Crop residues differ in their decomposition dynamics: Review of available data from world literature

S. Ntonta, I. Mathew, R. Zengeni, P. Muchaonyerwa, Vincent Chaplot

To cite this version:

S. Ntonta, I. Mathew, R. Zengeni, P. Muchaonyerwa, Vincent Chaplot. Crop residues differ in their decomposition dynamics: Review of available data from world literature. Geoderma, 2022, 419, pp.115855. 10.1016/j.geoderma.2022.115855 . hal-03726502

HAL Id: hal-03726502

https://hal.science/hal-03726502

Submitted on 22 Jul 2024

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L'archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Crop residues differ in their decomposition dynamics: review of available data from world literature

S. Ntonta ${ }^{\text {a }}$, I. Mathew ${ }^{\text {a }}$, R. Zengeni ${ }^{\text {a }}$, P. Muchaonyerwa ${ }^{\text {a }}$ and V. Chaplot ${ }^{\text {a, b }}$
${ }^{\text {a }}$ University of Kwa-Zulu Natal, School of Agricultural, Earth \& Environmental Sciences, Scottsville, 3209 Pietermaritzburg, South Africa
${ }^{\text {b }}$ Laboratoire d'Océanographie et du Climat: Expérimentations et approches numériques (LOCEAN), UMR 7159, IRD/C NRS/UPMC/MNHN, IPSL, 4, Place Jussieu, 75252 Paris, France

Abstract

Decomposition of crop residues may affect soil organic carbon (C) stocks, which are key for soil fertility improvement and mitigation of climate change. Numerous independent studies across the world point to contradictory results but their existence provides an opportunity to conduct a comprehensive analysis of the impact of crop type on residue decomposition. In the present study, data from 394 trials from across the world were used to assess cumulative CO_{2} emissions from residues of 17 crops during 0-30, 0-90 and 0-120 days (i.e. $\mathrm{C}_{\mathrm{R}} 30, \mathrm{C}_{\mathrm{R}} 90$ and $C_{R} 120 ; 1-\left[C_{R} 30 / C_{R} 120\right]$ ratio as a stability index of C emissions) and to relate the results with residue quality (C, N and lignin concentrations) and selected soil properties (texture, pH , soil organic carbon concentration). At all durations, legumes exhibited the highest CO_{2} emissions per gram of C added ($1003 \mathrm{mg} \mathrm{CO}_{2}-\mathrm{C} \mathrm{g}^{-1} \mathrm{C}$ after 120 days) followed by grasses (947), oilseed crops (944) and cereals (846), with the legumes and grasses showing the lowest temporal stability of C emission as pointed out by a $1-\left[\mathrm{C}_{\mathrm{R}} 30 / \mathrm{C}_{\mathrm{R}} 120\right]$ of 0.78 and 0.79 , respectively, versus 0.82 and 0.83 for cereals and oilseed crops. At all durations, maize residues emitted the least $\mathrm{C}-\mathrm{CO}_{2}\left(86,275\right.$ and $495 \mathrm{mg} \mathrm{CO} 2-\mathrm{C} \mathrm{g}^{-1} \mathrm{C}$), followed by two other lignin rich crops (cotton and sunflower), while the highest emissions

were from Alfalfa residues that produced about 4 times more CO_{2} (e.g. 359 at $\mathrm{C}_{\mathrm{R}} 30$ and 1319 at $\mathrm{C}_{\mathrm{R}} 120$) than maize. Overall, CO_{2} emissions were positively correlated with soil clay concentration ($\mathrm{r}>0.22$), residue C concentration (e.g. $\mathrm{r}=0.46$ at $\mathrm{C}_{\mathrm{R}} 90$ and $\mathrm{r}=0.37$ with emission stability, $\mathrm{P}<0.05$) but negatively to residue N concentration ($\mathrm{r}=-0.26$ at $\mathrm{C}_{\mathrm{R}} 120$, $\mathrm{P}<0.05$). The global trend pointed to decreased CO_{2} emissions with increasing residue lignin. Contrary to what is generally believed, providing the soil with high lignin and high N concentration may foster C stabilization into soils by soil microbes.

Keywords: Crop residue decomposition, C emissions, Soil carbon stabilisation, Soil C stocks

1. Introduction

The carbon (C) cycle has received considerable attention in recent years, due to concerns over the continued increase in atmospheric carbon dioxide $\left(\mathrm{CO}_{2}\right)$ concentration. Annual increases of CO_{2} concentration in the atmosphere were observed on a global scale for the years 2018 (2.7\%) and 2019 (0.6%) (Ritchie and Roser, 2020). Global warming, as a result of high atmospheric CO_{2} causes climate change, characterized by increase in mean temperature and higher variability in precipitation. Consequently, the need to sequester carbon in agricultural soils has been identified as a sustainable strategy to mitigate climate change and promote agricultural sustainability.

Soil is the second largest C reservoir with 11% (4655 Pg C), after the 87% of global carbon stocks being oceanic ($38,000 \mathrm{Pg} \mathrm{C}$) and has higher C than the 2% found in the atmosphere (860 Pg C) (Xiao, 2015; Venter et al., 2021). Carbon transfer from the atmosphere to soil is achieved by plants through photosynthesis, leading to exudation of C compounds from roots during the growth cycle, and by the retention of plant root and shoot residues. Some of the C from plant residues or exudates can be mineralized and emitted back to the atmosphere as CO_{2} while a significant proportion can be stabilized as soil organic matter (Ontl and Schulte, 2012; Dignac, 2017). Therefore, the rate of residue decomposition and associated CO_{2} emissions is often used as a proxy for evaluating the potential of plant residues to become soil organic matter (e.g. Johnson et al., 2007).

The potential to increase soil C stocks is mostly on managed agricultural land where numerous studies exist on the fate of C from different crop residues. Curtin et al. (2008) for instance, observed that barley straw emitted significantly higher ($\mathrm{p}<0.05$) amount of CO_{2} ($55 \mathrm{~g} \mathrm{CO}_{2}-\mathrm{C} \mathrm{m}^{-2}$) compared to wheat straw ($47 \mathrm{~g} \mathrm{CO}_{2}-\mathrm{C} \mathrm{m}^{-2}$) after 158 days. Ajwa and Tabatabai (1994) found 58% of organic C evolved as $\mathrm{CO}_{2}-\mathrm{C}$ from alfalfa-treated soils in 30 days which was higher compared to maize residues (30\%), which was attributed to the higher

C : N of maize residues. Zeng et al. (2010) attributed the higher CO_{2} emissions from peanut root (maximum of 60%) compared to maize root residues (35\%) to biological nitrogen fixation, which increases N in leguminous plants, and thus lower their C : N ratio, and overall quality of the crop residues. Not only does crop residue decomposition depend on the type and quality of crop residues but also on the internal soil conditions (Mathew, et al., 2017; Stewart et al., 2015).

Mathew et al. (2017) concluded that higher plant C stocks and C transfer to soils occurred in carbon rich clayey soils of tropical humid areas due to higher biomass production potential compared to sandy soils. Clayey soils also support high C stocks through their aggregation and ability to provide physical protection as well as mineral adsorption of C constituents (Elliott, 1986; Ajwa and Tabatabai, 1994; Martens, 2000; Clark, 2007; Mathew, et al., 2017). Several studies have also reported disparities in CO_{2} emissions from residues of different crops under different soil types and climates, which has led to a lack of consensus on the impact of these factors on CO_{2} emissions from soils (Li et al., 1994; Paustian et al., 2000; Gregorich et al., 2001; Alvarez, 2005; Abdalla et al., 2016; McClelland et al., 2021; Shakoor et al., 2021). However, the existence of multiple individual studies across the world provides an opportunity to conduct a comprehensive analysis of the main factors that control crop residue decomposition and CO_{2} emissions and the consequences for the building of soil carbon stocks. Therefore, the objective of the current study was to evaluate the impact of crop type, soil and environmental factors on CO_{2} emissions from residues of selected crops using available global data from published studies.

2. Materials and methods

2.1. Study setup: Database preparation

Data on CO_{2} emissions from crop residues incubated in soil at laboratories were collated from studies across the world, published in peer reviewed journals and accessible from public domains such as Google scholar, Ref-seek, Science Direct, Sci-Finder, Scopus, Springer Link, Research-Gate and Web of Science. Key words such as "litter decomposition", "residue decomposition", "C mineralisation", "crop residue CO_{2} emissions", "C gases", "carbon dynamics" and "decomposition rate" were used to search for relevant journal articles. The available papers had to report on CO_{2} emissions from crops (sorghum, wheat, maize, among others) and on crop quality factors affecting residue decomposition (e.g. total C and $\mathrm{N}, \mathrm{C}: \mathrm{N}$ ratio, lignin, cellulose or hemicellulose). Furthermore, environmental factors such as climatic information (mean annual precipitation and mean annual temperature), geographic variables (latitude, longitude) as well as soil variables (physicochemical properties) measured during both laboratory or/and field experiments were considered as controlling variables. The studies had to strictly compare CO_{2} emissions between soils incubated with and without (considered as the control) residues under the same conditions. Moreover, the mass of residues used must have been clearly stated or able to be deduced. The data were used to compile a database with quantitative and qualitative data on plant litter quality.

2.2. Variables of CO_{2} emission

The effect of adding crop residues on soil CO_{2} emissions were calculated as the difference between CO_{2} emitted from the soil containing residues and CO_{2} evolved from the control. The values were converted from their original units and normalized to common units (mg $\mathrm{CO}_{2}-\mathrm{C} / \mathrm{g} \mathrm{C}$ added of soil over 30, 90 and 120 day periods of incubation) (Table 2). The amounts of total CO_{2} emissions were recorded over 0-30; 30-90 and 90-120 day periods and were cumulatively representing lability of residue decomposition. The studies that did not cover the $0-30,30-90$ and $90-120$ periods were estimated by use of linear trendline equation.

In addition, a ratio between CO_{2} emissions at 30 relative to 120 days was calculated, which was used as an index of temporal stability of $\mathrm{C}-\mathrm{CO}_{2}$ emissions $=1-\left(\mathrm{C}_{\mathrm{R}} 30 / \mathrm{C}_{\mathrm{R}} 120\right)$. The greater the index, the greater stability of the emissions over time.

2.3. Crop quality, soil and environmental factors

Crops were categorized into cereals, legumes, grasses and oilseed (Table 3), (i.e., cerealsbarley, maize, oat, rice, rye, sorghum, wheat; grass- grass; legumes-alfalfa, bean, clover, pea, soyabean, vetch; and oilseed-canola, cotton, and sunflower). Cereals and grasses were separated due to their functional differences, with cereals having evolved and undergone selection by farmers, making them different from natural or forage grasses. In this study, grasses refer to natural or forage grass that are not used for human consumption while cereal refers to monocot grasses that are used primarily for grain production for human consumption. Legumes are defined as any crop that has a natural ability to fix nitrogen, while oilseed crops are those that are primarily used for extraction of vegetable oil from their seed. Soyabean was considered as a legume crop in this study. Furthermore, crop quality was defined by residue chemical composition, such as initial C (TC) and lignin concentrations, C:N ratio, total nitrogen (TN), dissolved carbon (DC) and total phosphorus (TP); cellulose, polyphenols and lignin: N ratios. In addition, soil properties such as texture (clay, silt and sand concentration), soil $\mathrm{pH}\left(\mathrm{CaCl}_{2}\right)$ and organic carbon (SOC) were considered and classified into different categories (Table 3) following Abdalla et al. (2016); Mutema et al. (2015) and Mathew et al. (2017). Water-based pH was converted to $\mathrm{CaCl}_{2} \mathrm{pH}$ following the equation of Lierop (1981): $(\mathrm{y}=0.53+0.98 \mathrm{x})$. Where y is pH on the CaCl_{2} scale and x is the water-based pH .

Climatic factors included a 30 -year average rainfall and temperature (mean annual precipitation: MAP) and (mean annual temperature: MAT). The climate was further classified
as tropical (hot and wet), sub-tropical (warm and arid to humid) or temperate (cool to cold and mild to warm). In cases where climatic characteristics were not present in a particular study, appropriate data such as annual precipitation and temperature were obtained using the location coordinates or surrogate data for nearby prominent features (e.g. town) through Google search. In addition, the geographical positioning system (GPS) using latitude and longitude coordinates were used to depict the global distribution of the studies used in the review (Fig. 1).

A total of 58 journal articles (Table 1) were used, detailing different studies across the world, which provided 394 observations. The name of authors, year of paper publication, country and geographical location of experimental site, nature of experiment, experimental duration (time periods), crop(s) or crop types used in the experiments, quantitative information on plant quality, soil properties as well as C variables and environmental conditions were captured onto a database. The definitions and acronyms adopted in this paper are used to simplify the terms and definitions of variables for purposes of this analysis.

2.4. Data analyses

The data were compiled into a database and tested for normality of variables, linearity and homoscedasticity prior to statistical analyses. Descriptive summary statistics (minimum, maximum, median, mean, SEM: standard error of mean, $25^{\text {th }}$ and $75^{\text {th }}$ percentiles, skewness (Skew), kurtosis (Kurt) and coefficient of variation (CV\%) were calculated for all variables (Table 6). Furthermore, box plots were constructed to depict the distribution of the data showing minimum, $25^{\text {th }}$ quartile median, mean, $75^{\text {th }}$ quartile and maximum values within the 5 and $95^{\text {th }}$ percentiles. Mean CO_{2} emissions were computed for different crops, with different crop residue quality, soil properties and environmental factor classes. Because the CO_{2} emission data did not conform to normal distributions for us to use parametric analysis, the non-parametric Kruskal-Wallis analysis was performed. Significant differences between factor classes were tested with non-parametric analysis (Kruskal-Wallis), at chi-square probability of <0.001. In addition, bivariate Pearson correlations coefficients at $\mathrm{p}<0.05$ were calculated among the variables (Table 7). Subsequently, principal component analysis (PCA), which converts non-linear factors and variables into linear combinations for visualization (Jambu, 1991), were conducted to investigate the multiple correlations between the variables (Fig. 10 and 11). Finally, because of low number of data points the variable of residue dissolved carbon, total residue phosphorus, cellulose and polyphenols were discarded. SiAll analyses were performed using Statistica 10.0 software (Weiß, 2007).

3. Results

3.1. CO_{2} emissions from crop residues

The summary statistics (Table 4) which were computed from all study sites showed that the 30-days cumulative CO_{2} emissions $\left(\mathrm{C}_{\mathrm{R}} 30\right)$ ranged between 0.3 and $920.1 \mathrm{mg} \mathrm{CO}-\mathrm{Cg}_{2}-1 \mathrm{C}^{\text {, }}$
with a mean value at $196.5 \mathrm{mg} \mathrm{CO}_{2}-\mathrm{C} \mathrm{g}^{-1} \mathrm{C}$. Cumulative 120 days emissions ($\mathrm{C}_{\mathrm{R}} 120$) were between 3.2 and $3640 \mathrm{mg} \mathrm{CO}_{2}-\mathrm{C} \mathrm{g}^{-1} \mathrm{C}$ with a mean at $914.2 \mathrm{mg} \mathrm{CO}_{2}-\mathrm{C} \mathrm{g}^{-1} \mathrm{C}$ (Table 4). The resulting emission stability index showed a mean at 0.8 .

Cumulative emissions also varied among different crops, with legumes exhibiting the highest mean cumulative emissions of $228.0 \mathrm{mg} \mathrm{CO} 2-\mathrm{Cg}^{-1} \mathrm{C}$ after 30 days, $586.7 \mathrm{mg} \mathrm{CO}_{2}-\mathrm{C} \mathrm{g}^{-1} \mathrm{C}$ after 90 days and $1003.0 \mathrm{mg} \mathrm{CO}_{2}-\mathrm{C} \mathrm{g}^{-1} \mathrm{C}$ after 120 days (Table 5). Grasses ranked second with respectively, 217.0, 529.7 and $946.8 \mathrm{mg} \mathrm{CO}_{2}-\mathrm{C} \mathrm{g}^{-1} \mathrm{C}$, while oilseed crops ranked third and cereals fourth (Table 5). The average difference between legumes and cereals was 25% after 30 days, 19% after 90 days and 16% after 120 days, which corresponded for $\mathrm{C}_{\mathrm{R}} 30$ and $\mathrm{C}_{\mathrm{R}} 90$ to significant differences at $\mathrm{P}<0.001$. On average, legumes had the lowest temporal C emissions stability (0.78) followed by grass (0.79), cereals (0.82) and oilseed (0.83) (Table 5).

Table 6 shows variations in CO_{2} emissions between different crop types, with alfalfa having the highest emissions of $359.0 \mathrm{mg} \mathrm{CO} 2-\mathrm{C} \mathrm{g}^{-1} \mathrm{C}$, amongst legumes (48% higher than clover and pea), while canola (293.5) had the highest amongst oilseed crops, and sorghum (261.1) had the highest amongst cereals (67% more than maize) at $C_{R} 30$. Maize emitted the least cumulative CO_{2} at $\mathrm{C}_{\mathrm{R}} 30$ ($85.8 \mathrm{mg} \mathrm{CO} \mathrm{CO}_{2}-\mathrm{C} \mathrm{g} \mathrm{g}^{-1} \mathrm{C}$), $\mathrm{C}_{\mathrm{R}} 90$ (275.1) and $\mathrm{C}_{\mathrm{R}} 120$ (495.0) but exhibited with 0.84 the highest CO_{2} emission stability over time. In contrast, alfalfa exhibited the lowest stability of CO_{2} emissions with a mean value at 0.76 , followed by rye (0.77), clover and pea (0.78), canola, grass and oat (0.79) (Table 6; Fig. 2D).

3.2.The influence of crop residue quality on CO_{2} emissions

The quality of crop residues, determined by the initial C, N and lignin concentrations, significantly ($\mathrm{p}<0.05$) affected CO_{2} emissions (Table 7). There was a systematic decrease in C emissions with the increase in residue nitrogen content with r from -0.22 at $C_{R} 30,-0.26$ at $C_{R} 120$ and -0.28 at $C_{R} 90$. The r values with lignin content were from -0.08 at $C_{R} 30$ to -0.12 at $\mathrm{C}_{\mathrm{R}} 120$. Emissions also decreased with increasing $\mathrm{C}: \mathrm{N}$ with the highest $\mathrm{r}(-0.14)$ found for C_{R} 30. In contrast C emissions increased with increasing residue C content from 0.40 at $C_{R} 120$ to 0.59 at $C_{R} 30$. Furthermore, the increase in residue C content significantly enhanced the temporal stability of C emissions $(\mathrm{r}=0.37)$.

3.3. The impact of soil and environmental properties on CO_{2} emissions from different crop residues

There were significant variations in cumulative CO_{2} emissions among the three different soil textural classes throughout the incubation periods (Fig. 4). For instance, clayey soils exhibited significantly higher cumulative 30 -days CO_{2} emissions ($224 \mathrm{mg} \mathrm{CO}_{2}-\mathrm{C} \mathrm{g}^{-1} \mathrm{C}$) as compared to sandy soils ($178 \mathrm{mg} \mathrm{CO}_{2}-\mathrm{C} \mathrm{g}^{-1} \mathrm{C}$), while silty soils had intermediate emissions. Decreasing emissions with increasing sand content was a trend also found for $\mathrm{C}_{\mathrm{R}} 90$ and $\mathrm{C}_{\mathrm{R}} 120$. Finally, the temporal stability of CO_{2} emissions was surprisingly the highest under silty conditions $\left(1-\left(\mathrm{C}_{\mathrm{R}} 30 / \mathrm{C}_{\mathrm{R}} 120\right)=0.81\right)$ and decrease to 0.80 under clayey conditions and to 0.79 for sandy soils (Fig. 4).

Cumulative CO_{2} emissions also varied due to soil pH (Fig. 5). For all incubation durations, the lowest emissions were observed for strongly acidic soils while the highest emissions were found for slightly acidic soils. Additionally, there was a trend for emissions to lessen from slightly acidic to alkaline through neutral while the temporal stability of the emissions consistently rose from acidic to alkaline (Fig. 5D).

Figure 6 which depicts the impact of climate points to a significant decrease of emissions from tropical to temperate through sub-tropical. In the case of $\mathrm{C}_{\mathrm{R}} 30, \mathrm{CO}_{2}$ emissions decreased from an average of $252 \mathrm{mg} \mathrm{CO} 2-\mathrm{C} \mathrm{g}^{-1} \mathrm{C}$ for tropical to $193 \mathrm{mg} \mathrm{CO} 2-\mathrm{Cg}^{-1} \mathrm{C}$ for subtropical and to $150 \mathrm{mg} \mathrm{CO}_{2}-\mathrm{C} \mathrm{gC}^{-1}$ for temperate, which corresponded in all cases to significant differences at $\mathrm{P}<0.01$ (Fig. 6A). Similar trends (i.e. a decrease of emissions from tropical to temperate) were also observed for $\mathrm{C}_{\mathrm{R}} 90$ and $\mathrm{C}_{\mathrm{R}} 120$ but the temporal stability of the emissions consistently rose from tropical to temperate, the differences between subtropical and temperate being however non-significant (Fig. 6D).

Multivariate correlations between CO_{2} emission variables on the one hand and soil and crop residue variables on the other hand are displayed on Figure 7. The two principal components of this PCA explained 99% of the total variation in the data with the first principal component (PC1) accounting for 79% of data variance and PC 2 accounting for 20%. Cumulative emissions to 30,90 and 120 days showed a positive correlation to PC 1 and this axis can be thus interpreted as an axis of crop residue decomposition. The temporal stability of CO_{2} emissions had a negative coordinate on Axis 2, meaning that PC2 could be interpreted as an axis of decomposition in-stability. Residue content in lignin, N and C showed negative coordinates on PC1 while the $\mathrm{C}: \mathrm{N}$ ratio showed a positive coordinate. There was thus a tendency for emissions to increase as $\mathrm{C}: \mathrm{N}$ increases but C, N and lignin concentration decreases. Finally, emission instability decreased with increasing pH as pointed by a negative coordinate of pH on PC2 (Fig. 7). Amongst crops, canola and alfalfa correlated to the high CO_{2} emissions level and low CO_{2} emission stability pole, while maize, cotton and sunflower correlated to the low emissions and high stability pole.

4. Discussion

4.1. Causes of variation in residue decomposition and soil C building amongst crop types

The different crop types exhibited large variations in CO_{2} emissions with legumes emitting the highest cumulative CO_{2} emissions and with decreasing emissions over time versus cereals pointing to lower emissions but of higher stability. Such variations were shown to correlate with the quality of crop residues (Machinet, et al., 2009). Ajwa and Tabatabai (1994) revealed that the significantly higher amounts of $\mathrm{CO}_{2}-\mathrm{C}$ released from alfalfa were to be attributed to their ability to fix N , as they had higher initial N concentration, of 12.6% as compared to the 6.9% of maize and the 1.3% of oilseed crops. The underlying hypothesis of greater emissions at high initial N concentration was, as suggested by Gezahegn, et al., (2016), the enhanced microbial activity leading to high decomposition and CO_{2} emissions. But the present study, which was based on 394 trials from across the world, tends to contradict this past statement as it pointed to a negative correlation between CO_{2} emissions and residue N concentration. Such a trend might be due to the fact that N availability enhances C uptake by microbes and thus humus formation versus C emissions to the atmosphere as CO_{2}, a mechanism that was described by authors such as Henriksen and Breland (1999), Rousk and Bååth (2007), Bai et al. (2016) and Köbke et al. (2018). The fact that legumes, especially Alfalfa which accounted for the most emissions amongst crops during the maximum 120 days period, emitted large amounts of CO_{2} despite a high N concentration was most likely due to its low lignin concentration.

Carbon stabilization into soils in microbial biomass thus seems to be favoured by the supply of residues with a C and N stoichiometric ratio close to that of living microorganisms. Results on maize, sunflower and cotton tend to show that lignin rich residues experience low decomposition rates which constitutes a second route of carbon stabilization into soils.

4.2.The impact of crop residues on the loss of soil carbon through priming

Recent studies have indeed shown that the activity of decomposers and their ability to decompose soil organic matter for their living can be stimulated by the addition of fresh organic matter resulting in an increase in soil respiration beyond C addition, which is referred to as 'priming' (e.g. Fontaine et al. 2003; Kuzyakov, 2010). In the present study and as pointed out in Table 8, 43\% of the respiration data points showed 120 days cumulative emissions beyond C addition, which points to the existence of significant C losses from soil organic matter. All crop types experienced priming with the proportion of studies with C losses over residue C from 25% for maize, sunflower and beans to over 55% for sorghum, alfalfa and canola and with differences between legumes, cereals and oilseed crops being non-significant at $\mathrm{p}<0.05$.

Several authors have suggested that chemically recalcitrant residues, such as those rich in lignin decompose more slowly than residues with low lignin and high N concentrations, thus leading to enhanced C stabilization into soils and increased soil organic matter (Johnson et al. 2007, Berg and Mc Claugherty, 2008). However, several other authors such as Stewart et al. (2015), pointed out that high lignin residues are used inefficiently by the soil microbial community that decompose SOM (priming effect) to acquire key nutrients resulting in much greater respiration losses and less C stabilization into soils. The present study which points to a global tendency for CO_{2} emissions to decrease with the increase in residue lignin and N concentration tend to show that providing the soil with high lignin and high N concentration may limit priming and foster C stabilization into soils by soil microbes. Moreover, the present data showed that lignin concentration minimally impacted the temporal stability of the emissions but that emissions decreased more sharply over time at higher initial residue C concentration.

Soil texture and pH had significant impact on cumulative CO_{2} emissions from crop residues. The higher cumulative CO_{2} emissions from clayey soils could be due to favorable living conditions for decomposers than under coarser soil conditions. Moreover, Schmatz, et al., (2017) also found higher C emissions from clay soils as compared to sandy-loam soils due to high organic carbon concentration in clayey soils and enhanced water retention capability, thus favoring the activity of microorganisms responsible for residue break-down. Contrarily, most previous studies generally had described clay soils to enhance the physical protection and mineral adsorption of C constituents, which was not confirmed by the present analysis of world data from 120 days duration in which clay soils experiences higher CO_{2} emissions per gram of residue C added. Addition of labile organic materials (crop residues) to clayey soils, with higher organic carbon, could result in more CO_{2} emissions (priming effect) than from sandy loam soils. In addition, such an increase in CO_{2} emissions with the increase in soil clay concentration might come as suggested above from higher soil moisture and bacteria concentration, favoring the rapid turnover of residue C .

We had no explanation for slightly acidic soils (pH of 5.5-6.4) to experience consistently higher CO_{2} emissions ($>50 \%$) than the other pH levels irrespective of incubation durations as conditions for fungi and bacteria are not optimal (Hågvar, 1994; Stott and Martin, 1989). A possible reason for the higher CO_{2} emissions could be the liming effect of residues that foster the priming of soil organic matter (Wang et al. 2017; Yaowu et al. 2016).

4.4.Climate impact on CO_{2} emissions

The finding of this study pointed to higher residue CO_{2} emissions under tropical conditions than under the other climates throughout the incubation days. Tropical climates tend to experience high temperature and rainfall conditions that are conducive for production of high plant biomass and microbial activity for decomposition. On the other hand, soils of sub-
tropical or temperate climates have lower rainfall and cooler temperature thus limiting microbial activity and the biochemical processes involved in residue decomposition (Ontl and Schulte, 2012). As the data used in the present study come from laboratory experiments with controlled conditions of temperature and humidity, the higher decomposition rates and cumulative CO_{2} emissions under tropical climates could be due to favourable conditions for microbial activity.

5. Conclusions

The analysis of 394 laboratory trials worldwide revealed that on average, legumes exhibited significantly higher CO_{2} emissions than cereals, oilseed and fiber crops, with for instance alphalfa emitting 2.7 times more CO_{2} after 120 days than maize (Figure 2, Table 6). Additionally, legumes (especially alfalfa) showed the lowest stability of CO_{2} emissions over time (i.e., the highest decrease from 30 to 120 days) followed by grasses, cereals and oilseed crops.

Amongst the two models for enhanced C sequestration into soils the present analysis points to a global tendency for CO_{2} emissions to decrease with the increase in residue lignin. This contrasted with the studies showing that high lignin concentration induce enhanced microbial decomposition and thus C outputs from soils i.e., alfalfa (low lignin and high N concentration) versus maize residue (high lignin and low N concentration). Providing soils with residues with high lignin such as through maize residues may improve C uptake by microbes (a key process in humus formation).

A large proportion of the variance in the data remained however unexplained thus calling for further analysis of variables such as soil nutrients, microbial communities and quality of lignin, and of other organic matter compounds. More work is also to be done on selecting crop cultivars for generating superior ones in our fight against land and climate degradation. Finally, the question whether the carbon remaining into the soil after 120 days of incubation will be stabilized to contribute to soil carbon stocks calls for further research to understand the fate and underlying mechanisms of C sequestration into soils.

6. Acknowledgements

This study received financial support from the Water Research Commission of the Republic of South Africa (WRC Project No. K5/2721/4). The authors also extend their gratitude to the"

Carbon Crew" members Nozibusiso Mbava and Nhlakanipho Mbambo, both student from the
University of KwaZulu-Natal at the time of this study, for their support during gathering of the data used in the paper.

7. Reference

354 Abdalla, K., Chivenge, P., Ciais, P. and Chaplot, V., 2016. No-tillage lessens soil CO_{2} emissions

360 Abiven, S., Recous, S., Reyes, V. and Oliver, R., 2005. Mineralisation of C and N from root,

363 Abro, S.A., Tian, X., Wang, X., Wu, F. and Kuyide, J.E., 2011. Decomposition characteristics 364 of maize (Zea mays. L.) straw with different carbon to nitrogen (C / N) ratios under various 365

366 Ajwa, H.A. and Tabatabai, M.A., 1994. Decomposition of different organic materials in soils.

368 Alvarez, R., 2005. A review of nitrogen fertilizer and conservation tillage effects on soil organic carbon storage. Soil Use and Management, 21(1), pp.38-52.

370 Angers, D.A. and Recous, S., 1997. Decomposition of wheat straw and rye residues as affected

372 Anguria, P., Chemining'wa, G., Onwonga, R. and Ugen, M., 2017. Decomposition and nutrient release of selected cereal and legume crop residues. Journal of Agricultural Science, 9(6), p.p108.

375 Arunachalam, K., Singh, N.D. and Arunachalam, A., 2003. Decomposition of leguminous crop by particle size. Plant and soil, 189(2), pp.197-203. residues in a 'jhum'cultivation system in Arunachal Pradesh, India. Journal of Plant Nutrition and Soil Science, 166(6), pp.731-736.

381 Begum, N., Guppy, C., Herridge, D. and Schwenke, G., 2014. Influence of source and quality of 382 plant residues on emissions of N 2 O and CO 2 from a fertile, acidic Black Vertisol. Biology

384 Berg, B. and McClaugherty, C., 2008. Decomposition as a process. Plant Litter: Decomposition,

386 Bertrand, I., Chabbert, B., Kurek, B. and Recous, S., 2006. Can the biochemical features and

389 Blaise, D. and Bhaskar, K.S., 2003. Carbon mineralization patterns of cotton leaves and stems in

391 Bontti, E.E., Decant, J.P., Munson, S.M., Gathany, M.A., Przeszlowska, A., Haddix, M.L.,

395 Cayuela, M.L., Sinicco, T. and Mondini, C., 2009. Mineralization dynamics and biochemical

398 Cong, W.F., Hoffland, E., Li, L., Janssen, B.H. and van der Werf, W., 2015. Intercropping Owens, S., Burke, I.C., Parton, W.J. and Harmon, M.E., 2009. Litter decomposition in grasslands of central North America (US Great Plains). Global Change Biology, 15(5), pp.1356-1363. properties during initial decomposition of plant and animal residues in soil. Applied soil ecology, 4l(1), pp.118-127. affects the rate of decomposition of soil organic matter and root litter. Plant and Soil, 391(1-2), pp.399-411.

401 Clark, G.J., Dodgshun, N., Sale, P.W.G. and Tang, C., 2007. Changes in chemical and 402 biological properties of a sodic clay subsoil with addition of organic amendments. Soil Biology and Biochemistry, 39(11), pp.2806-2817.

404 Corbeels, M., Hofman, G. and Van Cleemput, O., 2000. Nitrogen cycling associated with the 405 decomposition of sunflower stalks and wheat straw in a Vertisol. Plant and soil, 218(1-2), pp.71-82.

407 Curtin, D., Francis, G.S. and McCallum, F.M., 2008. Decomposition rate of cereal straw as 408 affected by soil placement. Soil Research, 46(2), pp.152-160.

409 Datta, A., Jat, H.S., Yadav, A.K., Choudhary, M., Sharma, P.C., Rai, M., Singh, L.K., 410 Majumder, S.P., Choudhary, V. and Jat, M.L., 2019. Carbon mineralization in soil as Management, 10(1), pp.37-50.

413 Davies, B.E., 1971. A statistical comparison of pH values of some English soils after 414 measurement in both water and 0.01 M calcium chloride. Soil Science Society of America Journal, 35(4), pp.551-552.

416 De Neergaard, A., Hauggaard-Nielsen, H., Jensen, L.S. and Magid, J., 2002. Decomposition of 417 white clover (Trifolium repens) and ryegrass (Lolium perenne) components: C and N dynamics simulated with the DAISY soil organic matter submodel. European Journal of Agronomy, 16(1), pp.43-55.

420 Dignac, M.F., Derrien, D., Barre, P., Barot, S., Cécillon, L., Chenu, C., Chevallier, T., Freschet, sustainable development, 37(2), p. 14 .

424 Donahue, R.L., Miller, R.W. and Shickluna, J.C., 1983. Soils. An introduction to soils and plant 425 growth.

426 Duong, T.T.T., Baumann, K. and Marschner, P., 2009. Frequent addition of wheat straw

429 Dlamini, P., 2014. Grassland Degradation and Rehabilitation of Soil Organic Carbon and 430 Nitrogen Stocks (Doctoral dissertation, University of KwaZulu-Natal, Pietermaritzburg).

431 Drury, C.F., Yang, X.M., Reynolds, W.D. and McLaughlin, N.B., 2008. Nitrous oxide and

434 Elliott, E.T., 1986. Aggregate structure and carbon, nitrogen, and phosphorus in native and cultivated soils. Soil science society of America journal, 50(3), pp.627-633.

436 Finn, D., Page, K., Catton, K., Strounina, E., Kienzle, M., Robertson, F., Armstrong, R. and 437 Dalal, R., 2015. Effect of added nitrogen on plant litter decomposition depends on initial soil carbon and nitrogen stoichiometry. Soil Biology and Biochemistry, 91, pp.160-168.

439 Fontaine, S., Mariotti, A. and Abbadie, L., 2003. The priming effect of organic matter: a question of microbial competition?. Soil Biology and Biochemistry, 35(6), pp.837-843.

441 Fruit, L., Recous, S. and Richard, G., 1999. Plant residue decomposition: effect of soil porosity and particle size. In Effect of mineral-organic-microorganism interactions on soil and freshwater environments (pp. 189-196). Springer, Boston, MA.

444 Geisseler, D., Horwath, W.R. and Scow, K.M., 2011. Soil moisture and plant residue addition 445 interact in their effect on extracellular enzyme activity. Pedobiologia, 54(2), pp.71-78.

446 Gezahegn, A.M., Abd Halim, R., Yusoff, M.M. and Abd Wahid, S., 2016. Decomposition and 447 Nitrogen mineralization of Individual and Mixed Maize and Soybean Residue. Journal of Agricultural Science, 2, pp.28-45.

449 Ghimire, B., Ghimire, R., VanLeeuwen, D. and Mesbah, A., 2017. Cover crop residue amount and quality effects on soil organic carbon mineralization. Sustainability, 9(12), p.2316.

451 Glasser, W.G., 1985. Lignin. In Fundamentals of thermochemical biomass conversion (pp. 6176). Springer, Dordrecht.

453 Gregorich, E.G., Drury, C.F. and Baldock, J.A., 2001. Changes in soil carbon under long-term maize in monoculture and legume-based rotation. Canadian journal of soil science, 81(1), pp.21-31.

455 Hågvar, S., 1994. Soil Biology: Decomposition and soil acidity. In Long-term experiments with acid rain in Norwegian forest ecosystems (pp. 136-139). Springer, New York, NY.

457 Havstad, L.T., Aamlid, T.S. and Henriksen, T.M., 2010. Decomposition of straw from herbage 458 seed production: Effects of species, nutrient amendment and straw placement on C and N Science, 60(1), pp.57-68.

461 Henriksen, T.M. and Breland, T.A., 2002. Carbon mineralization, fungal and bacterial growth,

464 Henriksen, T.M. and Breland, T.A., 1999. Nitrogen availability effects on carbon mineralization, 465

466
467 Jambu, M., 1991. Exploratory and multivariate data analysis. Elsevier.
468 Jha, P., Garg, N., Lakaria, B.L., Biswas, A.K. and Rao, A.S., 2012. Soil and residue carbon 469 mineralization as affected by soil aggregate size. Soil and Tillage Research, 121, pp.57-62.

470 Jin, K., Sleutel, S., De Neve, S., Gabriels, D., Cai, D., Jin, J. and Hofman, G., 2008. Nitrogen 471 and carbon mineralization of surface-applied and incorporated winter wheat and peanut residues. Biology and Fertility of Soils, 44(4), pp.661-665.

473 Johnson, J.M.F., Barbour, N.W. and Weyers, S.L., 2007. Chemical composition of crop biomass and enzyme activities as affected by contact between crop residues and soil. Biology and Fertility of Soils, 35(1), pp.41-48.
\square fungal and bacterial growth, and enzyme activities during decomposition of wheat straw in soil. Soil Biology and Biochemistry, 31(8), pp.1121-1134.

467 J
5 474 impacts its decomposition. Soil Science Society of America Journal, 71(1), pp.155-162. net mineralization. Acta Agriculturae Scandinavica Section B-Soil and Plant

475 Juan, L., Yong, H.A.N. and Zu-Cong, C.A.I., 2009. Decomposition and products of wheat and

478 Kuzyakov, Y., 2010. Priming effects: interactions between living and dead organic matter. Soil 479

480 Khalil, M.I., Hossain, M.B. and Schmidhalter, U., 2005. Carbon and nitrogen mineralization in

483 Li, C., Frolking, S. and Harriss, R., 1994. Modeling carbon biogeochemistry in agricultural 484 soils. Global biogeochemical cycles, 8(3), pp.237-254.

485 Li, L.J., Han, X.Z., You, M.Y., Yuan, Y.R., Ding, X.L. and Qiao, Y.F., 2013. Carbon and nitrogen mineralization patterns of two contrasting crop residues in a Mollisol: Effects of residue type and placement in soils. European journal of soil biology, 54, pp.1-6.

488 Lierop, W.V., 1981. Conversion of organic soil pH values measured in water, $0.01 \mathrm{M} \mathrm{CaCl}_{2}$ or 1 489 N KCl. Canadian Journal of Soil Science, 61(4), pp.577-579.

490 Lin, B. and Agyeman, S.D., 2020. Assessing Sub-Saharan Africa's low carbon development

493 Lou, Y., Ren, L., Li, Z., Zhang, T. and Inubushi, K., 2007. Effect of rice residues on carbon 494 dioxide and nitrous oxide emissions from a paddy soil of subtropical China. Water, Air, and Soil Pollution, 178(1-4), pp.157-168.

496 Luxhøi, J., Magid, J., Tscherko, D. and Kandeler, E., 2002. Dynamics of invertase, xylanase and 497 coupled quality indices of decomposing green and brown plant residues. Soil Biology and through the dynamics of energy-related carbon dioxide emissions. Journal of Cleaner Production, 274, p. 122676. Biochemistry, 34(4), pp.501-508.

505 Magid, J., Luxhøi, J. and Lyshede, O.B., 2004. Decomposition of plant residues at low

508 Marstorp, H. and Kirchmann, H., 1991. Carbon and nitrogen mineralization and crop uptake of Scandinavica, 41(3), pp.243-252.

511 Martens, D.A., 2000. Plant residue biochemistry regulates soil carbon cycling and carbon sequestration. Soil Biology and Biochemistry, 32(3), pp.361-369.

513 Mathew, I., Shimelis, H., Mutema, M. and Chaplot, V., 2017. What crop type for atmospheric environment, 243, pp.34-46.

516 Moreno-Cornejo, J., Zornoz, R. and Faz, A., 2014. Carbon and nitrogen mineralization during 517 decomposition of crop residues in a calcareous soil. Geoderma, 230, pp.58-63.

518 McClelland, S.C., Paustian, K. and Schipanski, M.E., 2021. Management of cover crops in Applications, 31(3), p.e02278.

521 Muhammad, W., Vaughan, S.M., Dalal, R.C. and Menzies, N.W., 2011. Crop residues and 522 fertilizer nitrogen influence residue decomposition and nitrous oxide emission from a temperatures separate turnover of nitrogen and energy rich tissue components in time. Plant and Soil, 258(1), pp.351-365. nitrogen from six green manure legumes decomposing in soil. Acta Agriculturae carbon sequestration: Results from a global data analysis. Agriculture, ecosystems \& temperate climates influences soil organic carbon stocks: a meta-analysis. Ecological ens: a meale Vertisol. Biology and Fertility of Soils, 47(1), pp.15-23.

524 Müller, T., Magid, J., Jensen, L.S. and Nielsen, N.E., 2003. Decomposition of plant residues of different quality in soil-DAISY model calibration and simulation based on experimental data. Ecological Modelling, 166(1-2), pp.3-18.

527 Mungai, N.W. and Motavalli, P.P., 2006. Litter quality effects on soil carbon and nitrogen dynamics in temperate alley cropping systems. Applied Soil Ecology, 31(1-2), pp.32-42.

529 Murungu, F.S., Chiduza, C., Muchaonyerwa, P. and Mnkeni, P.N.S., 2011. Decomposition, nitrogen and phosphorus mineralization from winter-grown cover crop residues and suitability for a smallholder farming system in South Africa. Nutrient Cycling in Agroecosystems, 89(1), pp.115-123.

533 Mutema, M., Chaplot, V., Jewitt, G., Chivenge, P. and Blöschl, G., 2015. Annual water, function of scale. Water Resources Research, 51(11), pp.8949-8972.

536 Nourbakhsh, F., 2006. Fate of carbon and nitrogen from plant residue decomposition in a 537 calcareous soil. Plant Soil and Environment, 52(3), p.137.

538 Oda, T., Maksyutov, S. and Andres, R.J., 2018. The Open-source Data Inventory for 539 Anthropogenic Carbon dioxide (CO_{2}), version 2016 (ODIAC2016): A global, monthly fossil-fuel CO_{2} gridded emission data product for tracer transport simulations and surface flux inversions. Earth system science data, 10(1), p.87.

542 Ontl, T.A. and Schulte, L.A., 2012. Soil carbon storage. Nature Education Knowledge, 3(10).
543 Pascault, N., Cécillon, L., Mathieu, O., Hénault, C., Sarr, A., Lévêque, J., Farcy, P., decomposition of wheat, rape, and alfalfa residues. Microbial ecology, 60(4), pp.816-828.

546 Paustian, K., Six, J., Elliott, E.T. and Hunt, H.W., 2000. Management options for reducing CO2 547 emissions from agricultural soils. Biogeochemistry, 48(1), pp.147-163.

Perez, J., Munoz-Dorado, J., De la Rubia, T.D.L.R. and Martinez, J., 2002. Biodegradation and

551 Probert, M.E., Delve, R.J., Kimani, S.K. and Dimes, J.P., 2005. Modelling nitrogen

554 Puyuelo, B., Ponsá, S., Gea, T. and Sánchez, A., 2011. Determining C/N ratios for typical
55 organic wastes using biodegradable fractions. Chemosphere, 85(4), pp.653-659.
556 Quemada, M. and Cabrera, M.L., 1995. Carbon and nitrogen mineralized from leaves and stems 557 of four cover crops. Soil Science Society of America Journal, 59(2), pp.471-477.

558 Raiesi, F., 2006. Carbon and N mineralization as affected by soil cultivation and crop residue in 559 a calcareous wetland ecosystem in Central Iran. Agriculture, ecosystems \& environment, 112(1), pp.13-20.

561 Redin, M., Guénon, R., Recous, S., Schmatz, R., de Freitas, L.L., Aita, C. and Giacomini, S.J., 2014. Carbon mineralization in soil of roots from twenty crop species, as affected by their chemical composition and botanical family. Plant and soil, 378(1-2), pp.205-214.

564 Ritchie, H. and Roser, M., 2020. CO_{2} and greenhouse gas emissions. Our world in data. Rousk, 565 J. and Bååth, E., 2007. Fungal and bacterial growth in soil with plant materials of different

567 Schmatz, R., Recous, S., Aita, C., Tahir, M.M., Schu, A.L., Chaves, B. and Giacomini, S.J., 568 2017. Crop residue quality and soil type influence the priming effect but not the fate of crop residue C. Plant and soil, 414(1-2), pp.229-245.

570 Shahandeh, H., Chou, C.Y., Hons, F.M. and Hussey, M.A., 2011. Nutrient partitioning and 571 carbon and nitrogen mineralization of switchgrass plant parts. Communications in soil 572 mineralization from manures: representing quality aspects by varying C : N ratio of subpools. Soil biology and Biochemistry, 37(2), pp.279-287.
\qquad
.

28 Raicsi F. 2006. Caron N mine J. and Baath, E., 2007. Fungal and bacterial growth in soil with plant materials of different C/N ratios. FEMS microbiology ecology, 62(3), pp.258-267. science and plant analysis, 42(5), pp.599-615.

573 Shakoor, A., Shakoor, S., Rehman, A., Ashraf, F., Abdullah, M., Shahzad, S.M., Farooq, T.H.,

577 Shi, A., Penfold, C. and Marschner, P., 2013. Decomposition of roots and shoots of perennial

580 Stewart, C.E., Moturi, P., Follett, R.F. and Halvorson, A.D., 2015. Lignin biochemistry and soil

583 Scott, N.A., Cole, C.V., Elliott, E.T. and Huffman, S.A., 1996. Soil textural control on

586 Stott, D.E. and Martin, J.P., 1989. Organic matter decomposition and retention in arid soils. Arid

588 Vachon, K. and Oelbermann, M., 2011. Crop residue input and decomposition in a temperate maize-soybean intercrop system. Soil Science, 176(4), pp.157-163.

590 Vahdat, E., Nourbakhsh, F. and Basiri, M., 2010. Estimation of net N mineralization from short-

593 Venter, Z.S., Hawkins, H.J., Cramer, M.D. and Mills, A.J., 2021. Mapping soil organic carbon Ashraf, M., Manzoor, M.A., Altaf, M.M. and Altaf, M.A., 2021. Effect of animal manure, crop type, climate zone, and soil attributes on greenhouse gas emissions from agricultural soils—A global meta-analysis. Journal of Cleaner Production, 278, p.124019. grasses and annual barley-separately or in two residue mixes. Biology and fertility of soils, 49(6), pp.673-680.

N determine crop residue decomposition and soil priming. Biogeochemistry, 124(1-3), pp.335-351.

584 decomposition and soil organic matter dynamics. Soil Science Society of America Journal, 60(4), pp.1102-1109. Land Research and Management, 3(2), pp.115-148. term C evolution in a plant residue-amended soil: is the accuracy of estimation timedependent?. Soil use and management, 26(3), pp.340-345.
stocks and trends with satellite-driven high resolution maps over South Africa. Science of The Total Environment, 771, p. 145384.

596 Waksman, S.A. and Gerretsen, F.C., 1931. Influence of temperature and moisture upon the

599 Wang, J.J., Pisani, O., Lin, L.H., Lun, O.O., Bowden, R.D., Lajtha, K., Simpson, A.J. and 600 Simpson, M.J., 2017. Long-term litter manipulation alters soil organic matter turnover in a 601 602 Wang, W.J., Baldock, J.A., Dalal, R.C. and Moody, P.W., 2004. Decomposition dynamics of 603 plant materials in relation to nitrogen availability and biochemistry determined by NMR and 604

605 Weiß, C.H., 2007. Statsoft, inc., tulsa, ok.: Statistica, version 8.
606 Xiao, C., 2015. Soil organic carbon storage (sequestration) principles and management:
607 Potential role for recycled organic materials in agricultural soils of Washington State.
608 Waste Resources Program, Washington Department of Ecology.

609 Xu, J.M., Tang, C. and Chen, Z.L., 2006. Chemical composition controls residue decomposition 610 in soils differing in initial pH. Soil Biology and Biochemistry, 38(3), pp.544-552.

611 Yaowu, T.I.A.N., Ning, W.A.N.G. and Jing, L.I.U., 2016. The Priming Effect of Soil Organic 612 Carbon Induced by Nustedge. Journal of Nuclear Agricultural Sciences, 30(12), p. 2418. 613 Zaccheo, P., Cabassi, G., Ricca, G. and Crippa, L., 2002. Decomposition of organic residues in 614 soil: experimental technique and spectroscopic approach. Organic geochemistry, 33(3), 615 pp.327-345.

616 Zeng, D.H., Mao, R., Chang, S.X., Li, L.J. and Yang, D., 2010. Carbon mineralization of tree 617 leaf

618 litter and crop residues from poplar-based agroforestry systems in Northeast China: a 619 laboratory study. Applied soil ecology, 44(2), pp.133-137.

620 Zhang, D., Hui, D., Luo, Y. and Zhou, G., 2008. Rates of litter decomposition in terrestrial 621 ecosystems: global patterns and controlling factors. Journal of Plant Ecology, 1(2), pp.85622 93.

Figure 1: Global distribution map of the study sites used in the present study.
$C_{R} 120 ;$ and $\left.D: 1-\left[C_{R} 30 / C_{R} 120\right]\right)$. The data were sorted by mean (dotted line).
cumulative CO_{2} emitted from crop residues to 30 days, $\mathrm{C}_{\mathrm{R}} 30 ; \mathrm{B}$: to 90 days, $\mathrm{C}_{\mathrm{R}} 90$; C : to 120 days
Figure 2: CO_{2} emissions from residues of different crops incubated at different time periods (A :

CO_{2} emissions ($\mathrm{mg} \mathrm{CO}_{2}-\mathrm{Cg}^{-1}$)

Figure 3: CO_{2} emissions from residues of different crop types incubated at different time periods (A: $C_{R} 30 ; B: C_{R} 90 ; C: C_{R} 120$; and $D: 1-C_{R} 30 / C_{R} 120$). Plots with the same lower-case letters are not significantly different at Chi-square probability of <0.001 (Chi and H values= $=16.5 .24$ at A ; 0.08. 6.72 at $\mathrm{B} ; 0.00$. 13.79 at C and 0.00 . 21005 at D . respectively).

Figure 4: CO_{2} emissions from soils of different texture ((\%) -clayey. silt and sandy soil) at different day time periods. Plots with the same lower-case letters are not significantly different at Chi-square probability of <0.001 (Chi and H values $=0.26$. 2.67 at $\mathrm{A} ; 0.63 .0 .92$ at $\mathrm{B} ; 0.10$. 4.70 at C ; and 0.00 .14 .07 at D . respectively).

Figure 5: CO_{2} emissions from soils of different pH (highly basic. neutral. slightly acidic and highly acidic) at different day time periods. Strongly acidic ($\mathrm{pH}<5.4$); slightly acidic (5.5-6.4); neutral (6.5-7.4); alkaline (>7.5) soil pH . Plots with the same lower-case letters are not significantly different at Chi-square probability of <0.001 (Chi and H values= 0.01 .10 .99 at A ; 0.01 . 12.64 at B. 0.25. 4.09 at C. and 0.00. 20.92 at D. respectively).

Figure 6: CO_{2} emissions from climate of different rainfall and temperature level (as in tropical. sub-tropical and temperate (MAT. MAP) at different day time periods. Plots with the same lower-case letters are not significantly different at Chi-square probability of <0.001 (Chi and H values $=0.84 .0 .34$ at $\mathrm{A} ; 0.11 .4 .40$ at $\mathrm{B} ; 0.68 .0 .77$ at C . and 0.00 . 18.13 at D . respectively).

1 Table 1: References included in database with author, country, crops type, soil texture and
2 climatic zones under which the studies were conducted.

No.	Author	Country	Crop type	Soil texture	Climate
1	Abiven et al. (2005)	Brazil	Brachiaria; Rice; Sorghum; Soyabean; Wheat	Clayey	Tropical
2	Abiven and Recous (2007)	Brazil	Brachiaria; Rice; Sorghum; Soyabean; Wheat	Clayey	Tropical
3	Abro et al. (2011)	China	Maize	Clayey	Subtropical
4	Ajwa and Tabatabai (1994)	USA	Alfalfa; Maize; Sorghum; Soyabean	Silt	Subtropical
5	Angers and Recous (1997)	France	Rye; Wheat	Silt	Temperate
6	Anguria et al. (2017)	Uganda	Cowpea; groundnut; millet; sorghum	(blank)	Subtropical
7	Arunachalam et al. (2003)	India	Bean and pea	Sandy	Tropical
8	Aulakh et al. (1991)	USA	Vetch and wheat	Silt	Tropical
9	Begum et al. (2014)	Australia	Canola; Sorghum; Soyabean; Wheat	Clayey	Subtropical
10	Bertrand, et al. (2006)	France	Wheat	Silt	Subtropical
11	Blaise \& Bhaskar (2003)	India	Cotton	clayey,	Subtropical
12	Cayuela et al. (2009)	Italy	Cotton; wheat	Sandy	Subtropical
13	Clark et al. (2007)	Australia	Alfalfa; Wheat	Clayey	Subtropical
14	Cong et al. (2015)	China	Bean; Maize; Wheat	Sandy	Temperate
15	Corbeels et al. (2000)	Morocco	Sunflower, Wheat	Clayey	Temperate
16	Curtin et al. (2008)	New Zealand	Barley; Wheat	Silt	Subtropical
17	Datta et al. (2019)	India	Maize; Rice; Wheat	Silt	Subtropical
18	De Neergaard et al. (2002)	Denmark	Clover; Grass	Silt	Temperate
19	Duong et al. (2009)	Australia	Wheat	Sandy	Subtropical
20	Finn et al. (2015)	Australia	Alfalfa; Grass; Wheat	clayey, Silt\& sandy	Subtropical
21	Fruit et al. (1999)	France	Wheat	Silt	Subtropical
22	Gezahegn et al. (2016)	Malaysia	Maize; Soyabean	Sandy	Subtropical
23	Ghimire et al. (2017)	USA	Canola; Oat; Pea	Clayey	Subtropical
24	Havstad et al. (2010)	Norway	Barley; Clover; Grass; Meadow; Wheat	Silt	Subtropical
25	Henriksen and Breland (2002)	Norway	Barley; Clover; Wheat	Silt, sandy	Temperate
26	Jha et al. (2012)	India	Wheat	Clayey	Subtropical
27	Jin et al. (2008)	China	Peanut; Wheat	Silt	Tropical
28	Johnson et al. (2017)	USA	Alfalfa; Cuphea; Maize; Soyabean; Switchgrass	Silt	Subtropical
29	Juan et al. (2009)	China	Rice; Wheat	(blank)	Subtropical
30	Khali et al. (2005)	Bangladesh	Bean; wheat	clayey, Silt \&sandy	Tropical
31	Liet al. (2013)	China	Maize; Soyabean	Silt	Temperate
32	Lou et al. (2007)	China	Rice	Clayey	Tropical
33	Luxhoi et al. (2002)	Denmark	Clover; Grass; Rye	Sandy	Tropical
34	Machinet et al. (2009)	France	Maize	Silt	Temperate
35	Machinet et al. (2011)	France	Maize	Clayey	Temperate
36	Magid et al. (2004)	Denmark	Clover; Radish; Rye; Sugarcane; Vetch	Sandy	Temperate
37	Marstorp and kirchmann (1991)	Sweden	Clover	Sandy	Temperate
38	Martens (2000)	USA	Alfalfa; Canola; Maize; Oat; Prairie	Sandy	Subtropical
39	Moreno-Cornejo et al. (2014)	Spain	Pepper	Silt	Subtropical
40	Muhammad et al. (2011)	Australia	Cotton; Maize; Sorghum, Sugarcane	Clayey	Subtropical
41	Müller et al. (2003)	Denmark	Barley; Clover; Grass; Rape	Sandy	Temperate
42	Mungai and Motavalli (2006)	Kenya	Grass; Maize; Soyabean	clayey, Silt	Temperate
43	Murungu et al. (2011)	South Africa	Oat; Peas; Vetch	Sandy	Temperate
44	Nourbakhsh (2006)	Iran	Alfalfa; Wheat	Clayey	Subtropical
45	Pascault et al. (2010)	France	Alfalfa; Rape; Wheat	Clayey	Temperate
46	Quemada and Cabrera, (1995)	USA	Clover; Oat; Rye; Wheat	Sandy	Subtropical
47	Raiesi; (20065)	Iran	Alfalfa; Wheat	Clayey	Subtropical
48	Redin et al. (2014)	Brazil	Maize; Sorghum; Wheat, Soyabean; Sunflower; Vetch	Sandy	Tropical
49	Schmatz et al. (2017)	Brazil	Pea; Vetch; Wheat	clayey, sandy	Tropical
50	Shahande et al. (2011)	USA	Switchgrass	Silt	Subtropical
51	Shi et al. (2013)	Australia	Barley; Grass	Silt	Subtropical
52	Stewart et al. (20157)	USA	Maize; Sorghum; Soyabean; Sunflower; Wheat	Silt	Temperate
53	Vachon and Oelbermann (2011)	Argentina	Maize; Soyabean	Silt	Subtropical
54	Vahdat et al; (2010)	Iran	Alfalfa; Barley; Clover; Grass; Wheat	Clayey	Subtropical
55	Wang et al. (2004)	Australia	Brigalow; Grass; Sugarcane; Wheat	Sandy	Subtropical
56	Xu et al. (2006)	Australia	Alfalfa; Chickpea; Medic; Wheat	Sandy	Tropical
57	Zaccheo et al. (2002)	Italy	Alfalfa; Maize	Sandy	Temperate
58	Zeng et al. (2010)	China	Maize; Peanut; Poplar	Sandy	Temperate

Table 3: Crop quality, soils and environmental variables classification used in the study.

Variable	Variable remarks	Category	Symbol	Class	Ref.
Crop class	All different crop types categorised into four classes	Wheat, sorghum,	Crop class	Cereal,	Mathew, et al. (2017)
		grass,		Grass,	
		vetch bean, soyabean		Legume and	
		Canola, cotton		Oilseed	
Residue lignin concentration (\%)	Initial lignin concentration of residues	<10	Lignin	Low	
		>10		High	
Residue lignin: \mathbf{N} ratio	Residue lignin to nitrogen ratio	>10	lignin: N	High	
		<10		Low	
Residue C:N ratio	Crop residue carbon to nitrogen ratio	<20	C: N	Low	Puyuelo, (2011) and Probert (2005)
		20-30		Medium	
		>30		High	
Residue \mathbf{N} concentration (\%)	Initial nitrogen concentration of residues	>10	TN	High	
		<10		Low	
Residue C concentration (\%)	Initial carbon concentration of residues	>50	TC	High	$\begin{aligned} & \text { Abdalla et al., } \\ & (2016) \end{aligned}$
		<50		Low	
Clay concentration (\%)	Soil Texture based on clay fraction	>10	Soil texture	Clayey	Mathew et al., (2017) and Abdalla et al., (2016)
		20-32		Silt	
		<20		Sandy	
Soil pH concentration $\left(\mathrm{CaCl}_{2}\right)$	Soil pH	<5.4	pH	Strongly acidic	Davies, 1971; Mathew et al. (2017)
		5.5-6.4		Slightly acidic	
		6.5-7.4		Neutral	
		>7.5		Alkaline	
Soil bulk density (g cm^{-3})	Average bulk density in soil profile	<1.3	BD	Low BD	Mathew et al., (2017)
		>1.3		High BD	
CEC (cmolckg)	Soil cation exchange capacity	>20	CEC	Low CEC	
		<20		High CEC	
Climate	Based on the average annual temperature and precipitation of the study site	>20	MAT		Mutema et al., (2015) and Mathew et al., 2017
		>1500	MAP	Tropical	
		20-10	MAT	Sub-tropical	
		100-1110	MAP		
		<10	MAT	Temperate	
		120-1000	MAP		

Table 4: Summary Statistics of plant, soil and environmental variables along with residue CO_{2} emissions in different time period.

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \& \begin{tabular}{l}
Lignin \\
\%
\end{tabular} \& \(\mathrm{C}: \mathrm{N}\) \& TC \& TN
\(\qquad\) \& \[
\begin{gathered}
\text { Clay } \\
--\mathrm{g} \mathrm{~kg}^{-1}
\end{gathered}
\] \& \begin{tabular}{c}
Sand \\
\\
\hline--------1
\end{tabular} \& Silt \& pH \& SOC
\(\%\) \& MAP
mm \& MAT

${ }^{\circ} \mathrm{C}$ \& \[
\mathrm{C}_{\mathrm{R}} 30

\] \& \[

$$
\begin{gathered}
\mathrm{C}_{\mathrm{R}} 90 \\
\mathrm{CO}_{2}-\mathrm{C} \mathrm{~g}
\end{gathered}
$$

\] \& \[

\mathrm{C}_{\mathrm{R}} 120
\]

\qquad \& $$
\begin{gathered}
1- \\
{\left[\mathrm{C}_{\mathrm{R}} 30 / \mathrm{C}\right.} \\
\mathrm{R} 120]
\end{gathered}
$$

\hline N \& 192 \& 304 \& 394 \& 365 \& 295 \& 259 \& 243 \& 333 \& 293 \& 386 \& 386 \& 394 \& 394 \& 394 \& 394

\hline Mean \& 9.55 \& 58.45 \& 13.24 \& 9.38 \& 29.53 \& 37.81 \& 32.40 \& 6.73 \& 13.13 \& 906.16 \& 17.01 \& 196.5 \& 519.0 \& 914.2 \& 0.80

\hline Median \& 7.70 \& 39.16 \& 1.15 \& 4.00 \& 25.30 \& 32.00 \& 28.00 \& 6.80 \& 9.50 \& 656.00 \& 17.00 \& 138.0 \& 415.6 \& 795.0 \& 0.80

\hline Min. \& 0.02 \& 7.80 \& 0.04 \& 0.01 \& 2.00 \& 1.00 \& 1.00 \& 3.87 \& 0.50 \& 89.40 \& 3.90 \& 0.3 \& 1.1 \& 3.2 \& 0.49

\hline Max. \& 29.40 \& 409.00 \& 165.76 \& 407.00 \& 77.30 \& 96.00 \& 83.00 \& 8.60 \& 39.00 \& 2500.00 \& 30.00 \& 920.1 \& 3205 \& 3640 \& 0.98

\hline Q1 \& 5.35 \& 20.30 \& 0.40 \& 0.90 \& 14.30 \& 17.90 \& 16.30 \& 5.60 \& 8.41 \& 551.00 \& 10.00 \& 31.0 \& 118.4 \& 200.4 \& 0.75

\hline Q3 \& 12.55 \& 75.40 \& 4.12 \& 11.00 \& 40.00 \& 60.00 \& 47.00 \& 7.66 \& 17.40 \& 1095.00 \& 24.00 \& 304.9 \& 858.9 \& 1431.0 \& 0.86

\hline Variance \& 36.07 \& 3257.25 \& 1164.81 \& 592.74 \& 370.64 \& 737.14 \& 483.34 \& 1.34 \& 65.33 \& 263814.21 \& 46.19 \& 37353.5 \& 213397 \& 585331 \& 0.01

\hline SD. \& 6.01 \& 57.07 \& 34.13 \& 24.35 \& 19.25 \& 27.15 \& 21.99 \& 1.16 \& 8.08 \& 513.63 \& 6.80 \& 193.3 \& 461.9 \& 765.1 \& 0.07

\hline SE. \& 0.43 \& 3.27 \& 1.72 \& 1.27 \& 1.12 \& 1.69 \& 1.41 \& 0.06 \& 0.47 \& 26.14 \& 0.35 \& 7.7 \& 18.4 \& 30.5 \& 0.00

\hline CV \& 63.30 \& 98.10 \& 13.70 \& 262.70 \& 64.90 \& 75.40 \& 67.60 \& 17.30 \& 61.60 \& 56.50 \& 40.30 \& 98.4 \& 89.0 \& 83.7 \& 9.11

\hline Skewness \& 1.06 \& 2.52 \& 2.97 \& 12.47 \& 0.92 \& 0.51 \& 0.68 \& -0.30 \& 1.04 \& 1.15 \& 0.10 \& 1.07 \& 1.10 \& 0.73 \& -0.25

\hline Kurtosis \& 0.83 \& 8.30 \& 7.69 \& 197.12 \& 0.13 \& -0.79 \& -0.32 \& -1.03 \& 0.69 \& 0.51 \& -1.12 \& 0.58 \& 2.11 \& -0.15 \& -0.23

\hline
\end{tabular}

Statistics: Min and Max =minimum and maximum, respectively. Q1 and Q3= first and third quartile, SD = standard deviation. C emission variables: $\mathrm{C}_{\mathrm{R}} 30 ; \mathrm{C}_{\mathrm{R}} 90 ; \mathrm{C}_{\mathrm{R}} 120$ for cumulative residue CO_{2} emissions to day 30,90 and 120 . Crop quality: lignin; C: N ratio; $\mathrm{TC}=$ total residue carbon; $\mathrm{TN}=$ total residue nitrogen. Soil variables: Clay concentration; sand concentration; silt concentration; soil $\mathrm{pH}(\mathrm{CaCl})$. $\mathrm{SOC}=$ soil organic carbon concentration; Climatic variables: $\mathrm{MAP}=$ mean annual precipitation; MAT= mean annuat temperature. " \dagger " values are not zero. but rounded off to one decimal place.

Table 5: Sample sizes of crop quality (n), soil and climatic factor categories in association with carbon emissions from residues.

		$\mathrm{C}_{\mathrm{R}} 30$			$\mathrm{C}_{\mathrm{R}} 90$			$\mathrm{C}_{\mathrm{R}} 120$			$1-\left[\mathrm{C}_{\mathrm{R}} 30 / \mathrm{C}_{\mathrm{R}} 120\right]$		
		n	Mean	STDEV									
Overall		394	196.3	193.3	394	518.8	461.9	394	914.2	765.1	394	0.81	0.07
Crop type	Cereal	195	171.0	185.9	195	473.9	445.4	195	846.6	777.1	195	0.82	0.07
	Grass	54	217.0	185.8	54	529.7	426.7	54	946.8	741.0	54	0.79	0.06
	Legume	120	228.0	203.2	120	586.7	505.7	120	1003.0	758.3	120	0.78	0.08
	Oilseed	25	196.0	211.9	25	519.2	459.2	25	944.0	742.5	25	0.83	0.07
Residue lignin	High	73	173.0	165.2	73	457.0	402.3	73	816.9	694.2	73	0.80	0.07
Concentration	Low	119	218.0	188.9	119	602.3	524.3	119	1055.0	853.0	119	0.84	0.05
$\begin{aligned} & \text { Residue C: N } \\ & \text { Ratio } \end{aligned}$	High	142	144.9	159.0	142	447.0	424.9	142	837.9	777.4	142	0.78	0.07
	Low	103	273.7	223.4	103	686.9	537.4	103	1163.1	814.7	103	0.80	0.07
	Medium	59	201.1	214.7	59	484.9	449.7	59	856.8	734.8	59	0.80	0.08
TC	High	284	201.8	198.7	284	524.6	450.5	284	927.3	759.9	284	0.80	0.08
	Low	110	181.9	168.9	110	503.6	635.6	110	880.2	803.9	110	0.82	0.07
Soil texture	Clayey	121	224.4	179.0	121	587.5	440.7	121	1060.6	777.5	121	0.81	0.07
	Silt	130	191.1	215.6	130	505.8	523.9	130	894.3	819.4	130	0.82	0.08
	Sandy	137	178.2	184.7	137	454.7	417.8	137	789.9	699.2	137	0.79	0.08
Soil pH	Alkaline	133	178.1	170.0	133	487.2	410.7	133	869.2	712.5	133	0.82	0.07
	Neutral	57	195.4	165.4	57	532.3	362.0	57	919.4	613.8	57	0.79	0.07
	Slightly acidic	86	262.1	203.3	86	634.6	560.3	86	1140.2	874.0	86	0.78	0.07
	Strongly acidic	57	175.3	222.3	57	414.7	443.4	57	709.9	687.7	57	0.79	0.09
Soil organic carbon Concentration	High	39	149.4	148.9	39	356.7	529.6	39	591.4	695.8	39	0.81	0.07
	Low	153	157.5	188.9	153	421.3	430.9	153	746.9	725.8	153	0.81	0.07
	Medium	101	230.3	184.9	101	595.2	432.0	101	1066.4	746.6	101	0.81	0.07
Climate	Subtropical	198	192.5	181.8	198	522.8	427.3	198	912.2	736.5	198	0.81	0.07
	Temperate	101	149.8	213.8	101	430.3	536.5	101	779.7	828.1	101	0.82	0.08
	Tropical	95	253.4	193.7	95	604.5	444.7	95	1061.2	755.8	95	0.78	0.08

Table 6: Sample sizes of crop type categories associated with residue carbon emission variables.

Crop type	Crop	$\mathrm{C}_{\mathrm{R}} 30$			$\mathrm{C}_{\mathrm{R}} 90$			$\mathrm{C}_{\mathrm{R} 120}$			1-[CR30/CR 120$]$		
		n	Mean	STDEV									
	Overall	394	196.3	193.3	394	518.8	461.95	394	914.2	765.07	394	0.81	0.07
Cereal	Barley	9	177.7	156.8	9	547.2	436.1	9	1005	778.6	9	0.84	0.05
	Maize	59	85.8	124.3	59	275.1	319.8	59	495.0	541.7	59	0.84	0.08
	Oat	8	212.1	190.8	8	501.9	425.5	8	872.7	724.5	8	0.79	0.06
	Rice	10	251.9	255.7	10	657.1	662.3	10	1211	1196.6	10	0.82	0.08
	Rye	12	199.3	190.8	12	501.6	453.5	12	824.2	729.5	12	0.77	0.04
	Sorghum	16	261.1	218.8	16	714	496.7	16	1303	855.9	16	0.83	0.08
	Wheat	81	196.3	194.8	81	533.6	452.3	81	950.7	791.8	81	0.81	0.07
Grass	Grass	54	217	184.9	54	529.7	420.3	54	946.8	734.2	54	0.79	0.06
Legume	Alfalfa	24	359.0	262.7	24	796.0	515.0	24	1319.0	801.0	24	0.76	0.07
	Bean	12	223.7	239.9	12	538.7	471.0	12	962.1	667.0	12	0.80	0.06
	Clover	26	184.2	139.6	26	580.6	661.0	26	940.3	866.5	26	0.78	0.06
	Pea	27	184.2	152.7	27	452	343.8	27	809	554.1	27	0.78	0.07
	Soyabean	23	207.8	157.0	23	577.5	401.7	23	1039	715.6	23	0.81	0.10
	Vetch	8	190.2	182.6	8	531.1	433.4	8	870.4	696.1	8	0.80	0.05
Oilseed	Canola	8	293.5	327.3	8	670.5	717.3	8	1211	1184.5	8	0.79	0.07
	Cotton	9	135.5	98.8	9	442.5	281.0	9	841.1	513.9	9	0.85	0.03
	Sunflower	8	166.5	208.7	8	454.2	451.7	8	792.5	667.4	8	0.84	0.10

$\mathrm{C}_{\mathrm{R}} 30 . \mathrm{C}_{\mathrm{R}} 90$ and $\mathrm{C}_{\mathrm{R}} 120=$ Amount of CO_{2} emitted from crop residues to day 30,90 and 120 of the experiment, respectively.

Table 7: Correlation matrix statistic table of plant, soil and climatic influence on residue CO_{2} emissions.

	Lignin	C:N	TC	TN	Clay	Sand	Silt	pH	SOC	MAP	MAT	$\mathrm{C}_{\mathrm{R} 30}$	$\mathrm{C}_{\mathrm{R}} 90$	$\mathrm{C}_{\mathrm{R} 120}$	$\begin{gathered} 1- \\ \text { [CR30/CR1 } \end{gathered}$
Lignin	1.00														
C:N	0.15	1.00													
TC	-0.06	-0.06	1.00												
TN	0.03	-0.19	-0.02	1.00											
Clay	-0.08	-0.11	0.51*	-0.19	1.00										
Sand	-0.02	-0.15	-0.42	0.32*	-0.64*	1.00									
Silt	0.10	0.30*	-0.02	-0.19	-0.26*	-0.57*	1.00								
pH	0.02	0.15	0.16	-0.63*	0.26*	-0.45*	0.29*	1.00							
SOC	-0.03	0.03	0.23*	-0.10	0.31*	-0.37*	0.14	-0.08	1.00						
MAP	-0.02	-0.03	-0.16	0.19	-0.41*	0.4*	-0.07	-0.58*	-0.20	1.00					
MAT	0.00	-0.20	-0.21	0.16	-0.40*	0.41*	-0.08	-0.40*	0.03	0.43*	1.00				
$\mathrm{C}_{\mathrm{R}} 30$	-0.08*	-0.14*	0.59*	-0.22	0.34*	-0.38*	0.12	0.38*	0.15	-0.31*	0.07	1.00			
$\mathrm{C}_{\mathrm{R}} 90$	-0.11*	-0.10*	0.46*	-0.28*	0.26*	-0.32*	0.13	0.44*	0.09	-0.32*	0.10	0.96*	1.00		
Cr120	-0.12*	-0.09*	0.40*	-0.26*	0.22	-0.29*	0.14	0.42*	0.07	-0.31*	0.10	0.93*	0.99*	1.00	
1-[CR30/CR120]	0.15	-0.07*	0.37*	0.11	0.10	-0.12	0.05	-0.19	0.27*	0.19	0.21	0.27*	0.07	-0.03	1.00

Residue CO_{2} emission to day 30,90 and 120 of the experiment. lignin: residue lignin concentration; $\mathrm{C}: \mathrm{N}$: residue carbon to nitrogen ratio; TC: Initial residue carbon concentration; Clay. sand \& silt: soil texture based on clay fraction (\%clay); pH : soil $\mathrm{pH}(\mathrm{KCl})$; SOC: soil organic carbon concentration; MAP\&MAT: climatic factors-mean annual precipitation and mean annual temperature. * Significant at $\mathrm{p}<0.05$.

Table 8: Proportion of data points with "priming", i.e. with a 120 days cumulative $\mathrm{C}-\mathrm{CO}_{2}$ emissions above the amount of C added to the soil.

Crop	\%
Alfalfa	58
Barley	44
Bean	25
Canola	63
Clover	27
Cotton	44
Grass	48
Maize	25
Oat	50
Pea	33
Rice	50
Rye	58
Sorghum	56
Soyabean	48
Sunflower	25
Vetch	38
Wheat	36
Mean	$\mathbf{4 3}$

