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The redesign of output feedback controllers for linear systems based on adaptive saturation (stubborn) and dead-zone redesign is investigated by showing that input-to-state stability holds in closed loop upon the satisfaction of linear matrix inequalities. Such results are obtained by using sector conditions that are involved in the Lyapunov analysis in order to ensure input-to-state stability. A simulation case study shows the effectiveness of the proposed redesign in denoising and outlier attenuation with increased accuracy and precision.

I. INTRODUCTION

Disturbance attenuation in feedback design is of primary importance in control applications. For linear systems, many techniques have been developed in output feedback control, such as H ∞ , H 2 design or LQG approaches [START_REF] Gahinet | A linear matrix inequality approach to h∞ control[END_REF]- [START_REF] Skogestad | Multivariable feedback control: analysis and design[END_REF]; geometric approaches [START_REF] Marro | Geometric control theory for linear systems: a tutorial[END_REF]; or internal-model based regulators [START_REF] Francis | The internal model principle for linear multivariable regulators[END_REF]. Often a state-feedback design is combined with a state observer, but purely output feedback regulators can be also obtained [START_REF] Scherer | Multiobjective output-feedback control via LMI optimization[END_REF]. Linear controllers posses however structural performance limitations [START_REF] Skogestad | Multivariable feedback control: analysis and design[END_REF]Chapters 5,[START_REF] Scherer | Multiobjective output-feedback control via LMI optimization[END_REF]. A possible way to overcome such limitations is to use nonlinear or hybrid techniques. We recall the works [START_REF] Prieur | Uniting local and global output feedback controllers[END_REF]- [START_REF] Astolfi | Uniting observers[END_REF] as few examples of hybrid controllers employed for performance improvement by means of reset or switching strategies. Here we pursue instead the use of a nonlinear device for output feedback control of linear systems, while providing solid theoretical findings in terms of input-tostate stability (ISS, [START_REF] Sontag | Input to state stability: Basic concepts and results[END_REF]) properties.

In this paper, we propose two redesign methods for dynamic output feedback of linear systems by embedding stubborn (saturation) and dead-zone redesign techniques [START_REF] Alessandri | Stubborn state observers for linear time-invariant systems[END_REF]- [START_REF]Synchronization in networks of identical nonlinear systems via dynamic dead zones[END_REF] in an output feedback loop to improve noise reduction. Our goal is twofold: with a stubborn redesign, we improve the transient response of the closed loop to measurement outliers. Instead, with a dead-zone redesign, we get a reduction in the sensitivity of the closed loop to persistent disturbances such as measurement bias or Gaussian noise affecting the output. Our solution extends the above-mentioned observer design techniques by adopting an output feedback term (rather than the output injection term) with a saturation or a dead-zone function having a variable threshold, adapted according to a linear filter dynamics. The series of works [START_REF] Alessandri | Stubborn state observers for linear time-invariant systems[END_REF]- [START_REF] Cocetti | High-gain dead-zone observers for linear and nonlinear plants[END_REF] have highlighted the potential of this paradigm in the context of observers. We show here that, by redesigning a given output feedback controller, not only the original ISS properties are preserved, but also the overall performances can be improved.

It has been already shown in the case of asymptotic observers (output injection), the stubborn redesign is particularly efficient in the presence of outliers affecting the measured outputs [START_REF] Alessandri | Stubborn state observers for linear time-invariant systems[END_REF]- [START_REF]Stubborn and dead-zone redesign for nonlinear observers and filters[END_REF], while the dead-zone redesign helps in robustifying the observer against high-frequency measurement noises [START_REF]Stubborn and dead-zone redesign for nonlinear observers and filters[END_REF], [START_REF] Cocetti | High-gain dead-zone observers for linear and nonlinear plants[END_REF]. In fact, [START_REF] Alessandri | Stubborn state observers for linear time-invariant systems[END_REF] and [START_REF] Cocetti | High-gain dead-zone observers for linear and nonlinear plants[END_REF] initially motivated the construction of these nonlinear redesigns in the context of linear observers. Later, the stubborn paradigm was extended to synchronization of multi-agent systems [START_REF] Casadei | Synchronization of interconnected linear systems via dynamic saturation redesign[END_REF], [START_REF]Synchronization in networks of identical nonlinear systems via dynamic dead zones[END_REF], setmembership estimation [START_REF] Mao | Distributed stubborn-set-membership filtering with a dynamic event-based scheme: The Takagi-Sugeno fuzzy framework[END_REF], low-power high-gain observers [START_REF] Zareian | A modification in the structure of lowpower high-gain observers to improve the performance in the presence of disturbances and measurement noise[END_REF], extended Kalman filtering [START_REF] Fang | Robust extended Kalman filtering for systems with measurement outliers[END_REF], estimation for distributed parameter systems [START_REF] Sun | Stubborn state estimation for nonlinear distributed parameter systems subject to measurement outliers[END_REF], nonlinear filtering [START_REF] Ma | Neural-networkbased filtering for a general class of nonlinear systems under dynamically bounded innovations over sensor networks[END_REF]. Here instead, we extend the approach to a generic linear output feedback (possibly dynamic) controller, exploiting linear matrix inequalities (LMIs) [START_REF] Boyd | Linear Matrix Inequalities in System and Control Theory[END_REF] for the parameter tuning, generalizing the output injection scenarios of [START_REF] Alessandri | Stubborn state observers for linear time-invariant systems[END_REF] and [START_REF] Cocetti | High-gain dead-zone observers for linear and nonlinear plants[END_REF]. In particular, we allow in our setting for any given stabilizing linear dynamic output feedback law designed for a multivariable linear plant affected by disturbances, and provide LMI-based stubborn/dead-zone redesign conditions that guarantee closedloop exponential ISS. The feasibility of our LMI-based conditions is also proven. Performance improvements are shown via a simulation example inspired from a model of the longitudinal dynamics of a fixed-wing vehicle flying at high speed [START_REF] Astolfi | Integral action in output feedback for multiinput multi-output nonlinear systems[END_REF].

The rest of the paper is structured as follows. In Section II we state the problem formulation. In Section III the stubborn redesign is addressed, while the Section IV studies the deadzone redesign. Conclusions are drawn in Section V.

Notation. R ≥0 denotes the set of non-negative real numbers. For a vector x or a matrix A, x ⊤ and A ⊤ denote their transposes, respectively. x (i) and A (i) denote the ith component of vector x and the ith row of matrix A, while |x| :=

√

x ⊤ x denotes the Euclidean norm of x and diag(x) is a diagonal matrix having diagonal elements x (i) . For two symmetric matrices A, B of equal dimensions, A > B means that A-B is (symmetric) positive definite. For a square matrix A, He (A) = A + A ⊤ , λ max (A) (resp. λ min (A)) denotes the maximal (resp. minimal) eigenvalue of matrix A. I and 0 stand for the identity and the null matrix of appropriate dimensions, respectively. For a partitioned matrix, the symbol ⋆ stands for symmetric blocks. Given two vectors x 1 , x 2 , we denote

(x 1 , x 2 ) = [x ⊤ 1 x ⊤ 2 ] ⊤ .

II. PROBLEM FORMULATION

Consider the following plant

ẋp = A p x p + B p u + B pw w y = C p x p + D pw w, (1) 
where x p ∈ R np is the state, u ∈ R m is the control input, w ∈ R n d is an exogenous disturbance input (comprising process disturbances and measurement noise), and y ∈ R p is the measured output. Matrices A p , B p , B pw , C p , and D pw are constant known matrices of appropriate dimensions. We assume that for plant (1) a linear stabilizing dynamic output feedback controller has been designed, as follows

ż = F z + Gy u = Hz + N y , (2) 
where z ∈ R nc is the state of the dynamic controller and F , G, H, and N are constant matrices of appropriate dimensions. For closed loop (1)-( 2) we enforce the following mild assumption, which is not restrictive.

Assumption 1. The linear closed-loop system (1)-( 2) with w ≡ 0 is globally exponentially stable to the origin.

Assumption 1 only holds if the triplet (A p , B p , C p ) be stabilizable and detectable: a necessary assumption for output feedback stabilizability (with a linear feedback). The assumption is also sufficient and necessary to guarantee global exponential stability with our mildly invasive redesign solutions.

Inspired by the recent works [START_REF] Alessandri | Stubborn state observers for linear time-invariant systems[END_REF]- [START_REF] Cocetti | High-gain dead-zone observers for linear and nonlinear plants[END_REF] where linear and nonlinear observers are augmented with dynamic saturations or dead-zones acting on the output injection term, we follow a similar paradigm for the case of output feedback augmentation.

III. LMI-BASED STUBBORN REDESIGN

A. Design paradigm and main result

With measurement outliers, namely sporadic largeamplitude disturbances affecting the measurement output y, we redesign the closed loop (1)-( 2) by augmenting controller [START_REF] Doyle | Feedback control theory[END_REF] with a new non-negative state σ ∈ R ≥0 (namely the non-negative reals is a forward invariant set for the ensuing dynamics). State σ is instrumental for the dynamic saturation limits of the augmentation scheme. In particular, given a constant vector v ∈ R p having only positive elements, we denote by √ σv the componentwise square-root of each component of v scaled by the scalar state σ. The stubborn redesigned controller is

ż = F z + G sat √ σv (y) u = Hz + N sat √ σv (y) σ = -λσ + y ⊤ Ry, σ ∈ R ≥0 , (3) 
where the notation σ ∈ R ≥0 emphasizes the fact that solutions are only defined with σ in the non-negative reals, so that (3) can be regarded as a constrained differential equation.

In [START_REF] Skogestad | Multivariable feedback control: analysis and design[END_REF], function sat √ σv denotes the decentralized symmetric vector-valued saturation from R p to R p whose components are given by sat √ σv (y

) i = max{- √ σv i , min{ √ σv i , y i }} for all i = 1, . . . , p.
The stubborn redesign is parametrized by vector v ∈ R p , the symmetric positive semi-definite matrix R and the positive scalar λ ∈ R. To suitably represent the redesigned closed loop, we introduce the dead-zone function dz √ σv (y) := y -sat √ σv (y), and we define the closed-loop state x := (x p , z) ∈ R np+nc . Then replacing sat √ σv (y) = y -dz √ σv (y) in (3), we may represent (1), (3) as:

ẋ = Ax -B dz √ σv (y) + B w w (4) y = Cx + Dw (5) σ = -λσ + y ⊤ Ry, σ ∈ R ≥0 , (6) 
with the following matrices:

A B B w C D := (7) 
  A p + B p N C p B p H B p N B p N D pw + B pw GC p F G GD pw C p 0 D pw   .
Note that, due to Assumption 1, matrix A in ( 7) is Hurwitz. For the design of v, λ, and R, we rely on the Lyapunov function

V(x, σ) = x ⊤ P x + ζσ + µ max{x ⊤ P x -λσ, 0} (8) 
with P = P ⊤ > 0, and ζ and µ are positive scalars whose selection is clarified in the proof of Theorem 1. Function ( 8) is selected quadratic in x and linear in σ so as to obtain an LMI designed by deriving [START_REF] Fichera | Improving the performance of linear systems by adding a hybrid loop: the output feedback case[END_REF] along the solutions to system (4)-( 6). Indeed, structure (8) allows exploiting desirable properties of both P when x ⊤ P x < λσ (because ζ will be selected small in the proof of Theorem 1) and -λσ when x ⊤ P x > λσ (because µ will be selected large in the proof of Theorem 1). The details are reported in Section III-C. Based on (8), we first impose the following condition, ensuring its decrease when σ is large (i.e. when the max function is equal to 0):

M g := He P A -1 2 λC ⊤ RC + 1 2 λP -P B U g C -U g < 0, (9) 
where U g is diagonal positive definite. Conversely, for the case where σ is small (i.e. when the max function is equal to its first argument), we need to impose the next conditions

M ℓ := He P A -P B U ℓ C + Y -U ℓ < 0 (10) 
P Y ⊤ (i) Y (i) λ -1 u ℓ,i ≥ 0, ∀i = 1, ..., p, (11) 
where U ℓ = diag{u ℓ,1 , . . . , u ℓ,p } is diagonal positive definite.

Within the above setting we can state and prove the following first main result, whose proof is postponed to Section III-C. Theorem 1. Assume that there exist a scalar λ > 0, a symmetric positive definite matrix P ∈ R n×n , a symmetric positive semi-definite matrix R ∈ R p×p , two diagonal positive definite matrices U g ∈ R p×p , U ℓ ∈ R p×p , and a matrix Y ∈ R p×n such that inequalities (9)-( 11) are satisfied. Then, selecting the entries of vector v as the inverse of the diagonal elements of U ℓ (namely diag(v) = U -1 ℓ ), the closed loop (1), ( 3) is finite-gain exponentially input-to-state stable from w to namely there exist positive scalars M , α > 0 and γ > 0 such that all solutions satisfy

(x(t), σ(t)) ≤ M e -αt (x(0), σ(0)) + γ∥w∥ 2 , (12)
where ∥w∥ 2 denotes the L ∞ norm of w.

We provide below some information about the conservativeness of the design conditions ( 9)- [START_REF] Astolfi | Uniting observers[END_REF].

Proposition 1. Under Assumption 1 there exist parameters P , R, U ℓ , U g , Y and λ satisfying the conditions of Theorem 1.

Proof. Recalling that A is Hurwitz by assumption, select P and ν > 0 solution to P A + A ⊤ P ≤ -νP . Next, consider the conditions [START_REF] Alessandri | Hysteresis-based switching observers for linear systems using quadratic boundedness[END_REF] and [START_REF] Astolfi | Uniting observers[END_REF]. With P selected above, select Y = B ⊤ P -U ℓ C. Then ( 10) is trivially satisfied for any U ℓ > 0. Then, apply the Schur complement to [START_REF] Astolfi | Uniting observers[END_REF], obtaining P -

λ(P B -U ℓ C) ⊤ i u -1 ℓ,i (P B -U ℓ C) i ≥ 0. Fix any U ℓ and select λ < min{ν, u ℓ,i /ϱ}, with ϱ = λ max (P B -U ℓ C) 2 λ min (P ).
This ensures ( 11) is satisfied. Finally, the Schur complement of [START_REF] Zhao | Improving L2 gain performance of linear systems by reset control[END_REF] gives 9) is satisfied. While Proposition 1 establishes feasibility of conditions ( 9)-( 11), we comment here on optimality-based selections of the parameters. First observe that ( 9)-( 11) are quasi-convex in the decision variables and correspond to a generalized eigenvalue problem in the scalar parameter λ. Indeed, except for the product λR in which λ can be absorbed in the free variable R, smaller selections of λ increase the feasibility set. Moreover, once λ has been fixed, the conditions are homogeneous in the decision variables, in the sense that if P , R, U ℓ , U g , Y are feasible, then cP , cR, cU ℓ , cU g , cY are feasible too for any c > 0. Therefore, an effective approach is to fix λ small enough to get feasibility of the LMIs, and then impose P > I while minimizing the trace of R so that the final design is associated to a fast reduction of the stubborn parameter σ and the response quickly brings the saturation threshold to a small value that can effectively eliminate measurement outliers. This design approach is followed in the next section.

P A + A ⊤ P -λC ⊤ RC + λP + Q < 0 with Q = (C ⊤ U g -P B)U -1 g (U g C -B ⊤ P ). Using the Young inequality one obtains Q ≤ 2C ⊤ U g C + 2P BU -1 g B ⊤ P . Selecting U g > 4 ν-λ |P B| 2 P -1 and R > 2 λ U g , inequality (

B. Simulation example

Consider the model of the longitudinal dynamics of a fixedwing vehicle flying at high speed, given in [START_REF] Astolfi | Integral action in output feedback for multiinput multi-output nonlinear systems[END_REF]:

v = e -g sin(γ) + w 1 , γ = ℓv sin(θ -γ) -g cos(γ) v , θ = q,
where v is the modulus of the speed, γ is the path angle, θ is the pitch angle, q is the pitch rate, g is the standard gravitational acceleration, ℓ is an aerodynamic lift coefficient, w 1 is a perturbation caused by the wind. Considering the signals e, q as control inputs and γ, θ as measured outputs, the linearization around an equilibrium (v 0 , 0, 0) of this model is in the form (1) in which the matrices A p , B p , C p are given by

A p B p B pw C p D pw =       0 -g 0 1 0 1 0 0 gv -2 0 -ℓv 0 ℓv 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 1 0 0 0 1 0 0 1      
where we supposed that measurement noise affects both outputs. Choosing g = 1, v = 2, ℓ = 0.1, by means of pole placement we select a feedback of the form [START_REF] Doyle | Feedback control theory[END_REF] with 

F G H N =       -2.

C. Proof of Theorem 1

Consider the candidate Lyapunov function V in [START_REF] Fichera | Improving the performance of linear systems by adding a hybrid loop: the output feedback case[END_REF]. Such a function is linear in σ and quadratic in x. Furthermore, recalling that σ ∈ R ≥0 , we deduce that V is positive definite on R n × R ≥0 and satisfies the bounds

α 1 |(x, √ σ)| 2 ≤ V(x, σ) ≤ α 2 |(x, √ σ)| 2 , (13) 
where α 1 := min{λ min (P ), ζ}, and α 2 := max{(1 + µ)λ max (P ), ζ} stem from upper and lower bounding the various terms in [START_REF] Fichera | Improving the performance of linear systems by adding a hybrid loop: the output feedback case[END_REF]. Similar to [13, Proof of Thm 1], one can observe that function V(x, σ) is not differentiable in the set of measure zero where x ⊤ P x -λσ = 0. However, it is continuous and locally Lipschitz. Therefore, proceeding as in [START_REF] Alessandri | Stubborn state observers for linear time-invariant systems[END_REF], due to continuity of the closed-loop dynamics (1), (3), it is enough to ensure suitable conditions of V for almost all points of the state space (see also the recent results of [START_REF] Della Rossa | Piecewise structure of Lyapunov functions and densely checked decrease conditions for hybrid systems[END_REF] for an alternative proof of this fact). To check our Lyapunov conditions almost everywhere, we split the analysis in two cases: (C1) x ⊤ P x < λσ and (C2) x ⊤ P x > λσ. (C1). In this case, (8) yields V(x, σ) = x ⊤ P x + ζσ, whose directional derivative along dynamics ( 4)-( 6) reads

V(x, σ) = 2 x ⊤ P Ax -x ⊤ P B dz √ σv (y) + x ⊤ P B w w -2λζσ + 2ζy ⊤ Ry. (14) 
We use [START_REF] Tarbouriech | Stability and Stabilization of Linear Systems with Saturating Actuators[END_REF]Lemma 1.6] with respect to dz √ σv , leading to the following regional sector condition (we use dz here and below as a shortcut notation for dz √ σv (y)): dz ⊤ U ℓ (y+Qx-dz) ≥ 0, which holds for any positive definite diagonal matrix U ℓ ∈ R p×p , any matrix Q ∈ R p×n and any x satisfying -√ σv i ≤

Q (i) x ≤ √ σv i .
Let us now consider [START_REF] Astolfi | Uniting observers[END_REF] and notice that, with the selection Y = U ℓ Q, and recalling the selection diag(v) -1 = U ℓ from the theorem statement, a Schur complement provides,

P -λv -1 i Q ⊤ (i) Q (i) ≥ P -λu ℓ,i Q ⊤ (i) Q (i) ≥ 0.
This inequality, combined with the inequality pertaining case (C1), provides

λv -1 i |Q (i) x| 2 = λv -1 i x ⊤ Q ⊤ (i) Q (i) x ≤ x ⊤ P x ≤ λσ, ( 15 
)
which ensures that the regional sector condition holds, because

- √ σv i ≤ Q (i) x ≤ √ σv i .
Based on the above reasoning, we may construct the following bound on V, stemming from ( 14)

V ≤ V + 2 dz ⊤ U ℓ (y + Qx -dz) = 2 x ⊤ P Ax -x ⊤ P B dz +x ⊤ P B w w -2λζσ (16) 
+ 2ζy ⊤ Ry + 2 dz ⊤ U ℓ (y + Qx -dz).

To suitably bound the right-hand side of ( 16), we may use Young's inequality multiple times to construct a large enough scalar κ ℓ such that, for any ε > 0, the following bounds hold:

x ⊤ P B w w ≤ ε|x| 2 + κ ℓ ε |w| 2 , ( 17 
)
y ⊤ Ry ≤ (1 + ε)x ⊤ C ⊤ RCx + κ ℓ 1+ε ε |w| 2 (18) dz √ σv (Cx + Dw) ⊤ U ℓ Dw ≤ ε|x| 2 + κ ℓ 1+ε ε |w| 2 . ( 19 
)
Finally, denoting ξ := (x, dz √ σv (y)) and combining bounds ( 16)-( 19), we obtain, after recalling that we fixed Y = U ℓ Q, and choosing ζ = ε,

V(x, σ) ≤ ξ ⊤ M ℓ + ε 4I+2(1+ε)C ⊤ RC 0 0 0 ξ -2ελσ + κℓ |w| 2 , ( 20 
)
where κℓ := 2κ ℓ ε (3 + 2ε). (C2). In this case, due to x ⊤ P x > λσ, and recalling the selection ζ = ε performed above, definition (8) yields V(x, σ) = x ⊤ P x + εσ + µ(x ⊤ P x -λσ) = (1 + µ)x ⊤ P x + (ε -λµ)σ, whose directional derivative along dynamics ( 4)-( 6) reads

V(x, σ) = 2(1 + µ)x ⊤ P ẋ + (ε -λµ) σ (21) = 2(1 + µ) x ⊤ P Ax -x ⊤ P B dz √ σ (y) + x ⊤ P B w w + (λµ -ε)λσ -(λµ -ε)y ⊤ Ry.
We use [START_REF] Tarbouriech | Stability and Stabilization of Linear Systems with Saturating Actuators[END_REF]Lemma 1.4] with respect to dz √ σv , leading to the global sector condition: dz ⊤ U g (Cx + Dw -dz) ≥ 0 for any positive diagonal matrix U g ∈ R p×p , where we use once again the placeholder dz instead of dz √ σv (y), to simplify the notation. Moreover, using the assumed inequality for case (C2) we obtain

0 ≤ λµ(x ⊤ P x -λσ) ≤ λµx ⊤ P x -µλ 2 σ. ( 22 
)
Summing up the above sector condition with inequality [START_REF] Sun | Stubborn state estimation for nonlinear distributed parameter systems subject to measurement outliers[END_REF] and with [START_REF] Fang | Robust extended Kalman filtering for systems with measurement outliers[END_REF], we obtain the following bound

V ≤ V + 2µ dz ⊤ U g (Cx + Dw -dz) + 2λµ(x ⊤ P x -λσ) = 2(1 + µ) x ⊤ P Ax -x ⊤ P B dz +x ⊤ P B w w (23) 
+ λµx ⊤ P x -ελσ -(λµ -ε)y ⊤ Ry + 2µ dz ⊤ U g (Cx + Dw -dz).
To suitably bound the right-hand side of ( 23), we first assume for simplicity µ > ε (eventually, µ will be selected sufficiently large) and then proceeding as in ( 17)-( 19), we use repeatedly Young's inequality to show that there exists κ g such that, for each ε > 0, the following bounds hold:

x ⊤ P B w w ≤ ε|x| 2 + κ g ε |w| 2 , (24) 
-

y ⊤ Ry ≤ -(1 -ε)x ⊤ C ⊤ RCx + κ g 1+ε ε |w| 2 , (25) 
dz √ σv (Cx + Dw) ⊤ U g Dw ≤ ε|x| 2 + κ g 1+ε ε |w| 2 . (26) 
Finally, denoting again ξ := (x, dz √ σv (y)) and combining bounds ( 23)-( 26), we obtain the following estimate

V(x, σ) ≤ ξ ⊤ µM g + (1+2µ)εI 0 0 0 + He P A+ ε 2 C ⊤ RC 0 -B ⊤ P 0 ξ -ελσ + κg |w| 2 , (27) 
where κg = 3µ -2 + 5 µ ε κ g > 0 and M g , as defined in (9), is negative definite. Summary. The two bounds [START_REF] Zareian | A modification in the structure of lowpower high-gain observers to improve the performance in the presence of disturbances and measurement noise[END_REF] and ( 27) obtained for cases (C1) and (C2), respectively, allow selecting a large enough µ and a small enough ε such that the matrices in the quadratic forms appearing in [START_REF] Zareian | A modification in the structure of lowpower high-gain observers to improve the performance in the presence of disturbances and measurement noise[END_REF] and ( 27) are both negative definite. Representing σ = √ σ 2 , we obtain that there exists a small enough ε > 0 and a large enough κ such that, for all of the considered cases (namely for almost all (x, σ)), we have

V(x, σ) ≤ -ε (x, √ σ) 2 + κ|w| 2 , (28) 
which, together with [START_REF] Alessandri | Stubborn state observers for linear time-invariant systems[END_REF] shows that V is an ISS Lyapunov function proving bound [START_REF] Sontag | Input to state stability: Basic concepts and results[END_REF], and thus completing the proof. 1

IV. LMI-BASED DEAD-ZONE REDESIGN A. Design paradigm and main result

We augment here controller (2) with an adaptive dead-zone having a dynamic dead-zone threshold σ, as follows

ż = F z + G dz √ σv (y) u = Hz + N dz √ σv (y) σ = -λσ + y ⊤ Ry, σ ∈ R ≥0 , (29) 
v ∈ R p is a constant vector having positive elements and √ σv ∈ R ≥0 is the component-wise square root of vector σv. The dynamics of σ ensures by construction the forward invariance of the non-negative real axis R ≥0 for state σ. Therefore √ σv is well defined. The dead-zone augmentation (29) depends on the following design parameters: the positive scalar λ and the symmetric positive semi-definite matrix R ∈ R p×p .

Paralleling the derivations in ( 4)- [START_REF] Prieur | Uniting local and global output feedback controllers[END_REF], defining the combined state x = (x p , z) ∈ R np+nc , the closed-loop system (1), (29) can be written in the following compact form:

ẋ = Ax -B sat √ σv (Cx + Dw) + B w w (30) y = Cx + Dw (31) σ = -λσ + y ⊤ Ry, σ ∈ R ≥0 , (32) 
with the same matrices as those defined in [START_REF] Prieur | Uniting local and global output feedback controllers[END_REF]. In particular, we recall that A is Hurwitz due to Assumption 1.

For analyzing the closed-loop properties of (30), (32) we rely on the following Lyapunov function (with a slight abuse of notation, to keep our notation simple, we use the same symbols V, M g and U g as in Section III)

V(x, σ) = x ⊤ P x + 2σ, (33) 
where P = P ⊤ > 0 is to be designed. For ensuring suitable decrease properties of V it is here enough to impose only one condition, corresponding to

M g := He P A + 1 2 C ⊤ RC -P B U g C -U g (1 + λ) < 0, (34) 
where U g is a diagonal positive definite matrix. We can then state the following main result, whose proof is postponed to Section IV-C. Theorem 2. If there exist a symmetric positive definite matrix P ∈ R n×n , a symmetric positive semi-definite matrix R ∈ R p×p , a diagonal positive definite matrix U g ∈ R p×p and a scalar λ > 0 satisfying (34), then selecting v as the diagonal elements of U -1 g (namely diag(v) = U -1 g ) the closed loop (1), (29) is finite-gain exponentially input-to-state stable from w to x, namely there exist positive scalars M , α > 0 and γ > 0 such that all solutions satisfy bound [START_REF] Sontag | Input to state stability: Basic concepts and results[END_REF].

The design condition (34) of Theorem 2 is quasi-convex in the variable λ. We prove below that, under Assumption 1, these conditions are always feasible. Proposition 2. Under Assumption 1 there exist parameters P , R, λ and U g satisfying the conditions of Theorem 2 Proof. It has been observed that Assumption 1 implies that A be Hurwitz. Then there exists a small enough R and a positive definite P such that A ⊤ P +P A+C ⊤ RC < 0. Taking U g = I and λ large enough, constraint (34) is clearly satisfied.

The main rationale of using the proposed dead-zone redesign (29) is to attenuate the effect of the noise w from y to the control u (in particular when y is close to zero and hence mainly composed by noise w). In terms of design guidelines, since (34) is homogeneous for a fixed λ, a possible strategy for maximizing the effectiveness of the dead-zone redesign is to fix λ, then impose P < I (which does not affect feasibility due to the homogeneity property) and then maximize the trace of a diagonal R, possibly promoting the directions corresponding to the sensors most affected by persistent noise.

B. Simulation example

We consider the same example of Section III-B. For a deadzone redesign, we obtain R = 0.0294 0.0017 0.0017 0.0617 , v = 1.6086 2.6432 , after solving the LMI condition (34) with λ = 0.5. Simulation results are shown in Fig. 2 with the same initial conditions and noises of Fig. 1. The bottom plot clearly shows that deadzone level σ is highly excited by the outliers occurring in the first interval, where the redesign effect is not advantageous, especially with the repeated outliers between t = 10 s and t = 20 s, because it is not suited for these disturbances. Instead, the redesign is very effective at the steady state, where it provides desirable reduction of the steady-state error caused by persistent noise (see, especially, the middle response in the interval t ∈ [80, 100] s). This confirms the fact that the stubborn redesign is suitable for improving the response to outliers (compare with Fig. 1), and the dead-zone redesign is suitable for improving the response to persistent noise. We computed the integrals of |x(t)| in the interval t ∈ [60, 100] s for the standard regulator and the dead-zone redesigned regulator, which are given by 3.6459 and 2.5558, respectively. 

C. Proof of Theorem 2

Differently from the proof of Theorem 1, there is no need for this proof to split the analysis in two cases, and only one set of inequalities is sufficient to establish the result. Consider the candidate Lyapunov function V in (33) and note that the fact that σ ∈ R ≥0 implies that V is positive definite on R n × R ≥0 satisfies bound [START_REF] Alessandri | Stubborn state observers for linear time-invariant systems[END_REF], with α 1 := min{λ min (P ), 2}, and α 2 := max{λ max (P ), 2} (namely V it is positive definite and radially unbounded). The time-derivative of V along the solutions of (30), (32) reads:

V(x, σ) = ⊤ P ẋ + 2 σ = 2x ⊤ P Ax -2x ⊤ P B sat √ σv (y) + 2x ⊤ P B w w -2λσ + 2y ⊤ Ry.

(35)

By exploiting the sector properties and global boundedness of sat √ σv (y) we obtain the following two conditions: • sat √ σv (y) ⊤ U g (y -sat √ σv (y)) ≥ 0, for any positive diagonal matrix U g ∈ R p×p from Lemma 1.4 in [START_REF] Tarbouriech | Stability and Stabilization of Linear Systems with Saturating Actuators[END_REF];

• λ(σ -sat √ σv (y) ⊤ U g sat √ σv (y)) ≥ 0. Summing up the above conditions to expression (35), we obtain the following bound (where we use "sat" in place of "sat √ σv (y)" to make the notation compact): V ≤ V + 2 sat ⊤ U g (y -sat) + 2(1 -ε)λ(σ -sat ⊤ U g sat) = 2x ⊤ P Ax -2x ⊤ P B sat +2x ⊤ P B w w (36)

+ 2y ⊤ Ry + 2 sat ⊤ U g (Cx + Dw -sat) -2ελσ -2(1 -ε)λ sat ⊤ U g sat,
where ε > 0 is selected below. To suitably bound the righthand side of (36), we use repeatedly Young's inequality to show that there exists κ g such that, for each ε > 0, the following bounds hold: where κg = 2 + 3 ε κ g > 0 and M g , as defined in (34), is negative definite. The last inequality allows selecting a small enough ε such that the matrix in the quadratic form is negative definite (because of the strict inequality in (34)). Representing σ = √ σ 2 , it is then immediate to obtain, for a small enough ε > 0 and a large enough κ the bound in (28) for all (x, σ). This bound, together with (13) (which was proven at the beginning of the proof) shows that V is an ISS Lyapunov function proving bound [START_REF] Sontag | Input to state stability: Basic concepts and results[END_REF], and thus completing the proof.

x ⊤ P B w w ≤ ε|x| 2 + κ g ε |w| 2 , (37) 
y ⊤ Ry ≤ (1 + ε)x ⊤ C ⊤ RCx + κ g 1+ε ε |w| 2 , (38) 
V. CONCLUSIONS

Fig. 1 .

 1 Fig. 1. Disturbances, norm of the state, and σ(t) (stubborn redesign).

  )| with standard regulator |x(t)| with dead-zone redesigned regulator of the dead-zone redesigned regulator

Fig. 2 .

 2 Fig. 2. Disturbances, norm of the state, and σ(t) (dead-zone redesign).

  sat √ σv (Cx + Dw) ⊤ U g Dw ≤ ε|x| 2 + κ g 1+ε ε |w| 2 .(39) Finally, denoting ξ := (x, sat √ σv (y)) and combining bounds (36)-(39), we obtain the following estimateV(x, σ) ≤ ξ ⊤ M g + ε 2I+C ⊤ RC 0 0 2λUg ξ -2ελσ + κg |w| 2

  Fig.1shows the simulations, where the adaptive saturation level σ, initialized at zero, is clearly excited by the outliers affecting the measurements before t = 35 s and then becomes quite small when no other outliers occur after t = 35 s. The outliers' effect is clearly attenuated, as illustrated by the middle plot. Based on Fig.1, we computed the integrals of |x(t)| in the interval t ∈ [0, 60] s for the standard regulator case and the stubborn redesigned regulator case, which are equal to 42.4572 and 39.4415, respectively.
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The reader is referred to[START_REF] Sontag | Input to state stability: Basic concepts and results[END_REF] for basic concepts about ISS Lyapunov functions and to[START_REF] Della Rossa | Piecewise structure of Lyapunov functions and densely checked decrease conditions for hybrid systems[END_REF] for nonsmooth ISS Lyapunov functions.

We rigorously and successfully addressed performance improvement for linear dynamic output feedbacks with stubborn and dead-zone redesigns. Future work includes comparing the nominal and redesigned feedbacks by generalizing the results in [15, Section III-B, p. 671 and Section IV-B, p. 674] and the output feedback for nonlinear systems, possibly with multivariable threshold dynamics.
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