

Miocene fossils from the southeastern Pacific shed light on the last radiation of marine crocodylians

Rodolfo Salas-Gismondi, Diana Ochoa, Stephane Jouve, Pedro Romero, Jorge Cardich, Alexander Perez, Thomas DeVries, Patrice Baby, Mario Urbina

► To cite this version:

Rodolfo Salas-Gismondi, Diana Ochoa, Stephane Jouve, Pedro Romero, Jorge Cardich, et al.. Miocene fossils from the southeastern Pacific shed light on the last radiation of marine crocodylians. Proceedings of the Royal Society B: Biological Sciences, 2022, 289, pp.20220380. 10.1098/rspb.2022.0380. hal-03726573

HAL Id: hal-03726573 https://hal.science/hal-03726573

Submitted on 13 Oct 2022

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

PROCEEDINGS OF THE ROYAL SOCIETY B

BIOLOGICAL SCIENCES

Miocene fossils from the south-eastern Pacific shed light on the last radiation of marine crocodylians

Journal:	Proceedings B
Manuscript ID	Draft
Article Type:	Research
Date Submitted by the Author:	n/a
Complete List of Authors:	Salas-Gismondi, Rodolfo; Universidad Peruana Cayetano Heredia, Facultad de Ciencias y Filosofía; Universidad Nacional Mayor de San Marcos Museo de Historia Natural, Departamento de Paleontología de Vertebrados; American Museum of Natural History, Division of Paleontology Ochoa, Diana; Universidad Peruana Cayetano Heredia, Facultad de Ciencias y Filosofía Jouve, Stephane; CNRS-IRD-MNHN-Sorbonne Université, LOCEAN Laboratory Romero, Pedro E.; Universidad Peruana Cayetano Heredia, Facultad de Ciencias y Filosofia Cardich, Jorge; Universidad Peruana Cayetano Heredia, Facultad de Ciencias y Filosofia Pérez Segovia, Alexander; Universidad Peruana Cayetano Heredia, Facultad de Ciencias y Filosofia Devries, Thomas; University of Washington, Burke Museum of Natural History and Culture Baby, Patrice; Université de Toulouse 2, Géosciences- Environnements Toulouse Mario, Urbina-Schmitt; Universidad Nacional Mayor de San Marcos Museo de Historia Natural, Departamento de Paleontología de Vertebrados Carré, Matthieu; Universidad Peruana Cayetano Heredia, Facultad de Ciencias y Filosofía; CNRS-IRD-MNHN-Sorbonne Universités, LOCEAN Laboratory
Subject:	Palaeontology < BIOLOGY, Taxonomy and Systematics < BIOLOGY, Evolution < BIOLOGY
Keywords:	Gavialoidea, marine crocodylians, phylogenetics, biogeography, longirostrine ecomorphs
Proceedings B category:	Palaeobiology
	·

SCHOLARONE[™] Manuscripts

Author-supplied statements

Relevant information will appear here if provided.

Ethics

Does your article include research that required ethical approval or permits?: This article does not present research with ethical considerations

Statement (if applicable): CUST_IF_YES_ETHICS :No data available.

Data

It is a condition of publication that data, code and materials supporting your paper are made publicly available. Does your paper present new data?: Yes

Statement (if applicable): All data is provided in the Electronic Supplementary Material

Conflict of interest

I/We declare we have no competing interests

Statement (if applicable): CUST_STATE_CONFLICT :No data available.

1	Miocene fossils from the south-eastern Pacific shed light on the last radiation
2	of marine crocodylians
3	Rodolfo Salas-Gismondi ^{1,2,3*} , Diana Ochoa ¹ , Stephane Jouve ⁴ , Pedro E. Romero ¹ , Jorge
4	Cardich ¹ , Alexander Perez ¹ , Thomas DeVries ⁵ , Patrice Baby ⁶ , Mario Urbina ² , Matthieu Carré ^{1,7}
5	
6	¹ Facultad de Ciencias y Filosofía/Centro de Investigación para el Desarrollo Integral y
7	Sostenible, Laboratorios de Investigación y Desarrollo, Universidad Peruana Cayetano Heredia,
8	Lima, Perú
9	² Departamento de Paleontología de Vertebrados, Museo de Historia Natural, UNMSM, Lima,
10	Perú.
11	³ Division of Paleontology, American Museum of Natural History, New York, NY 10024-5192,
12	USA
13	⁴ Centre de Recherche en Paléontologie-Paris (CR2P), Sorbonne Université, CNRS-MNHN-
14	Sorbonne Université, 4 Place Jussieu, 75005 Paris, France
15	⁵ Burke Museum of Natural History and Culture, University of Washington, Seattle WA 98195
16	USA
17	⁶ Géosciences- Environnements Toulouse, Université de Toulouse; UPS (SVT-OMP); CNRS;
18	IRD; 14 Avenue Édouard Belin, F-31400, Toulouse, France
19	⁷ LOCEAN Laboratory, UMR7159 (CNRS-IRD-MNHN-Sorbonnne Universités), Paris, France
20	
21	*Corresponding author. E-mail: rodolfo.salas@upch.pe
22	Short title: Fossils enlighten marine crocodylian radiation

- 23 Keywords: Gavialoidea; marine crocodylians; phylogenetics; biogeography; longirostrine
- 24 ecomorphs

25

26 Abstract

27 The evolution of crocodylians as sea dwellers remains obscure because living representatives are 28 basically freshwater inhabitants and fossil evidence lacks crucial aspects about crocodylian 29 occupation of marine ecosystems. New fossils from marine deposits of Peru reveal that 30 crocodylians were habitual coastal residents of the south-eastern Pacific (SEP) for approximately 31 14 million years within the Miocene (ca. 19-5 Ma), an epoch including the highest global peak of 32 marine crocodylian diversity. The assemblage of the SEP comprised two long and slender-33 snouted (longirostrine) taxa of the Gavialidae: the giant *Piscogavialis* and a new early diverging 34 species, Sacacosuchus cordovai. Although living gavialids (Gavialis and Tomistoma) are 35 freshwater forms, this remarkable fossil record and a suite of evolutionary morphological 36 analyses reveal that the whole evolution of marine crocodylians pertained to the gavialids and 37 their stem relatives (Gavialoidea). This adaptive radiation produced two longirostrine ecomorphs 38 with dissimilar trophic roles in seawaters and involved multiple transmarine dispersals to South 39 America and most landmasses. Marine gavialoids were shallow sea dwellers, and their Cenozoic 40 diversification was influenced by the availability of coastal habitats. Soon after the richness peak 41 of the Miocene, gavialoid crocodylians disappeared from the sea, probably as part of the marine 42 megafauna extinction of the Pliocene.

43

44 **1. Introduction**

45 During the Mesozoic, archaic crocodylomorphs achieved anatomical and physiological 46 specialisations for a pelagic marine lifestyle as in no other time in the history of Earth [1-4]. In 47 contrast, extant members of the crown clade (i.e. crocodylians) are mostly semi-aquatic, 48 freshwater animals and only some species of the genus Crocodylus (e.g. Cr. porosus, Cr. acutus) 49 regularly wander into coastal, saltwater settings [5-7]. Adaptations to withstand different 50 salinities (e.g. presence of lingual salt glands or a keratinised buccal cavity), however, occur not only in Crocodylus, but also in strictly freshwater taxa, such as the Malayan and the Indian 51 52 gharials, Gavialis gangeticus (Gmelin, 1789) and Tomistoma schlegelii (Muller, 1838) [8,9], 53 suggesting that the common ancestor of Longirostres [sensu 10] had a marine ecology [11]. 54 *Gavialis, Tomistoma* and their fossil kin (crown clade Gavialidae) typically possess long 55 and slender snouts. Fossils suggest that several extinct gavialids had marine habits since they 56 have been recovered from contexts depicting a wide range of salinities, including marginal to 57 fully marine areas (e.g. [12-19]). These fossils are documented from most landmasses and such 58 broad distribution requires crossing sea barriers to be explained [20-22]. Recent studies 59 established that the last radiation of crocodylomorphs into marine environments occurred in the 60 late Cretaceous with little or no marine diversity throughout the Cenozoic [3,4,23,24]. 61 The rich fossil record from the south-eastern Pacific (SEP) in the coastal desert of Peru has revealed invaluable data about the evolution of marine vertebrates and their ecosystems for 62 63 the last 42 million years (e.g. [25-27]). Along with whales, earless seals, penguins, and aquatic 64 sloths, most of the Neogene localities of the Pisco Formation have yielded well-preserved 65 remains of crocodylians [26,27], until now represented by one giant gavialid species, Piscogavialis jugaliperforatus Kraus, 1998 [13]. 66

67 Here, we present a new gavialid from the same marine deposits of the East Pisco Basin. 68 In contrast to Piscogavialis, which is part of a widely diversified clade of gavialids in South 69 America, this second taxon is related to species from other landmasses that were formerly allied 70 to Tomistoma within the tomistomines (sensu [17]), emphasising the competence of gavialid 71 crocodylians as marine voyagers. New finely preserved fossils of both taxa reveal that this 72 crocodylian assemblage had a prolonged residence along the coasts of the SEP, an area 73 dominated by the nutrient-rich waters of the Humboldt Current System where these cold-blooded 74 animals are now lacking [28]. We investigated the phylogenetic relationships of the new gavialid 75 and the evolutionary and environmental implications of the long-lasting occupation of 76 crocodylians in the SEP. Based on this record and a comprehensive fossil database, we use 77 phylogenetic, biogeographic, richness, and geometric morphometric analyses to characterise the 78 evolution, diversification, and decline of crocodylians in marine environments.

79

80 2. Geological context, palaeoenvironment, and age

81 The Chilcatay and Pisco formations of the East Pisco Basin document long-lasting marine 82 transgressions that affected about 350 km of the SEP (southern Peru) during the Neogene 83 (electronic supplementary material) [26,27,29]. Recent radiometric datings improved the 84 chronological constraints on these deposits in the Ica-Pisco Valleys and the Sacaco area (figure 1a), which as a whole range from the early Miocene (ca. 25 Ma) to the late Pliocene (ca. 2.7 Ma) 85 86 [30-32]. Fossils of the new gavialid and *Piscogavialis* are documented since ~19 Ma in the 87 Chilcatay Formation and extensively recovered in the late Miocene deposits of the Pisco 88 Formation in both areas (figures 1a, b, S2 and S3). The Peruvian record is particularly rich in the 89 late Miocene-earliest Pliocene strata of the Pisco Formation at Sacaco, with the last crocodylian

remains documented at <i>ca</i> . 4.85 Ma (figure 1 <i>a</i> , <i>b</i>) [27]. During this time interval, the Sacaco area
was a shallow marine environment connected to the open ocean and comprising protected
embayments, rocky headlands, and small islands (figure $1b$) [26,27]. A similar environment is
depicted for most fossiliferous deposits of the Chilcatay and Pisco formations at the Ica-Pisco
valley [31,32].
3. Systematic Palaeontology
Crocodyliformes Hay, 1930; Crocodylia Gmelin, 1789; Longirostres (Cuvier, 1807) as defined
by [10]; Gavialidae (Adams, 1854)
Sacacosuchus cordovai gen. et sp. nov.
Etymology: Sacaco after the rich fossiliferous area from where most remains were found;
cordovai after colleague and professor Jesús Córdova, to honour his brave and unconditional
support to develop palaeontology in Peru.
Holotype: Vertebrate Palaeontology Collection of the Natural History Museum of San
Marcos University (MUSM) 162, nearly complete skull (figure 2 <i>a</i> , <i>b</i> , <i>e</i> , <i>f</i> and S4)
Type Locality and Horizon: Sud-Sacaco west (SAS-w; figure 1), Sacaco sub-basin,
northern Arequipa, Peru; Pisco Formation, late Miocene, dated to ca. 6.33 Ma [27].
<i>Referred specimens</i> : MUSM 160, partial skull of a juvenile, Locality SAS-w (figure 2 <i>i</i>);
MUSM 161, partial skull of a sub-adult, Locality Montemar north (MTM-n; figure $2c,d,g,h$ and
S5), late Miocene, <i>ca</i> . 8.0 Ma; MUSM 163, left dentary preserved until the fourteenth dentary
alveolus, Locality Aguada de Lomas (AGL; figure S2), late Miocene, ca. 8.85 Ma; (electronic
supplementary material).

112 Diagnosis: Sacacosuchus cordovai is a relatively medium to large, longirostrine gavialid 113 diagnosed by the following unique combination of characters: premaxillae not expanded relative 114 to the maxillae; nasals in contact with the external naris; 14 maxillary teeth; fifth and ninth to 115 twelfth maxillary tooth alveoli enlarged; large, roughly circular orbits; deep splenial symphysis. 116 Differs from all other gavialids by having ventral margins of the orbit low and barrel vault-117 shaped; postorbital bar lanceolate in cross-section with the external plane facing anterolaterally; 118 rostral process of quadratojugal long along the ventral margin of the infratemporal fenestrae and 119 no dorsal process bordering its posterior margin.

120 General comparative description: Sacacosuchus cordovai possesses a slender, long, and 121 parallel-sided snout that expands gradually posterolaterally into a robust, triangular orbital and 122 postrostral cranium (figure 2a, c, i). The snout is tubular in cross-section with slightly sinuate 123 margins along the dental series. In lateral view, the snout describes a wide dorsal curvature 124 (figure 2e,g). The rostral length/skull length index is 0.79, similar to that of Gavialis gangeticus 125 (0.76-0.79). However, the rostral width/postorbital width index is 0.22, lower than those of T. 126 schlegelii (0.34), Piscogavialis (0.27) and G. gangeticus (0.25), and equivalent to 'thoracosaurs' 127 (0.22-0.23). The skull table is wide and rectangular in outline, like *Gavialis*, in contrast to the 128 trapezoidal and relatively smaller one of *T. schlegelii*. The supratemporal fenestrae are wider 129 than long and bear sharp, overhanging borders with the skull table, as in Paratomistoma and 130 'Tomistoma' coppensi [14]. The parietal interfenestral bar is relatively slender. The 131 infratemporal fenestrae are roughly triangular, with a gentle curve at the dorsal angle. The 132 choana is relatively large and basically triangular in outline. The dorsally oriented narial opening 133 is elongated and heart-shaped. The occipital plate is vertical and not visible in dorsal view. 134 Although not fully preserved, suborbital fenestrae show an elongated teardrop shape. The skull

135	bears five and 14 alveoli in the premaxilla and maxilla, respectively. The fifth maxillary alveoli
136	are larger than the fourth and the sixth, but the largest alveoli consist of the ninth, tenth, eleventh,
137	and twelfth tooth positions.

The prefrontals, the single frontal, and the postorbitals are not raised along the orbital margins, thus the typical everted orbital margins of most crocodylians are not present in *Sacacosuchus* (character 137-0). The demarcation between the parietal on the skull table and the anterior border of the fenestrae is sharp, with the parietal even overhanging these fenestrae, as in *Tomistoma' coppensi* and *Paratomistoma* (character 152-3). The squamosal surface of the skull table slopes lateroventrally, as in *Gryposuchus* and *Paratomistoma* (character 156-0), and in contrast to the planar skull table of *T. schlegelii* and *Crocodylus*.

The dentary bears ~17-18 alveoli and the dentary symphysis extends posteriorly up to the level of the ninth-tenth dentary tooth loci (character 49-2), where they meet the wedge-like rostral process of the united splenials, as in *T. schlegelii*. Body length estimation [33] for *Sacacosuchus* type specimen is 432 cm (details in electronic supplementary material).

149

150 **4. Results and discussion**

151 (a) Two Neogene crocodylians in the south-eastern Pacific

The Lagerstätte fossil record of the East Pisco Basin reveals that two crocodylian taxa had occupied coastal marine environments of the SEP for approximately 14 million years (*ca.* 19 to 5 Ma), an interval that comprises much of the Miocene (figure 1*a*). This record spans the warm phase of the middle Miocene and the following global cooling trend [34]. Warm conditions likely prevailed in the shallow, coastal marine environments of the SEP during the whole interval [27]. Environmental and climatic conditions during the late Miocene were optimal for marine

158	crocodylians even in Chile, 1600 km south of Sacaco, where Piscogavialis bones (SGO-PV-834;
159	RS-G personal observation) have been documented [35].
160	The crocodylian remains of the East Pisco Basin were recovered in association with a
161	typical marine vertebrate fauna, including whales, earless seals, seabirds, sharks, and bony fishes
162	[26,27]. Remains of Sacacosuchus and Piscogavialis consist of cranial and postcranial bones in
163	partial or full anatomical connection (figures S2 and S3). The Sacacosuchus record includes
164	individuals at various ontogenetic stages (figure 2), suggesting that these crocodylians actually
165	lived, died, and were buried in marine waters. In contrast to the finely preserved marine
166	vertebrate remains [13,27,29], fossils of continental origin in the Pisco Basin are limited to a
167	handful of isolated bones [27].
168	With an estimated body length of 431 cm, Sacacosuchus was a medium-sized
169	crocodylian while Piscogavialis was a giant, almost twice as long (~776 cm; see electronic
170	supplementary material). Despite its large size, the latter was probably a specialist in acquiring
171	rapid small targets (e.g. fishes) while Sacacosuchus had a more generalized diet (see below).
172	Isolated bones of large individuals (cf. Piscogavialis) document the existence of crocodylians up
173	to the youngest vertebrate-bearing deposits, dated at 4.85 Ma (early Pliocene; figure 1 <i>a</i>). The
174	sedimentary record was commenced again in Sacaco by ca. 2.7 Ma with no more crocodylian
175	remains [27]. Andean tectonics at <i>ca</i> . 4.5 Ma [36] and a eustatic drop of sea level in the Pliocene
176	[37] likely contributed to the end of Pisco sedimentation and the disruption of the coastal
177	environments. The extirpation (and extinction) of crocodylians from the SEP thus happened at
178	some point during the Pliocene and was probably caused by the reduction of continental flooding
179	and the establishment of cool waters of the Humboldt current system [27,37,38].
180	

181 **(b)** *Sacacosuchus* and gavialid phylogeny

182	We conducted tip-dated Bayesian and maximum parsimony analyses of morphological
183	characters to determine evolutionary relationships of Sacacosuchus cordovai within the
184	crocodylians (methods in electronic supplementary material). We included in the data matrix the
185	slender-snouted South American taxon Charactosuchus fieldsi [39]. However, initial analyses
186	proved that currently known fragments of this taxon are uninformative for establishing its
187	phylogenetic affinities, thus it was excluded from the following searches. Our tip-dated
188	approaches retrieved distant relationships between living Gavialis and Tomistoma, as suggested
189	by other morphological analysis using this method [40]. Instead, our maximum parsimony
190	analysis with equal weighting recovered close relationships of Tomistoma and Gavialis among
191	living crocodylians, in line with molecular analyses [10,41,42] and a recent morphological
192	approach [43]. Morphological 'tomistomines' (sensu [43,44]) are the earliest diverging
193	gavialoids (sensu [45]), yet low supported. The long and slender-snouted 'thoracosaurs' from the
194	Cretaceous-early Eocene interval have been usually allied to 'gharials' (sensu [46]) in
195	morphology-based analyses [47,48]. Here, they are positioned deeply nested within the
196	Gavialidae, as a clade sister to 'gharials.' However, we identified several plesiomorphic features
197	in 'thoracosaurs' [43] lacking in 'gharials' and even across Longirostres (see electronic
198	supplementary material). As their position also provides significant temporal incongruence to the
199	crown clade Gavialidae [40,43], we constrained searches to force 'thoracosaurs' outside of
200	Longirostres and set the Palaeocene species Argochampsa krebsi as a floating taxon. This
201	constraint resulted in a tree insignificantly longer ($p > 0.05$), in which 'thoracosaurs' are
202	recovered as the sister clade of <i>Borealosuchus</i> + Crocodylia and <i>Argochampsa</i> within

203	Gavialidae. <i>Eogavialis</i> from the Eocene of Africa is recovered as the closest relative of <i>Gavialis</i> .
204	Subsequent analyses and discussions follow this phylogenetic hypothesis (figure 3 <i>a</i>).
205	Sacacosuchus is deeply nested within the Gavialidae, as part of a polytomy (node 90)
206	with some morphological 'tomistomines' (i.e. Gavialosuchus eggenburgensis and
207	Thecachampa), and a large clade leading to advanced gavialids. Node 90 is supported by having
208	a vomer entirely obscured by maxillae and premaxillae (character 100-0), pterygoid surface and
209	choanal margins flushed (character 123-0), and quadrangular, wider than long, supratemporal
210	fenestrae (character 191-1). The divergence of Sacacosuchus occurred after that of T. schlegelii
211	but much earlier than the divergence of any other clade of Neotropical gavialids known so far.
212	Indeed, our analysis supports for independent origins of Sacacosuchus, Aktiogavialis,
213	gryposuchines (sensu [21]), and an Eocene Peruvian form coded for these analyses and currently
214	under study (MUSM 1513; figure 3a). Thus, phylogenetics cluster Sacacosuchus within
215	morphological 'tomistomines' and suggest a complex evolutionary history for Neotropical
216	gavialids.
217	
218	(c) Marine crocodylian biogeographic history and diversity
219	Phylogenetic analysis indicates that crocodylians recovered from estuarine or marine
220	depositional settings exclusively pertain to the gavialoid clade (figure 3 <i>a</i> ; node 96). Although
221	extant Gavialis and Tomistoma species are freshwater forms, marine habits were widely
222	distributed among gavialoids and were probably the ancestral condition of the group [49]. The
223	optimal biogeographic reconstruction provided by a statistical dispersal-vicariance analysis (S-
224	DIVA; electronic supplementary material) points to the northern European (D) and Peri-Tethyan
225	coasts (C) as the most likely ancestral ranges for gavialoids (node 96) [18,43]. Standing diversity

226	and estimated richness analyses (electronic supplementary material) show that the diversity of
227	marine gavialoids increased from their origination to the early Eocene (figures $3a$ and 4), when
228	non-crocodylian crocodylomorphs (i.e. dyrosaurids and thoracosaurs) thrived in marine
229	environments [4,47,48,50]. The group soon dispersed to Asia and declined in northern Europe by
230	the late Eocene.
231	Presumed ancestral ranges of the Gavialidae (node 92) might have included the Peri-
232	Tethys and Asia (CF; figure $3a,b$), with 100% of marginal probability. Because the Palaeocene
233	Argochampsa is deeply nested within the Gavialidae, a late Cretaceous origin for the clade is
234	suggested, in contrast to the Eocene origination proposed by molecular clock estimates [42].
235	Other gavialids recovered in our analysis are no older than Eocene.
236	From the Peri-Tethys, gavialids colonised North America (A) and South America (B), the
237	latter movement giving rise to Sacacosuchus cordovai (node 90). Aktiogavialis, gryposuchines,
238	and MUSM 1513 are additional clades from the Americas that might have originated within the
239	Peri-Tethys [20,45]. In the late Eocene, ancestors of gryposuchines and <i>Eogavialis</i> + Gavialis
240	(node 80) occupied BC, BF or BCF, each range with equal marginal probability (figure 3 <i>a</i> , <i>b</i>).
241	The late Eocene and Oligocene seem to be characterised by low crocodylian standing
242	diversity in marine environments (figure $4a,b$) [4,51]. However, the middle and late Miocene
243	witnessed pronounced origination rates (figure $S14b$), leading to the largest richness peak of
244	marine forms in the crocodylian history (figures $3a$ and $4a,b$). This richness reflects the extensive
245	adaptive radiation of gavialids in most landmasses, particularly in the Americas and the Peri-
246	Tethys [13,16,20,21]. The East Pisco Basin record of Sacacosuchus and Piscogavialis
247	corresponds with this time interval, which is characterised by the Middle Miocene Climatic

248	Optimum (17 to 15 Ma) and a progressive global cooling with relatively small sea-level
249	fluctuations compared to the Oligocene or Plio-Pleistocene values [34,37,38].
250	A rapid and sustained global decline of marine gavialids started in the late Miocene and
251	continued until their complete vanishing at the middle or late Pliocene, probably as part of the
252	marine megafauna extinction of that epoch [38]. Non-marine gavialids survived in Asia but
253	declined elsewhere [20]. In general, freshwater crocodylians show a subtle demise at this time-
254	lapse but their richness was recovered by the end of the Pliocene, with the diversification of
255	Crocodylus (figure 3a).
256	Ancestrally, gavialoids had marine habits, dispersed across marine barriers, and invaded
257	freshwater environments multiple times in different landmasses (figure 3a). The Peri-Tethys
258	might have been the centre for multidirectional marine dispersals of the gavialids, yet timing
259	incongruence on the origin of the clade persists.
260	
261	(d) What is a marine crocodylian?
262	The phylogenetic Principal Component Analysis (pPCA; methods in electronic supplementary
263	material) indicates that marine taxa were all longirostrine forms. Disparate morphospace
264	occupations within this rostral shape suggest additionally that two different ecomorphs roamed
265	ancient marine environments (figure 5). Advanced marine gavialoids, such as Piscogavialis and
266	<i>Eogavialis</i> , had an extremely long rostrum, enlarged teeth restricted to the tip of the snout and an
267	adductor chamber resembling that of the living Gavialis gangeticus [52]. These animals
268	performed low-bite-force and fast movements of the jaws and were predators of small and rapid
269	targets [20]. 'Thoracosaurs' might belong to this ecomorph (figure 5). In comparison,
270	morphological 'tomistomines', such as Thecachampsa, had a more powerful bite, larger teeth

close to the jaw joints, and their snout was usually less attenuated than in advanced gavialoids,
suggesting a diet composed of a wider range of prey sizes [20].

273 Marine crocodylians were essentially shallow marine inhabitants. These environments 274 have been proposed for several taxa of gavialoids by taphonomic, geologic, and isotopic data 275 [12-19,22,53, electronic supplementary material] and are consistent with their locomotion-related 276 anatomy. Because marine crocodylians show no significant differences in the axial skeleton and 277 the hindlimbs relative to living forms, they are inferred to have swum by using axial undulatory 278 movements and terrestrial-adapted limbs (plesiopedal) [54]. This locomotion pattern is 279 incompatible with breathing during prolonged or fast swimming and thus restricts predation to an 280 explosive ambushing behaviour in shallow waters, as has been proposed for other reptiles during 281 incipient adaptations to a marine lifestyle [54].

282 If marine crocodylians were limited to shallow marine environments, their diversification 283 and extinction would have been driven by the availability of coastal habitats and might have 284 been extensively disturbed by global sea-level changes. We would also expect that marine 285 crocodylians and open-ocean predators (hydropedal with a stiff trunk: e.g. odontocete cetaceans) 286 responded differently to evolutionary drivers. For example, changes in odontocete communities 287 are documented worldwide and attributed to a mix of physical and biological factors, in which 288 niche scalation and a pelagic lifestyle played distinct roles [23,55]. Instead, sea-level fluctuations 289 with effects on coastal habitats have been identified as a main driver of crocodylomorph 290 diversification in marine environments [3,4,51]. The peaks in origination rates and standing 291 diversity of the Miocene coincide with a period of relatively high and stable sea level, and 292 essentially corresponds to the flourishing of gavialid crocodylians in extensive continental 293 flooding areas across the Peri-Tethys and the SEP [26,27,30,31,56]. By the Pliocene, the rapid

demise of marine crocodylians concurs with lower sea surface temperature, decreasing sea-level
[37] and, a drastic reduction of neritic habitats [38].

296 Bones show no features unique to marine crocodylians. Similar patterns of longirostry 297 and locomotion anatomy are also observed in freshwater taxa [20] (figure 5). However, certain 298 morphologies, such as protruding orbital margins or blunt snouts, would not be found in marine 299 crocodylians because these evolved exclusively associated with an ecology of freshwater 300 environments [46,57]. Intriguingly, the sole living genus with populations in marine areas, 301 Crocodylus, does not have a longirostrine condition (figures 3a and 5). Dispersal across marine 302 barriers occurred widely within this taxon but most (if not all) of the fossil record from America, 303 Europe, Asia, Oceania, and Africa was recovered from deposits indicating fluvial and lacustrine 304 environments [58,59]. Even fossils of the saltwater crocodile, *Crocodylus porosus*, come from 305 freshwater deposits [60,61] and the late Miocene Crocodylus checchiai, the species linking 306 Neotropical and African Crocodylus, was recovered from a marginal marine formation in which 307 vertebrates of continental origin prevail [62]. Fossils examined under multiple assessments 308 (taphonomy, stable isotopes, palaeohistology) should provide further insights on the functional 309 roles of ancient and modern marine crocodylians.

310

311 **5. Conclusions**

312 Sacacosuchus cordovai belongs to the crown clade Gavialidae with ancestors in the Peri-Tethys

that migrated to South America crossing marine barriers. This kind of dispersal was

314 multidirectional and characterised the diversification of gavialids in coastal areas, although the

315 timing is still poorly constrained. Extant *Gavialis* and *Tomistoma* are freshwater survivors within

316 a predominantly marine group. The crocodylian marine ecology was restricted to longirostrine

317	forms of the gavialoids, in contrast to the variety of clades and rostral shapes that evolved in
318	freshwater ecosystems. Within this longirostrine morphotype, two distinct ecomorphs with
319	dissimilar trophic roles thrived in seawaters. The evolution of Sacacosuchus and Piscogavialis in
320	the coastal, flooded areas of the SEP is an exemplar of the adaptive radiation of gavialoids in
321	marine ecosystems. As semi-aquatic predators, gavialoids occupied shallow coastal habitats and
322	got a peak in marine richness during the Miocene, when relatively high and stable sea levels
323	occurred. Soon after, these marine crocodylians suffered a drastic decline, probably triggered by
324	the global loss of shallow marine areas. The demise of the longirostrine, marine crocodylians
325	roughly coincides with the marine megafauna extinction of the Pliocene.
326	
327	Acknowledgments. We thank W. Aguirre for the fossil preparation; M. Norell, J. Flynn, D.
328	Kirizian, C. Mehling, and L. Vonnnahme (AMNH), C. de Muizon and S. Bailón (MNHN), E.
329	'Dino' Frey (SMNK), R.Schoch (SMNS), and R. Hulbert (UF) for access to comparative
330	collections; C. Brochu for providing crocodylian photographs; A. García for taking pictures of <i>T</i> .
331	lusitanica. D. Pol, J., Tejada-Lara, L. Hostos, D. Adams, M. Collyer, and J. Clarke for providing
332	valuable insights. E. Coombs and A. Goswami for performing 3D scans of some Sacacosuchus
333	specimens. Sacacosuchus and Piscogavialis (exclusive of the type) specimens are permanently
334	deposited at the Museo de Historia Natural, UNMSM (MUSM), Lima, Peru.
335	Author contributions. R.SG. designed the research, wrote the manuscript and performed
336	systematic and morphometric research, with additional writing contributions from all authors.
337	R.SG. and S.J. performed anatomical studies. D.O., T.D.V, and P.B. provided geological data
338	and DO performed diversity analyses. P.R. performed tree calibration and biogeographic
339	analyses. All authors contributed to the discussions and interpretation of the results.

340	Funding statement.	We acknowledge s	upport from (CONCYTEC.	Peru. (Incorporación d	le

341 Investigadores, grant no. 034-2019-02-FONDECYT-BM-INC.INV), (grants no. 104-2018-

342 FONDECYT and no. 149-2018-FONDECYT-BM-IADT-AV)

343

344 **References**

- 1. Hua S, De Buffrenil V. 1996 Bone histology as a clue in the interpretation of functional
- adaptations in the Thalattosuchia (Reptilia, Crocodylia). J. Vertebr. Paleontol. 16, 703-717.
 (doi:10.1080/02724634.1996.10011359)
- 348 2. Herrera Y, Fernández MS, Gasparini Z. 2013 The snout of Cricosaurus araucanensis: a case
- 349 study in novel anatomy of the nasal region of metriorhynchids. *Lethaia* **3**, 331-340.
- 350 (doi:10.1111/let.12011)
- 351 3. Martin JE, Amiot R, Lécuyer C, Benton MJ. 2014 Sea surface temperature contributes to
- 352 marine crocodylomorph evolution. *Nat. Commun.* **5**, 1–7. (doi:10.1038/ncomms5658)
- 4. Mannion PD, Benson RB, Carrano MT, Tennant JP, Judd J, Butler RJ. 2015 Climate
- 354 constrains the evolutionary history and biodiversity of crocodylians. *Nat. Commun.* **6**, 1–9.
- 355 (doi:10.1038/ncomms9438)
- 5. Mazzotti FJ, Dunson WA. 1989 Osmoregulation in crocodilians. Am. Zool. 29, 903-920
- 357 (doi:10.1093/icb/29.3.903)
- 358 6. Wheatley PV, Peckham H, Newsome SD, Koch PL. 2012 Estimating marine resource use by
- 359 the American crocodile *Crocodylus acutus* in southern Florida, USA. *Mar. Ecol. Prog. Ser.*
- 360 **447**, 211-229 (doi:10.3354/meps09503)
- 361 7. Grigg G, Kirshner D. 2015 Biology and evolution of crocodylians. Ithaca and London:
- 362 Cornell University Press.

- 363 8. Taplin LE. 1988 Osmoregulation in crocodilians. *Biol. Rev.* 63, 333-377.
- 364 (doi:10.1111/j.1469-185X.1988.tb00721.x)
- 365 9. Leslie AJ, Taplin LE. 2000 Recent developments in osmoregulation of crocodilians. In
- 366 *Crocodilian Biology and Evolution* (eds GC Grigg, F Seebacher, GE Franklin), pp. 265–279.
- 367 Chipping Norton: Survey Beatty & Sons.
- 368 10. Harshman J, Huddleston CJ, Bollback JP, Parsons TJ, Braun MJ. 2003 True and false
- 369 gharials: a nuclear gene phylogeny of Crocodylia. *Syst. Biol.* **52**, 386-402.
- 11. Wheatley PV. 2012 Understanding saltwater tolerance and marine resource use in the
- 371 Crocodylia: a stable isotope approach. PhD. thesis, University of California.
- 12. Erickson BR, Sawyer GT. 1996 The estuarine crocodile *Gavialosuchus carolinensis* n. sp.
- 373 (Crocodylia: Eusuchia) from the late Oligocene of South Carolina, North America.
- 374 *Monographs Sci. Mus. Minnesota (Paleontology)* **3**, 1-47.
- 13. Kraus R. 1998 The cranium of *Piscogavialis jugaliperforatus* n. gen., n. sp. (Gavialidae,
- 376 Crocodylia) from the Miocene of Peru. *Paläontol. Z.* **72**, 389–405.
- 377 (doi:10.1007/BF02988368)
- 378 14. Brochu CA, Gingerich PD. 2000 New tomistomine crocodylian from the middle Eocene
- 379 (Bartonian) of Wadi Hitan, Fayum Province, Egypt. Contr. Mus. Pal. Uni. Michigan 30, 251-
- 380 268.
- 381 15. Brochu CA. 2007 Systematics and taxonomy of Eocene tomistomine crocodylians from
- 382 Britain and Northern Europe. *Palaeontology* **50**, 917-928. (doi:10.1111/j.1475-
- 383 <u>4983.2007.00679.x</u>)

384	16. Piras P, Delfino M, Del Favero L, Kotsakis T. 2007 Phylogenetic position of the crocodylian
385	Megadontosuchus arduini and tomistomine palaeobiogeography. Acta Palaeontol. Pol. 52,
386	315–328.
387	17. Jouve S, Bardet N, Jalil NE, Suberbiola XP, Bouya B, Amaghzaz M. 2008 The oldest
388	African crocodylian: phylogeny, paleobiogeography, and differential survivorship of marine
389	reptiles through the Cretaceous-Tertiary boundary. J. Vertebr. Paleontol. 28, 409-421.
390	(doi:10.1671/0272-4634(2008)28[409:TOACPP]2.0.CO;2)
391	18. Jouve S, Bouya B, Amaghzaz M, Meslouh S. 2015 Maroccosuchus zennaroi (Crocodylia:
392	Tomistominae) from the Eocene of Morocco: phylogenetic and palaeobiogeographical
393	implications of the basalmost tomistomine. J. Syst. Palaeontol. 13, 421-445.
394	(doi:10.1111/zoj.12357)
395	19. Jouve S, Khalloufi B, Zouhri S. 2019 Longirostrine crocodylians from the Bartonian of
396	Morocco and Paleogene climatic and sea level oscillations in the Peri-Tethys area. J. Vertebr.
397	Paleontol. 39, e1617723. (doi:10.1080/02724634.2019.1617723)
398	20. Salas-Gismondi R, Moreno-Bernal JW, Scheyer TM, Sánchez-Villagra MR, Jaramillo C.
399	2019 New Miocene Caribbean gavialoids and patterns of longirostry in crocodylians. J. Syst.
400	Palaeontol. 17, 1049-1075. (doi.org/10.1080/14772019.2018.1495275)
401	21. Vélez-Juarbe J, Brochu CA, Santos H. 2007 A gharial from the Oligocene of Puerto Rico:
402	transoceanic dispersal in the history of a non-marine reptile. Proc. R. Soc. B 274, 1245-1254.
403	(doi: <u>10.1098/rspb.2006.0455</u>)
404	22. Ristevski J, Price GJ, Weisbecker V, Salisbury SW. 2021 First record of a tomistomine
405	crocodylian from Australia. Sci. Rep. 11, 12158. (doi:10.1038/541598-021-91717-y)

- 406 23. Pyenson ND, Kelley NP, Parham JF. 2014 Marine tetrapod macroevolution: physical and
- 407 biological drivers on 250 Ma of invasions and evolution in ocean ecosystems. *Palaeogeogr.*

408 *Palaeoclimatol. Palaeoecol.* **400**, 1-8. (doi:10.1016/j.palaeo.2014.02.018)

- 409 24. Stubbs TL, Pierce SE, Elsler A, Anderson PS, Rayfield EJ, Benton MJ. 2021 Ecological
- 410 opportunity and the rise and fall of crocodylomorph evolutionary innovation. *Proc. R. Soc.*
- 411 *B*, **288**, 20210069. (doi:10.1098/rspb.2021.0069)
- 412 25. Lambert O, Bianucci G, Salas-Gismondi R, Di Celma C, Steurbaut E, Urbina M, Muizon C
- 413 2019. An amphibious whale from the middle Eocene of Peru reveals early South Pacific
- 414 dispersal of quadrupedal cetaceans. *Curr. Biol.* **29**, 1352-1359.
- 415 (doi:10.1016/j.cub.2019.02.050)
- 416 26. Muizon C de, DeVries TJ. 1985 Geology and paleontology of late Cenozoic marine deposits
- 417 in the Sacaco area (Peru). *Geol. Rundsch.* **74**, 547-563. (doi:10.1007/BF01821211)
- 418 27. Ochoa D et al. 2021 Late Neogene evolution of the Peruvian margin and its ecosystems: a
- 419 synthesis from the Sacaco record. *Int. J. Earth Sci.* 1-31. (doi:10.1007/s00531-021-02003-1)
- 420 28. Chavez FP, Bertrand A, Guevara Carrasco R, Soler P, Csirke J. 2008. The northern
- 421 Humboldt Current System: Brief history, present status and a view towards the future. *Prog.*
- 422 *Oceanogr.* **79**, 95-105. (doi:10.1016/j.pocean.2008.10.012)
- 423 29. Di Celma C et al. 2018 Facies analysis, stratigraphy and marine vertebrate assemblage of the
- 424 lower Miocene Chilcatay Formation at Ullujaya (Pisco basin, Peru). J. Maps 14, 257-268.
- 425 (doi:10.1080/17445647.2018.1456490)
- 426 30. DeVries TJ, Jud NA. 2018 Lithofacies patterns and paleogeography of the Miocene
- 427 Chilcatay and lower Pisco depositional sequences (East Pisco Basin, Peru). *Bol. Soc. Geol.*
- 428 *Perú* **8**, 124-167.

- 429 31. DeVries TJ, Schrader H. 1997 Middle Miocene marine sediments in the Pisco basin
 430 (Peru). *Bol. Soc. Geol. Perú* 87, 1-13.
- 431 32. Bosio G et al. 2020 Strontium Isotope Stratigraphy and the thermophilic fossil fauna from
- 432 the middle Miocene of the East Pisco Basin (Peru). J. S. Am. Earth Sci. 97, 102399
- 433 (doi:10.1016/j.jsames.2019.102399)
- 434 33. Sereno PC, Larsson HC, Sidor CA, Gado B. 2001 The giant crocodyliform *Sarcosuchus* from
 435 the Cretaceous of Africa. *Science* 294, 1516–1519. (doi:10.1126/science.1066521)
- 436 34. Zachos J, Pagani M, Sloan L, Thomas E, Billups K 2001. Trends, rhythms, and aberrations in
- 437 global climate 65 Ma to present. *Science* **292**, 686-693. (doi:10.1126/science.1059412)
- 438 35. Walsh SA, Suárez M. 2005 First post-Mesozoic record of Crocodyliformes from Chile. *Acta*439 *Palaeontol. Pol.* 50, 595-600.
- 440 36. Espurt N, Baby P, Brusset S, Roddaz M, Hermoza W, Regard V, Antoine P-O, Salas-
- 441 Gismondi R, Bolanos R. 2007 How does the Nazca Ridge subduction influence the modern
- 442 Amazonian foreland basin? *Geology* **35**, 515-518. (doi:10.1130/G23237A.1)
- 443 37. Miller KG, Browning JV, Schmelz WJ, Kopp RE, Mountain GS, Wright JD. 2020 Cenozoic
- sea-level and cryospheric evolution from deep-sea geochemical and continental margin
- 445 records. *Sci. Adv.* **6**, eaaz1346. (doi:10.1126/sciadv.aaz1346)
- 446 38. Pimiento C, Griffin JN, Clements CF, Silvestro D, Varela S, Uhen MD, Jaramillo C. 2017
- 447 The Pliocene marine megafauna extinction and its impact on functional diversity. *Nat. Ecol.*
- 448 Evol. 1, 1100-1106. (doi:10.1038/s41559-017-0223-6)
- 449 39. Langston Jr W. 1965 Fossil crocodilians from Colombia and the Cenozoic history of the
- 450 Crocodilia in South America. Univ. Calif. Publ. Geol. Sci. 52, 1–157.

- 451 40. Lee MSY, Yates AM. 2018 Tip-dating and homoplasy: reconciling the shallow molecular
- 452 divergences of modern gharials with their long fossil record. *Proc. R. Soc. B* 285: 20181071

453 (doi:10.1098/rspb.2018.1071)

- 454 41. Gatesy JG, Amato G, Norell M, DeSalle R, Hayashi C. 2003 Total evidence support for
- 455 extreme atavism in gavialine crocodylians. *Syst. Biol.* **52**, 403–422.
- 456 (doi:10.1080/10635150390197037)
- 457 42. Oaks JR. 2011 A time-calibrated species tree of Crocodylia reveals a recent radiation of the
 458 true crocodiles. *Evolution* 65, 3285–3297. (doi: 10.1111//j.1558-5646.2011.01373.x)
- 459 43. Rio JP, Mannion PD. 2021 Phylogenetic analysis of a new morphological dataset elucidates
- the evolutionary history of Crocodylia ad resolves the long-standing gharial problem. *PeerJ*9:e12094 doi: 10.7717/PeerJ.12094
- 462 44. Iijima M, Kobayashi Y. 2019 Mosaic nature in the skeleton of East Asian crocodylians fills
- the morphological gap between "Tomistominae" and Gavialinae. *Cladistics* **35**, 623-632.

464 (doi:10.1111/cla.12372)

- 465 45. Norell MA, Clark JM, Hutchison JH. 1994 The Late Cretaceous alligatoroid *Brachychampsa*
- 466 *montana* (Crocodylia): new material and putative relationships. *Am. Mus. Novit.* **3116**, 1–26.
- 467 46. Salas-Gismondi R, Flynn JJ, Baby P, Tejada-Lara J, Claude J, Antoine P-O. 2016 A new 13
- 468 million year old gavialoid crocodylian from proto-Amazonian mega- wetlands reveals
- parallel evolutionary trends in skull shape linked to longirostry. *PLoS ONE* **11**, e0152453.
- 470 (doi:10.1371/journal.pone.0152453)
- 471 47. Brochu CA. 2004 A new Late Cretaceous gavialoid crocodylian from eastern North America
- 472 and the phylogenetic relationships of thoracosaurs. J. Vertebr. Paleontol. 24, 610–633.
- 473 (doi:10.1671/0272-4634(2004)024[0610:ANLGC]2.0.CO;2)

474	48. Brochu CA. 2006 Osteology and phylogenetic significance of <i>Eosuchus minor</i> (Marsh, 1870)
475	new combination, a longirostrine crocodylian from the late Paleocene of North America. J.
476	Paleontol. 80, 162-186.
477	49. Wilberg EW, Turner AH, Brochu CA. 2019 Evolutionary structure and timing of major
478	habitat shifts in Crocodylomorpha. Sci. Rep. 9, 514. (doi:10.1038/s41598-018-36795-1)
479	50. Jouve S. 2021. Differential diversification through the K-Pg boundary, and post-crisis
480	opportunism in longirostrine crocodyliforms. Gondwana Research 99, 110–130.
481	(<u>doi:10.1016/j.gr.2021.06.020</u>)
482	51. De Celis A, Narváez I, Ortega F. 2020 Spatiotemporal palaeodiversity patterns of modern
483	crocodiles (Crocodyliformes: Eusuchia). Zool. J. Linn. Soc. 189, 635-656.
484	(doi:10.1093/zoolinnean/zlz038)
485	52. Erickson GM, Gignac PM, Steppan SJ, Lappin AK, Vliet KA, Brueggen JD, Inouye BD,
486	Kledzik D, Webb GJ. 2012 Insights into the ecology and evolutionary success of crocodilians
487	revealed through bite-force and tooth-pressure experimentation. PLoS ONE, 7, e31781.
488	(doi:10.1371/journal.pone.0031781)
489	53. Whiting ET, Steadman DW, Krigbaum J. 2016 Paleoecology of Miocene crocodylians in
490	Florida: insights from stable isotope analysis. Palaeogeogr., Palaeoclimatol., Palaeoecol.
491	451 , 23-34. (doi:10.1016/j.palaeo.2016.03.009)
492	54. Benson RB, Butler RJ. 2011 Uncovering the diversification history of marine tetrapods:
493	ecology influences the effect of geological sampling biases. Geol. Soc. Spec. Publ. 358, 191-
494	208. (<u>doi:10.1144/SP358.13</u>)
495	55. Marx FG, Uhen MD 2010. Climate, critters, and cetaceans: Cenozoic drivers of the evolution
496	of modern whales. Science 327, 993-996. (doi:10.1126/science.1185581)

- 497 56. Sant K, Palcu DV, Mandic O, Krijgsman W. 2017 Changing seas in the early-middle
- 498 Miocene of Central Europe: a Mediterranean approach to Paratethyan stratigraphy. *Terra*
- 499 *Nova* **29**, 273-281. (doi:10.1111/ter.12273)
- 500 57. Salas-Gismondi R, Flynn JJ, Baby P, Tejada-Lara JV, Wesselingh FP, Antoine P-O. 2015 A
- 501 Miocene hyperdiverse crocodylian community reveals peculiar trophic dynamics in proto-
- 502 Amazonian mega-wetlands. *Proc. R. Soc. B* **282**, 20142490. (doi:10.1098/rspb.2014.2490)
- 503 58. Brochu CA. 2000 Phylogenetic relationships and divergence timing of *Crocodylus* based on

504 morphology and the fossil record. *Copeia* **3**, 657-673. (doi:10.1643/0045-

- 505 <u>8511(2000)000[0657:PRADTO]2.0.CO;2</u>)
- 506 59. Scheyer TM, Aguilera OA, Delfino M, Fortier DC, Carlini AA, Sánchez R, Carrillo-Briceño

507 JD, Quiroz L, Sánchez-Villagra MR. 2013 Crocodylian diversity peak and extinction in the

- 508 late Cenozoic of the northern Neotropics. *Nat. Commun.* **4**, 1907. (doi:10.1038/ncomms2940)
- 509 60. Molnar RE. 1982 *Pallimnarchus* and other Cenozoic crocodiles in Queensland. *Mem. Qd.*510 *Mus.* 20, 657-673.
- 511 61. Hocknull SA et al. 2020 Extinction of eastern Sahul megafauna coincides with sustained
- 512 environmental deterioration. *Nat. Commun.* **11**, 1-14. (doi:10.1038/s41467-020-15785-w)
- 513 62. Delfino M, Iurino DA, Mercurio B, Piras P, Rook L, Sardella R. 2020 Old African fossils
- 514 provide new evidence for the origin of the American crocodiles. *Sci. Rep.* **10**, 1-11.
- 515 (doi:10.1038/s41598-020-68482-5)
- 516 63. Blakey RC. 2008 Gondwana paleogeography from assembly to breakup—A 500 m.y.
- 517 odyssey. In *Resolving the Late Paleozoic Ice Age in Time and Space* (eds CR Fielding, TD
- 518 Frank, JL Isbell), pp. 1-28. Boulder: Geological Society of America Special Paper.
- 519

520 Figure captions

521 Figure 1. Fossil record of Sacacosuchus and Piscogavialis in the Neogene deposits of the Pisco 522 Basin, southern Peru. (a) Schematic stratigraphic columns of the Chilcatay (yellow) and Pisco 523 (light blue) formations with crocodylian-bearing localities at the Ica-Pisco Valleys (left; from ca. 524 20 to 7 Ma) and the Sacaco area (from *ca*. 9.38 to 4.85 Ma). (b) Location and map of the East 525 Pisco basin showing the Chilcatay (yellow) and Pisco (blue) deposits within putative continental 526 flooded areas (in white). Map modified from [31]. AGL, Aguada de Lomas; CCO-n, Cerro 527 Colorado norte; CCO-s, Cerro Colorado sur; CLQ, Cerro Los Quesos; COM, Comatrana; CVT, 528 Correviento; ELJ, EL Jahuay; MTM, Montemar; MTM-n, Montemar norte; MTM, Montemar; 529 SAO-e, Sacaco east; SAS-w, Sud-Sacaco west; SUL, Sula Site; YAU, Yauca; ZAM, Zamaca. 530 Figure 2. Photograph and schematic drawing of the skulls of *Sacacosuchus cordovai* gen. et sp. 531 nov. from Sacaco at different ontogenetic stages. Adult specimen (holotype: MUSM 162) in 532 dorsal (a), ventral (b), right lateral (e), and occipital (f) views. Sub-adult specimen (MUSM 161) 533 in dorsal (c), ventral (d), left lateral (g; inverted), and occipital (h) views. Juvenile specimen 534 (MUSM 160) in dorsal (i) view. ba, basioccipital; bs, basisphenoid; CH, choana; cq, 535 cranioquadrate foramen; ec, ectopterygoid; ec.mx, maxilla surface for ectopterygoid; EN, 536 external naris; eo, exoccipital; f, frontal; fcp, foramen carotideum posterior; IF, incisive foramen; 537 ITF, infratemporal fenestra; j, jugal; j.la, lacrimal surface for jugal; j.mx, maxilla surface for 538 jugal; l, lacrimal;; ls, laterosphenoid; m5, m,9, m14, maxillary tooth positions; mx, maxilla; 539 n.pm, premaxilla surface for nasal; na, nasal; OR, orbit; p, parietal; pa, palatine; pa.mx, maxilla 540 surface for palatine; pf, prefrontal; pm, premaxilla; p3, p4, premaxillary tooth positions; po, 541 postorbital; pt, pterygoid; q, quadrate; qj, quadratojugal; qj,q, quadrate surface for quadratojugal;

- s, shelf; so, supraoccipital; sq, squamosal; STF, supratemporal fenestra; SOF, suborbital fenestra;
 v, foramen vagus; xii, foramen for hypoglossal nerve. All photographs to the same scale. Scale
 bar equals 5 cm.
- 545 **Figure 3.** Phylogenetic position of *Sacacosuchus cordovai* and other marine taxa (represented by
- 546 their skulls) within the Crocodylia, with ancestral range reconstructions provided by S-DIVA. (a)

547 Time-calibrated, strict consensus tree on the constrained and equal weighted analysis.

- 548 Crocodylians found in marine deposits pertain to the gavialoid clade. The ancestral range
- 549 reconstructions are summarised as pie charts and shown for critical nodes of the Gavialoidea (73:
- 550 *Eogavialis* + *Gavialis*; 79: Gryposuchinae; 81: *Aktiogavialis*; 82: *Argochampsa*, *Aktiogavialis*,
- advanced gavialids; 83: 'gharials' + MUSM 1513; 86: Miocene African forms; 89:
- 552 *Thecachampsa* species; 90: *Sacacosuchus*, *Gavialosuchus*, *Thecachampsa* + unnamed node 88;
- 553 92: Gavialidae; 96: Gavialoidea), Crocodylidae (99: node 97 + *Cr. porosus*); and 'thoracosaurs'
- 554 (121). Geographic areas of distribution are represented by colours and capital letters. Wide bars
- 555 within branches show stratigraphic range of taxa. White arrows at the branches of gryposuchines,
- 556 Gavialis, and Tomistoma schlegelii indicate major shifts from marine to freshwater habitats.
- 557 Eocene palaeomap (*b*) is from Blackey [63].
- 558 **Figure 4.** Diversity of crocodylians during the last 90 my. (*a*) Observed range-through
- 559 (OR) diversity of crocodylian genera (OR bys: red dashed line), OR of marine (OR mg: blue
- solid line) and non-marine genera (OR n-mg: black solid line) calculated per chronostratigraphic
- 561 stages. (b) Estimated richness based on the Chao1 extrapolation estimator calculated per
- 562 chronostratigraphic stages (red dots) and second-order Jackknife richness estimator calculated
- using 3-million years time bins for marine (mg: blue line) and non-marine (n-mg: black line)

564	crocodylian genera. Grey solid line represents a smoothed global sea level curve after Miller et
565	al. [37] and the orange solid line a global mean temperature curve after Zachos et al. [34]. The
566	time spam of the south-eastern Pacific gavialid crocodylians record (SEP C) encompasses the
567	estimated highest peak of genera and species of marine forms. PLI, Pliocene.
568	Figure 5. The pPCA of the snout of the Crocodylia defined by PC1 and PC2. Black dots denote
569	non marine taxa and blue dots (with or without skulls) correspond to extinct taxa (gavialoids and
570	Thoracosaurus) recovered from marginal to fully marine environments and the living saltwater
571	crocodile, Crocodylus porosus. Positive values of PC1 depict forms with longirostrine
572	ecomorphs. All gavialoids pertain to these ecomorphs but bearing large variation along positive
573	and negatives values of PC2, with morphological 'tomistomines' restricted to the positive values
574	and 'gharials' confined to the negative values. The sole 'thoracosaur' included in this analysis is
575	positioned close to the 'gharial' ecomorph. Grey polygon encompasses the gavialoid
576	morphospace and blue areas correspond to distinct ecomorphs of marine gavialoids within the
577	morphological 'tomistomines' (upper) and 'gharials' (lower).

1	Miocene fossils from the south-eastern Pacific shed light on the last radiation
2	of marine crocodylians
3	Rodolfo Salas-Gismondi ^{1,2,3*} , Diana Ochoa ¹ , Stephane Jouve ⁴ , Pedro E. Romero ¹ , Jorge
4	Cardich ¹ , Alexander Perez ¹ , Thomas DeVries ⁵ , Patrice Baby ⁶ , Mario Urbina ² , Matthieu Carré ^{1,7}
5	
6	¹ Facultad de Ciencias y Filosofía/Centro de Investigación para el Desarrollo Integral y
7	Sostenible, Laboratorios de Investigación y Desarrollo, Universidad Peruana Cayetano Heredia,
8	Lima, Perú
9	² Departamento de Paleontología de Vertebrados, Museo de Historia Natural, UNMSM, Lima,
10	Perú.
11	³ Division of Paleontology, American Museum of Natural History, New York, NY 10024-5192,
12	USA
13	⁴ Centre de Recherche en Paléontologie-Paris (CR2P), Sorbonne Université, CNRS-MNHN-
14	Sorbonne Université, 4 Place Jussieu, 75005 Paris, France
15	⁵ Burke Museum of Natural History and Culture, University of Washington, Seattle WA 98195
16	USA
17	⁶ Géosciences- Environnements Toulouse, Université de Toulouse; UPS (SVT-OMP); CNRS;
18	IRD; 14 Avenue Édouard Belin, F-31400, Toulouse, France
19	⁷ LOCEAN Laboratory, UMR7159 (CNRS-IRD-MNHN-Sorbonnne Universités), Paris, France
20	
21	*Corresponding author. E-mail: rodolfo.salas@upch.pe
22	Short title: Fossils enlighten marine crocodylian radiation

- 23 Keywords: Gavialoidea; marine crocodylians; phylogenetics; biogeography; longirostrine
- 24 ecomorphs

25

26 Abstract

27 The evolution of crocodylians as sea dwellers remains obscure because living representatives are 28 basically freshwater inhabitants and fossil evidence lacks crucial aspects about crocodylian 29 occupation of marine ecosystems. New fossils from marine deposits of Peru reveal that 30 crocodylians were habitual coastal residents of the south-eastern Pacific (SEP) for approximately 31 14 million years within the Miocene (ca. 19-5 Ma), an epoch including the highest global peak of 32 marine crocodylian diversity. The assemblage of the SEP comprised two long and slender-33 snouted (longirostrine) taxa of the Gavialidae: the giant *Piscogavialis* and a new early diverging 34 species, Sacacosuchus cordovai. Although living gavialids (Gavialis and Tomistoma) are 35 freshwater forms, this remarkable fossil record and a suite of evolutionary morphological 36 analyses reveal that the whole evolution of marine crocodylians pertained to the gavialids and 37 their stem relatives (Gavialoidea). This adaptive radiation produced two longirostrine ecomorphs 38 with dissimilar trophic roles in seawaters and involved multiple transmarine dispersals to South 39 America and most landmasses. Marine gavialoids were shallow sea dwellers, and their Cenozoic 40 diversification was influenced by the availability of coastal habitats. Soon after the richness peak 41 of the Miocene, gavialoid crocodylians disappeared from the sea, probably as part of the marine 42 megafauna extinction of the Pliocene.

43

44 **1. Introduction**

45 During the Mesozoic, archaic crocodylomorphs achieved anatomical and physiological 46 specialisations for a pelagic marine lifestyle as in no other time in the history of Earth [1-4]. In 47 contrast, extant members of the crown clade (i.e. crocodylians) are mostly semi-aquatic, 48 freshwater animals and only some species of the genus Crocodylus (e.g. Cr. porosus, Cr. acutus) 49 regularly wander into coastal, saltwater settings [5-7]. Adaptations to withstand different 50 salinities (e.g. presence of lingual salt glands or a keratinised buccal cavity), however, occur not 51 only in *Crocodylus*, but also in strictly freshwater taxa, such as the Malavan and the Indian 52 gharials, Gavialis gangeticus (Gmelin, 1789) and Tomistoma schlegelii (Muller, 1838) [8,9], 53 suggesting that the common ancestor of Longirostres (sensu [10]) had a marine ecology [11]. 54 *Gavialis, Tomistoma* and their fossil kin (crown clade Gavialidae) typically possess long and slender snouts. Fossils suggest that several extinct gavialids had marine habits since they 55 56 have been recovered from contexts depicting a wide range of salinities, including marginal to 57 fully marine areas (e.g. [12-19]). These fossils are documented from most landmasses and such 58 broad distribution requires crossing sea barriers to be explained [20-22]. Recent studies 59 established that the last radiation of crocodylomorphs into marine environments occurred in the 60 late Cretaceous with little or no marine diversity throughout the Cenozoic [3,4,23,24]. 61 The rich fossil record from the south-eastern Pacific (SEP) in the coastal desert of Peru has revealed invaluable data about the evolution of marine vertebrates and their ecosystems for 62 63 the last 42 million years (e.g. [25-27]). Along with whales, earless seals, penguins, and aquatic 64 sloths, most of the Neogene localities of the Pisco Formation have yielded well-preserved 65 remains of crocodylians [26,27], until now represented by one giant gavialid species, Piscogavialis jugaliperforatus Kraus, 1998 [13]. 66

67 Here, we present a new gavialid from the same marine deposits of the East Pisco Basin. 68 In contrast to Piscogavialis, which is part of a widely diversified clade of gavialids in South 69 America, this second taxon is related to species from other landmasses that were formerly allied 70 to *Tomistoma* within the tomistomines (sensu [17]), emphasising the competence of gavialid 71 crocodylians as marine voyagers. New finely preserved fossils of both taxa reveal that this 72 crocodylian assemblage had a prolonged residence along the coasts of the SEP, an area 73 dominated by the nutrient-rich waters of the Humboldt Current System where these cold-blooded 74 animals are now lacking [28]. We investigated the phylogenetic relationships of the new gavialid 75 and the evolutionary and environmental implications of the long-lasting occupation of 76 crocodylians in the SEP. Based on this record and a comprehensive fossil database, we use 77 phylogenetic, biogeographic, richness, and geometric morphometric analyses to characterise the 78 evolution, diversification, and decline of crocodylians in marine environments.

79

80 2. Geological context, palaeoenvironment, and age

81 The Chilcatay and Pisco formations of the East Pisco Basin document long-lasting marine 82 transgressions that affected about 350 km of the SEP (southern Peru) during the Neogene 83 (electronic supplementary material) [26,27,29]. Recent radiometric datings improved the 84 chronological constraints on these deposits in the Ica-Pisco Valleys and the Sacaco area (figure 85 1a), which as a whole range from the early Miocene (ca. 25 Ma) to the late Pliocene (ca. 2.7 Ma) 86 [30-32]. Fossils of the new gavialid and *Piscogavialis* are documented since ~19 Ma in the 87 Chilcatay Formation and extensively recovered in the late Miocene deposits of the Pisco 88 Formation in both areas (figures 1*a*,*b*, S2 and S3). The Peruvian record is particularly rich in the 89 late Miocene-earliest Pliocene strata of the Pisco Formation at Sacaco, with the last crocodylian

90	remains documented at <i>ca</i> . 4.85 Ma (figure $1a,b$) [27]. During this time interval, the Sacaco area
91	was a shallow marine environment connected to the open ocean and comprising protected
92	embayments, rocky headlands, and small islands (figure $1b$) [26,27]. A similar environment is
93	depicted for most fossiliferous deposits of the Chilcatay and Pisco formations at the Ica-Pisco
94	valley [31,32].
95	
96	3. Systematic Palaeontology
97	Crocodyliformes Hay, 1930; Crocodylia Gmelin, 1789; Longirostres (Cuvier, 1807) as defined
98	by [10]; Gavialidae (Adams, 1854)
99	Sacacosuchus cordovai gen. et sp. nov.
100	Etymology: Sacaco after the rich fossiliferous area from where most remains were found;
101	cordovai after colleague and professor Jesús Córdova, to honour his brave and unconditional
102	support to develop palaeontology in Peru.
103	Holotype: Vertebrate Palaeontology Collection of the Natural History Museum of San
104	Marcos University (MUSM) 162, nearly complete skull (figure 2 <i>a</i> , <i>b</i> , <i>e</i> , <i>f</i> and S4)
105	Type Locality and Horizon: Sud-Sacaco west (SAS-w; figure 1), Sacaco sub-basin,
106	northern Arequipa, Peru; Pisco Formation, late Miocene, dated to ca. 6.33 Ma [27].
107	<i>Referred specimens</i> : MUSM 160, partial skull of a juvenile, Locality SAS-w (figure 2 <i>i</i>);
108	MUSM 161, partial skull of a sub-adult, Locality Montemar north (MTM-n; figure 2 <i>c</i> , <i>d</i> , <i>g</i> , <i>h</i> and
109	S5), late Miocene, ca. 8.0 Ma; MUSM 163, left dentary preserved until the fourteenth dentary
110	alveolus, Locality Aguada de Lomas (AGL; figure S2), late Miocene, ca. 8.85 Ma; (electronic
111	supplementary material).

112 Diagnosis: Sacacosuchus cordovai is a relatively medium to large, longirostrine gavialid 113 diagnosed by the following unique combination of characters: premaxillae not expanded relative 114 to the maxillae; nasals in contact with the external naris; 14 maxillary teeth; fifth and ninth to 115 twelfth maxillary tooth alveoli enlarged; large, roughly circular orbits; deep splenial symphysis. 116 Differs from all other gavialids by having ventral margins of the orbit low and barrel vault-117 shaped; postorbital bar lanceolate in cross-section with the external plane facing anterolaterally; 118 rostral process of quadratojugal long along the ventral margin of the infratemporal fenestrae and 119 no dorsal process bordering its posterior margin. 120 General comparative description: Sacacosuchus cordovai possesses a slender, long, and

121 parallel-sided snout that expands gradually posterolaterally into a robust, triangular orbital and 122 postrostral cranium (figure 2a, c, i). The snout is tubular in cross-section with slightly sinuate 123 margins along the dental series. In lateral view, the snout describes a wide dorsal curvature 124 (figure 2e,g). The rostral length/skull length index is 0.79, similar to that of Gavialis gangeticus 125 (0.76-0.79). However, the rostral width/postorbital width index is 0.22, lower than those of T. 126 schlegelii (0.34), Piscogavialis (0.27) and G. gangeticus (0.25), and equivalent to 'thoracosaurs' 127 (0.22-0.23). The skull table is wide and rectangular in outline, like *Gavialis*, in contrast to the 128 trapezoidal and relatively smaller one of *T. schlegelii*. The supratemporal fenestrae are wider 129 than long and bear sharp, overhanging borders with the skull table, as in Paratomistoma and 130 *Tomistoma' coppensi* [14]. The parietal interfenestral bar is relatively slender. The 131 infratemporal fenestrae are roughly triangular, with a gentle curve at the dorsal angle. The 132 choana is relatively large and basically triangular in outline. The dorsally oriented narial opening 133 is elongated and heart-shaped. The occipital plate is vertical and not visible in dorsal view. 134 Although not fully preserved, suborbital fenestrae show an elongated teardrop shape. The skull

http://mc.manuscriptcentral.com/prsb

135	bears five and 14 alveoli in the premaxilla and maxilla, respectively. The fifth maxillary alveoli
136	are larger than the fourth and the sixth, but the largest alveoli consist of the ninth, tenth, eleventh,
137	and twelfth tooth positions.
138	The prefrontals, the single frontal, and the postorbitals are not raised along the orbital
139	margins, thus the typical everted orbital margins of most crocodylians are not present in
140	Sacacosuchus (character 137-0). The demarcation between the parietal on the skull table and the
141	anterior border of the fenestrae is sharp, with the parietal even overhanging these fenestrae, as in
142	'Tomistoma' coppensi and Paratomistoma (character 152-3). The squamosal surface of the skull
143	table slopes lateroventrally, as in Gryposuchus and Paratomistoma (character 156-0), and in
144	contrast to the planar skull table of <i>T. schlegelii</i> and <i>Crocodylus</i> .
145	The dentary bears \sim 17-18 alveoli and the dentary symphysis extends posteriorly up to the
146	level of the ninth-tenth dentary tooth loci (character 49-2), where they meet the wedge-like
147	rostral process of the united splenials, as in <i>T. schlegelii</i> . Body length estimation [33] for
148	Sacacosuchus type specimen is 432 cm (details in electronic supplementary material).

149

150 **4. Results and discussion**

151 (a) Two Neogene crocodylians in the south-eastern Pacific

The Lagerstätte fossil record of the East Pisco Basin reveals that two crocodylian taxa had occupied coastal marine environments of the SEP for approximately 14 million years (*ca.* 19 to 5 Ma), an interval that comprises much of the Miocene (figure 1*a*). This record spans the warm phase of the middle Miocene and the following global cooling trend [34]. Warm conditions likely prevailed in the shallow, coastal marine environments of the SEP during the whole interval [27]. Environmental and climatic conditions during the late Miocene were optimal for marine

158	crocodylians even in Chile, 1600 km south of Sacaco, where Piscogavialis bones (SGO-PV-834;
159	RS-G personal observation) have been documented [35].
160	The crocodylian remains of the East Pisco Basin were recovered in association with a
161	typical marine vertebrate fauna, including whales, earless seals, seabirds, sharks, and bony fishes
162	[26,27]. Remains of Sacacosuchus and Piscogavialis consist of cranial and postcranial bones in
163	partial or full anatomical connection (figures S2 and S3). The Sacacosuchus record includes
164	individuals at various ontogenetic stages (figure 2), suggesting that these crocodylians actually
165	lived, died, and were buried in marine waters. In contrast to the finely preserved marine
166	vertebrate remains [13,27,29], fossils of continental origin in the Pisco Basin are limited to a
167	handful of isolated bones [27].
168	With an estimated body length of 431 cm, Sacacosuchus was a medium-sized
169	crocodylian while Piscogavialis was a giant, almost twice as long (~776 cm; see electronic
170	supplementary material). Despite its large size, the latter was probably a specialist in acquiring
171	rapid small targets (e.g. fishes) while Sacacosuchus had a more generalized diet (see below).
172	Isolated bones of large individuals (cf. Piscogavialis) document the existence of crocodylians up
173	to the youngest vertebrate-bearing deposits, dated at 4.85 Ma (early Pliocene; figure 1 <i>a</i>). The
174	sedimentary record was commenced again in Sacaco by ca. 2.7 Ma with no more crocodylian
175	remains [27]. Andean tectonics at <i>ca</i> . 4.5 Ma [36] and a eustatic drop of sea level in the Pliocene
176	[37] likely contributed to the end of Pisco sedimentation and the disruption of the coastal
177	environments. The extirpation (and extinction) of crocodylians from the SEP thus happened at
178	some point during the Pliocene and was probably caused by the reduction of continental flooding
179	and the establishment of cool waters of the Humboldt current system [27,37,38].
180	

181 **(b)** *Sacacosuchus* and gavialid phylogeny

182 We conducted tip-dated Bayesian and maximum parsimony analyses of morphological 183 characters to determine evolutionary relationships of Sacacosuchus cordovai within the 184 crocodylians (methods in electronic supplementary material). We included in the data matrix the 185 slender-snouted South American taxon *Charactosuchus fieldsi* [39]. However, initial analyses 186 proved that currently known fragments of this taxon are uninformative for establishing its 187 phylogenetic affinities, thus it was excluded from the following searches. Our tip-dated 188 approaches retrieved distant relationships between living Gavialis and Tomistoma, as suggested 189 by other morphological analysis using this method [40]. Instead, our maximum parsimony 190 analysis with equal weighting recovered close relationships of *Tomistoma* and *Gavialis* among 191 living crocodylians, in line with molecular analyses [10,41,42] and a recent morphological 192 approach [43]. Morphological 'tomistomines' (sensu [43,44]) are the earliest diverging 193 gavialoids (sensu [45]), yet low supported. The long and slender-snouted 'thoracosaurs' from the 194 Cretaceous-early Eocene interval have been usually allied to 'gharials' (sensu [46]) in 195 morphology-based analyses [47,48]. Here, they are positioned deeply nested within the 196 Gavialidae, as a clade sister to 'gharials.' However, we identified several plesiomorphic features 197 in 'thoracosaurs' [43] lacking in 'gharials' and even across Longirostres (see electronic 198 supplementary material). As their position also provides significant temporal incongruence to the 199 crown clade Gavialidae [40,43], we constrained searches to force 'thoracosaurs' outside of 200 Longirostres and set the Palaeocene species Argochampsa krebsi as a floating taxon. This 201 constraint resulted in a tree insignificantly longer (p > 0.05), in which 'thoracosaurs' are 202 recovered as the sister clade of *Borealosuchus* + Crocodylia and *Argochampsa* within

203	Gavialidae. <i>Eogavialis</i> from the Eocene of Africa is recovered as the closest relative of <i>Gavialis</i> .
204	Subsequent analyses and discussions follow this phylogenetic hypothesis (figure 3 <i>a</i>).
205	Sacacosuchus is deeply nested within the Gavialidae, as part of a polytomy (node 90)
206	with some morphological 'tomistomines' (i.e. Gavialosuchus eggenburgensis and
207	Thecachampa), and a large clade leading to advanced gavialids. Node 90 is supported by having
208	a vomer entirely obscured by maxillae and premaxillae (character 100-0), pterygoid surface and
209	choanal margins flushed (character 123-0), and quadrangular, wider than long, supratemporal
210	fenestrae (character 191-1). The divergence of Sacacosuchus occurred after that of T. schlegelii
211	but much earlier than the divergence of any other clade of Neotropical gavialids known so far.
212	Indeed, our analysis supports for independent origins of Sacacosuchus, Aktiogavialis,
213	gryposuchines (sensu [21]), and an Eocene Peruvian form coded for these analyses and currently
214	under study (MUSM 1513; figure 3a). Thus, phylogenetics cluster Sacacosuchus within
215	morphological 'tomistomines' and suggest a complex evolutionary history for Neotropical
216	gavialids.
217	
218	(c) Marine crocodylian biogeographic history and diversity
219	Phylogenetic analysis indicates that crocodylians recovered from estuarine or marine
220	depositional settings exclusively pertain to the gavialoid clade (figure 3 <i>a</i> ; node 96). Although
221	extant Gavialis and Tomistoma species are freshwater forms, marine habits were widely
222	distributed among gavialoids and were probably the ancestral condition of the group [49]. The
223	optimal biogeographic reconstruction provided by a statistical dispersal-vicariance analysis (S-
224	DIVA; electronic supplementary material) points to the northern European (D) and Peri-Tethyan
225	

226	and estimated richness analyses (electronic supplementary material) show that the diversity of
227	marine gavialoids increased from their origination to the early Eocene (figures $3a$ and 4), when
228	non-crocodylian crocodylomorphs (i.e. dyrosaurids and thoracosaurs) thrived in marine
229	environments [4,47,48,50]. The group soon dispersed to Asia and declined in northern Europe by
230	the late Eocene.
231	Presumed ancestral ranges of the Gavialidae (node 92) might have included the Peri-
232	Tethys and Asia (CF; figure 3 <i>a</i> , <i>b</i>), with 100% of marginal probability. Because the Palaeocene
233	Argochampsa is deeply nested within the Gavialidae, a late Cretaceous origin for the clade is
234	suggested, in contrast to the Eocene origination proposed by molecular clock estimates [42].
235	Other gavialids recovered in our analysis are no older than Eocene.
236	From the Peri-Tethys, gavialids colonised North America (A) and South America (B), the
237	latter movement giving rise to Sacacosuchus cordovai (node 90). Aktiogavialis, gryposuchines,
238	and MUSM 1513 are additional clades from the Americas that might have originated within the
239	Peri-Tethys [20,45]. In the late Eocene, ancestors of gryposuchines and <i>Eogavialis</i> + <i>Gavialis</i>
240	(node 80) occupied BC, BF or BCF, each range with equal marginal probability (figure $3a,b$).
241	The late Eocene and Oligocene seem to be characterised by low crocodylian standing
242	diversity in marine environments (figure $4a,b$) [4,51]. However, the middle and late Miocene
243	witnessed pronounced origination rates (figure S14b), leading to the largest richness peak of
244	marine forms in the crocodylian history (figures $3a$ and $4a$, b). This richness reflects the extensive
245	adaptive radiation of gavialids in most landmasses, particularly in the Americas and the Peri-
246	Tethys [13,16,20,21]. The East Pisco Basin record of Sacacosuchus and Piscogavialis
247	corresponds with this time interval, which is characterised by the Middle Miocene Climatic

248	Optimum (17 to 15 Ma) and a progressive global cooling with relatively small sea-level
249	fluctuations compared to the Oligocene or Plio-Pleistocene values [34,37,38].
250	A rapid and sustained global decline of marine gavialids started in the late Miocene and
251	continued until their complete vanishing at the middle or late Pliocene, probably as part of the
252	marine megafauna extinction of that epoch [38]. Non-marine gavialids survived in Asia but
253	declined elsewhere [20]. In general, freshwater crocodylians show a subtle demise at this time-
254	lapse but their richness was recovered by the end of the Pliocene, with the diversification of
255	Crocodylus (figure 3a).
256	Ancestrally, gavialoids had marine habits, dispersed across marine barriers, and invaded
257	freshwater environments multiple times in different landmasses (figure 3a). The Peri-Tethys
258	might have been the centre for multidirectional marine dispersals of the gavialids, yet timing
259	incongruence on the origin of the clade persists.
260	
261	(d) What is a marine crocodylian?
262	The phylogenetic Principal Component Analysis (pPCA; methods in electronic supplementary
263	material) indicates that marine taxa were all longirostrine forms. Disparate morphospace
264	occupations within this rostral shape suggest additionally that two different ecomorphs roamed
265	ancient marine environments (figure 5). Advanced marine gavialoids, such as Piscogavialis and
266	Eogavialis, had an extremely long rostrum, enlarged teeth restricted to the tip of the snout and an
267	adductor chamber resembling that of the living Gavialis gangeticus [52]. These animals
268	performed low-bite-force and fast movements of the jaws and were predators of small and rapid
269	targets [20]. 'Thoracosaurs' might belong to this ecomorph (figure 5). In comparison,
270	morphological 'tomistomines', such as Thecachampsa, had a more powerful bite, larger teeth

close to the jaw joints, and their snout was usually less attenuated than in advanced gavialoids,
suggesting a diet composed of a wider range of prey sizes [20].

273 Marine crocodylians were essentially shallow marine inhabitants. These environments 274 have been proposed for several taxa of gavialoids by taphonomic, geologic, and isotopic data 275 [12-19,22,53] and are consistent with their locomotion-related anatomy. Because marine 276 crocodylians show no significant differences in the axial skeleton and the hindlimbs relative to 277 living forms, they are inferred to have swum by using axial undulatory movements and 278 terrestrial-adapted limbs (plesiopedal) [54]. This locomotion pattern is incompatible with 279 breathing during prolonged or fast swimming and thus restricts predation to an explosive 280 ambushing behaviour in shallow waters, as has been proposed for other reptiles during incipient 281 adaptations to a marine lifestyle [54].

282 If marine crocodylians were limited to shallow marine environments, their diversification 283 and extinction would have been driven by the availability of coastal habitats and might have 284 been extensively disturbed by global sea-level changes. We would also expect that marine 285 crocodylians and open-ocean predators (hydropedal with a stiff trunk: e.g. odontocete cetaceans) 286 responded differently to evolutionary drivers. For example, changes in odontocete communities 287 are documented worldwide and attributed to a mix of physical and biological factors, in which 288 niche scalation and a pelagic lifestyle played distinct roles [23,55]. Instead, sea-level fluctuations 289 with effects on coastal habitats have been identified as a main driver of crocodylomorph 290 diversification in marine environments [3,4,51]. The peaks in origination rates and standing 291 diversity of the Miocene coincide with a period of relatively high and stable sea level, and 292 essentially corresponds to the flourishing of gavialid crocodylians in extensive continental 293 flooding areas across the Peri-Tethys and the SEP [26,27,30,31,56]. By the Pliocene, the rapid

demise of marine crocodylians concurs with lower sea surface temperature, decreasing sea-level
[37] and, a drastic reduction of neritic habitats [38].

296 Bones show no features unique to marine crocodylians. Similar patterns of longirostry 297 and locomotion anatomy are also observed in freshwater taxa [20] (figure 5). However, certain 298 morphologies, such as protruding orbital margins or blunt snouts, would not be found in marine 299 crocodylians because these evolved exclusively associated with an ecology of freshwater 300 environments [46,57]. Intriguingly, the sole living genus with populations in marine areas, 301 Crocodylus, does not have a longirostrine condition (figures 3a and 5). Dispersal across marine 302 barriers occurred widely within this taxon but most (if not all) of the fossil record from America, 303 Europe, Asia, Oceania, and Africa was recovered from deposits indicating fluvial and lacustrine 304 environments [58,59]. Even fossils of the saltwater crocodile, *Crocodylus porosus*, come from 305 freshwater deposits [60,61] and the late Miocene Crocodylus checchiai, the species linking 306 Neotropical and African Crocodylus, was recovered from a marginal marine formation in which 307 vertebrates of continental origin prevail [62]. Fossils examined under multiple assessments 308 (taphonomy, stable isotopes, palaeohistology) should provide further insights on the functional 309 roles of ancient and modern marine crocodylians.

310

311 **5. Conclusions**

312 Sacacosuchus cordovai belongs to the crown clade Gavialidae with ancestors in the Peri-Tethys 313 that migrated to South America crossing marine barriers. This kind of dispersal was 314 multidirectional and characterised the diversification of gavialids in coastal areas, although the 315 timing is still poorly constrained. Extant *Gavialis* and *Tomistoma* are freshwater survivors within 316 a predominantly marine group. The crocodylian marine ecology was restricted to longirostrine 317 forms of the gavialoids, in contrast to the variety of clades and rostral shapes that evolved in 318 freshwater ecosystems. Within this longirostrine morphotype, two distinct ecomorphs with 319 dissimilar trophic roles thrived in seawaters. The evolution of Sacacosuchus and Piscogavialis in 320 the coastal, flooded areas of the SEP is an exemplar of the adaptive radiation of gavialoids in 321 marine ecosystems. As semi-aquatic predators, gavialoids occupied shallow coastal habitats and 322 got a peak in marine richness during the Miocene, when relatively high and stable sea levels 323 occurred. Soon after, these marine crocodylians suffered a drastic decline, probably triggered by 324 the global loss of shallow marine areas. The demise of the longirostrine, marine crocodylians 325 roughly coincides with the marine megafauna extinction of the Pliocene. 326

327 Acknowledgments. We thank W. Aguirre for the fossil preparation; M. Norell, J. Flynn, D.

328 Kirizian, C. Mehling, and L. Vonnnahme (AMNH), C. de Muizon and S. Bailón (MNHN), E.

329 'Dino' Frey (SMNK), R.Schoch (SMNS), and R. Hulbert (UF) for access to comparative

330 collections; C. Brochu for providing crocodylian photographs; A. García for taking pictures of *T*.

331 *lusitanica*. D. Pol, J., Tejada-Lara, L. Hostos, D. Adams, M. Collyer, and J. Clarke for providing

332 valuable insights. E. Coombs and A. Goswami for performing 3D scans of some Sacacosuchus

333 specimens. Sacacosuchus and Piscogavialis (exclusive of the type) specimens are permanently

deposited at the Museo de Historia Natural, UNMSM (MUSM), Lima, Peru.

335 Author contributions. R.S.-G. designed the research, wrote the manuscript and performed

336 systematic and morphometric research, with additional writing contributions from all authors.

- 337 R.S.-G. and S.J. performed anatomical studies. D.O., T.D.V, and P.B. provided geological data
- and DO performed diversity analyses. P.R. performed tree calibration and biogeographic
- analyses. All authors contributed to the discussions and interpretation of the results.

- 340 **Funding statement**. We acknowledge support from CONCYTEC, Peru. (Incorporación de
- 341 Investigadores, grant no. 034-2019-02-FONDECYT-BM-INC.INV), (grants no. 104-2018-

342 FONDECYT and no. 149-2018-FONDECYT-BM-IADT-AV)

343

344 **References**

- 1. Hua S, De Buffrenil V. 1996 Bone histology as a clue in the interpretation of functional
- adaptations in the Thalattosuchia (Reptilia, Crocodylia). J. Vertebr. Paleontol. 16, 703-717.
 (doi:10.1080/02724634.1996.10011359)
- 348 2. Herrera Y, Fernández MS, Gasparini Z. 2013 The snout of Cricosaurus araucanensis: a case
- 349 study in novel anatomy of the nasal region of metriorhynchids. *Lethaia* **3**, 331-340.
- 350 (doi:10.1111/let.12011)
- 351 3. Martin JE, Amiot R, Lécuyer C, Benton MJ. 2014 Sea surface temperature contributes to
- 352 marine crocodylomorph evolution. *Nat. Commun.* **5**, 1–7. (doi:10.1038/ncomms5658)
- 4. Mannion PD, Benson RB, Carrano MT, Tennant JP, Judd J, Butler RJ. 2015 Climate
- 354 constrains the evolutionary history and biodiversity of crocodylians. *Nat. Commun.* **6**, 1–9.
- 355 (doi:10.1038/ncomms9438)
- 5. Mazzotti FJ, Dunson WA. 1989 Osmoregulation in crocodilians. Am. Zool. 29, 903-920
- 357 (doi:10.1093/icb/29.3.903)
- 358 6. Wheatley PV, Peckham H, Newsome SD, Koch PL. 2012 Estimating marine resource use by
- 359 the American crocodile *Crocodylus acutus* in southern Florida, USA. *Mar. Ecol. Prog. Ser.*
- 360 **447**, 211-229 (doi:10.3354/meps09503)
- 361 7. Grigg G, Kirshner D. 2015 Biology and evolution of crocodylians. Ithaca and London:
- 362 Cornell University Press.

- 363 8. Taplin LE. 1988 Osmoregulation in crocodilians. *Biol. Rev.* 63, 333-377.
- 364 (doi:10.1111/j.1469-185X.1988.tb00721.x)
- 365 9. Leslie AJ, Taplin LE. 2000 Recent developments in osmoregulation of crocodilians. In
- 366 *Crocodilian Biology and Evolution* (eds GC Grigg, F Seebacher, GE Franklin), pp. 265–279.
- 367 Chipping Norton: Survey Beatty & Sons.
- 368 10. Harshman J, Huddleston CJ, Bollback JP, Parsons TJ, Braun MJ. 2003 True and false
- 369 gharials: a nuclear gene phylogeny of Crocodylia. *Syst. Biol.* **52**, 386-402.
- 11. Wheatley PV. 2012 Understanding saltwater tolerance and marine resource use in the
- 371 Crocodylia: a stable isotope approach. PhD. thesis, University of California.
- 12. Erickson BR, Sawyer GT. 1996 The estuarine crocodile *Gavialosuchus carolinensis* n. sp.
- 373 (Crocodylia: Eusuchia) from the late Oligocene of South Carolina, North America.
- 374 Monographs Sci. Mus. Minnesota (Paleontology) **3**, 1-47.
- 375 13. Kraus R. 1998 The cranium of *Piscogavialis jugaliperforatus* n. gen., n. sp. (Gavialidae,
- 376 Crocodylia) from the Miocene of Peru. *Paläontol. Z.* **72**, 389–405.
- 377 (doi:10.1007/BF02988368)
- 378 14. Brochu CA, Gingerich PD. 2000 New tomistomine crocodylian from the middle Eocene
- 379 (Bartonian) of Wadi Hitan, Fayum Province, Egypt. Contr. Mus. Pal. Uni. Michigan 30, 251-
- 380 268.
- 381 15. Brochu CA. 2007 Systematics and taxonomy of Eocene tomistomine crocodylians from
- 382 Britain and Northern Europe. *Palaeontology* **50**, 917-928. (doi:10.1111/j.1475-
- 383 <u>4983.2007.00679.x</u>)

384	16. Piras P, Delfino M, Del Favero L, Kotsakis T. 2007 Phylogenetic position of the crocodylian
385	Megadontosuchus arduini and tomistomine palaeobiogeography. Acta Palaeontol. Pol. 52,
386	315–328.
387	17. Jouve S, Bardet N, Jalil NE, Suberbiola XP, Bouya B, Amaghzaz M. 2008 The oldest
388	African crocodylian: phylogeny, paleobiogeography, and differential survivorship of marine
389	reptiles through the Cretaceous-Tertiary boundary. J. Vertebr. Paleontol. 28, 409-421.
390	(doi:10.1671/0272-4634(2008)28[409:TOACPP]2.0.CO;2)
391	18. Jouve S, Bouya B, Amaghzaz M, Meslouh S. 2015 Maroccosuchus zennaroi (Crocodylia:
392	Tomistominae) from the Eocene of Morocco: phylogenetic and palaeobiogeographical
393	implications of the basalmost tomistomine. J. Syst. Palaeontol. 13, 421-445.
394	(doi:10.1111/zoj.12357)
395	19. Jouve S, Khalloufi B, Zouhri S. 2019 Longirostrine crocodylians from the Bartonian of
396	Morocco and Paleogene climatic and sea level oscillations in the Peri-Tethys area. J. Vertebr.
397	Paleontol. 39, e1617723. (doi:10.1080/02724634.2019.1617723)
398	20. Salas-Gismondi R, Moreno-Bernal JW, Scheyer TM, Sánchez-Villagra MR, Jaramillo C.
399	2019 New Miocene Caribbean gavialoids and patterns of longirostry in crocodylians. J. Syst.
400	Palaeontol. 17, 1049-1075. (doi.org/10.1080/14772019.2018.1495275)
401	21. Vélez-Juarbe J, Brochu CA, Santos H. 2007 A gharial from the Oligocene of Puerto Rico:
402	transoceanic dispersal in the history of a non-marine reptile. Proc. R. Soc. B 274, 1245-1254.
403	(doi: <u>10.1098/rspb.2006.0455</u>)
404	22. Ristevski J, Price GJ, Weisbecker V, Salisbury SW. 2021 First record of a tomistomine
405	crocodylian from Australia. Sci. Rep. 11, 12158. (doi:10.1038/541598-021-91717-y)

406	23. Pyenson ND, Kelley NP, Parham JF. 2014 Marine tetrapod macroevolution: physical and
407	biological drivers on 250 Ma of invasions and evolution in ocean ecosystems. Palaeogeogr.
408	Palaeoclimatol. Palaeoecol. 400, 1-8. (doi:10.1016/j.palaeo.2014.02.018)
409	24. Stubbs TL, Pierce SE, Elsler A, Anderson PS, Rayfield EJ, Benton MJ. 2021 Ecological
410	opportunity and the rise and fall of crocodylomorph evolutionary innovation. Proc. R. Soc.
411	B, 288, 20210069. (doi:10.1098/rspb.2021.0069)
412	25. Lambert O, Bianucci G, Salas-Gismondi R, Di Celma C, Steurbaut E, Urbina M, Muizon C
413	2019. An amphibious whale from the middle Eocene of Peru reveals early South Pacific
414	dispersal of quadrupedal cetaceans. Curr. Biol. 29, 1352-1359.
415	(doi:10.1016/j.cub.2019.02.050)
416	26. Muizon C de, DeVries TJ. 1985 Geology and paleontology of late Cenozoic marine deposits
417	in the Sacaco area (Peru). Geol. Rundsch. 74, 547-563. (doi:10.1007/BF01821211)
418	27. Ochoa D et al. 2021 Late Neogene evolution of the Peruvian margin and its ecosystems: a
419	synthesis from the Sacaco record. Int. J. Earth Sci. 1-31. (doi:10.1007/s00531-021-02003-1)
420	28. Chavez FP, Bertrand A, Guevara Carrasco R, Soler P, Csirke J. 2008. The northern
421	Humboldt Current System: Brief history, present status and a view towards the future. Prog.
422	Oceanogr. 79, 95-105. (doi:10.1016/j.pocean.2008.10.012)
423	29. Di Celma C et al. 2018 Facies analysis, stratigraphy and marine vertebrate assemblage of the
424	lower Miocene Chilcatay Formation at Ullujaya (Pisco basin, Peru). J. Maps 14, 257-268.
425	(<u>doi:10.1080/17445647.2018.1456490</u>)
426	30. DeVries TJ, Jud NA. 2018 Lithofacies patterns and paleogeography of the Miocene
427	Chilcatay and lower Pisco depositional sequences (East Pisco Basin, Peru). Bol. Soc. Geol.
428	Perú 8, 124-167.

- 429 31. DeVries TJ, Schrader H. 1997 Middle Miocene marine sediments in the Pisco basin
 430 (Peru). *Bol. Soc. Geol. Perú* 87, 1-13.
- 431 32. Bosio G et al. 2020 Strontium Isotope Stratigraphy and the thermophilic fossil fauna from
- 432 the middle Miocene of the East Pisco Basin (Peru). J. S. Am. Earth Sci. 97, 102399
- 433 (doi:10.1016/j.jsames.2019.102399)
- 434 33. Sereno PC, Larsson HC, Sidor CA, Gado B. 2001 The giant crocodyliform *Sarcosuchus* from
 435 the Cretaceous of Africa. *Science* 294, 1516–1519. (doi:10.1126/science.1066521)
- 436 34. Zachos J, Pagani M, Sloan L, Thomas E, Billups K 2001. Trends, rhythms, and aberrations in
- 437 global climate 65 Ma to present. *Science* **292**, 686-693. (doi:10.1126/science.1059412)
- 438 35. Walsh SA, Suárez M. 2005 First post-Mesozoic record of Crocodyliformes from Chile. *Acta*439 *Palaeontol. Pol.* 50, 595-600.
- 440 36. Espurt N, Baby P, Brusset S, Roddaz M, Hermoza W, Regard V, Antoine P-O, Salas-
- 441 Gismondi R, Bolanos R. 2007 How does the Nazca Ridge subduction influence the modern
- 442 Amazonian foreland basin? *Geology* **35**, 515-518. (doi:10.1130/G23237A.1)
- 443 37. Miller KG, Browning JV, Schmelz WJ, Kopp RE, Mountain GS, Wright JD. 2020 Cenozoic
- 444 sea-level and cryospheric evolution from deep-sea geochemical and continental margin
- 445 records. *Sci. Adv.* **6**, eaaz1346. (doi:10.1126/sciadv.aaz1346)
- 446 38. Pimiento C, Griffin JN, Clements CF, Silvestro D, Varela S, Uhen MD, Jaramillo C. 2017
- 447 The Pliocene marine megafauna extinction and its impact on functional diversity. *Nat. Ecol.*
- 448 *Evol.* **1**, 1100-1106. (doi:10.1038/s41559-017-0223-6)
- 449 39. Langston Jr W. 1965 Fossil crocodilians from Colombia and the Cenozoic history of the
- 450 Crocodilia in South America. Univ. Calif. Publ. Geol. Sci. 52, 1–157.

451	40. Lee MSY, Yates AM. 2018 Tip-dating and homoplasy: reconciling the shallow molecular
452	divergences of modern gharials with their long fossil record. Proc. R. Soc. B 285: 20181071
453	(doi:10.1098/rspb.2018.1071)
454	41. Gatesy JG, Amato G, Norell M, DeSalle R, Hayashi C. 2003 Total evidence support for
455	extreme atavism in gavialine crocodylians. Syst. Biol. 52, 403-422.
456	(doi:10.1080/10635150390197037)
457	42. Oaks JR. 2011 A time-calibrated species tree of Crocodylia reveals a recent radiation of the
458	true crocodiles. <i>Evolution</i> 65 , 3285–3297. (doi: 10.1111//j.1558-5646.2011.01373.x)
459	43. Rio JP, Mannion PD. 2021 Phylogenetic analysis of a new morphological dataset elucidates
460	the evolutionary history of Crocodylia ad resolves the long-standing gharial problem. PeerJ
461	9:e12094 doi: 10.7717/PeerJ.12094
462	44. Iijima M, Kobayashi Y. 2019 Mosaic nature in the skeleton of East Asian crocodylians fills
463	the morphological gap between "Tomistominae" and Gavialinae. Cladistics 35, 623-632.
464	(doi:10.1111/cla.12372)
465	45. Norell MA, Clark JM, Hutchison JH. 1994 The Late Cretaceous alligatoroid Brachychampsa
466	montana (Crocodylia): new material and putative relationships. Am. Mus. Novit. 3116, 1–26.
467	46. Salas-Gismondi R, Flynn JJ, Baby P, Tejada-Lara J, Claude J, Antoine P-O. 2016 A new 13
468	million year old gavialoid crocodylian from proto-Amazonian mega- wetlands reveals
469	parallel evolutionary trends in skull shape linked to longirostry. PLoS ONE 11, e0152453.
470	(doi:10.1371/journal.pone.0152453)
471	47. Brochu CA. 2004 A new Late Cretaceous gavialoid crocodylian from eastern North America
472	and the phylogenetic relationships of thoracosaurs. J. Vertebr. Paleontol. 24, 610-633.
473	(doi:10.1671/0272-4634(2004)024[0610:ANLGC]2.0.CO;2)

474	48. Brochu CA. 2006 Osteology and phylogenetic significance of <i>Eosuchus minor</i> (Marsh, 1870)
475	new combination, a longirostrine crocodylian from the late Paleocene of North America. J.
476	Paleontol. 80, 162-186.
477	49. Wilberg EW, Turner AH, Brochu CA. 2019 Evolutionary structure and timing of major
478	habitat shifts in Crocodylomorpha. Sci. Rep. 9, 514. (doi:10.1038/s41598-018-36795-1)
479	50. Jouve S. 2021. Differential diversification through the K-Pg boundary, and post-crisis
480	opportunism in longirostrine crocodyliforms. Gondwana Research 99, 110-130.
481	(<u>doi:10.1016/j.gr.2021.06.020</u>)
482	51. De Celis A, Narváez I, Ortega F. 2020 Spatiotemporal palaeodiversity patterns of modern
483	crocodiles (Crocodyliformes: Eusuchia). Zool. J. Linn. Soc. 189, 635-656.
484	(doi:10.1093/zoolinnean/zlz038)
485	52. Erickson GM, Gignac PM, Steppan SJ, Lappin AK, Vliet KA, Brueggen JD, Inouye BD,
486	Kledzik D, Webb GJ. 2012 Insights into the ecology and evolutionary success of crocodilians
487	revealed through bite-force and tooth-pressure experimentation. PLoS ONE, 7, e31781.
488	(doi:10.1371/journal.pone.0031781)
489	53. Whiting ET, Steadman DW, Krigbaum J. 2016 Paleoecology of Miocene crocodylians in
490	Florida: insights from stable isotope analysis. Palaeogeogr., Palaeoclimatol., Palaeoecol.
491	451 , 23-34. (doi:10.1016/j.palaeo.2016.03.009)
492	54. Benson RB, Butler RJ. 2011 Uncovering the diversification history of marine tetrapods:
493	ecology influences the effect of geological sampling biases. Geol. Soc. Spec. Publ. 358, 191-
494	208. (<u>doi:10.1144/SP358.13</u>)
495	55. Marx FG, Uhen MD 2010. Climate, critters, and cetaceans: Cenozoic drivers of the evolution
496	of modern whales. Science 327, 993-996. (doi:10.1126/science.1185581)

497	56. Sant K, Palcu DV, Mandic O, Krijgsman W. 2017 Changing seas in the early-middle
498	Miocene of Central Europe: a Mediterranean approach to Paratethyan stratigraphy. Terra
499	Nova 29, 273-281. (doi:10.1111/ter.12273)
500	57. Salas-Gismondi R, Flynn JJ, Baby P, Tejada-Lara JV, Wesselingh FP, Antoine P-O. 2015 A
501	Miocene hyperdiverse crocodylian community reveals peculiar trophic dynamics in proto-
502	Amazonian mega-wetlands. Proc. R. Soc. B 282, 20142490. (doi:10.1098/rspb.2014.2490)
503	58. Brochu CA. 2000 Phylogenetic relationships and divergence timing of Crocodylus based on
504	morphology and the fossil record. Copeia 3, 657-673. (doi:10.1643/0045-
505	<u>8511(2000)000[0657:PRADTO]2.0.CO;2</u>)
506	59. Scheyer TM, Aguilera OA, Delfino M, Fortier DC, Carlini AA, Sánchez R, Carrillo-Briceño
507	JD, Quiroz L, Sánchez-Villagra MR. 2013 Crocodylian diversity peak and extinction in the
508	late Cenozoic of the northern Neotropics. Nat. Commun. 4, 1907. (doi:10.1038/ncomms2940)
509	60. Molnar RE. 1982 Pallimnarchus and other Cenozoic crocodiles in Queensland. Mem. Qd.
510	Mus. 20, 657-673.
511	61. Hocknull SA et al. 2020 Extinction of eastern Sahul megafauna coincides with sustained
512	environmental deterioration. Nat. Commun. 11, 1-14. (doi:10.1038/s41467-020-15785-w)
513	62. Delfino M, Iurino DA, Mercurio B, Piras P, Rook L, Sardella R. 2020 Old African fossils
514	provide new evidence for the origin of the American crocodiles. Sci. Rep. 10, 1-11.
515	(doi:10.1038/s41598-020-68482-5)
516	63. Blakey RC. 2008 Gondwana paleogeography from assembly to breakup—A 500 m.y.
517	odyssey. In Resolving the Late Paleozoic Ice Age in Time and Space (eds CR Fielding, TD
518	Frank, JL Isbell), pp. 1-28. Boulder: Geological Society of America Special Paper.
519	

520 Figure captions

521 Figure 1. Fossil record of Sacacosuchus and Piscogavialis in the Neogene deposits of the Pisco 522 Basin, southern Peru. (a) Schematic stratigraphic columns of the Chilcatay (yellow) and Pisco 523 (light blue) formations with crocodylian-bearing localities at the Ica-Pisco Valleys (left; from ca. 524 20 to 7 Ma) and the Sacaco area (from *ca*. 9.38 to 4.85 Ma). (b) Location and map of the East 525 Pisco basin showing the Chilcatay (yellow) and Pisco (blue) deposits within putative continental 526 flooded areas (in white). Map modified from [31]. AGL, Aguada de Lomas; CCO-n, Cerro 527 Colorado norte; CCO-s, Cerro Colorado sur; CLQ, Cerro Los Quesos; COM, Comatrana; CVT, 528 Correviento; ELJ, EL Jahuay; MTM, Montemar; MTM-n, Montemar norte; MTM, Montemar; 529 SAO-e, Sacaco east; SAS-w, Sud-Sacaco west; SUL, Sula Site; YAU, Yauca; ZAM, Zamaca. 530 Figure 2. Photograph and schematic drawing of the skulls of *Sacacosuchus cordovai* gen. et sp. 531 nov. from Sacaco at different ontogenetic stages. Adult specimen (holotype: MUSM 162) in 532 dorsal (a), ventral (b), right lateral (e), and occipital (f) views. Juvenile specimen (MUSM 160) 533 in dorsal (c), ventral (d), left lateral (g; inverted), and occipital (h) views. Sub-adult specimen 534 (MUSM 161) in dorsal (i) view. ba, basioccipital; bs, basisphenoid; CH, choana; cq, 535 cranioquadrate foramen; ec, ectopterygoid; ec.mx, maxilla surface for ectopterygoid; EN, 536 external naris; eo, exoccipital; f, frontal; fcp, foramen carotideum posterior; IF, incisive foramen; 537 ITF, infratemporal fenestra; j, jugal; j.la, lacrimal surface for jugal; j.mx, maxilla surface for 538 jugal; l, lacrimal;; ls, laterosphenoid; m5, m,9, m14, maxillary tooth positions; mx, maxilla; 539 n.pm, premaxilla surface for nasal; na, nasal; OR, orbit; p, parietal; pa, palatine; pa.mx, maxilla 540 surface for palatine; pf, prefrontal; pm, premaxilla; p3, p4, premaxillary tooth positions; po, 541 postorbital; pt, pterygoid; q, quadrate; qj, quadratojugal; qj,q, quadrate surface for quadratojugal;

s, shelf; so, supraoccipital; sq, squamosal; STF, supratemporal fenestra; SOF, suborbital fenestra;
v, foramen vagus; xii, foramen for hypoglossal nerve. All photographs to the same scale. Scale
bar equals 5 cm.

545 Figure 3. Phylogenetic position of *Sacacosuchus cordovai* and other marine taxa (represented by 546 their skulls) within the Crocodylia, with ancestral range reconstructions provided by S-DIVA. (a) 547 Time-calibrated, strict consensus tree on the constrained and equal weighted analysis. 548 Crocodylians found in marine deposits pertain to the gavialoid clade. The ancestral range 549 reconstructions are summarised as pie charts and shown for critical nodes of the Gavialoidea (73: 550 *Eogavialis* + *Gavialis*; 79: Gryposuchinae; 81: *Aktiogavialis*; 82: *Argochampsa*, *Aktiogavialis*, 551 advanced gavialids; 83: 'gharials' + MUSM 1513; 86: Miocene African forms; 89: 552 *Thecachampsa* species; 90: *Sacacosuchus*, *Gavialosuchus*, *Thecachampsa* + unnamed node 88; 553 92: Gavialidae; 96: Gavialoidea), Crocodylidae (99: node 97 + Cr. porosus); and 'thoracosaurs' 554 (121). Geographic areas of distribution are represented by colours and capital letters. Wide bars 555 within branches show stratigraphic range of taxa. White arrows at the branches of gryposuchines, 556 Gavialis, and Tomistoma schlegelii indicate major shifts from marine to freshwater habitats. 557 Eocene palaeomap (b) is from Blackey [63].

Figure 4. Diversity of crocodylians during the last 90 my. (*a*) Observed range-through

559 (OR) diversity of crocodylian genera (OR bys: red dashed line), OR of marine (OR mg: blue

solid line) and non-marine genera (OR n-mg: black solid line) calculated per chronostratigraphic

561 stages. (b) Estimated richness based on the Chao1 extrapolation estimator calculated per

562 chronostratigraphic stages (red dots) and second-order Jackknife richness estimator calculated

using 3-million years time bins for marine (mg: blue line) and non-marine (n-mg: black line)

564 crocodylian genera. Grey solid line represents a smoothed global sea level curve after Miller et 565 al. [37] and the orange solid line a global mean temperature curve after Zachos et al. [34]. The 566 time spam of the south-eastern Pacific gavialid crocodylians record (SEP C) encompasses the 567 estimated highest peak of genera and species of marine forms. PLI, Pliocene. 568 Figure 5. The pPCA of the snout of the Crocodylia defined by PC1 and PC2. Black dots denote 569 non marine taxa and blue dots (with or without skulls) correspond to extinct taxa (gavialoids and 570 *Thoracosaurus*) recovered from marginal to fully marine environments and the living saltwater 571 crocodile, Crocodylus porosus. Positive values of PC1 depict forms with longirostrine 572 ecomorphs. All gavialoids pertain to these ecomorphs but bearing large variation along positive 573 and negatives values of PC2, with morphological 'tomistomines' restricted to the positive values 574 and 'gharials' confined to the negative values. The sole 'thoracosaur' included in this analysis is 575 positioned close to the 'gharial' ecomorph. Grey polygon encompasses the gavialoid 576 morphospace and blue areas correspond to distinct ecomorphs of marine gavialoids within the 577 morphological 'tomistomines' (upper) and 'gharials' (lower).

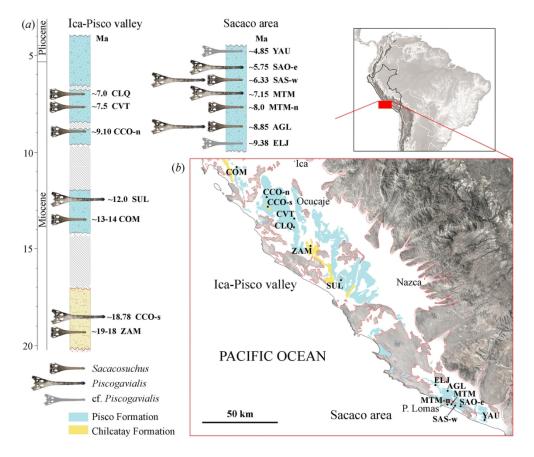


Figure 1. Fossil record of *Sacacosuchus* and *Piscogavialis* in the Neogene deposits of the Pisco Basin, southern Peru. (a) Schematic stratigraphic columns of the Chilcatay (yellow) and Pisco (light blue) formations with crocodylian-bearing localities at the Ica-Pisco Valleys (left; from ca. 20 to 7 Ma) and the Sacaco area (from ca. 9.38 to 4.85 Ma). (b) Location and map of the East Pisco basin showing the Chilcatay (yellow) and Pisco (blue) deposits within putative continental flooded areas (in white). Map modified from [31]. AGL, Aguada de Lomas; CCO-n, Cerro Colorado norte; CCO-s, Cerro Colorado sur; CLQ, Cerro Los Quesos; COM, Comatrana; CVT, Correviento; ELJ, EL Jahuay; MTM, Montemar; MTM-n, Montemar norte; MTM, Montemar; SAO-e, Sacaco east; SAS-w, Sud-Sacaco west; SUL, Sula Site; YAU, Yauca; ZAM, Zamaca.

122x104mm (300 x 300 DPI)

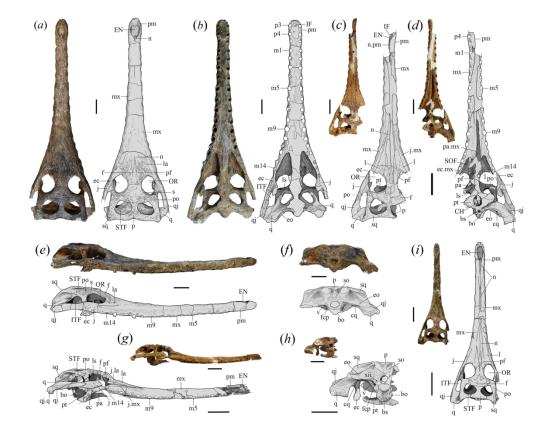


Figure 2. Photograph and schematic drawing of the skulls of *Sacacosuchus cordovai* gen. et sp. nov. from Sacaco at different ontogenetic stages. Adult specimen (holotype: MUSM 162) in dorsal (a), ventral (b), right lateral (e), and occipital (f) views. Juvenile specimen (MUSM 160) in dorsal (c), ventral (d), left lateral (g; inverted), and occipital (h) views. Sub-adult specimen (MUSM 161) in dorsal (i) view. ba, basioccipital; bs, basisphenoid; CH, choana; cq, cranioquadrate foramen; ec, ectopterygoid; ec.mx, maxilla surface for ectopterygoid; EN, external naris; eo, exoccipital; f, frontal; fcp, foramen carotideum posterior; IF, incisive foramen; ITF, infratemporal fenestra; j, jugal; j.la, lacrimal surface for jugal; j.mx, maxilla surface for jugal; l, lacrimal;; ls, laterosphenoid; m5, m,9, m14, maxillary tooth positions; mx, maxilla; n.pm, premaxilla surface for nasal; na, nasal; OR, orbit; p, parietal; pa, palatine; pa.mx, maxilla surface for palatine; pf, prefrontal; pm, premaxilla; p3, p4, premaxillary tooth positions; po, postorbital; pt, pterygoid; q, quadrate; qj, quadratojugal; qj.q, quadrate surface for quadratojugal; s, shelf; so, supraoccipital; sq, squamosal; STF, supratemporal fenestra; SOF, suborbital fenestra; v, foramen vagus; xii, foramen for hypoglossal nerve. All photographs to the same scale. Scale bar equals 5 cm.

182x150mm (300 x 300 DPI)

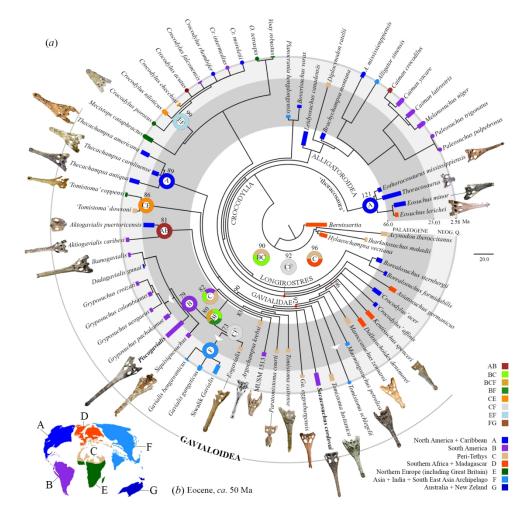


Figure 3. Phylogenetic position of *Sacacosuchus cordovai* and other marine taxa (represented by their skulls) within the Crocodylia, with ancestral range reconstructions provided by S-DIVA. (a) Time-calibrated, strict consensus tree on the constrained and equal weighted analysis. Crocodylians found in marine deposits pertain to the gavialoid clade. The ancestral range reconstructions are summarised as pie charts and shown for critical nodes of the Gavialoidea (73: *Eogavialis* + *Gavialis*; 79: Gryposuchinae; 81: *Aktiogavialis*; 82: *Argochampsa, Aktiogavialis*, advanced gavialids; 83: 'gharials' + MUSM 1513; 86: Miocene African forms; 89: *Thecachampsa* species; 90: *Sacacosuchus, Gavialosuchus, Thecachampsa* + unnamed node 88; 92: Gavialidae; 96: Gavialoidea), Crocodylidae (99: node 97 + *Cr. porosus*); and 'thoracosaurs' (121).
Geographic areas of distribution are represented by colours and capital letters. Wide bars within branches show stratigraphic range of taxa. White arrows at the branches of gryposuchines, *Gavialis*, and *Tomistoma schlegelii* indicate major shifts from marine to freshwater habitats. Eocene palaeomap (b) is from Blackey [63].

161x157mm (300 x 300 DPI)

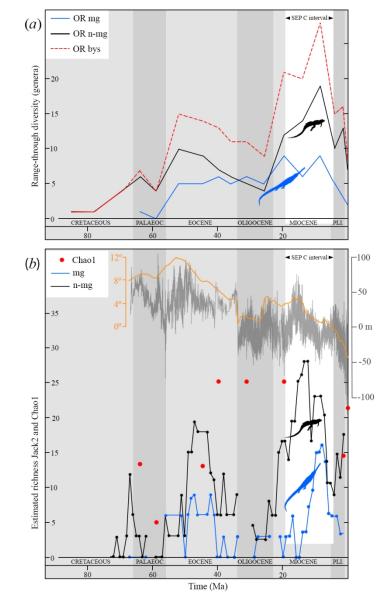


Figure 4. Diversity of crocodylians during the last 90 my. (a) Observed range-through (OR) diversity of crocodylian genera (OR bys: red dashed line), OR of marine (OR mg: blue solid line) and non-marine genera (OR n-mg: black solid line) calculated per chronostratigraphic stages. (b) Estimated richness based on the Chao1 extrapolation estimator calculated per chronostratigraphic stages (red dots) and second-order Jackknife richness estimator calculated using 3-million years time bins for marine (mg: blue line) and non-marine (n-mg: black line) crocodylian genera. Grey solid line represents a smoothed global sea level curve after Miller et al. [37] and the orange solid line a global mean temperature curve after Zachos et al. [34].
The time spam of the south-eastern Pacific gavialid crocodylians record (SEP C) encompasses the estimated highest peak of genera and species of marine forms. PLI, Pliocene.

82x139mm (300 x 300 DPI)

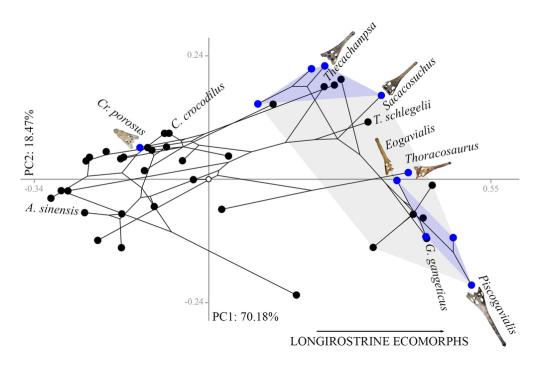


Figure 5. The pPCA of the snout of the Crocodylia defined by PC1 and PC2. Black dots denote non marine taxa and blue dots (with or without skulls) correspond to extinct taxa (gavialoids and *Thoracosaurus*) recovered from marginal to fully marine environments and the living saltwater crocodile, *Crocodylus porosus*. Positive values of PC1 depict forms with longirostrine ecomorphs. All gavialoids pertain to these ecomorphs but bearing large variation along positive and negatives values of PC2, with morphological 'tomistomines' restricted to the positive values and 'gharials' confined to the negative values. The sole 'thoracosaur' included in this analysis is positioned close to the 'gharial' ecomorph. Grey polygon encompasses the gavialoid morphospace and blue areas correspond to distinct ecomorphs of marine gavialoids within the morphological 'tomistomines' (upper) and 'gharials' (lower).

84x56mm (300 x 300 DPI)