coincides with W 1,2 0 (Ω) by [14, Thm. 4.10]. Hence, u ∈ H(Ω) ∩ W 1,2 0 (Ω), thus u = 0 by Lemma 2.2, which shows injectivity.

Example 3 . 2 (

 32 Shen's L 2 commutator estimate). The respective estimate in the case r = 2 is proved in[START_REF] Shen | Commutator estimates for the Dirichlet-to-Neumann map in Lipschitz domains[END_REF] Thm. 1.1] for real symmetric systems with Hölder continuous coefficients when f and g are Lipschitz functions on Γ. The estimate was extended to f ∈ D(N 0 ) in [6, Thm. 7.2], which in turn gives Assumption (C) for r = 2.Example 3.3 (L p commutator estimate -smooth domain). Suppose that Ω is bounded and C 1+κ for some κ > 0, m = 1 and the coefficients are real symmetric and Hölder continuous. Then Assumption (C) holds for all r ∈ (1, ∞). See[START_REF] Ter Elst | Dirichlet-to-Neumann and elliptic operators on C 1+κdomains: Poisson and Gaussian bounds[END_REF] Thm. 7.3].

.Theorem 5 . 9 .

 59 q,|z j | T (z j )f j | 2Now, we return to the study of the Dirichlet-to-Neumann operator, but in the particular case n = 1. Suppose that n = 1, and we are given a Dirichlet-to-Neumann operator N 0 satisfying Assumption (C) with r = 2. Let p ∈ (1, ∞) and ϕ ∈ (0, π /2 -θ). Then {e -zN } z∈Sϕ extends from L p (Γ) ∩ L 2 (Γ) to a strongly continuous and analytic semigroup {S(z)} z∈Sϕ on L p (Γ). Moreover, the family {S(z)} z∈Sϕ is R-bounded on L p (Γ).

j

  |S(zj )f j | 2 , . . . , z k ∈ S ϕ , f 1 , . . . , f k ∈ L p (Γ)).
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Corollary 5.12. Suppose that n = 1 and that L is associated with a real system on a Lipschitz domain whose coefficients are symmetric and Hölder continuous. Let r ∈ (1, ∞) be such that Assumption (C) holds. Moreover, let 1 < p ≤ r ≤ q < ∞ and let ϕ ∈ [0, π /2). Then {e -zN } z∈Sϕ satisfies L p → L q off-diagonal estimates of order 1.

Proof. In the light of Corollary 3.7, we can assume that r = 2 and that either 2 < p ≤ r ≤ q or p ≤ r ≤ q < 2. We start with the former case.

We appeal again to Theorem 3.5. Assumption (C) is fulfilled by hypothesis, so it only remains to check Assumption (H). To see L p → L r boundedness, we chose θ ∈ [0, 1] such that 1 /p = (1-θ) /2+ θ /r. Now, on the one hand, Proposition 2.9 gives L 2 → L r boundedness for {e -zN } z∈Sϕ . On the other hand, the semigroup family is bounded on L r according to Corollary 5.10 above. Hence, Riesz-Thorin interpolation yields L p → L r boundedness. With the same argument we can also derive L r → L q boundedness, which concludes this case.

In the second case, that is, p ≤ r ≤ q < 2, we argue similarly, but we have to combine Proposition 2.9 with a duality argument.