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Any complex-analytic supermanifold whose retract is diffeomorphic to the complex projective superline (superstring) CP 1|4 is, up to a diffeomorphism, either a member of a 1-parameter family or one of 9 exceptional supermanifolds. I singled out the homogeneous of these supermanifolds and described Lie superalgebras of vector fields on them.

Preliminaries

Let (M, F) be a complex-analytic manifold of dimension m. (More precisely, almost complex manifold, see [BGLS*], since the vanishing of the Nijenhuis tensor is never need; however, from the very beginning (see [Gr]) one requires the underlying manifold to be complex. This comment and starred references are added by the editor of this Special Volume. D.Leites.)

Let E be a vector bundle of rank n over M , and E the be locally free analytic sheaf of sections of E. Set O := Λ . F (E). The supermanifold isomorphic to the one of the form M := (M, O) is called split. The ringed space locally isomorphic to (M, Λ . F (E)) is called a supermanifold of superdimension m|n. Physicists call supermanifolds of dimension 1|n superstrings, see [W*]. Let O be a structure sheaf of any supermanifold. Let I ⊂ O be the subsheaf of ideals generated by subsheaf O1 and let O rd := O/I. Consider the following filtration of O by powers of I O = I 0 ⊃ I ⊃ I 2 ⊃ . . . ⊃ I n ⊃ I n+1 = 0. The graded sheaf gr O = ⊕ n p=0 gr p O with gr p O := I p /I p+1 defines the split supermanifold (M, gr O) called the retract of (M, O). Let π : I p → gr p O denote the natural projection. Then, we have the exact sequences of sheaves 0 -→ I p+1 -→ I p πp -→ gr p O -→ 0.

(1)

The supermanifold (M, O) is split if and only if there exists an isomorphism of the superalgebra sheaves h : gr O → O such that its restriction h p : gr p O → I p splits the sequence (1), i.e., satisfies π p • h p = id. Such an isomorphism exists in a neighborhood of any point of M .

Let (M, O) be a supermanifold and g a complex finite-dimensional Lie superalgebra. An action of g on (M, O) is an arbitrary Lie superalgebra homomorphism φ : g → v(M, O). Then, a linear mapping φ x : g → T x (M, O) is associated with any x ∈ M . The action φ is called transitive if φ x is surjective for any x ∈ M . By restricting the action φ : g → v(M, O) to the even component we get a homomorphism φ 0 : g 0 → v(M, O) 0 . If M is compact, then it is possible to integrate φ 0 getting a homomorphism Φ : G → Aut(M, O), where G is the simply connected complex Lie group whose Lie algebra is g 0 . This homomorphism induces a homomorphism Φ 0 : G → Bih M into the group of biholomorpic automorphisms of M , in other words -an action of G on M . The action φ is said to be 0-transitive if Φ 0 is transitive.

If a Lie group G acts 0-transitivity on M , then φ x : g 0 → T x (M ) is surjective for any x ∈ M . Conversely, if M is compact and φ x : g 0 → T x (M ) is surjective for any x ∈ M , we can integrate this action to a 0-transitive action of a Lie group.

The supermanifold (M, O) is called homogeneous (resp. 0-homogeneous) if the natural action of the Lie superalgebra v(M, O) on (M, O) is transitive (resp. 0-transitive), see [START_REF] Bunegina | Homogeneous supermanifolds related with complex projective line[END_REF], [O3]. This means that the evaluation mapping ev x : v(M, O) → T x (M, O) (resp. the restriction of ev x to v(M, O)0 is surjective for any x ∈ M .

Thanks to [O3] we know that φ is transitive if and only if it is 0-transitive, M is compact, and the mapping φ x 1 : g 1 → T x 0 (M, O) 1 is surjective at a certain point x 0 ∈ M . This implies that a 0-homogeneous supermanifold is homogeneous if and only if the odd component of the mapping ev x 0 : v(M, O) → T x 0 (M, O) is surjective at a certain point x 0 ∈ M .

One easily proves (see [START_REF] Bunegina | Homogeneous supermanifolds related with complex projective line[END_REF]) that the retract of a homogeneous supermanifold (M, O) with compact M is homogeneous, too.

In what follows, I consider the problem of classification (up to a diffeomorphism) of supermanifolds with retract CP 1|4 and describe which of the supermanifolds considered are homogeneous or at least 0-homogeneous.

2 Superstring CP 1|4 . The first cohomology of the tangent sheaf Over CP 1 , consider the holomorphic vector bundle

E = L -k 1 ⊕ L -k 2 ⊕ L -k 3 ⊕ L -k 4 , where k 1 ≥ k 2 ≥ k 3 ≥ k 4 ≥ 0. Let CP 1|4 k 1 k 2 k 3 k 4 := (CP 1 , O Λ .
F (E) ) designate the split supermanifold determined by E. As shown in [START_REF] Bunegina | Homogeneous supermanifolds related with complex projective line[END_REF], if CP 1|4 k 1 k 2 k 3 k 4 is homogeneous, then the k i must be non-negative. Let us cover CP 1 by two charts U 0 and U 1 with local coordinates x and y = 1

x , respectively. For CP 1|4 k 1 k 2 k 3 k 4 , the transition functions in U 0 ∩ U 1 are y = x -1 and η i = x -k i ξ i for i = 1, . . . , 4, where ξ i and η i are basis sections of E over U 0 and U 1 , respectively.

Homogeneous superstrings with retract CP 1|4 211 If O gr is the structure sheaf of CP 1|4 := CP 1|4 1111 , then T gr := Der O gr is the tangent sheaf (or the sheaf of vector fields). This is a sheaf of Lie superalgebras. The sections of the tangent sheaf are holomorphic vector fields on the supermanifold. Their sections are elements of the Lie superalgebra v(CP 1 , O gr ) := Γ(CP 1 , T gr ) of vector fields on CP 1|4 .

The sheaf T gr has a Z-grading T gr = -1≤p≤4 (T gr ) p , where (T gr ) p := Der p O gr = {v ∈ T gr | v((O gr ) q ) ⊂ (O gr ) p+q for any q}.

The Lie superalgebra v(CP 1 , O gr ) becomes also Z-graded with the induced grading compatible with Z/2-grading by parity.

We can regard T gr as a locally free analytic sheaf on CP 1 . From [O3] we have the following exact sequence of locally free analytic sheaves on CP 1 :

0 -→ E * ⊗ Λ . E i -→ T gr α -→ Θ ⊗ Λ . E -→ 0,
where Θ = Der F is the tangent sheaf of the manifold CP 1 , and F is the sheaf of functions on CP 1 . The mapping α is the restriction of a derivation of O to F, and i identifies any sheaf homomorphism E → Λ . E with its prolongation to a derivation that vanishes on F.

Hence, the analytic sheaf T gr is locally free. Therefore, T gr is the sheaf of holomorphic sections of a holomorphic vector bundle over CP 1 . We call it the supertangent bundle and denote ST.

Thanks to the Bott-Borel-Weil theorem the following theorem holds.

Theorem ([BO1]

). For dim H p (CP 1 , (T gr ) q ), see the following table

q -1 0 1 2 3 4 p = 0 8 19 8 0 0 0 p = 1 0 0 0 10 8 1

The group SL 2 (C) trivially acts on H 1 (CP 1 , (T gr ) 2 ) and H 1 (CP 1 , (T gr ) 4 ).

Set

δ := ξ 1 ξ 2 ξ 3 ξ 4 , δ l := ∂δ ∂ξ l , ∇ := 1≤i≤4 ξ i ∂ ξ i ; δ ′ := η 1 η 2 η 3 η 4 , δ ′ l := ∂δ ′ ∂η l , ∇ ′ := 1≤i≤4 η i ∂ η i . ( 2 
)
The next Theorem expounds the result of Theorem 2.1 by giving the Čzech cocycles of the covering {U 0 , U 1 }; these cocycles determine the bases of non-zero spaces H 1 . 2.2. Theorem. The basis of H 1 (CP 1 , (T gr ) p ), where p = 2, 3, 4, can be represented by the following cocycles z 01 :

p z 01 2 x -1 δ l ∂ ξ k ∼ x -1 δ k ∂ ξ l for l < k and k, l = 1, . . . , 4,
x -1 δ r ∂ ξr for r = 1, . . . , 4; 3 x -1 δ l ∂ x ∼ x -2 δ∂ ξ l and x -1 δ∂ ξ l for l = 1, . . . , 4; 4 x -1 δ∂ x .

Proof. Let us find a basis in H 1 (CP 1 , (T gr ) 2 ). For this, consider the part ST(E) 2 of the tangent space ST(E) := ⊕ST(E) i . In [START_REF] Bunegina | Homogeneous supermanifolds related with complex projective line[END_REF], the following decomposition was considered:

ST(E) 2 = i<j ST(E) (ij) 2 ⊕ i<j<k, r̸ =i,j,k ST(E) (ijk,r) 2
, where

ST(E) (ij) 2 =< ξ i ξ j ∂ x and ξ i ξ j ξ k ∂ ξ k , where i < j, and k ̸ = i, j >, ST(E) (ijk,r) 2 =< ξ i ξ j ξ k ∂ ξr , where i⟨j < k, and r ̸ = i, j, k.⟩ Moreover, it was shown in [BO2] that ST(E) (ij) 2 ≃ L -2 ⊕ 2L -1 and ST(E) (ijk,r) 2 ≃ L -2 . Consider the bundles ST(E) (ij) 2 and ST(E) (ijk,r) 2 separately. Let (T gr ) i 1 ...i k p designate the sheaf of holomorphic sections of ST(E) (i 1 ...i k ) p
. We see that (recall notation (2))

δ l ∂ ξ k = y -2 δ ′ l ∂ η k , where l < k, k ̸ = i, j, l ̸ = i, j, ξ i ξ j ∂ x = -η i η j ∂ y -y -1 η i η j ∇ ′ = -y -1 (η i η j ∇ ′ + yη i η j ∂ y ), ξ i ξ j ∇ + xξ i ξ j ∂ x = -y -1 ξ i ξ j ∂ x .
Hence, for the basis sections of L -2 (resp. L -1 ) we can take

δ l ∂ ξ k , ξ i ξ j ∂ x , (resp. ξ i ξ j ∇ + xξ i ξ j ∂ x ) for all i, j, k, l. Then, ST(E) (ij) 2 ≃ L -2 ⊕ 2L -1 and (T gr ) ij 2 ≃ F(-2) ⊕ 2F(-1)
, where F is the sheaf of holomorphic functions on CP 1 , is the corresponding isomorphism of sheaves.

The results of [START_REF] Bunegina | Homogeneous supermanifolds related with complex projective line[END_REF] imply that

H 1 (CP 1 , (T gr ) ij 2 ) ≃ H 1 (CP 1 , F(-2)) and dim H 1 (CP 1 , (T gr ) ij 2 ) = 1,
so the cocycle desired is of the form

x -1 δ l ∂ ξ k . Let us show that x -1 δ l ∂ ξ k ∼ x -1 δ k ∂ ξ l . Indeed, x -1 δ l ∂ ξ k = y -1 δ ′ l ∂ η k ∼ y -1 δ ′ l ∂ η k + η s η t ∂ y = x -1 δ l ∂ ξ k -ξ s ξ t ∂ x -x -1 δ l ∂ ξ k + x -1 δ k ∂ ξ l ∼ x -1 δ k ∂ ξ l ,
where (l, k; s, t) ∈ {(1, 2; 3, 4), (1, 4; 2, 3), (2, 3; 1, 4), (3, 4; 1, 2)};

x -1 δ l ∂ ξ k = y -1 δ ′ l ∂ η k ∼ y -1 δ ′ l ∂ η k -η s η t ∂ y = x -1 δ l ∂ ξ k + ξ s ξ t ∂ x -x -1 δ l ∂ ξ k + x -1 δ k ∂ ξ l ∼ x -1 δ k ∂ ξ l ,
where (l, k; s, t) ∈ {(1, 3; 2, 4), (2, 4; 1, 3)}.

Since δ r ∂ ξr = y -2 δ ′ r ∂ ηr , then take δ r ∂ ξr for a basis section of L -2 . We have

ST(E) (ijk,r) 2 ≃ L -2
and the corresponding isomorphism of sheaves (T gr ) ijk,r 2 ≃ F(-2). The results of [START_REF] Bunegina | Homogeneous supermanifolds related with complex projective line[END_REF] imply that H

1 (CP 1 , (T gr ) ijk,r 2 ) ≃ H 1 (CP 1 , F(-2)), dim H 1 (CP 1 , (T gr ) ijk,r
2 ) = 1 for any i < j < k, and r ̸ = i, j, k, and the cocycle desired is of the form

x -1 δ r ∂ ξr .
Let us now find the basis of H 1 (CP 1 , (T gr ) 3 ). Consider ST(E) 3 and again apply the results of [START_REF] Bunegina | Homogeneous supermanifolds related with complex projective line[END_REF]; we get

ST(E) 3 = i<j<k ST(E) (ijk) 3
, where ST(E)

(ijk) 3
is spanned by

ξ i ξ j ξ k ∂ x , δ∂ ξ l , where 1 ≤ i < j < k ≤ 4, l ̸ = i, j, k, l ∈ {1, . . . , 4}; ξ i ξ j ξ k ∂ x == -y -2 yη i η j η k ∂ y + η i η j η k η l ∂ η l , δ∂ ξ l -xδ l ∂ x = y -3 δ ′ ∂ η l + y -2 δ ′ l ∂ y -y -3 δ ′ ∂ η l = y -2 δ ′ l ∂ y .
Hence, take ξ i ξ j ξ k ∂ x and δ∂ ξ l -xδ l ∂ x for basis sections of L -2 and L -1 .

We see that ST(E)

(ijk) 3 ≃ 2L -2 and (T gr ) ijk 3 ≃ 2F(-2
). The results of [START_REF] Bunegina | Homogeneous supermanifolds related with complex projective line[END_REF] imply that

H 1 (CP 1 , (T gr ) ijk 3 ) ≃ 2H 1 (CP 1 , F(-2)), and dim H 1 (CP 1 , (T gr ) ijk 3 ) = 2,
where 1 ≤ i < j < k ≤ 4, and the cocycles desired are of the form

x -1 δ l ∂ x and x -1 δ∂ ξ l -δ l ∂ x ∼ x -1 δ∂ ξ l , where l ̸ = i, j, k. Let us show that x -1 δ l ∂ x ∼ x -2 δ∂ ξ l . Indeed, x -1 δ l ∂ x = -δ ′ l ∂ y + y -1 δ ′ ∂ η l ∼ y -1 δ ′ ∂ η l = x -2 δ∂ ξ l .
In [START_REF] Bunegina | Two families of flag supermanifolds[END_REF], it is proved that the basis element of H 1 (CP 1 , (T gr ) 4 ) can be represented by the cocycle x -1 δ∂ x . □

3 Non-split supermanifolds with retract CP 1|4

The structure sheaf of the split supermanifold (M, O gr ) is endowed with a Z-grading

O gr = 0≤p≤n (O gr ) p , where (O gr ) p = Λ p F (E).
Clearly, (O gr ) rd is naturally isomorphic to the subsheaf F ⊂ O gr .

Observe that the natural filtration of the sheaf T = Der O yields the following filtration

v(CP 1 , O) = v(CP 1 , O) (-1) ⊃ . . . ⊃ v(CP 1 , O) (4) ⊃ v(CP 1 , O) (5) = 0, where v(CP 1 , O) (p) = Γ(CP 1 , T (p) ).
Thanks to results in [O1], we have the following exact sequence

0 → v(CP 1 , O) (p+1) → v(CP 1 , O) (p) σp -→ v(CP 1 , O gr ) p for any p ≥ -1. We say that u ∈ v(CP 1 , O gr ) p is liftable in (CP 1 , O), if u ∈ Im σ p . Consider Aut (2) O gr = {a ∈ Aut O gr | a(f ) -f ∈ J 2 for any f ∈ O gr }.
Let Aut E be the group of fiber-preserving automorphisms of E. Then, the following theorem holds.

Theorem ([Gr]

). There is a bijective correspondence between the isomorphism classes of supermanifolds (M, O) such that gr O ≃ O gr and the orbits of the action of Aut E on H 1 (M, Aut (2) O gr ), and (M, O gr ) corresponds to the unit class e in H 1 (M, Aut (2) O gr ).

4 On 0-homogeneity of supermanifolds with retract CP 1|4 Recall a fine resolution of the sheaf T gr = DerO gr endowed with a bracket operation that extends the bracket given in T gr . Let us denote by Φ p,q the sheaf of smooth complex-valued forms of type (p, q) on M . We form the standard Dolbeault-Serre resolution Φ of O gr by setting for any φ ∈ Φ 0,q and u ∈ (O gr ) p Φ p,q := Φ 0,q ⊗ (O gr ) p , Φ . , . := ⊕ p,q≥0 Φ p,q , ∂(φ ⊗ u) = ∂(φ) ⊗ u.

Then, regarding S as a sheaf of graded algebras with respect to the total degree, consider the sheaf of bigraded Lie superalgebras T = Der Φ. Clearly, D = ad ∂ is a derivation of bidegree (0, 1) of T satisfying D 2 = 0. Set

S := {u ∈ T | u( f ) = 0 and u(d f ) = 0 for any f ∈ F}.
It is easy to see that S is a D-invariant subsheaf of bigraded subalgebras of T . Moreover, T gr is identified with the kernel of the mapping D : S . ,0 -→ S . ,1 . Thus, we get the sequence

0 -→ T τ -→ S * ,0 D -→ S * ,1 D -→ . . .
Let us specify an explicit form of τ . Let F ∞ be a sheaf of differentiable complex-valued functions on M , then O ∞ gr = O gr ⊗ F ∞ and

PAut (2) O ∞ gr = {a ∈ Aut O ∞ gr | a(f ) = f for any f ∈ F; a(u) -u ∈ k≥2 (O ∞ gr ) k for any u ∈ O ∞ gr }. If z = (z ij ) ∈ Z 1 (U, Aut (2) O gr ) is a cocycle in the covering U, then z ij = h -1 i h j , where h i : O gr | U i → O| U i . On the other hand, z ij = a -1 i a j , where a i ∈ PAut (2) O ∞ gr (U i ). Then, over U i ∩ U j , we have h -1 i h j = a -1 i a j , and hence ϱ := a i h -1 i = a j h -1 j is an injective sheaf homomorphism O -→ O ∞
gr . Then, τ : T → S * ,0 is defined by the formula τ (v) := ϱvϱ -1 . Now, let the bundle E correspond to the supermanifold CP 1|4 ; let the tangent bundle ST(E) be endowed with a smooth SU 2 -invariant hermitian metric (see [O1]). Since CP 1 is compact, we can apply the Hodge theory. In [O1], [O3], [O2] a complex (S, D) is constructed which can be considered as a complex of (0, * )-forms with values in the bundle ST(E).

Let H ⊂ S denote the bigraded space of harmonic elements, H the orthogonal projection to H. As is known, H p,q ≃ H p,q (S, D) ≃ H q (CP 1 , ( T gr ) p ) for any p, q ≥ 0.

(

) Set H (1) = p≥1 H 2p,1 = H 2,1 ⊕ H 4,1 ≃ H 1 (CP 1 , ( T gr ) 2 ) ⊕ H 1 (CP 1 , ( T gr ) 4 ). 3 
The SU 2 -invariance of the metric implies SU 2 -equivariance of H, and isomorphisms (3).

4.1. Theorem. Let (CP 1 , O) be any supermanifold with retract CP 1|4 . Then, the SU 2action on CP 1 can be lifted to (CP 1 , O). In particular, (CP 1 , O) is 0-homogeneous.

Proof. Consider the non-linear complex K = (K 0 , K 1 , K 2 ) (see [START_REF] Bunegina | Homogeneous supermanifolds related with complex projective line[END_REF]), where

K 0 = Γ(CP 1 , PAut (2) O ∞ gr ), K q = k≥1 S 2k,q for q = 1, 2,
with the coboundary operators δ q : K q → K q+1 for q = 0, 1, and the action ρ of the group K 0 on K 1 , defined by the formulas

δ 0 (a) = ∂ -a∂a -1 , δ 1 (u) = ∂u -1 2 [u, u], ρ(a)(u) = a(u -∂)a -1 + ∂.
By definition , the corresponding set of 1-cohomology has the form Z 1 (K)/ρ(K 0 ), where

Z 1 (K) = {u ∈ K 1 | δ 1 (u) = 0}. Since dim CP 1 = 1, it follows that H (1) ⊂ Z 1 (K). Moreover, as is shown in [O2], the natural map H (1) -→ H 1 (K) is surjective.
Further, H 0 (CP 1 , (T gr ) 2 ) = 0 by Theorem 2.1. Hence, Theorem 3.13 from [O2] is applicable implying that this map is bijective. Thus, the bijection

H (1) -→ H 1 (K) is SU 2 -invariant.
On the other hand, Theorem 2.1 implies that SU 2 acts on H (1) trivially. Hence, it acts on H 1 (K) also trivially, and every cohomology class contains an invariant cocycle.

Applying the obtained in [O3] criterion for lifting the action of the compact groups on the non-split supermanifold we see that the SU 2 -action on CP 1|4 can be lifted to any supermanifold (CP 1 , O) with CP 1|4 as its retract. Since SU 2 transitively acts on CP 1 , all these supermanifolds are 0-homogeneous. □

Thanks to Theorem 3.1, the classes of isomorphic supermanifolds (M, O) are in bijective correspondence with the Aut E-orbits on the set H 1 (M, Aut (2) O gr ). Let M = CP 1 and the odd dimension of supermanifolds (CP 1 , O) be ≤ 5.

As in [O2], define the exponential map

exp : T gr = (T gr ) 2 ⊕ (T gr ) 4 -→ Aut (2) O gr ,
its inverse log := exp -1 , and the map

λ 2p : Aut (2p) O gr -→ (T gr ) 2p sending any a ∈ Aut (2p) O gr to the 2p-component (log a) 2p of log a.
The map exp is an isomorphism of sheaves of sets, λ 2p is a surjective homomorphism of sheaves of groups. In what follows, we will represent the cocycle g = exp u by the cocycle u = u 2 + u 4 , where

u 2 ∈ Z 1 (CP 1 , (T gr ) 2 ) and u 4 ∈ Z 1 (CP 1 , (T gr ) 4 ). (4) Since (T gr ) 2 • (T gr ) 4 = (T gr ) 4 • (T gr ) 4 = 0, it follows that (T gr ) 4 is a central ideal in T gr .
The exact sequence (see [O2])

e -→ Aut (2p+2) O -→ Aut (2p) O λ 2p
-→ (T gr ) 2p -→ 0 yields -for p = 2 -an isomorphism of the sheaves of groups exp :

(T gr ) 4 -→ Aut (4) O gr ⊂ Aut (2) O gr .
Hence, Aut (4) O gr belongs to the center of Aut (2) O gr . Define the action of the sheaf of groups (T gr ) 4 on Aut (2) O gr by mean of right shifts

Ψ: v → t v : z → z(exp v), where v ∈ (T gr ) 4 , and z ∈ Aut (2) O gr .
Let us translate this action to Čzech cocycles of the covering

U 0 , U 1 . Let us check if it is also well defined on cohomology. Let v ′ ∼ v and z ′ ∼ z, where v ′ , v ∈ Z 1 (CP 1 , (T gr ) 4 ), z ′ , z ∈ Z 1 (CP 1 , Aut (2) O gr ). Then, v ′ = b (0) + v -b (1) and z ′ = c (0) z(c (1) ) -1
, where b (i) , c (i) are holomorphic sections over U i for i = 0, 1 of the sheaves (T gr ) 4 and Aut (2) O gr , respectively. We see that

z ′ exp v ′ = (c (0) z(c (1) ) -1 )(exp v)(exp b (0) )(exp b (1) ) -1 = (c (0) exp b (0) )(z exp v)(c (1) exp b (1) ) -1 ∼ z exp v.
Therefore, the action Ψ on cohomology is well defined.

5.1. Theorem. Let dim(CP 1 , O) = 1|n with n ≤ 5. Then, the action Ψ defines a free action of the group H 1 (CP 1 , (T gr ) 4 ) on H 1 (CP 1 , Aut (2) O gr ); the orbits of this action are the fibers of the map

λ * 2 : H 1 (CP 1 , Aut (2) O gr ) -→ H 1 (CP 1 , (T gr ) 2 ).
Proof. To show that H 1 (CP 1 , (T gr ) 4 ) freely acts on H 1 (CP 1 , Aut (2) O gr ), i.e., the stabilizer of any element z ∈ Z 1 (CP 1 , Aut (2) O gr ) is trivial, let z(exp v) ∼ z. By the above, there exists an element

u ∈ Z 1 (CP 1 , (T gr ) 2 ⊕ (T gr ) 4 ) such that z = exp u. Let u = u 2 + u 4 , see (4). Since v = v 4 ∈ Z 1 (CP 1 , (T gr ) 4 ), then z(exp v) = exp(u 2 + u 4 )exp v = exp(u 2 + u 4 + v 4 ). Hence, exp(u 2 + u 4 + v 4 ) ∼ exp(u 2 + u 4 ). Therefore, exp(u 2 + u 4 + v 4 ) = c (0) exp(u 2 + u 4 )(c (1) ) -1 ,
where c (i) ∈ Γ(U i , Aut (2) O gr ) are holomorphic sections for i = 0, 1. Let us represent c (i) = exp(a

(i) 2 + a (i)
4 ), where a

(i)
2 and a

(i)
4 are holomorphic sections of the sheaves (T gr ) 2 and (T gr ) 4 , respectively, over U i for i = 0, 1. Then, applying the Campbell-Hausdorff decomposition twice, we see that exp(a

(0) 2 + a (0) 4 ) exp(u 2 + u 4 ) exp(-a (1) 2 -a (1) 4 ) = exp(a (0) 2 + a (0) 4 + u 2 + u 4 -a (1) 2 -a (1) 4 + 1 2 [a (0) 2 , u 2 ] -1 2 [u 2 , a (1) 2 ]- -1 2 [a (0) 2 , a (1) 
2 ]).

Hence,

u 2 + u 4 + v 4 = a (0) 2 + a (0) 4 + u 2 + u 4 -a (1) 2 -a (1) 4 + 1 2 [a (0) 2 , u 2 ] -1 2 [u 2 , a (1) 2 ] -1 2 [a (0) 2 , a (1) 
2 ]. Therefore,

v 4 = a (0) 2 + a (0) 4 -a (1) 2 -a (1) 4 + 1 2 [a (0) 2 , u 2 ] -1 2 [u 2 , a (1) 2 ] -1 2 [a (0) 2 , a (1) 
2 ].

With respect to the degrees this equality breaks into two:

0 = a (0) 2 -a (1) 2 , v 4 = a (0) 4 -a (1) 4 + 1 2 [a (0) 2 , u 2 ] -1 2 [u 2 , a (1) 2 ] -1 2 [a (0) 2 , a (1) 
2 ].

Hence, we see that

v 4 = a (0) 4 -a (1)
4 , i.e., v ∼ 0. Let us show now that the orbits of the H 1 (CP 1 , (T gr ) 4 )-action on H 1 (CP 1 , Aut (2) O gr ) are fibers of the map λ * 2 . Indeed, let z(exp v) ∼ y, where

y, z ∈ Z 1 (CP 1 , Aut (2) O gr ), v = v 4 ∈ Z 1 (CP 1 , (T gr ) 4 ).
Then, there exist u, w ∈ Z 1 (CP 1 , (T gr ) 2 ⊕ (T gr ) 4 ) such that z = exp u and y = exp w.

Let u = u 2 + u 4 and w = w 2 + w 4 ,
where u 2 , w 2 ∈ Z 1 (CP 1 , (T gr ) 2 ) and u 4 , w 4 ∈ Z 1 (CP 1 , (T gr ) 4 ). We have

exp(u 2 + u 4 + v 4 ) ∼ exp(w 2 + w 4 )
or, as in the first part of the proof,

exp(u 2 + u 4 + v 4 ) = c (0) exp(w 2 + w 4 )(c (1) ) -1 ,
where c (i) = exp(a

(i) 2 + a (i) 4 ). We similarly obtain exp(u 2 + u 4 + v 4 ) = exp(a (0) 2 + a (0) 4 + w 2 + w 4 -a (1) 2 -a (1) 4 ).
Having applied λ 2 to both sides of this equality we get

u 2 = a (0) 2 + w 2 -a (1) 2 .
Hence, u 2 ∼ w 2 , i.e., z(exp v) and y determine the same class in H 1 (CP 

(01) = u 2 + u 4 , see (4).
For homogeneous of these supermanifolds -the cases marked by * , the Lie superalgebra v(M) is described in § 7.

1 * ) u 2 = 0, and

u 4 = 0; 2 * ) u 2 = x -1 δ 1 ∂ ξ 1 , and u 4 = 0; 3 * ) u 2 = x -1 δ 1 ∂ ξ 1 + x -1 δ 2 ∂ ξ 2 , and u 4 = 0; 4 * ) u 2 = x -1 δ 1 ∂ ξ 1 + x -1 δ 2 ∂ ξ 2 + x -1 δ 3 ∂ ξ 3 , and u 4 = 0; 5 * ) u 2 = x -1 δ 1 ∂ ξ 1 + x -1 δ 2 ∂ ξ 2 + x -1 δ 3 ∂ ξ 3 + x -1 δ 4 ∂ ξ 4
, and u 4 = 0; 6) u 2 = 0, and

u 4 = x -1 δ∂ x ; 7) u 2 = x -1 δ 1 ∂ ξ 1 , and u 4 = x -1 δ∂ x ; 8) u 2 = x -1 δ 1 ∂ ξ 1 + x -1 δ 2 ∂ ξ 2 , and u 4 = x -1 δ∂ x ; 9) u 2 = x -1 δ 1 ∂ ξ 1 + x -1 δ 2 ∂ ξ 2 + x -1 δ 3 ∂ ξ 3 , and u 4 = x -1 δ∂ x ; 10 * ) u 2 = t(x -1 δ 1 ∂ ξ 1 + x -1 δ 2 ∂ ξ 2 + x -1 δ 3 ∂ ξ 3 + x -1 δ 4 ∂ ξ 4 ) with t ∈ C × , and u 4 = x -1 δ∂ x .
Proof. Theorem 2.1 implies that

H 1 (CP 1 , (T gr ) 2 ) ≃ C 10 , and H 1 (CP 1 , (T gr ) 4 ) ≃ C.
Thus, by Corollary 5.2, H 1 (CP 1 , Aut (2) O gr ) is the bundle with base C 10 and fiber C. Theorem 2.2 provides us with the system of generating cocycles for the basis and the fiber of this bundle. Thus, any supermanifold with retract CP 1|4 is determined, up to an isomorphism, by the cocycle which in U 0 is of the form

u = i,j=1,...,4 c ij x -1 δ i ∂ ξ j + cx -1 δ∂ x , where c ij = c ji , and c ∈ C.
(5)

Let α ∈ Aut E. Since the automorphism α is a linear function in sections ξ 1 , . . . , ξ 4 , then in U 0 we see that α(ξ i ) = 1≤j≤4 a ji (x)ξ j , where a ji (x) are holomorphic functions in x.

Therefore, in U 1 this equality takes the form

y -1 α(η i ) = 1≤j≤4 a ji (y -1 )y -1 η j , or α(η i ) = 1≤j≤4 a ji (y -1 )η j .
This is how the action of the group Aut E on sections η 1 , . . . , η 4 on U 1 is defined. Hence, a ji (y -1 ) should be holomorphic functions in y on U 1 . Hence, a ji = const for any i, j.

Therefore, any automorphism α ∈ Aut E is given by a complex matrix A = (a ij ), i.e., Aut E ≃ GL 4 (C).

Let B = (b ij ) be the inverse of A = (a ij ). Then,

α(∂ ξ i )ξ j = (α∂ ξ i α -1 )ξ j = α∂ ξ i ( 1≤k≤4 b kj ξ k ) = α(b ij ) = b ij , i.e., α(∂ ξ i ) = 1≤j≤4 b ij ∂ ξ j . Let σ = 1 2 3 4 i j k l ∈ S 4 . Further, α(δ) = α(ξ 1 ξ 2 ξ 3 ξ 4 ) = α(ξ 1 )α(ξ 2 )α(ξ 3 )α(ξ 4 ) = 1≤i≤4 a i1 ξ i 1≤j≤4 a j2 ξ j 1≤k≤4 a k3 ξ k 1≤l≤4 a l4 ξ l = σ∈S4 sign σ • a i1 a j2 a k3 a l4 δ = det A • δ; α(δ i ) = α ∂ ξi δ = α(∂ ξi )α(δ) = det A • 1≤k≤4 b ik ∂ ξ k δ = det A • 1≤k≤4 b ik δ k .
We see that

α x -1 δ∂ x = x -1 α(δ)∂ x = x -1 1≤i≤4 a i1 ξ i 1≤j≤4 a j2 ξ j 1≤k≤4 a k3 ξ k 1≤l≤4 a l4 ξ l ∂ x = x -1 σ∈S4 sign σ • a i1 a j2 a k3 a l4 δ∂ x = det A • x -1 δ∂ x ; α x -1 δ i ∂ ξj = x -1 α(δ i )α ∂ ξj = det A • 1≤k≤4 b ik δ k 1≤l≤4 b jl ∂ ξ l = det A • 1≤k,l≤4 b ik b jl δ k ∂ ξ l .
Then, having applied α to the cocycle (5), we get

α(u) = det A • 1≤i,j,k,l≤4 x -1 c ij b ik b jl δ k ∂ ξ l + det A • cx -1 δ∂ x .
This implies, in particular, that the matrix C = (c ij ) transforms into (det A)B t CB.

Since every cocycle of the form ( 5) is uniquely determined by the matrix C and the number c, and the (Aut E)-action is known, it suffices to consider the following cases.

1. In this case, C = 0 and c = 0. 2. Let rk C = 1 and c = 0. Then, as follows from Algebra course, the group GL 4 (C) does not change the rank of C and there is an invertible operator reducing C to the 4 × 4 matrix E 11 . To this matrix the cocycle x -1 δ 1 ∂ ξ 1 corresponds; we will consider this cocycle as a representative of the corresponding (Aut E)-orbit on Z 1 (CP 1 , Aut (2) O gr ).

3, 4 and 5. Let rk C = 2, 3 and 4, respectively and c = 0. As in case 2, we get, respectively, the following representatives:

x -1 δ 1 ∂ ξ 1 + x -1 δ 2 ∂ ξ 2 , x -1 δ 1 ∂ ξ 1 + x -1 δ 2 ∂ ξ 2 + x -1 δ 3 ∂ ξ 3 , x -1 δ 1 ∂ ξ 1 + x -1 δ 2 ∂ ξ 2 + x -1 δ 3 ∂ ξ 3 + x -1 δ 4 ∂ ξ 4 .
6. Let C = 0 and c ̸ = 0. Then, the transformation determined by the matrix A with det A = 1 c leads to the cocycle x -1 δ∂ x . Let us take it for the representative of the corresponding (Aut E)-orbit on Z 1 (CP 1 , Aut (2) O gr ).

7. Let rk C = 1 and c ̸ = 0. Since C is not invertible, it is possible (elementary linear algebra) to find a matrix A with det A = 1 c so that C becomes the matrix unit E 11 . The cocycle corresponding to this matrix and the number 1 is x -1 δ 1 ∂ ξ 1 + x -1 δ∂ x . Let us take it for the representative of the corresponding (Aut E)-orbit on Z 1 (CP 1 , Aut (2) O gr ).

8 and 9. Let rk C = 2 and 3, respectively, and c ̸ = 0. In analogy with case 7, the representatives are, respectively,

x -1 δ 1 ∂ ξ 1 + x -1 δ 2 ∂ ξ 2 + x -1 δ∂ x , x -1 δ 1 ∂ ξ 1 + x -1 δ 2 ∂ ξ 2 + x -1 δ 3 ∂ ξ 3 + x -1 δ∂ x .
10. Let rk C = 4 and c ̸ = 0. In this case, by an invertible transformation with matrix A such that det A = 1 c the matrix C can be reduced to the diagonal form t 1 4 , where t ∈ C × .

As a result, we get a 1-parameter family of cocycles

c t := t(x -1 δ 1 ∂ ξ 1 + x -1 δ 2 ∂ ξ 2 + x -1 δ 3 ∂ ξ 3 + x -1 δ 4 ∂ ξ 4 ) + x -1 δ∂ x ,
Every cocycle c t defines an orbit in Z 1 (CP 

v (i) ≡ v mod(T gr ) (p+1) (U i ), g (ij) v (j) = v (i) g (ij) in U i ∩ U j ̸ = ∅.
Consider the representation 01) , where u (01) ∈ Z 1 (CP 1 , (T gr ) 2 ⊕ (T gr ) 4 ).

g (01) = exp u (
Let u (01) = u 2 + u 4 , see (4).

6.2. Corollary. The vector field v ∈ v(CP 1 , O gr ) p can be lifted if and only if the following conditions hold

p = -1 [v, u 2 ] = v (1) 1 -v (0) 1 , (2) [v, u 4 ] = v (1) 3 -v (0) 3 + [u 2 , v (1) 1 ] + 1 2 [u 2 , [u 2 , v]], (3) p = 0 [v, u 2 ] = v (1) 2 -v (0) 2 , [v, u 4 ] = v (1) 4 -v (0) 4 + [u 2 , v (1) 2 ] + 1 2 [u 2 , [u 2 , v]], p = 1 [v, u 2 ] = v (1) 3 -v (0) 3 . Proof. Let v ∈ v(CP 1 , O gr ) p , where p = -1, 0. Let us seek v (i) in the form v + v (i) p+2 + v (i) p+4 for v (i) p+2 ∈ v(U i , O gr ) p+2 , and v (i) p+4 ∈ v(U i , O gr ) p+4
. By Theorem 6.1 we have a condition

g (01) v (1) = v (0) g (01) . Then, v (0) = g (01) v (1) (g (01) ) -1 = (exp ad u (01) )v (1) = v (1) + [u (01) , v (1) ] + 1 2 [u (01) , [u (01) , v (1) ]]. Therefore, v + v (0) p+2 + v (0) p+4 = v + v (1) p+2 + v (1) p+4 + [u 2 + u 4 , v + v (1) p+2 ] + 1 2 [u 2 , [u 2 , v]]. Since [v i , u 2 ] = [-∂ ξ i , x -1 δ 1 ∂ ξ 1 ] = -x -1 ∂δ 1 ∂ξ i ∂ ξ 1 is holomorphic in U 1 , then for each v i we set v (0) i = 0, v (1) i = -x -1 ∂δ 1 ∂ξ i ∂ ξ 1 .
We have

[x -1 δ 1 ∂ ξ 1 , -x -1 ∂δ 1 ∂ξ i ∂ ξ 1 ] = -x -2 δ 1 ∂ ξ 1 ( ∂δ 1 ∂ξ i )∂ ξ 1 + x -2 ∂δ 1 ∂ξ i ∂ ξ 1 (δ 1 )∂ ξ 1 = 0.
The first summand vanishes since δ 1 does not contain ξ 1 by definition and

∂ ξ 1 ( ∂δ 1 ∂ξ i ) = 0.
The second summand also vanishes since ∂ ξ 1 (δ 1 ) = 0. Hence, condition (3) of Corollary 6.2 takes the form

0 = v (1) 3 -v (0) 3 . Set v (0) 3 = v
(1) 3 = 0. Therefore, all fields v i = -∂ ξ i , where i = 1, . . . , 4, can be lifted; moreover, in U 0 they have the same form. Hence, the supermanifolds corresponding to the cocycle of the 2nd case is homogeneous. 6.3. Theorem. Let supermanifold (CP 1 , O) be isomorphic to the supermanifold determined by the cocycle u (01) = x -1 δ 1 ∂ ξ 1 . Then, (recall notation (2))

v(CP 1 , O) 0 =< -∂ x , x 2 ∂ x + x∇ -δ 1 ∂ ξ 1 , 2x∂ x + ∇, -x∂ x -ξ 2 ∂ ξ 2 , -x∂ x -ξ 3 ∂ ξ 3 , -x∂ x -ξ 4 ∂ ξ 4 , -ξ 2 ∂ ξ 1 , -ξ 2 ∂ ξ 3 , -ξ 2 ∂ ξ 4 , -ξ 3 ∂ ξ 1 , -ξ 3 ∂ ξ 2 , -ξ 3 ∂ ξ 4 , -ξ 4 ∂ ξ 1 , -ξ 4 ∂ ξ 2 , -ξ 4 ∂ ξ 3 >; v(CP 1 , O) 1 =< -∂ ξ i for i = 1, . . . , 4, -x∂ ξ 1 , -x∂ ξ 2 + ξ 3 ξ 4 ∂ ξ 1 , -ξ j ∂ x , -x∂ ξ 3 -ξ 2 ξ 4 ∂ ξ 1 , -x∂ ξ 4 + ξ 2 ξ 3 ∂ ξ 1 , -ξ j (x∂ x + ∇), for j = 2, 3, 4 > . 6.4 Case 3. Let u 2 = x -1 δ 1 ∂ ξ 1 + x -1 δ 2 ∂ ξ 2 , and u 4 = 0. Let v i = -∂ ξ i ∈ v(CP 1 , O gr ) -1
, where i = 1, . . . , 4. Thanks to (6) and since

[v i , u 2 ] = [-∂ ξ i , x -1 δ 1 ∂ ξ 1 + x -1 δ 2 ∂ ξ 2 ] = -x -1 ∂δ 1 ∂ξ i ∂ ξ 1 -x -1 ∂δ 2 ∂ξ i ∂ ξ 2 is holomorphic in U 1 , then for each v i we set v (0) 1 = 0, v (1) 1 = -x -1 ∂δ 1 ∂ξ i ∂ ξ 1 -x -1 ∂δ 2 ∂ξ i ∂ ξ 2 .
In the same way as in Case 2 we see that

[x -1 δ 1 ∂ ξ 1 + x -1 δ 2 ∂ ξ 2 , -x -1 ∂δ 1 ∂ξ i ∂ ξ 1 -x -1 ∂δ 2 ∂ξ i ∂ ξ 2 ] = 0.
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Hence, condition (3) of Corollary 6.2 takes the form

0 = v (1) 3 -v (0) 3 . Set v (0) 3 = v
(1) 3 = 0. Thus, all fields v i = -∂ ξ i for i = 1, . . . , 4 can be lifted and in U 0 they have the same form. Therefore, the supermanifold corresponding to the cocycle of Case 3 is homogeneous.

6.4. Theorem. Let supermanifold (CP 1 , O) be isomorphic to the supermanifold determined by the cocycle u

(01) = x -1 δ 1 ∂ ξ 1 + x -1 δ 2 ∂ ξ 2 . Then, (recall notation (2)) v(CP 1 , O) 0 =< -∂ x , x 2 ∂ x + x∇ -δ 1 ∂ ξ 1 -δ 2 ∂ ξ 2 , 2x∂ x + ∇, ξ 2 ∂ ξ 2 , -x∂ x -ξ 3 ∂ ξ 3 , -x∂ x -ξ 4 ∂ ξ 4 , ξ 1 ∂ ξ 2 -ξ 2 ∂ ξ 1 , -ξ 3 ∂ ξ 1 , -ξ 3 ∂ ξ 2 , -ξ 3 ∂ ξ 4 , -ξ 4 ∂ ξ 1 , -ξ 4 ∂ ξ 2 , -ξ 4 ∂ ξ 3 >; v(CP 1 , O) 1 =< -∂ ξ i , i = 1, . . . , 4, -x∂ ξ 1 -ξ 3 ξ 4 ∂ ξ 2 , -x∂ ξ 2 + ξ 3 ξ 4 ∂ ξ 1 , -x∂ ξ 3 -ξ 2 ξ 4 ∂ ξ 1 + ξ 1 ξ 4 ∂ ξ 2 , -x∂ ξ 4 + ξ 2 ξ 3 ∂ ξ 1 -ξ 1 ξ 3 ∂ ξ 2 , -ξ j (x∂ x + ∇), -ξ j ∂ x , j = 3, 4 > . 6.5 Case 4. Let u 2 = x -1 δ 1 ∂ ξ 1 + x -1 δ 2 ∂ ξ 2 + x -1 δ 3 ∂ ξ 3 , and u 4 = 0. Let v i = -∂ ξ i ∈ v(CP 1 , O gr ) -1
, where i = 1, . . . , 4. Thanks to (6) and since

[v i , u 2 ] = [-∂ ξ i , x -1 δ 1 ∂ ξ 1 + x -1 δ 2 ∂ ξ 2 + x -1 δ 3 ∂ ξ 3 ] = -x -1 ∂δ 1 ∂ξ i ∂ ξ 1 -x -1 ∂δ 2 ∂ξ i ∂ ξ 2 -x -1 ∂δ 3 ∂ξ i ∂ ξ 3 is holomorphic in U 1 , then for each v i we set v (0) 1 = 0, v (1) 1 = -x -1 ∂δ 1 ∂ξ i ∂ ξ 1 -x -1 ∂δ 2 ∂ξ i ∂ ξ 2 -x -1 ∂δ 3 ∂ξ i ∂ ξ 3 .
In the same way as in Case 2 we see that [X, Y ] = 0, where

X := x -1 δ 1 ∂ ξ 1 + x -1 δ 2 ∂ ξ 2 + x -1 δ 3 ∂ ξ 3 , Y := -x -1 ∂δ 1 ∂ξ i ∂ ξ 1 -x -1 ∂δ 2 ∂ξ i ∂ ξ 2 -x -1 ∂δ 3 ∂ξ i ∂ ξ 3 .
Hence, condition (3) of Corollary 6.2 is of the form

0 = v (1) 3 -v (0) 3 . Set v (0) 3 = v
(1) 3 = 0. Thus, all fields v i = -∂ ξ i for i = 1, . . . , 4 can be lifted and in U 0 they have the same form. Therefore, the supermanifold corresponding to the cocycle of the 4th case is homogeneous.

6.5. Theorem. Let supermanifold (CP 1 , O) be isomorphic to the supermanifold determined by the cocycle

u (01) = x -1 δ 1 ∂ ξ 1 + x -1 δ 2 ∂ ξ 2 + x -1 δ 3 ∂ ξ 3 .
Then, (recall notation (2))

v(CP 1 , O) 0 =< -∂ x , x 2 ∂ x + x∇ -δ 1 ∂ ξ 1 -δ 2 ∂ ξ 2 -δ 3 ∂ ξ 3 , 2x∂ x + ∇, ξ 1 ∂ ξ 2 -ξ 2 ∂ ξ 1 , ξ 1 ∂ ξ 3 -ξ 3 ∂ ξ 1 , ξ 2 ∂ ξ 3 -ξ 3 ∂ ξ 2 , -x∂ x -ξ 4 ∂ ξ 4 , -ξ 4 ∂ ξ 1 , -ξ 4 ∂ ξ 2 , -ξ 4 ∂ ξ 3 >; v(CP 1 , O) 1 =< -∂ ξ i for i = 1, . . . , 4, -x∂ ξ 1 -ξ 3 ξ 4 ∂ ξ 2 + ξ 2 ξ 4 ∂ ξ 3 , -x∂ ξ 2 + ξ 3 ξ 4 ∂ ξ 1 -ξ 1 ξ 4 ∂ ξ 3 , -x∂ ξ 3 -ξ 2 ξ 4 ∂ ξ 1 + ξ 1 ξ 4 ∂ ξ 2 , -x∂ ξ 4 + ξ 2 ξ 3 ∂ ξ 1 -ξ 1 ξ 3 ∂ ξ 2 + ξ 1 ξ 2 ∂ ξ 3 , -ξ 4 (x∂ x + ∇), -ξ 4 ∂ x > .
6.6 Case 5. Let

u 2 = x -1 δ 1 ∂ ξ 1 + x -1 δ 2 ∂ ξ 2 + x -1 δ 3 ∂ ξ 3 + x -1 δ 4 ∂ ξ 4
, and u 4 = 0.

Let

v i = -∂ ξ i ∈ v(CP 1 , O gr ) -1
, where i = 1, . . . , 4. Thanks to (6) and since

[v i , u 2 ] = [-∂ ξ i , x -1 δ 1 ∂ ξ 1 + x -1 δ 2 ∂ ξ 2 + x -1 δ 3 ∂ ξ 3 + x -1 δ 4 ∂ ξ 4 ] = = -x -1 ∂δ 1 ∂ξ i ∂ ξ 1 -x -1 ∂δ 2 ∂ξ i ∂ ξ 2 -x -1 ∂δ 3 ∂ξ i ∂ ξ 3 -x -1 ∂δ 4 ∂ξ i ∂ ξ 4 is holomorphic in U 1 , then for each v i we set v (0) 1 = 0, v (1) 
1 = -x -1 ∂δ 1 ∂ξ i ∂ ξ 1 -x -1 ∂δ 2 ∂ξ i ∂ ξ 2 -x -1 ∂δ 3 ∂ξ i ∂ ξ 3 -x -1 ∂δ 4 ∂ξ i ∂ ξ 4 .
In the same way as in Case 2 we see that [A, B] = 0, where

A := x -1 δ 1 ∂ ξ 1 + x -1 δ 2 ∂ ξ 2 + x -1 δ 3 ∂ ξ 3 + x -1 δ 4 ∂ ξ 4 , B := -x -1 ∂δ 1 ∂ξ i ∂ ξ 1 -x -1 ∂δ 2 ∂ξ i ∂ ξ 2 -x -1 ∂δ 3 ∂ξ i ∂ ξ 3 -x -1 ∂δ 4 ∂ξ i ∂ ξ 4 .
Hence, condition (3) of Corollary 6.2 takes the form

0 = v (1) 3 -v (0) 3 . Set v (0) 3 = v (1) 3 = 0.
Therefore, all fields v i = -∂ ξ i for i = 1, . . . , 4 can be lifted and in U 0 they have the same form. Therefore, the supermanifold corresponding to the cocycle of the 5th case is homogeneous.

6.6. Theorem. Let supermanifold (CP 1 , O) be isomorphic to the supermanifold determined by the cocycle

u (01) = x -1 δ 1 ∂ ξ 1 + x -1 δ 2 ∂ ξ 2 + x -1 δ 3 ∂ ξ 3 + x -1 δ 4 ∂ ξ 4 . Then, (recall notation (2)) v(CP 1 , O) 0 =< -∂ x , x 2 ∂ x + x∇ + ∇, 2x∂ x + ∇, ξ 1 ∂ ξ2 -ξ 2 ∂ ξ1 , ξ 1 ∂ ξ3 -ξ 3 ∂ ξ1 , ξ 2 ∂ ξ3 -ξ 3 ∂ ξ2 , ξ 1 ∂ ξ4 -ξ 4 ∂ ξ1 , ξ 2 ∂ ξ4 -ξ 4 ∂ ξ2 , ξ 3 ∂ ξ4 -ξ 4 ∂ ξ3 >, v(CP 1 , O) 1 =< -x∂ ξ1 -ξ 3 ξ 4 ∂ ξ2 + ξ 2 ξ 4 ∂ ξ3 -ξ 2 ξ 3 ∂ ξ4 , -x∂ ξ2 + ξ 3 ξ 4 ∂ ξ1 -ξ 1 ξ 4 ∂ ξ3 + ξ 1 ξ 3 ∂ ξ4 , -x∂ ξ3 -ξ 2 ξ 4 ∂ ξ1 + ξ 1 ξ 4 ∂ ξ2 -ξ 1 ξ 2 ∂ ξ4 , -x∂ ξ4 + ξ 2 ξ 3 ∂ ξ1 -ξ 1 ξ 3 ∂ ξ2 + ξ 1 ξ 2 ∂ ξ3 , -∂ ξi for i = 1, . . . , 4 > . where v ′ ∈ v(CP 1 , O gr ) 1 .
Since [X, Y ] = 0, where

X := x -1 δ 1 ∂ ξ 1 + x -1 δ 2 ∂ ξ 2 + x -1 δ 3 ∂ ξ 3 , Y := -x -1 ξ 2 ξ 3 ∂ ξ 1 + x -1 ξ 1 ξ 3 ∂ ξ 2 -x -1 ξ 1 ξ 2 ∂ ξ 3 , then condition (3) of Corollary 6.2 is of the form [∂ ξ 4 , x -1 δ∂ x ] = v (1) 3 -v (0) 3 + [x -1 δ 1 ∂ ξ 1 + x -1 δ 2 ∂ ξ 2 + x -1 δ 3 ∂ ξ 3 , v ′ ].
Therefore,

x -1 δ 4 ∂ x + [v ′ , x -1 δ 1 ∂ ξ 1 + x -1 δ 2 ∂ ξ 2 + x -1 δ 3 ∂ ξ 3 ] ∼ 0. Since v ′ ∈ v(CP 1 , O gr ) 1 , then we can consider (recall notation (2)) v ′ = 1≤k≤4 A k ξ k (x∂ x + ∇) + B k ξ k ∂ x , where A k , B k ∈ C. Then, [v ′ , x -1 δ 1 ∂ ξ 1 + x -1 δ 2 ∂ ξ 2 + x -1 δ 3 ∂ ξ 3 ] ∼ A 1 x -1 δ∂ ξ 1 + A 2 x -1 δ∂ ξ 2 + A 3 x -1 δ∂ ξ 3 -2B 1 x -1 δ 1 ∂ x -2B 2 x -1 δ 2 ∂ x -2B 3 x -1 δ 3 ∂ x .
But then, for any A 1 , A 2 , A 3 , B 1 , B 2 , B 3 ∈ C, we have

x -1 δ 4 ∂ x + [v ′ , x -1 δ 1 ∂ ξ 1 + x -1 δ 2 ∂ ξ 2 + x -1 δ 3 ∂ ξ 3 ] ∼ x -1 δ 4 ∂ x + A 1 x -1 δ∂ ξ 1 + A 2 x -1 δ∂ ξ 2 + A 3 x -1 δ∂ ξ 3 -2B 1 x -1 δ 1 ∂ x -2B 2 x -1 δ 2 ∂ x -2B 3 x -1 δ 3 ∂ x ̸ ∼ 0.
Hence, the field -∂ ξ 4 can not be lifted. This shows that the supermanifold of the 9th case is not homogeneous.

6.11 Case 10. Let t ∈ C × . Let u 2 = t(x -1 δ 1 ∂ ξ 1 + x -1 δ 2 ∂ ξ 2 + x -1 δ 3 ∂ ξ 3 + x -1 δ 4 ∂ ξ 4 ), and u 4 = x -1 δ∂ x . Let v i = -∂ ξ i ∈ v(CP 1 , O gr ) -1
, where i = 1, . . . , 4. Thanks to (6) and since

[v i , u 2 ] = [-∂ ξ i , t(x -1 δ 1 ∂ ξ 1 + x -1 δ 2 ∂ ξ 2 + x -1 δ 3 ∂ ξ 3 + x -1 δ 4 ∂ ξ 4 )] = -tx -1 ∂δ 1 ∂ξ i ∂ ξ 1 + ∂δ 2 ∂ξ i ∂ ξ 2 + ∂δ 3 ∂ξ i ∂ ξ 3 + ∂δ 4 ∂ξ i ∂ ξ 4 is holomorphic in U 1 , then set v (0) 1 = v ′ , where v ′ ∈ v(CP 1 , O gr ) 1 , and v (1) 1 = v ′ -tx -1 ∂δ 1 ∂ξ i ∂ ξ 1 + ∂δ 2 ∂ξ i ∂ ξ 2 + ∂δ 3 ∂ξ i ∂ ξ 3 + ∂δ 4 ∂ξ i ∂ ξ 4 .
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We have [A, B] = 0, where

A := t(x -1 δ 1 ∂ ξ 1 + x -1 δ 2 ∂ ξ 2 + x -1 δ 3 ∂ ξ 3 + x -1 δ 4 ∂ ξ 4 ), B := -tx -1 ∂δ 1 ∂ξ i ∂ ξ 1 + ∂δ 2 ∂ξ i ∂ ξ 2 + ∂δ 3 ∂ξ i ∂ ξ 3 + ∂δ 4 ∂ξ i ∂ ξ 4 .
Hence, condition (3) of Corollary 6.2 is of the form

[-∂ ξ i , x -1 δ∂ x ] = v (1) 3 -v (0) 3 + [t(x -1 δ 1 ∂ ξ 1 + x -1 δ 2 ∂ ξ 2 + x -1 δ 3 ∂ ξ 3 + x -1 δ 4 ∂ ξ 4 ), v ′ ]. Therefore, -x -1 δ i ∂ x + t[v ′ , x -1 δ 1 ∂ ξ 1 + x -1 δ 2 ∂ ξ 2 + x -1 δ 3 ∂ ξ 3 + x -1 δ 4 ∂ ξ 4 ] ∼ 0. Since v ′ ∈ v(CP 1 , O gr ) 1 , take v ′ = 1≤k≤4 A k ξ k (x∂ x + ∇) + B k ξ k ∂ x , where A k , B k ∈ C. Then, [v ′ , x -1 δ 1 ∂ ξ 1 + x -1 δ 2 ∂ ξ 2 + x -1 δ 3 ∂ ξ 3 + x -1 δ 4 ∂ ξ 4 ] = 1≤k≤4 2A k x -1 δ∂ ξ k -B k x -2 δ∂ ξ k -B k x -1 δ k ∂ x -A k δ k ∂ x ∼ 1≤k≤4 2A k x -1 δ∂ ξ k -2B k x -1 δ k ∂ x .
But then, for B i = -1 2t , and B j = 0 for j ∈ {1, . . . , 4 | j ̸ = i}, and A k = 0 for k = 1, . . . , 4, we have

-x -1 δ i ∂ x + t[v ′ , x -1 δ 1 ∂ ξ 1 + x -1 δ 2 ∂ ξ 2 + x -1 δ 3 ∂ ξ 3 + x -1 δ 4 ∂ ξ 4 ] ∼ -x -1 δ i ∂ x + t 1≤k≤4 2A k x -1 δ∂ ξ k -2B k x -1 δ k ∂ x ∼ 0.
Thus, all fields -∂ ξ i for i = 1, . . . , 4 can be lifted. Hence, the supermanifold corresponding to the cocycle of the 4th case is homogeneous. 6.7. Theorem. Let supermanifold (CP 1 , O) be isomorphic to the supermanifold determined by the cocycle

u (01) = t(x -1 δ 1 ∂ ξ 1 + x -1 δ 2 ∂ ξ 2 + x -1 δ 3 ∂ ξ 3 + x -1 δ 4 ∂ ξ 4 ) + x -1 δ∂ x . Then (recall notation (2)), v(CP 1 , O) 0 =< -∂ x , x 2 ∂ x + x∇ -tω -δ∂ x , 2x∂ x + ∇, ξ 1 ∂ ξ2 -ξ 2 ∂ ξ1 , ξ 1 ∂ ξ3 -ξ 3 ∂ ξ1 , ξ 2 ∂ ξ3 -ξ 3 ∂ ξ2 , ξ 1 ∂ ξ4 -ξ 4 ∂ ξ1 , ξ 2 ∂ ξ4 -ξ 4 ∂ ξ2 , ξ 3 ∂ ξ4 -ξ 4 ∂ ξ3 >, where ω = 1≤i≤4 δ i ∂ ξi ; v(CP 1 , O) 1 =< -∂ ξi -1 2t ξ i ∂ x , i = 1, . . . , 4, -x∂ ξ1 + t(-ξ 3 ξ 4 ∂ ξ2 + ξ 2 ξ 4 ∂ ξ4 -ξ 2 ξ 3 ∂ ξ4 ) -1 2t ξ 1 (x∂ x + ∇) + δ 1 ∂ x , -x∂ ξ2 + t(ξ 3 ξ 4 ∂ ξ1 -ξ 1 ξ 4 ∂ ξ3 + ξ 1 ξ 3 ∂ ξ4 ) -1 2t ξ 2 (x∂ x + ∇) + δ 2 ∂ x , -x∂ ξ3 + t(-ξ 2 ξ 4 ∂ ξ1 + ξ 1 ξ 4 ∂ ξ2 -ξ 1 ξ 2 ∂ ξ4 ) -1 2t ξ 3 (x∂ x + ∇) + δ 3 ∂ x , -x∂ ξ4 + t(ξ 2 ξ 3 ∂ ξ1 -ξ 1 ξ 3 ∂ ξ2 + ξ 1 ξ 2 ∂ ξ3 ) -1 2t ξ 4 (x∂ x + ∇) + δ 4 ∂ x > .
6.8 Theorem (Summary). The supermanifold isomorphic to one of the supermanifolds of cases 1 -5 or 10 is homogeneous; it is not homogeneous in cases 6 -9.

7 Description of v(M) for homogeneous superstrings M with retract CP 1|4

The cases are numbered as in Theorem 5.3. We reproduce here the bases found in §2.3, and multiplication tables. In all cases (recall notation (2)), 12⟩, where

h := [e, f ] = 2x∂ x + ∇ and [h, e] = 2e, [h, f ] = -2f . 1. Fact (well-known): v(CP 1|4 ) ≃ pgl C (4|2). 2. v(CP 1 , O) 0 = ⟨e, f, h, a i | i = 1, . . . ,
e = x 2 ∂ x + x∇ -δ 1 ∂ ξ 1 , f = -∂ x , a 1 = -x∂ x -ξ 2 ∂ ξ 2 , a 2 = -x∂ x -ξ 3 ∂ ξ 3 , a 3 = -x∂ x -ξ 4 ∂ ξ 4 , a 4 = -ξ 2 ∂ ξ 1 , a 5 = -ξ 2 ∂ ξ 3 , a 6 = -ξ 2 ∂ ξ 4 , a 7 = -ξ 3 ∂ ξ 2 , a 8 = -ξ 3 ∂ ξ 1 , a 9 = -ξ 3 ∂ ξ 4 , a 10 = -ξ 4 ∂ ξ 2 , a 11 = -ξ 4 ∂ ξ 3 , a 12 = -ξ 4 ∂ ξ 1 ; v(CP 1 , O) 1 = ⟨z i , i = 1, . . . , 14⟩
, where

z 1 = -∂ ξ 1 , z 2 = -∂ ξ 2 , z 3 = -∂ ξ 3 , z 4 = -∂ ξ 4 , z 5 = -ξ 2 ∂ x , z 6 = -ξ 3 ∂ x , z 7 = -ξ 4 ∂ x , z 8 = -x∂ ξ 1 , z 9 = -ξ 2 (x∂ x + ∇), z 10 = -ξ 3 (x∂ x + ∇), z 11 = -ξ 4 (x∂ x + ∇), z 12 = -x∂ ξ 2 + ξ 3 ξ 4 ∂ ξ 1 , z 13 = -x∂ ξ 3 -ξ 2 ξ 4 ∂ ξ 1 , z 14 = -x∂ ξ 3 + ξ 2 ξ 3 ∂ ξ 1 .
[h, a i ] = [e, a i ] = [f, a i ] = 0 for all i = 1, . . . , 12.

[ , ] a 1 a 2 a 3 a [ , ] z 1 z 2 z 3 z 4 z 5 z 6 z 7 z 8 z 9 z 10 z 11 z 12 z 13 z 14 e -z 8 -z 12 -z 13 -z 14 -z 9 -z 10 -z 11 0 0 0 0 0 0 0 9⟩, where

f 0 0 0 0 0 0 0 -z 1 -z 5 -z 6 -z 7 -z 2 -z 3 -z 4 h -z 1 -z 2 -z 3 -z 4 -z 5 -z 6 -z 7 z 8 z 9 z 10 z 11 z 12 z 13 z 14 a 1 0 z 2 0 0 0 z 6 z 7 -z 8 -z 9 0 0 0 -z 13 -z 14 a 2 0 0 z 3 0 z 5 0 z 7 -z 8 0 -z 10 0 -z 12 0 -z 14 a 3 0 0 0 z 4 z 5 z 6 0 -z 8 0 0 -z 11 -z 12 -z 13 0 a 4 0 z 1 0 0 0 0 0 0 0 0 0 z 8 0 0 a 5 0 z 3 0 0 0 -z 5 0 0 0 -z 9 0 -z 12 0 0 a 6 0 z 4 0 0 0 0 -z 5 0 0 0 -z 9 z 14 0 0 a 7 0 0 z 2 0 z 6 0 0 0 -z 10 0 0 0 z 12 0 a 8 0 0 z 1 0 0 0 0 0 0 0 0 0 z 8 0 a 9 0 0 z 4 0 0 0 -z 6 0 0 0 -z 10 0 z 4 0 a 10 0 0 0 z 2 -z 7 0 0 0 -z 11 0 0 0 0 z 12 a 11 0 0 0 z 3 0 -z 7 0 0 0 -z 11 0 0 0 z 13 a 12 0 0 0 z 1 0 0 0 0 0 0 0 0 0 z 8 [ , ] z 1 z 2 z 3 z 4 z 5 z 6 z 7 z 8 z 9 z 10 z 11 z 12 z 13 z 14 z 1 0 0 0 0 0 0 0 0 a 4 a 8 a 12 0 0 0 z 2 0 0 0 0 -f 0 0 0 a 1 +h a 7 a 10 0 -a 12 a 8 z 3 0 0 0 0 0 -f 0 0 a 5 a 2 +h a 11 a 12 0 -a 4 z 4 0 0 0 0 0 0 -f 0 a 8 a 9 a 3 +h -a 8 a 4 0 z 5 0 -f 0 0 0 0 0 -a 4 0 0 0 -a 1 -a 5 -a 6 z 6 0 0 -f 0 0 0 0 -a 8 0 0 0 -a 7 -
z 14 0 a 8 -a 4 0 -a 6 -a 9 -a 3 0 0 0 e 0 0 0 3. We have v(CP 1 , O) 0 = ⟨e, f, h, a i | i = 1, . . . ,
e = x 2 ∂ x + x∇ -δ 1 ∂ ξ 1 -δ 2 ∂ ξ 2 , f = -∂ x , a 1 = -x∂ x -ξ 3 ∂ ξ 3 , a 2 = -x∂ x -ξ 4 ∂ ξ 4 , a 3 = ξ 1 ∂ ξ 2 -ξ 2 ∂ ξ 1 , a 4 = -ξ 3 ∂ ξ 1 , a 5 = -ξ 3 ∂ ξ 2 , a 6 = -ξ 3 ∂ ξ 4 , a 7 = -ξ 4 ∂ ξ 1 , a 8 = -ξ 4 ∂ ξ 2 , a 9 = -ξ 4 ∂ ξ 3 ; v(CP 1 , O) 1 = ⟨z i | i = 1, . . . , 12⟩
, where

z 1 = -∂ ξ 1 , z 2 = -∂ ξ 2 , z 3 = -∂ ξ 3 , z 4 = -∂ ξ 4 , z 5 = -ξ 3 ∂ x , z 6 = -ξ 4 ∂ x , z 7 = -x∂ ξ 1 -ξ 3 ξ 4 ∂ ξ 2 , z 8 = -x∂ ξ 2 + ξ 3 ξ 4 ∂ ξ 1 , z 9 = -x∂ ξ 3 -ξ 2 ξ 4 ∂ ξ 1 + ξ 1 ξ 4 ∂ ξ 2 , z 10 = -x∂ ξ 4 + ξ 2 ξ 3 ∂ ξ 1 -ξ 1 ξ 3 ∂ ξ 2 , z 11 = -ξ 3 (x∂ x + ∇), z 12 = -ξ 4 (x∂ x + ∇). [h, a i ] = [e, a i ] = [f, a i ] = 0, i = 1, . . . , 9. [ , ] a 1 a 2 a 3 a 4 a 5 a 6 a 7 a 8 a 9 a 1 0 0 0 -a 4 -a 5 -a 6 0 0 a 9 a 2 0 0 0 0 0 a 6 -a 7 -a 8 -a 9 a 3 0 0 0 -a 5 a 4 0 -a 8 a 7 0 a 4 a 4 0 a 5 0 0 0 0 0 a 7 a 5 a 5 0 -a 4 0 0 0 0 0 a 8 a 6 a 6 -a 6 0 0 0 0 -a 4 -a 5 a 2 -a 1 a 7 0 a 7 a 8 0 0 a 4 0 0 0 a 8 0 a 8 -a 7 0 0 a 5 0 0 0 a 9 -a 9 a 9 0 -a 7 -a 8 a 1 -a 2 0 0 0 [ , ] z 1 z 2 z 3 z 4 z 5 z 6 z 7 z 8 z 9 z 10 z 11 z 12 e -z 7 -z 8 -z 9 -z 10 -z 11 -z 12 0 0 0 0 0 0 f 0 0 0 0 0 0 -z 1 -z 2 -z 3 -z 4 -z 5 -z 6 h -z 1 -z 2 -z 3 -z 4 -z 5 -z 6 z 7 z 8 z 9 z 10 z 11 z 12 a 1 0 0 z 3 0 0 z 6 -z 7 -z 8 0 -z 10 -z 11 0 a 2 0 0 0 z 4 z 5 0 -z 7 -z 8 -z 9 0 0 z 12 a 3 -z 2 z 1 0 0 0 0 -z 8 z 7 0 0 0 0 a 4 0 0 z 1 0 0 0 0 0 z 7 0 0 0 a 5 0 0 z 2 0 0 0 0 0 z 8 0 0 0 a 6 0 0 z 4 0 0 -z 5 0 0 z 10 0 0 -z 11 a 7 0 0 0 z 1 0 0 0 0 0 z 7 0 0 a 8 0 0 0 z 2 0 0 0 0 0 z 8 0 0 a 9 0 0 0 z 3 -z 6 0 0 0 0 z 9 -z 12 0 [ , ] z 1 z 2 z 3 z 4 z 5 z 6 z 7 z 8 z 9 z 10 z 11 z 12 z 1 0 0 0 0 0 0 0 0 a 8 -a 5 a 4 a 7 z 2 0 0 0 0 0 0 0 0 -a 7 a 4 a 5 a 8 z 3 0 0 0 0 -f 0 -a 8 a 7 0 -a 3 a 1 +h a 9 z 4 0 0 0 0 0 -f a 5 -a 4 a 3 0 a 6 a 2 +h z 5 0 0 -f 0 0 0 -a 4 -a 5 -a 1 -a 6 0 0 z 6 0 0 0 -f 0 0 -a 7 -a 8 -a 9 -a 2 0 0 z 7 0 0 -a 8 a 7 -a 4 -a 7 0 0 0 0 0 0 z 8 0 0 a 7 -a 4 -a 5 -a 8 0 0 0 0 0 0 z 9 a 8 -a 7 0 a 3 -a 1 -a 9 0 0 0 0 e 0 z 10 -a 5 a 4 -a 3 0 -a 6 -a 2 0 0 0 0 0 e z 11 a 4 a 5 a 1 +h a 6 0 0 0 0 e 0 0 0 z 12 a 7 a 8 a 9 a 2 +h 0 0 0 0 0 e 0 0 4. v(CP 1 , O) 0 = ⟨e, f, h, a, a i | i = 1, . . . , 6⟩, where e = x 2 ∂ x + x∇ -δ 1 ∂ ξ 1 -δ 2 ∂ ξ 2 -δ 3 ∂ ξ 3 , f = -∂ x , a = -x∂ x -ξ 4 ∂ ξ 4 , a 1 = ξ 1 ∂ ξ 2 -ξ 2 ∂ ξ 1 , a 2 = ξ 1 ∂ ξ 3 -ξ 3 ∂ ξ 1 , a 3 = ξ 2 ∂ ξ 3 -ξ 3 ∂ ξ 2 , a 4 = -ξ 4 ∂ ξ 1 , a 5 = -ξ 4 ∂ ξ 2 , a 6 = -ξ 4 ∂ ξ 3 ; v(CP 1 , O) 1 = ⟨z i | i = 1, . . . , 10⟩, where z 1 = -∂ ξ 1 , z 2 = -∂ ξ 2 , z 3 = -∂ ξ 3 , z 4 = -ξ 4 ∂ x , z 5 = -∂ ξ 4 , z 6 = -x∂ ξ 1 -ξ 3 ξ 4 ∂ ξ 2 + ξ 2 ξ 4 ∂ ξ 3 , z 7 = -x∂ ξ 2 + ξ 3 ξ 4 ∂ ξ 1 -ξ 1 ξ 4 ∂ ξ 3 , z 8 = -x∂ ξ 3 -ξ 2 ξ 4 ∂ ξ 1 + ξ 1 ξ 4 ∂ ξ 2 , z 9 = -ξ 4 (x∂ x + ∇), z 10 = -x∂ ξ 4 + ξ 2 ξ 3 ∂ ξ 1 -ξ 1 ξ 3 ∂ ξ 2 + ξ 1 ξ 2 ∂ ξ 3 . [h, v] = [e, v] = [f, v] = 0, where v ∈ {a, a i | i = 1, . . . , 6}. [ , ] a a 1 a 2 a 3 a 4 a 5 a 6 a 0 0 0 0 -a 4 -a 5 -a 6 a 1 0 0 -a 3 a 2 -a 5 a 4 0 a 2 0 a 3 0 -a 1 -a 6 0 a 4 a 3 0 -a 2 a 1 0 0 -a 6 a 5 a 4 a 4 a 5 a 6 0 0 0 0 a 5 a 5 -a 4 0 a 6 0 0 0 a 6 a 6 0 -a 4 -a 5 0 0 0 [ , ] z 1 z 2 z 3 z 4 z 5 z 6 z 7 z 8 z 9 z 10 e 0 0 0 0 0 -z 1 -z 2 -z 3 -z 4 -z 5 f -z 6 -z 7 -z 8 -z 9 -z 10 0 0 0 0 0 h -z 1 -z 2 -z 3 -z 4 -z 5 z 6 z 7 z 8 z 9 z 10 a 0 0 0 0 z 5 -z 6 -z 7 -z 8 -z 9 0 a 1 -z 2 z 1 0 0 0 -z 7 z 6 0 0 0 a 2 -z 3 0 z 1 0 0 -z 8 0 z 6 0 0 a 3 0 -z 3 z 2 0 0 0 -z 8 z 7 0 0 a 4 0 0 0 0 z 1 0 0 0 0 z 6 a 5 0 0 0 0 z 2 0 0 0 0 z 7 a 6 0 0 0 0 z 3 0 0 0 0 z 8 [ , ] z 1 z 2 z 3 z 4 z 5 z 6 z 7 z 8 z 9 z 10 z 1 0 0 0 0 0 0 -a 6 a 5 a 4 -a 3 z 2 0 0 0 0 0 a 6 0 -a 4 a 5 a 2 z 3 0 0 0 0 0 -a 5 a 4 0 a 6 -a 1 z 4 0 0 0 0 -f -a 4 -a 5 -a 6 0 -a z 5 0 0 0 -f 0 a 3 -a 2 a 1 a + h 0 z 6 0 a 6 -a 5 -a 4 a 3 0 0 0 0 0 z 7 -a 6 0 a 4 -a 5 -a 2 0 0 0 0 0 z 8 a 5 -a 4 0 -a 6 a 1 0 0 0 0 0 z 9 a 4 a 5 a 6 0 a + h 0 0 0 0 e z 10 -a 3 a 2 -a 1 -a 0 0 0 0 e 0 5. v(CP 1 , O) 0 = ⟨e, f, h, a i | i = 1, . . . , 6⟩, where e = x 2 ∂ x + x∇ -ω, f = -∂ x , a 1 = ξ 1 ∂ ξ 2 -ξ 2 ∂ ξ 1 , a 2 = ξ 1 ∂ ξ 3 -ξ 3 ∂ ξ 1 , a 3 = ξ 1 ∂ ξ 4 -ξ 4 ∂ ξ 1 , a 4 = ξ 2 ∂ ξ 3 -ξ 3 ∂ ξ 2 , a 5 = ξ 2 ∂ ξ 4 -ξ 4 ∂ ξ 2 , a 6 = ξ 3 ∂ ξ 4 -ξ 4 ∂ ξ 3 ; v(CP 1 , O) 1 = ⟨z i | i = 1, . . . , 8⟩, where z 1 = -∂ ξ 1 , z 2 = -∂ ξ 2 , z 3 = -∂ ξ 3 , z 4 = -∂ ξ 4 , z 5 = -x∂ ξ 1 -ξ 3 ξ 4 ∂ ξ 2 + ξ 2 ξ 4 ∂ ξ 3 -ξ 2 ξ 3 ∂ ξ 4 , z 6 = -x∂ ξ 2 + ξ 3 ξ 4 ∂ ξ 1 -ξ 1 ξ 4 ∂ ξ 3 + ξ 1 ξ 3 ∂ ξ 4 , z 7 = -x∂ ξ 3 -ξ 2 ξ 4 ∂ ξ 1 + ξ 1 ξ 4 ∂ ξ 2 -ξ 1 ξ 2 ∂ ξ 4 , z 8 = -x∂ ξ 4 + ξ 2 ξ 3 ∂ ξ 1 --ξ 1 ξ 3 ∂ ξ 2 + ξ 1 ξ 2 ∂ ξ 3 .
[h, a i ] = [e, a i ] = [f, a i ] = 0, i = 1, . . . , 6.

Direct computations show that v(CP 1 , O) 0 ≃ sl 2 ⊕ sl 2 ⊕ sl 2 .

[ -a 3 a 2 -a 1 0 0 0 0 0 Let (σ 1 , σ 2 , σ 3 ) ̸ = (0, 0, 0) and σ 1 +σ 2 +σ 3 = 0. In [START_REF] Bunegina | Two families of flag supermanifolds[END_REF], the family of Lie superalgebras Γ(σ 1 , σ 2 , σ 3 ), discovered by Kaplansky [Kapp*], [Kap*], is described. Observe that the Lie superalgebra osp(4|2; α), where α = σ i σ j for σ j ̸ = 0, is simple except for α = 0 or -1. Since Γ(σ 1 , σ 2 , σ 3 ) ≃ Γ(σ ′ 1 , σ ′ 2 , σ ′ 3 ) if and only if (σ ′ 1 , σ ′ 2 , σ ′ 3 ) = a(σ 1 , σ 2 , σ 3 ), where a ∈ C × and the triple σ differs from σ ′ by a permutation of its components, see [BGL*], it follows that v(M) is isomorphic to Γ(1, -1, 0) = osp(4|2; -1).

10. We have v(CP 1 , O) 0 = ⟨e, f, h, a i | i = 1, . . . , 6⟩, where

e = x 2 ∂ x + x∇ -tω -δ∂ x , f = -∂ x , a 1 = ξ 1 ∂ ξ 2 -ξ 2 ∂ ξ 1 , a 2 = ξ 1 ∂ ξ 3 -ξ 3 ∂ ξ 1 , a 3 = ξ 1 ∂ ξ 4 -ξ 4 ∂ ξ 1 , a 4 = ξ 2 ∂ ξ 3 -ξ 3 ∂ ξ 2 , a 5 = ξ 2 ∂ ξ 4 -ξ 4 ∂ ξ 2 , a 6 = ξ 3 ∂ ξ 4 -ξ 4 ∂ ξ 3 ; v(CP 1 , O) 1 = ⟨z i | i = 1, . . . , 8⟩
, where

z 1 = -∂ ξ 1 -1 2t ξ 1 ∂ x , z 2 = -∂ ξ 2 -1 2t ξ 2 ∂ x , z 3 = -∂ ξ 3 -1 2t ξ 3 ∂ x , z 4 = -∂ ξ 4 -1 2t ξ 4 ∂ x , z 5 = -x∂ ξ 1 + t(-ξ 3 ξ 4 ∂ ξ 2 + ξ 2 ξ 4 ∂ ξ 3 -ξ 2 ξ 3 ∂ ξ 4 ) -1 2t ξ 1 (x∂ x + ∇) + δ 1 ∂ x , z 6 = -x∂ ξ 2 + t(ξ 3 ξ 4 ∂ ξ 1 -ξ 1 ξ 4 ∂ ξ 3 + ξ 1 ξ 3 ∂ ξ 4 ) -1 2t ξ 2 (x∂ x + ∇) + δ 2 ∂ x , z 7 = -x∂ ξ 3 + t(-ξ 2 ξ 4 ∂ ξ 1 + ξ 1 ξ 4 ∂ ξ 2 -ξ 1 ξ 2 ∂ ξ 4 ) -1 2t ξ 3 (x∂ x + ∇) + δ 3 ∂ x , z 8 = -x∂ ξ 4 + t(ξ 2 ξ 3 ∂ ξ 1 -ξ 1 ξ 3 ∂ ξ 2 + ξ 1 ξ 2 ∂ ξ 3 ) -1 2t ξ 4 (x∂ x + ∇) + δ 4 ∂ x .
[e, a i ] = [f, a i ] = [h, a i ] = 0, i = 1, . . . , 6.

Direct computations show that v(CP 1 , O) 0 ≃ sl 2 ⊕ sl 2 × sl 2 .

[ Comparing the above table with the tables in [START_REF] Bunegina | Two families of flag supermanifolds[END_REF] we deduce that this Lie superalgebra is Γ(

1 2t , - 1 2 ( 1 2t + t), - 1 2 ( 1 2t -t)) ≃ Γ(2, -(2t 2 + 1), 2t 2 -1) ≃ osp(4|2; 2t 2 + 1 1 -2t 2 ).

  1 , Aut (2) O gr ). □ 6 Which of the supermanifolds with retract CP 1|4 are homogeneous Consider an open covering U = (U i ) i∈I of a topological space M . Let the supermanifold (M, O) be determined by a cocycle g ∈ Z 1 (M, Aut (2) O gr ). Recall the definition of a liftable field, see § 2.6.1 Theorem ([BO1]). The vector field v ∈ v(M, O gr ) p can be lifted to (M, O) if and only if there exists a v (i) ∈ C 0 (M, (T gr ) (p) ) such that
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Hence, we get the conditions

Let v ∈ v(CP 1 , O gr ) 1 . We seek v (i) in the form v + v

3 , where v (i) 3 ∈ v(U i , O gr ) 3 . By Theorem 6.1 we get the condition g (01) v (1) = v (0) g (01) .

Then, v (0) = g (01) v (1) (g (01) ) -1 = (exp ad u (01) )v (1) = v (1) + [u (01) , v (1) ].

Therefore, v + v

. □

The definition of homogeneous supermanifold implies that the supermanifold is homogeneous if and only if the following map is surjective

Since 0-homogeneity takes place by the proved, it is necessary and sufficient to prove that all fields ∂ ξ i ∈ v(CP 1 , O gr ) -1 can be lifted to (CP 1 , O).

Let us use the conditions obtained to verify the homogeneity of the supermanifolds in the 10 cases of Theorem 6.1. For every homogeneous (CP 1 , O), I compute the Lie superalgebra of vector fields on it.

6.2 Case 1. It corresponds to the supermanifold CP 1|4 . It is well-known that this supermanifold is homogeneous. The Lie superalgebra of vector fields on CP 1|4 is known (see [O3]):

, where i = 1, . . . , 4. We will repeatedly use the following "formula" 

3 is holomorphic in U j for j = 0, 1. Then, [v i , u 4 ] should be cohomologous to 0. Substituting the values of v i and u 4 , we see that [∂ ξ i , x -1 δ∂ x ] = x -1 δ i ∂ x which is a basis cocycle (see Theorem 2.2). Hence, condition (3) of Corollary 6.2 is not satisfied.

Therefore, none of the fields -∂ ξ i for i = 1, . . . , 4 can be lifted. Therefore, the supermanifold corresponding to the cocycle of the 6th case is not homogeneous.

and v

(1)

But then, for any A 1 , B 1 ∈ C, we have

Therefore, the field -∂ ξ 4 can not be lifted. This suffices to conclude that the supermanifold corresponding to the cocycle of the 7th case is not homogeneous.

Therefore,

But then, for any A 1 , A 2 , B 1 , B 2 ∈ C, we have

Therefore, the field -∂ ξ 4 can not be lifted. This suffices to conclude that the supermanifold corresponding to the cocycle of the 8th case is not homogeneous. 6.10 Case 9. Let

Consider v = -∂ ξ 4 ∈ v(CP 1 , O gr ) -1 . Thanks to (6) and since