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Abstract—The redesign of output feedback controllers for
linear systems based on adaptive saturation (stubborn) and
dead-zone redesign is investigated by showing that input-to-state
stability holds in closed loop upon the satisfaction of linear
matrix inequalities. Such results are obtained by using sector
conditions that are involved in the Lyapunov analysis in order to
ensure input-to-state stability. A simulation case study shows the
effectiveness of the proposed redesign in denoising and outlier
attenuation with increased accuracy and precision.

Index Terms—saturation, dead-zone, sector conditions, LMI

I. INTRODUCTION

Disturbance attenuation in feedback design is of primary
importance in control applications. For linear systems, many
techniques have been developed in output feedback control,
such as H∞, H2 design or LQG approaches [1]–[3]; geometric
approaches [4]; or internal-model based regulators [5]. Often
a state-feedback design is combined with a state observer,
but purely output feedback regulators can be also obtained
[6]. Linear controllers posses however structural performance
limitations [3, Chapters 5, 6]. A possible way to overcome
such limitations is to use nonlinear or hybrid techniques. We
recall the works [7]–[11] as few examples of hybrid controllers
employed for performance improvement by means of reset
or switching strategies. Here we pursue instead the use of a
nonlinear device for output feedback control of linear systems,
while providing solid theoretical findings in terms of input-to-
state stability (ISS, [12]) properties.

In this paper, we propose two redesign methods for dynamic
output feedback of linear systems by embedding stubborn
(saturation) and dead-zone redesign techniques [13]–[18] in
an output feedback loop to improve noise reduction. Our
goal is twofold: with a stubborn redesign, we improve the
transient response of the closed loop to measurement outliers.
Instead, with a dead-zone redesign, we get a reduction in the
sensitivity of the closed loop to persistent disturbances such
as measurement bias or Gaussian noise affecting the output.
Our solution extends the above-mentioned observer design
techniques by adopting an output feedback term (rather than
the output injection term) with a saturation or a dead-zone
function having a variable threshold, adapted according to a
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linear filter dynamics. The series of works [13]–[16] have
highlighted the potential of this paradigm in the context of
observers. We show here that, by redesigning a given output
feedback controller, not only the original ISS properties are
preserved, but also the overall performances can be improved.

It has been already shown in the case of asymptotic ob-
servers (output injection), the stubborn redesign is particularly
efficient in the presence of outliers affecting the measured
outputs [13]–[15], while the dead-zone redesign helps in
robustifying the observer against high-frequency measurement
noises [15], [16]. In fact, [13] and [16] initially motivated
the construction of these nonlinear redesigns in the context of
linear observers. Later, the stubborn paradigm was extended
to synchronization of multi-agent systems [17], [18], set-
membership estimation [19], low-power high-gain observers
[20], extended Kalman filtering [21], estimation for distributed
parameter systems [22], nonlinear filtering [23]. Here instead,
we extend the approach to a generic linear output feedback
(possibly dynamic) controller, exploiting linear matrix in-
equalities (LMIs) [24] for the parameter tuning, generalizing
the output injection scenarios of [13] and [16]. In particu-
lar, we allow in our setting for any given stabilizing linear
dynamic output feedback law designed for a multivariable
linear plant affected by disturbances, and provide LMI-based
stubborn/dead-zone redesign conditions that guarantee closed-
loop exponential ISS. The feasibility of our LMI-based condi-
tions is also proven. Performance improvements are shown via
a simulation example inspired from a model of the longitudinal
dynamics of a fixed-wing vehicle flying at high speed [25].

The rest of the paper is structured as follows. In Section II
we state the problem formulation. In Section III the stubborn
redesign is addressed, while the Section IV studies the dead-
zone redesign. Conclusions are drawn in Section V.

Notation. R≥0 denotes the set of non-negative real num-
bers. For a vector x or a matrix A, x⊤ and A⊤ denote
their transposes, respectively. x(i) and A(i) denote the ith
component of vector x and the ith row of matrix A, while
|x| :=

√
x⊤x denotes the Euclidean norm of x and diag(x)

is a diagonal matrix having diagonal elements x(i). For two
symmetric matrices A,B of equal dimensions, A > B means
that A−B is (symmetric) positive definite. For a square matrix
A, He (A) = A + A⊤, λmax(A) (resp. λmin(A)) denotes the
maximal (resp. minimal) eigenvalue of matrix A. I and 0 stand
for the identity and the null matrix of appropriate dimensions,
respectively. For a partitioned matrix, the symbol ⋆ stands
for symmetric blocks. Given two vectors x1, x2, we denote
(x1, x2) = [x⊤

1 x⊤
2 ]

⊤.



II. PROBLEM FORMULATION

Consider the following linear plant

ẋp = Apxp +Bpu+Bpww

y = Cpxp +Dpww,
(1)

where xp ∈ Rnp is the state, u ∈ Rm is the control input,
w ∈ Rnd is an exogenous disturbance input (comprising
process disturbances and measurement noise), and y ∈ Rp

is the measured output. Matrices Ap, Bp, Bpw, Cp, and Dpw

are constant known matrices of appropriate dimensions.
We assume that for plant (1) a linear stabilizing dynamic

output feedback controller has been designed, as follows

ż = Fz +Gy
u = Hz +Ny ,

(2)

where z ∈ Rnc is the state of the dynamic controller and F , G,
H , and N are constant matrices of appropriate dimensions. For
closed loop (1)-(2) we enforce the following mild assumption,
which is not restrictive.

Assumption 1. The linear closed-loop system (1)-(2) with
w ≡ 0 is globally exponentially stable to the origin.

Assumption 1 only holds if the triplet (Ap, Bp, Cp) be stabi-
lizable and detectable: a necessary assumption for output feed-
back stabilizability (with a linear feedback). The assumption
is also sufficient and necessary to guarantee global exponential
stability with our mildly invasive redesign solutions.

Inspired by the recent works [13]–[16] where linear and
nonlinear observers are augmented with dynamic saturations
or dead-zones acting on the output injection term, we follow a
similar paradigm for the case of output feedback augmentation.

III. LMI-BASED STUBBORN REDESIGN

A. Design paradigm and main result

With measurement outliers, namely sporadic large-
amplitude disturbances affecting the measurement output y,
we redesign the closed loop (1)-(2) by augmenting controller
(2) with a new non-negative state σ ∈ R≥0 (namely the
non-negative reals is a forward invariant set for the ensuing
dynamics). State σ is instrumental for the dynamic saturation
limits of the augmentation scheme. In particular, given a
constant vector v ∈ Rp having only positive elements, we
denote by

√
σv the componentwise square-root of each

component of v scaled by the scalar state σ. The stubborn
redesigned controller is

ż = Fz +G sat√σv(y)

u = Hz +N sat√σv(y)

σ̇ = −λσ + y⊤Ry, σ ∈ R≥0,

(3)

where the notation σ ∈ R≥0 emphasizes the fact that solutions
are only defined with σ in the non-negative reals, so that (3)
can be regarded as a constrained differential equation.

In (3), function sat√σv denotes the decentralized symmetric
vector-valued saturation from Rp to Rp whose components are
given by

(
sat√σv(y)

)
i
= max{−√

σvi,min{√σvi, yi}} for
all i = 1, . . . , p. The stubborn redesign is parametrized by

vector v ∈ Rp, the symmetric positive semi-definite matrix
R and the positive scalar λ ∈ R. To suitably represent the
redesigned closed loop, we introduce the dead-zone function
dz√σv(y) := y − sat√σv(y), and we define the closed-loop
state x := (xp, z) ∈ Rnp+nc . Then replacing sat√σv(y) =
y − dz√σv(y) in (3), we may represent (1), (3) as:

ẋ = Ax−B dz√σv(y) +Bww (4)

y = Cx+Dw (5)

σ̇ = −λσ + y⊤Ry, σ ∈ R≥0, (6)

with the following matrices:[
A B Bw

C D

]
:= (7) Ap +BpNCp BpH BpN BpNDpw +Bpw

GCp F G GDpw

Cp 0 Dpw

 .

Note that, due to Assumption 1, matrix A in (7) is Hurwitz. For
the design of v, λ, and R, we rely on the Lyapunov function

V(x, σ) = x⊤Px+ ζσ + µmax{x⊤Px− λσ, 0} (8)

with P = P⊤ > 0, and ζ and µ are positive scalars whose
selection is clarified in the proof of Theorem 1. Function (8) is
selected quadratic in x and linear in σ so as to obtain an LMI
designed by deriving (8) along the solutions to system (4)-(6).
Indeed, structure (8) allows exploiting desirable properties of
both P when x⊤Px < λσ (because ζ will be selected small in
the proof of Theorem 1) and −λσ when x⊤Px > λσ (because
µ will be selected large in the proof of Theorem 1). The details
are reported in Section III-C. Based on (8), we first impose
the following condition, ensuring its decrease when σ is large
(i.e. when the max function is equal to 0):

Mg := He

[
PA− 1

2λC
⊤RC + 1

2λP −PB
UgC −Ug

]
< 0, (9)

where Ug is diagonal positive definite. Conversely, for the case
where σ is small (i.e. when the max function is equal to its
first argument), we need to impose the next conditions

Mℓ := He

[
PA −PB

UℓC + Y −Uℓ

]
< 0 (10)[

P Y ⊤
(i)

Y(i) λ−1uℓ,i

]
≥ 0, ∀i = 1, ..., p, (11)

where Uℓ = diag{uℓ,1, . . . , uℓ,p} is diagonal positive definite.
Within the above setting we can state and prove the follow-

ing first main result, whose proof is postponed to Section III-C.

Theorem 1. Assume that there exist a scalar λ > 0, a
symmetric positive definite matrix P ∈ Rn×n, a symmetric
positive semi-definite matrix R ∈ Rp×p, two diagonal positive
definite matrices Ug ∈ Rp×p, Uℓ ∈ Rp×p, and a matrix
Y ∈ Rp×n such that inequalities (9)–(11) are satisfied. Then,
selecting the entries of vector v as the inverse of the diagonal
elements of Uℓ (namely diag(v) = U−1

ℓ ), the closed loop (1),
(3) is finite-gain exponentially input-to-state stable from w to



x, namely there exist positive scalars M , α > 0 and γ > 0
such that all solutions satisfy∣∣∣(x(t),√σ(t))

∣∣∣ ≤ Me−αt
∣∣∣(x(0),√σ(0))

∣∣∣+ γ∥w∥2, (12)

where ∥w∥2 denotes the L∞ norm of w.

We provide below some information about the conservative-
ness of the design conditions (9)–(11).

Proposition 1. Under Assumption 1 there exist parameters P ,
R, Uℓ, Ug , Y and λ satisfying the conditions of Theorem 1.

Proof. Recalling that A is Hurwitz by assumption, select P
and ν > 0 solution to PA+A⊤P ≤ −νP . Next, consider the
conditions (10) and (11). With P selected above, select Y =
B⊤P − UℓC. Then (10) is trivially satisfied for any Uℓ > 0.
Then, apply the Schur complement to (11), obtaining P −
λ(PB−UℓC)⊤i u

−1
ℓ,i (PB−UℓC)i ≥ 0. Fix any Uℓ and select

λ < min{ν, uℓ,i/ϱ}, with ϱ = λmax(PB − UℓC)2λmin(P ).
This ensures (11) is satisfied. Finally, the Schur complement
of (9) gives PA+A⊤P − λC⊤RC + λP +Q < 0 with Q =
(C⊤Ug−PB)U−1

g (UgC−B⊤P ). Using the Young inequality
one obtains Q ≤ 2C⊤UgC +2PBU−1

g B⊤P . Selecting Ug >
4

ν−λ |PB|2P−1 and R > 2
λUg , inequality (9) is satisfied.

While Proposition 1 establishes feasibility of conditions (9)–
(11), we comment here on optimality-based selections of the
parameters. First observe that (9)–(11) are quasi-convex in the
decision variables and correspond to a generalized eigenvalue
problem in the scalar parameter λ. Indeed, except for the
product λR in which λ can be absorbed in the free variable R,
smaller selections of λ increase the feasibility set. Moreover,
once λ has been fixed, the conditions are homogeneous in
the decision variables, in the sense that if P , R, Uℓ, Ug , Y
are feasible, then cP , cR, cUℓ, cUg , cY are feasible too for
any c > 0. Therefore, an effective approach is to fix λ small
enough to get feasibility of the LMIs, and then impose P > I
while minimizing the trace of R so that the final design is
associated to a fast reduction of the stubborn parameter σ and
the response quickly brings the saturation threshold to a small
value that can effectively eliminate measurement outliers. This
design approach is followed in the next section.

B. Simulation example
Consider the model of the longitudinal dynamics of a fixed-

wing vehicle flying at high speed, given in [25]:

v̇ = e− g sin(γ) + w1, γ̇ = ℓv sin(θ − γ)− g cos(γ)
v , θ̇ = q,

where v is the modulus of the speed, γ is the path angle,
θ is the pitch angle, q is the pitch rate, g is the standard
gravitational acceleration, ℓ is an aerodynamic lift coefficient,
w1 is a perturbation caused by the wind. Considering the
signals e, q as control inputs and γ, θ as measured outputs, the
linearization around an equilibrium (v0, 0, 0) of this model is
in the form (1) in which the matrices Ap, Bp, Cp are given by

[
Ap Bp Bpw

Cp Dpw

]
=


0 −g 0 1 0 1 0 0
gv−2

0 −ℓv0 ℓv0 0 0 0 0 0
0 0 0 0 1 0 0 0
0 1 0 0 1 0
0 0 1 0 0 1



where we supposed that measurement noise affects both out-
puts. Choosing g = 1, v = 2, ℓ = 0.1, by means of pole
placement we select a feedback of the form (2) with

[
F G
H N

]
=


−2.91 −4.11 −0.80 −0.83 0
0.25 −0.4 0 0.2 0.2
−0.99 −4.96 −2.88 0 0
−2.9 −3.9 −0.8 0 0
−1 −4.9 −2.8 0 −0.1


so that the real values of the eigenvalues of the closed-loop
system are included in the set [−3,−0.1]. The solution of the
LMI conditions (9)–(11) with a fixed λ = 0.5 provided

R =

(
18.4638 2.5576
2.5576 5.9588

)
, v =

(
0.1978
0.1300

)
.

Fig. 1 shows the simulations, where the adaptive saturation
level σ, initialized at zero, is clearly excited by the outliers
affecting the measurements before t = 35 s and then becomes
quite small when no other outliers occur after t = 35 s.
The outliers’ effect is clearly attenuated, as illustrated by the
middle plot. Based on Fig. 1, we computed the integrals of
|x(t)| in the interval t ∈ [0, 60] s for the standard regulator
case and the stubborn redesigned regulator case, which are
equal to 42.4572 and 39.4415, respectively.
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Fig. 1. Disturbances, norm of the state, and σ(t) (stubborn redesign).

C. Proof of Theorem 1

Consider the candidate Lyapunov function V in (8). Such
a function is linear in σ and quadratic in x. Furthermore,
recalling that σ ∈ R≥0, we deduce that V is positive definite
on Rn × R≥0 and satisfies the bounds

α1|(x,
√
σ)|2 ≤ V(x, σ) ≤ α2|(x,

√
σ)|2, (13)

where α1 := min{λmin(P ), ζ}, and α2 := max{(1 +
µ)λmax(P ), ζ} stem from upper and lower bounding the var-
ious terms in (8). Similar to [13, Proof of Thm 1], one can
observe that function V(x, σ) is not differentiable in the set
of measure zero where x⊤Px − λσ = 0. However, it is
continuous and locally Lipschitz. Therefore, proceeding as in
[13], due to continuity of the closed-loop dynamics (1), (3),



it is enough to ensure suitable decrease conditions of V for
almost all points of the state space (see also the recent results
of [26] for an alternative proof of this fact). To check our
Lyapunov conditions almost everywhere, we split the analysis
in two cases: (C1) x⊤Px < λσ and (C2) x⊤Px > λσ.
(C1). In this case, (8) yields V(x, σ) = x⊤Px + ζσ, whose
directional derivative along dynamics (4)–(6) reads

V̇(x, σ) = 2
(
x⊤PAx− x⊤PB dz√σv(y) + x⊤PBww

)
− 2λζσ + 2ζy⊤Ry. (14)

We use [27, Lemma 1.6] with respect to dz√σv , leading to the
following regional sector condition (we use dz here and below
as a shortcut notation for dz√σv(y)): dz

⊤ Uℓ(y+Qx−dz) ≥ 0,
which holds for any positive definite diagonal matrix Uℓ ∈
Rp×p, any matrix Q ∈ Rp×n and any x satisfying −√

σvi ≤
Q(i)x ≤ √

σvi.
Let us now consider (11) and notice that, with the selection

Y = UℓQ, and recalling the selection diag(v)−1 = Uℓ

from the theorem statement, a Schur complement provides,
P − λv−1

i Q⊤
(i)Q(i) ≥ P − λuℓ,iQ

⊤
(i)Q(i) ≥ 0. This inequality,

combined with the inequality pertaining case (C1), provides

λv−1
i |Q(i)x|2 = λv−1

i x⊤Q⊤
(i)Q(i)x ≤ x⊤Px ≤ λσ, (15)

which ensures that the regional sector condition holds, because
−√

σvi ≤ Q(i)x ≤ √
σvi. Based on the above reasoning, we

may construct the following bound on V̇ , stemming from (14)

V̇ ≤ V̇ + 2dz⊤ Uℓ(y +Qx− dz)

= 2
(
x⊤PAx− x⊤PB dz+x⊤PBww

)
− 2λζσ (16)

+ 2ζy⊤Ry + 2dz⊤ Uℓ(y +Qx− dz).

To suitably bound the right-hand side of (16), we may use
Young’s inequality multiple times to construct a large enough
scalar κℓ such that, for any ε > 0, the following bounds hold:

x⊤PBww ≤ ε|x|2 + κℓ

ε
|w|2, (17)

y⊤Ry ≤ (1 + ε)x⊤C⊤RCx+ κℓ
1+ε
ε |w|2 (18)

dz√σv(Cx+Dw)⊤UℓDw ≤ ε|x|2 + κℓ
1+ε
ε |w|2. (19)

Finally, denoting ξ := (x, dz√σv(y)) and combining bounds
(16)–(19), we obtain, after recalling that we fixed Y = UℓQ,
and choosing ζ = ε,

V̇(x, σ) ≤ ξ⊤
(
Mℓ + ε

[
4I+2(1+ε)C⊤RC 0

0 0

])
ξ

− 2ελσ + κ̄ℓ|w|2, (20)

where κ̄ℓ :=
2κℓ

ε (3 + 2ε).

(C2). In this case, due to x⊤Px > λσ, and recalling the selec-
tion ζ = ε performed above, definition (8) yields V(x, σ) =
x⊤Px+ εσ + µ(x⊤Px− λσ) = (1 + µ)x⊤Px+ (ε− λµ)σ,
whose directional derivative along dynamics (4)–(6) reads

V̇(x, σ) = 2(1 + µ)x⊤Pẋ+ (ε− λµ)σ̇ (21)

= 2(1 + µ)
(
x⊤PAx− x⊤PB dz√σ(y) + x⊤PBww

)
+ (λµ− ε)λσ − (λµ− ε)y⊤Ry.

We use [27, Lemma 1.4] with respect to dz√σv , leading to
the global sector condition: dz⊤ Ug(Cx+Dw − dz) ≥ 0 for
any positive diagonal matrix Ug ∈ Rp×p, where we use once
again the placeholder dz instead of dz√σv(y), to simplify the
notation. Moreover, using the assumed inequality for case (C2)
we obtain

0 ≤ λµ(x⊤Px− λσ) ≤ λµx⊤Px− µλ2σ. (22)

Summing up the above sector condition with inequality (22)
and with (21), we obtain the following bound

V̇ ≤ V̇ + 2µdz⊤Ug(Cx+Dw − dz) + 2λµ(x⊤Px− λσ)

= 2(1 + µ)
(
x⊤PAx− x⊤PB dz+x⊤PBww

)
(23)

+ λµx⊤Px− ελσ − (λµ− ε)y⊤Ry

+ 2µdz⊤ Ug(Cx+Dw − dz).

To suitably bound the right-hand side of (23), we first assume
for simplicity µ > ε (eventually, µ will be selected sufficiently
large) and then proceeding as in (17)–(19), we use repeatedly
Young’s inequality to show that there exists κg such that, for
each ε > 0, the following bounds hold:

x⊤PBww ≤ ε|x|2 + κg

ε
|w|2, (24)

− y⊤Ry ≤ −(1− ε)x⊤C⊤RCx+ κg
1+ε
ε |w|2, (25)

dz√σv(Cx+Dw)⊤UgDw ≤ ε|x|2 + κg
1+ε
ε |w|2. (26)

Finally, denoting again ξ := (x,dz√σv(y)) and combining
bounds (23)–(26), we obtain the following estimate

V̇(x, σ) ≤ ξ⊤
(
µMg +

[
(1+2µ)εI 0

0 0

]
+He

[
PA+ ε

2C
⊤RC 0

−B⊤P 0

])
ξ

− ελσ + κ̄g|w|2, (27)

where κ̄g =
(
3µ− 2 + 5µ

ε

)
κg > 0 and Mg , as defined in (9),

is negative definite.
Summary. The two bounds (20) and (27) obtained for cases
(C1) and (C2), respectively, allow selecting a large enough µ
and a small enough ε such that the matrices in the quadratic
forms appearing in (20) and (27) are both negative definite.
Representing σ =

√
σ
2, we obtain that there exists a small

enough ε̄ > 0 and a large enough κ̄ such that, for all of the
considered cases (namely for almost all (x, σ)), we have

V̇(x, σ) ≤ −ε̄
∣∣(x,√σ)

∣∣2 + κ̄|w|2, (28)

which, together with (13) shows that V is an ISS Lyapunov
function proving bound (12), and thus completing the proof. 1

IV. LMI-BASED DEAD-ZONE REDESIGN

A. Design paradigm and main result

We augment here controller (2) with an adaptive dead-zone
having a dynamic dead-zone threshold σ, as follows

ż = Fz +Gdz√σv(y)

u = Hz +N dz√σv(y)

σ̇ = −λσ + y⊤Ry, σ ∈ R≥0,

(29)

1The reader is referred to [12] for basic concepts about ISS Lyapunov
functions and to [26] for nonsmooth ISS Lyapunov functions.



where v ∈ Rp is a constant vector having positive elements
and

√
σv ∈ R≥0 is the component-wise square root of vector

σv. The dynamics of σ ensures by construction the forward
invariance of the non-negative real axis R≥0 for state σ. There-
fore

√
σv is well defined. The dead-zone augmentation (29)

depends on the following design parameters: the positive scalar
λ and the symmetric positive semi-definite matrix R ∈ Rp×p.

Paralleling the derivations in (4)-(7), defining the combined
state x = (xp, z) ∈ Rnp+nc , the closed-loop system (1), (29)
can be written in the following compact form:

ẋ = Ax−B sat√σv(Cx+Dw) +Bww (30)

y = Cx+Dw (31)

σ̇ = −λσ + y⊤Ry, σ ∈ R≥0, (32)

with the same matrices as those defined in (7). In particular,
we recall that A is Hurwitz due to Assumption 1.

For analyzing the closed-loop properties of (30), (32) we
rely on the following Lyapunov function (with a slight abuse
of notation, to keep our notation simple, we use the same
symbols V , Mg and Ug as in Section III)

V(x, σ) = x⊤Px+ 2σ, (33)

where P = P⊤ > 0 is to be designed. For ensuring suitable
decrease properties of V it is here enough to impose only one
condition, corresponding to

Mg := He

[
PA+ 1

2C
⊤RC −PB

UgC −Ug(1 + λ)

]
< 0, (34)

where Ug is a diagonal positive definite matrix.
We can then state the following main result, whose proof

is postponed to Section IV-C.

Theorem 2. If there exist a symmetric positive definite matrix
P ∈ Rn×n, a symmetric positive semi-definite matrix R ∈
Rp×p, a diagonal positive definite matrix Ug ∈ Rp×p and a
scalar λ > 0 satisfying (34), then selecting v as the diagonal
elements of U−1

g (namely diag(v) = U−1
g ) the closed loop (1),

(29) is finite-gain exponentially input-to-state stable from w to
x, namely there exist positive scalars M , α > 0 and γ > 0
such that all solutions satisfy bound (12).

The design condition (34) of Theorem 2 is quasi-convex
in the variable λ. We prove below that, under Assumption 1,
these conditions are always feasible.

Proposition 2. Under Assumption 1 there exist parameters P ,
R, λ and Ug satisfying the conditions of Theorem 2

Proof. It has been observed that Assumption 1 implies that A
be Hurwitz. Then there exists a small enough R and a positive
definite P such that A⊤P+PA+C⊤RC < 0. Taking Ug = I
and λ large enough, constraint (34) is clearly satisfied.

The main rationale of using the proposed dead-zone re-
design (29) is to attenuate the effect of the noise w from y to
the control u (in particular when y is close to zero and hence
mainly composed by noise w). In terms of design guidelines,
since (34) is homogeneous for a fixed λ, a possible strategy for
maximizing the effectiveness of the dead-zone redesign is to
fix λ, then impose P < I (which does not affect feasibility due

to the homogeneity property) and then maximize the trace of
a diagonal R, possibly promoting the directions corresponding
to the sensors most affected by persistent noise.

B. Simulation example

We consider the same example of Section III-B. For a dead-
zone redesign, we obtain

R =

(
0.0294 0.0017
0.0017 0.0617

)
, v =

(
1.6086
2.6432

)
,

after solving the LMI condition (34) with λ = 0.5. Simulation
results are shown in Fig. 2 with the same initial conditions and
noises of Fig. 1. The bottom plot clearly shows that deadzone
level σ is highly excited by the outliers occurring in the
first interval, where the redesign effect is not advantageous,
especially with the repeated outliers between t = 10 s and
t = 20 s, because it is not suited for these disturbances.
Instead, the redesign is very effective at the steady state, where
it provides desirable reduction of the steady-state error caused
by persistent noise (see, especially, the middle response in
the interval t ∈ [80, 100] s). This confirms the fact that the
stubborn redesign is suitable for improving the response to
outliers (compare with Fig. 1), and the dead-zone redesign is
suitable for improving the response to persistent noise. We
computed the integrals of |x(t)| in the interval t ∈ [60, 100] s
for the standard regulator and the dead-zone redesigned regu-
lator, which are given by 3.6459 and 2.5558, respectively.
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Fig. 2. Disturbances, norm of the state, and σ(t) (dead-zone redesign).

C. Proof of Theorem 2

Differently from the proof of Theorem 1, there is no need
for this proof to split the analysis in two cases, and only one set
of inequalities is sufficient to establish the result. Consider the
candidate Lyapunov function V in (33) and note that the fact
that σ ∈ R≥0 implies that V is positive definite on Rn ×R≥0

satisfies bound (13), with α1 := min{λmin(P ), 2}, and α2 :=
max{λmax(P ), 2} (namely V it is positive definite and radially
unbounded). The time-derivative of V along the solutions of



(30), (32) reads:

V̇(x, σ) = 2x⊤Pẋ+ 2σ̇ = 2x⊤PAx− 2x⊤PB sat√σv(y)

+ 2x⊤PBww − 2λσ + 2y⊤Ry. (35)

By exploiting the sector properties and global boundedness of
sat√σv(y) we obtain the following two conditions:

• sat√σv(y)
⊤Ug(y − sat√σv(y)) ≥ 0, for any positive

diagonal matrix Ug ∈ Rp×p from Lemma 1.4 in [27];
• λ(σ − sat√σv(y)

⊤Ug sat√σv(y)) ≥ 0.
Summing up the above conditions to expression (35), we
obtain the following bound (where we use “sat” in place of
“sat√σv(y)” to make the notation compact):

V̇ ≤ V̇ + 2 sat⊤Ug(y − sat) + 2(1− ε)λ(σ − sat⊤ Ug sat)

= 2x⊤PAx− 2x⊤PB sat+2x⊤PBww (36)

+ 2y⊤Ry + 2 sat⊤Ug(Cx+Dw − sat)

− 2ελσ − 2(1− ε)λ sat⊤ Ug sat,

where ε > 0 is selected below. To suitably bound the right-
hand side of (36), we use repeatedly Young’s inequality to
show that there exists κg such that, for each ε > 0, the
following bounds hold:

x⊤PBww ≤ ε|x|2 + κg

ε
|w|2, (37)

y⊤Ry ≤ (1 + ε)x⊤C⊤RCx+ κg
1+ε
ε |w|2, (38)

sat√σv(Cx+Dw)⊤UgDw ≤ ε|x|2 + κg
1+ε
ε |w|2. (39)

Finally, denoting ξ := (x, sat√σv(y)) and combining bounds
(36)–(39), we obtain the following estimate

V̇(x, σ) ≤ ξ⊤
(
Mg + ε

[
2I+C⊤RC 0

0 2λUg

])
ξ − 2ελσ + κ̄g|w|2

where κ̄g =
(
2 + 3

ε

)
κg > 0 and Mg , as defined in (34), is

negative definite. The last inequality allows selecting a small
enough ε such that the matrix in the quadratic form is negative
definite (because of the strict inequality in (34)). Representing
σ =

√
σ
2, it is then immediate to obtain, for a small enough

ε̄ > 0 and a large enough κ̄ the bound in (28) for all (x, σ).
This bound, together with (13) (which was proven at the
beginning of the proof) shows that V is an ISS Lyapunov
function proving bound (12), and thus completing the proof.

V. CONCLUSIONS

We rigorously and successfully addressed performance im-
provement for linear dynamic output feedbacks with stubborn
and dead-zone redesigns. Future work includes comparing the
nominal and redesigned feedbacks by generalizing the results
in [15, Section III-B, p. 671 and Section IV-B, p. 674] and
the output feedback for nonlinear systems, possibly with multi-
variable threshold dynamics.

REFERENCES

[1] P. Gahinet and P. Apkarian, “A linear matrix inequality approach to h∞
control,” International journal of robust and nonlinear control, vol. 4,
no. 4, pp. 421–448, 1994.

[2] J. C. Doyle, B. A. Francis, and A. R. Tannenbaum, Feedback control
theory. Courier Corporation, 2013.

[3] S. Skogestad and I. Postlethwaite, Multivariable feedback control:
analysis and design. Citeseer, 2007, vol. 2.

[4] G. Marro, F. Morbidi, L. Ntogramatzidis, and D. Prattichizzo, “Geomet-
ric control theory for linear systems: a tutorial,” 19th Intern. Symposium
on Math. Theory of Networks and Systems, vol. 5, no. 9, 2010.

[5] B. A. Francis and W. M. Wonham, “The internal model principle for lin-
ear multivariable regulators,” Applied Mathematics and Ooptimization,
vol. 2, no. 2, pp. 170–194, 1975.

[6] C. Scherer, P. Gahinet, and M. Chilali, “Multiobjective output-feedback
control via LMI optimization,” IEEE Trans. on automatic control,
vol. 42, no. 7, pp. 896–911, 1997.

[7] C. Prieur and A. R. Teel, “Uniting local and global output feedback
controllers,” IEEE Trans. on Automatic Control, vol. 56, no. 7, pp. 1636–
1649, 2010.

[8] F. Fichera, C. Prieur, S. Tarbouriech, and L. Zaccarian, “Improving
the performance of linear systems by adding a hybrid loop: the output
feedback case,” in American Control Conference, 2012, pp. 3192–3197.

[9] G. Zhao, D. Nesic, Y. Tan, and J. Wang, “Improving L2 gain perfor-
mance of linear systems by reset control,” IFAC Proceedings Volumes,
vol. 47, no. 3, pp. 6400–6405, 2014.

[10] A. Alessandri and R. G. Sanfelice, “Hysteresis-based switching ob-
servers for linear systems using quadratic boundedness,” Automatica,
vol. 136, p. 109982, 2022.

[11] D. Astolfi, R. Postoyan, and D. Nešić, “Uniting observers,” IEEE Trans.
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