

Crop residues differ in their decomposition dynamics: Review of available data from world literature

S. Ntonta, I. Mathew, R. Zengeni, P. Muchaonyerwa, Vincent Chaplot

▶ To cite this version:

S. Ntonta, I. Mathew, R. Zengeni, P. Muchaonyerwa, Vincent Chaplot. Crop residues differ in their decomposition dynamics: Review of available data from world literature. Geoderma, 2022, 419, pp.115855. 10.1016/j.geoderma.2022.115855. hal-03726502

HAL Id: hal-03726502 https://hal.science/hal-03726502v1

Submitted on 22 Jul 2024

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Distributed under a Creative Commons Attribution - NonCommercial 4.0 International License

Version of Record: https://www.sciencedirect.com/science/article/pii/S0016706122001628 Manuscript_6cb17c7d446c58cff3de337e6ef50762

1 Crop residues differ in their decomposition dynamics: review of available

2 data from world literature

3 S. Ntonta^a, I. Mathew^a, R. Zengeni^a, P. Muchaonyerwa^a and V. Chaplot^{a, b}

4

⁵ ^aUniversity of Kwa-Zulu Natal, School of Agricultural, Earth & Environmental Sciences, Scottsville,

6 3209 Pietermaritzburg, South Africa

7 ^bLaboratoire d'Océanographie et du Climat: Expérimentations et approches numériques (LOCEAN),

8 UMR 7159, IRD/C NRS/UPMC/MNHN, IPSL, 4, Place Jussieu, 75252 Paris, France

9

10 ABSTRACT

Decomposition of crop residues may affect soil organic carbon (C) stocks, which are key for 11 12 soil fertility improvement and mitigation of climate change. Numerous independent studies across the world point to contradictory results but their existence provides an opportunity to 13 conduct a comprehensive analysis of the impact of crop type on residue decomposition. In the 14 present study, data from 394 trials from across the world were used to assess cumulative 15 CO₂ emissions from residues of 17 crops during 0-30, 0-90 and 0-120 days (i.e. C_R30, C_R90 16 and C_R120; 1-[C_R30/C_R120] ratio as a stability index of C emissions) and to relate the results 17 with residue quality (C, N and lignin concentrations) and selected soil properties (texture, pH, 18 19 soil organic carbon concentration). At all durations, legumes exhibited the highest CO₂ emissions per gram of C added (1003 mg CO₂-C g⁻¹C after 120 days) followed 20 by grasses (947), oilseed crops (944) and cereals (846), with the legumes and grasses 21 showing the lowest temporal stability of C emission as pointed out by a 1-[C_R30/C_R120] of 22 0.78 and 0.79, respectively, versus 0.82 and 0.83 for cereals and oilseed crops. At all 23 durations, maize residues emitted the least C-CO₂ (86, 275 and 495 mg CO₂-C g^{-1} C), 24 followed by two other lignin rich crops (cotton and sunflower), while the highest emissions 25

were from Alfalfa residues that produced about 4 times more CO_2 (e.g. 359 at $C_R 30$ and 1319 at $C_R 120$) than maize. Overall, CO_2 emissions were positively correlated with soil clay concentration (r>0.22), residue C concentration (e.g. r=0.46 at $C_R 90$ and r=0.37 with emission stability, P<0.05) but negatively to residue N concentration (r=-0.26 at $C_R 120$, P<0.05). The global trend pointed to decreased CO_2 emissions with increasing residue lignin. Contrary to what is generally believed, providing the soil with high lignin and high N concentration may foster C stabilization into soils by soil microbes.

- 33 *Keywords*: Crop residue decomposition, C emissions, Soil carbon stabilisation, Soil C stocks
- 34

35 **1. Introduction**

The carbon (C) cycle has received considerable attention in recent years, due to concerns 36 over the continued increase in atmospheric carbon dioxide (CO₂) concentration. Annual 37 38 increases of CO₂ concentration in the atmosphere were observed on a global scale for the years 2018 (2.7%) and 2019 (0.6%) (Ritchie and Roser, 2020). Global warming, as a result of 39 high atmospheric CO₂ causes climate change, characterized by increase in mean temperature 40 and higher variability in precipitation. Consequently, the need to sequester carbon in 41 agricultural soils has been identified as a sustainable strategy to mitigate climate change and 42 43 promote agricultural sustainability.

Soil is the second largest C reservoir with 11% (4655 Pg C), after the 87% of global carbon 44 stocks being oceanic (38,000 Pg C) and has higher C than the 2% found in the atmosphere 45 46 (860 Pg C) (Xiao, 2015; Venter et al., 2021). Carbon transfer from the atmosphere to soil is 47 achieved by plants through photosynthesis, leading to exudation of C compounds from roots during the growth cycle, and by the retention of plant root and shoot residues. Some of the C 48 49 from plant residues or exudates can be mineralized and emitted back to the atmosphere as CO₂ while a significant proportion can be stabilized as soil organic matter (Ontl and Schulte, 50 2012; Dignac, 2017). Therefore, the rate of residue decomposition and associated CO₂ 51 emissions is often used as a proxy for evaluating the potential of plant residues to become soil 52 53 organic matter (e.g. Johnson et al., 2007).

The potential to increase soil C stocks is mostly on managed agricultural land where numerous studies exist on the fate of C from different crop residues. Curtin et al. (2008) for instance, observed that barley straw emitted significantly higher (p< 0.05) amount of CO₂ (55 g CO₂-C m⁻²) compared to wheat straw (47 g CO₂-C m⁻²) after 158 days. Ajwa and Tabatabai (1994) found 58% of organic C evolved as CO₂-C from alfalfa-treated soils in 30 days which was higher compared to maize residues (30%), which was attributed to the higher C: N of maize residues. Zeng et al. (2010) attributed the higher CO₂ emissions from peanut
root (maximum of 60 %) compared to maize root residues (35%) to biological nitrogen
fixation, which increases N in leguminous plants, and thus lower their C: N ratio, and overall
quality of the crop residues. Not only does crop residue decomposition depend on the type
and quality of crop residues but also on the internal soil conditions (Mathew, et al., 2017;
Stewart et al., 2015).

66 Mathew et al. (2017) concluded that higher plant C stocks and C transfer to soils occurred in carbon rich clayey soils of tropical humid areas due to higher biomass production potential 67 68 compared to sandy soils. Clayey soils also support high C stocks through their aggregation and ability to provide physical protection as well as mineral adsorption of C constituents 69 70 (Elliott, 1986; Ajwa and Tabatabai, 1994; Martens, 2000; Clark, 2007; Mathew, et al., 2017). 71 Several studies have also reported disparities in CO₂ emissions from residues of different 72 crops under different soil types and climates, which has led to a lack of consensus on the impact of these factors on CO₂ emissions from soils (Li et al., 1994; Paustian et al., 2000; 73 74 Gregorich et al., 2001; Alvarez, 2005; Abdalla et al., 2016; McClelland et al., 2021; Shakoor et al., 2021). However, the existence of multiple individual studies across the world provides 75 76 an opportunity to conduct a comprehensive analysis of the main factors that control crop residue decomposition and CO₂ emissions and the consequences for the building of soil 77 carbon stocks. Therefore, the objective of the current study was to evaluate the impact of crop 78 79 type, soil and environmental factors on CO₂ emissions from residues of selected crops using available global data from published studies. 80

81

- 82 **2.** Materials and methods
- 83 2.1. Study setup: Database preparation

Data on CO_2 emissions from crop residues incubated in soil at laboratories were collated 84 from studies across the world, published in peer reviewed journals and accessible from public 85 domains such as Google scholar, Ref-seek, Science Direct, Sci-Finder, Scopus, Springer 86 Link, Research-Gate and Web of Science. Key words such as "litter decomposition", "residue 87 decomposition", "C mineralisation", "crop residue CO2 emissions", "C gases", "carbon 88 dynamics" and "decomposition rate" were used to search for relevant journal articles. The 89 available papers had to report on CO₂ emissions from crops (sorghum, wheat, maize, among 90 others) and on crop quality factors affecting residue decomposition (e.g. total C and N, C: N 91 92 ratio, lignin, cellulose or hemicellulose). Furthermore, environmental factors such as climatic information (mean annual precipitation and mean annual temperature), geographic variables 93 (latitude, longitude) as well as soil variables (physicochemical properties) measured during 94 95 both laboratory or/and field experiments were considered as controlling variables. The studies 96 had to strictly compare CO₂ emissions between soils incubated with and without (considered as the control) residues under the same conditions. Moreover, the mass of residues used must 97 have been clearly stated or able to be deduced. The data were used to compile a database with 98 quantitative and qualitative data on plant litter quality. 99

100

101 2.2. Variables of CO₂ emission

The effect of adding crop residues on soil CO_2 emissions were calculated as the difference between CO_2 emitted from the soil containing residues and CO_2 evolved from the control. The values were converted from their original units and normalized to common units (mg CO_2 -C/ g C added of soil over 30, 90 and 120 day periods of incubation) (Table 2). The amounts of total CO_2 emissions were recorded over 0-30; 30-90 and 90-120 day periods and were cumulatively representing lability of residue decomposition. The studies that did not cover the 0-30, 30-90 and 90-120 periods were estimated by use of linear trendline equation. In addition, a ratio between CO_2 emissions at 30 relative to 120 days was calculated, which was used as an index of temporal stability of C-CO₂ emissions = 1- (C_R30/ C_R120). The greater the index, the greater stability of the emissions over time.

- 112
- 113 2.3. Crop quality, soil and environmental factors

Crops were categorized into cereals, legumes, grasses and oilseed (Table 3), (i.e., cereals-114 barley, maize, oat, rice, rye, sorghum, wheat; grass- grass; legumes-alfalfa, bean, clover, pea, 115 soyabean, vetch; and oilseed-canola, cotton, and sunflower). Cereals and grasses were 116 117 separated due to their functional differences, with cereals having evolved and undergone selection by farmers, making them different from natural or forage grasses. In this study, 118 grasses refer to natural or forage grass that are not used for human consumption while cereal 119 120 refers to monocot grasses that are used primarily for grain production for human 121 consumption. Legumes are defined as any crop that has a natural ability to fix nitrogen, while oilseed crops are those that are primarily used for extraction of vegetable oil from their seed. 122 Soyabean was considered as a legume crop in this study. Furthermore, crop quality was 123 defined by residue chemical composition, such as initial C (TC) and lignin concentrations, 124 C:N ratio, total nitrogen (TN), dissolved carbon (DC) and total phosphorus (TP); cellulose, 125 polyphenols and lignin: N ratios. In addition, soil properties such as texture (clay, silt and 126 sand concentration), soil pH (CaCl₂) and organic carbon (SOC) were considered and 127 128 classified into different categories (Table 3) following Abdalla et al. (2016); Mutema et al. (2015) and Mathew et al. (2017). Water-based pH was converted to CaCl₂ pH following the 129 equation of Lierop (1981): (y = 0.53 + 0.98x). Where y is pH on the CaCl₂ scale and x is the 130 131 water-based pH.

Climatic factors included a 30-year average rainfall and temperature (mean annualprecipitation: MAP) and (mean annual temperature: MAT). The climate was further classified

as tropical (hot and wet), sub-tropical (warm and arid to humid) or temperate (cool to cold and mild to warm). In cases where climatic characteristics were not present in a particular study, appropriate data such as annual precipitation and temperature were obtained using the location coordinates or surrogate data for nearby prominent features (e.g. town) through Google search. In addition, the geographical positioning system (GPS) using latitude and longitude coordinates were used to depict the global distribution of the studies used in the review (Fig. 1).

A total of 58 journal articles (Table 1) were used, detailing different studies across the world, which provided 394 observations. The name of authors, year of paper publication, country and geographical location of experimental site, nature of experiment, experimental duration (time periods), crop(s) or crop types used in the experiments, quantitative information on plant quality, soil properties as well as C variables and environmental conditions were captured onto a database. The definitions and acronyms adopted in this paper are used to simplify the terms and definitions of variables for purposes of this analysis. 148

149 *2.4. Data analyses*

The data were compiled into a database and tested for normality of variables, linearity and 150 homoscedasticity prior to statistical analyses. Descriptive summary statistics (minimum, 151 maximum, median, mean, SEM: standard error of mean, 25th and 75th percentiles, skewness 152 (Skew), kurtosis (Kurt) and coefficient of variation (CV%) were calculated for all variables 153 (Table 6). Furthermore, box plots were constructed to depict the distribution of the data 154 showing minimum, 25th quartile median, mean, 75th quartile and maximum values within the 155 5 and 95th percentiles. Mean CO₂ emissions were computed for different crops, with different 156 crop residue quality, soil properties and environmental factor classes. Because the CO₂ 157 emission data did not conform to normal distributions for us to use parametric analysis, the 158 159 non-parametric Kruskal-Wallis analysis was performed. Significant differences between factor classes were tested with non-parametric analysis (Kruskal-Wallis), at chi-square 160 probability of <0.001. In addition, bivariate Pearson correlations coefficients at p<0.05 were 161 calculated among the variables (Table 7). Subsequently, principal component analysis (PCA), 162 which converts non-linear factors and variables into linear combinations for visualization 163 (Jambu, 1991), were conducted to investigate the multiple correlations between the variables 164 (Fig. 10 and 11). Finally, because of low number of data points the variable of residue 165 dissolved carbon, total residue phosphorus, cellulose and polyphenols were discarded. SiAll 166 167 analyses were performed using Statistica 10.0 software (Weiß, 2007).

168

169 **3. Results**

170 $3.1. CO_2$ emissions from crop residues

The summary statistics (Table 4) which were computed from all study sites showed that the 30-days cumulative CO₂ emissions (C_R30) ranged between 0.3 and 920.1 mg CO₂-C g^{-1} C, with a mean value at 196.5 mg CO₂-C g^{-1} C. Cumulative 120 days emissions (C_R120) were between 3.2 and 3640 mg CO₂-C g^{-1} C with a mean at 914.2 mg CO₂-C g^{-1} C (Table 4). The resulting emission stability index showed a mean at 0.8.

Cumulative emissions also varied among different crops, with legumes exhibiting the highest 176 mean cumulative emissions of 228.0 mg CO₂-C g⁻¹ C after 30 days, 586.7 mg CO₂-C g⁻¹ C 177 after 90 days and 1003.0 mg CO₂-C g⁻¹ C after 120 days (Table 5). Grasses ranked second 178 with respectively, 217.0, 529.7 and 946.8 mg CO₂-C g⁻¹ C, while oilseed crops ranked third 179 and cereals fourth (Table 5). The average difference between legumes and cereals was 25%180 after 30 days, 19% after 90 days and 16% after 120 days, which corresponded for C_R30 and 181 C_R90 to significant differences at P<0.001. On average, legumes had the lowest temporal C 182 emissions stability (0.78) followed by grass (0.79), cereals (0.82) and oilseed (0.83) 183 184 (Table 5).

Table 6 shows variations in CO₂ emissions between different crop types, with alfalfa having 185 the highest emissions of 359.0 mg CO₂-C g⁻¹C, amongst legumes (48% higher than clover 186 and pea), while canola (293.5) had the highest amongst oilseed crops, and sorghum (261.1) 187 had the highest amongst cereals (67% more than maize) at C_R30. Maize emitted the least 188 cumulative CO₂ at C_R30 (85.8 mg CO₂-C g⁻¹C), C_R90 (275.1) and C_R120 (495.0) but 189 exhibited with 0.84 the highest CO₂ emission stability over time. In contrast, alfalfa exhibited 190 the lowest stability of CO_2 emissions with a mean value at 0.76, followed by rye (0.77), 191 and pea (0.78), canola, grass and oat (0.79) (Table 6; Fig. 192 clover 2D).

193 3.2. The influence of crop residue quality on CO_2 emissions

The quality of crop residues, determined by the initial C, N and lignin concentrations, 194 significantly (p<0.05) affected CO₂ emissions (Table 7). There was a systematic decrease in 195 C emissions with the increase in residue nitrogen content with r from -0.22 at $C_R 30$, -0.26 at 196 C_R120 and -0.28 at C_R90. The r values with lignin content were from -0.08 at C_R30 to -0.12 at 197 C_R120. Emissions also decreased with increasing C:N with the highest r (-0.14) found for 198 C_R30. In contrast C emissions increased with increasing residue C content from 0.40 at 199 C_R120 to 0.59 at C_R30. Furthermore, the increase in residue C content significantly enhanced 200 201 the temporal stability of C emissions (r=0.37).

202

203

204

3.3. The impact of soil and environmental properties on CO₂ emissions from different crop residues

There were significant variations in cumulative CO₂ emissions among the three different soil 205 textural classes throughout the incubation periods (Fig. 4). For instance, clayey soils 206 exhibited significantly higher cumulative 30-days CO₂ emissions (224 mg CO₂-C g⁻¹ C) as 207 compared to sandy soils (178 mg CO₂-C g^{-1} C), while silty soils had intermediate emissions. 208 Decreasing emissions with increasing sand content was a trend also found for C_R90 and 209 C_R120. Finally, the temporal stability of CO₂ emissions was surprisingly the highest under 210 silty conditions $(1-(C_R 30/C_R 120)=0.81)$ and decrease to 0.80 under clayey conditions and to 211 212 0.79 for sandy soils (Fig. 4).

Cumulative CO₂ emissions also varied due to soil pH (Fig. 5). For all incubation durations, 213 the lowest emissions were observed for strongly acidic soils while the highest emissions were 214 215 found for slightly acidic soils. Additionally, there was a trend for emissions to lessen from slightly acidic to alkaline through neutral while the temporal stability of the emissions 216 consistently rose from acidic to alkaline (Fig. 5D). 217

Figure 6 which depicts the impact of climate points to a significant decrease of emissions 218 from tropical to temperate through sub-tropical. In the case of C_R30, CO₂ emissions 219 decreased from an average of 252 mg CO₂-C g⁻¹ C for tropical to 193 mg CO₂-C g⁻¹C for 220 subtropical and to 150 mg CO₂-C gC⁻¹ for temperate, which corresponded in all cases to 221 significant differences at P<0.01 (Fig. 6A). Similar trends (i.e. a decrease of emissions from 222 tropical to temperate) were also observed for C_R90 and C_R120 but the temporal stability of 223 the emissions consistently rose from tropical to temperate, the differences between sub-224 tropical and temperate being however non-significant (Fig. 6D). 225

Multivariate correlations between CO₂ emission variables on the one hand and soil and crop 226 residue variables on the other hand are displayed on Figure 7. The two principal components 227 of this PCA explained 99% of the total variation in the data with the first principal component 228 229 (PC1) accounting for 79% of data variance and PC2 accounting for 20%. Cumulative emissions to 30, 90 and 120 days showed a positive correlation to PC1 and this axis can be 230 thus interpreted as an axis of crop residue decomposition. The temporal stability of CO₂ 231 232 emissions had a negative coordinate on Axis 2, meaning that PC2 could be interpreted as an axis of decomposition in-stability. Residue content in lignin, N and C showed negative 233 coordinates on PC1 while the C:N ratio showed a positive coordinate. There was thus a 234 tendency for emissions to increase as C:N increases but C, N and lignin concentration 235 decreases. Finally, emission instability decreased with increasing pH as pointed by a negative 236 237 coordinate of pH on PC2 (Fig. 7). Amongst crops, canola and alfalfa correlated to the high CO₂ emissions level and low CO₂ emission stability pole, while maize, cotton and sunflower 238 correlated to the low emissions and high stability pole. 239

240

241 **4. Discussion**

242

4.1. Causes of variation in residue decomposition and soil C building amongst crop types

The different crop types exhibited large variations in CO₂ emissions with legumes emitting 243 the highest cumulative CO₂ emissions and with decreasing emissions over time versus cereals 244 pointing to lower emissions but of higher stability. Such variations were shown to correlate 245 with the quality of crop residues (Machinet, et al., 2009). Ajwa and Tabatabai (1994) 246 revealed that the significantly higher amounts of CO₂-C released from alfalfa were to be 247 attributed to their ability to fix N, as they had higher initial N concentration, of 12.6% as 248 compared to the 6.9% of maize and the 1.3% of oilseed crops. The underlying hypothesis of 249 greater emissions at high initial N concentration was, as suggested by Gezahegn, et al., 250 251 (2016), the enhanced microbial activity leading to high decomposition and CO_2 emissions. But the present study, which was based on 394 trials from across the world, tends to 252 contradict this past statement as it pointed to a negative correlation between CO₂ emissions 253 254 and residue N concentration. Such a trend might be due to the fact that N availability enhances C uptake by microbes and thus humus formation versus C emissions to the 255 atmosphere as CO₂, a mechanism that was described by authors such as Henriksen and 256 Breland (1999), Rousk and Bååth (2007), Bai et al. (2016) and Köbke et al. (2018). The fact 257 that legumes, especially Alfalfa which accounted for the most emissions amongst crops 258 during the maximum 120 days period, emitted large amounts of CO₂ despite a high N 259 concentration was most likely due to its low lignin concentration. 260

Carbon stabilization into soils in microbial biomass thus seems to be favoured by the supply of residues with a C and N stoichiometric ratio close to that of living microorganisms. Results on maize, sunflower and cotton tend to show that lignin rich residues experience low decomposition rates which constitutes a second route of carbon stabilization into soils.

265

266 *4.2.The impact of crop residues on the loss of soil carbon through priming*

267 Recent studies have indeed shown that the activity of decomposers and their ability to decompose soil organic matter for their living can be stimulated by the addition of fresh 268 organic matter resulting in an increase in soil respiration beyond C addition, which is referred 269 270 to as 'priming' (e.g. Fontaine et al. 2003; Kuzyakov, 2010). In the present study and as pointed out in Table 8, 43% of the respiration data points showed 120 days cumulative 271 emissions beyond C addition, which points to the existence of significant C losses from soil 272 organic matter. All crop types experienced priming with the proportion of studies with C 273 losses over residue C from 25% for maize, sunflower and beans to over 55% for sorghum, 274 275 alfalfa and canola and with differences between legumes, cereals and oilseed crops being non-significant at p < 0.05. 276

Several authors have suggested that chemically recalcitrant residues, such as those rich in 277 278 lignin decompose more slowly than residues with low lignin and high N concentrations, thus leading to enhanced C stabilization into soils and increased soil organic matter (Johnson et al. 279 2007, Berg and Mc Claugherty, 2008). However, several other authors such as Stewart et al. 280 281 (2015), pointed out that high lignin residues are used inefficiently by the soil microbial community that decompose SOM (priming effect) to acquire key nutrients resulting in much 282 greater respiration losses and less C stabilization into soils. The present study which points to 283 a global tendency for CO₂ emissions to decrease with the increase in residue lignin and N 284 285 concentration tend to show that providing the soil with high lignin and high N concentration 286 may limit priming and foster C stabilization into soils by soil microbes. Moreover, the present data showed that lignin concentration minimally impacted the temporal stability of the 287 emissions but that emissions decreased more sharply over time at higher initial residue C 288 289 concentration.

290

4.3. *The impact of soil properties on CO*₂ *emissions*

292 Soil texture and pH had significant impact on cumulative CO₂ emissions from crop residues. The higher cumulative CO₂ emissions from clayey soils could be due to favorable living 293 conditions for decomposers than under coarser soil conditions. Moreover, Schmatz, et al., 294 295 (2017) also found higher C emissions from clay soils as compared to sandy-loam soils due to high organic carbon concentration in clayey soils and enhanced water retention capability, 296 thus favoring the activity of microorganisms responsible for residue break-down. Contrarily, 297 most previous studies generally had described clay soils to enhance the physical protection 298 and mineral adsorption of C constituents, which was not confirmed by the present analysis of 299 300 world data from 120 days duration in which clay soils experiences higher CO₂ emissions per gram of residue C added. Addition of labile organic materials (crop residues) to clayey soils, 301 with higher organic carbon, could result in more CO₂ emissions (priming effect) than from 302 303 sandy loam soils. In addition, such an increase in CO₂ emissions with the increase in soil clay 304 concentration might come as suggested above from higher soil moisture and bacteria concentration, favoring the rapid turnover of residue C. 305

We had no explanation for slightly acidic soils (pH of 5.5-6.4) to experience consistently higher CO₂ emissions (>50%) than the other pH levels irrespective of incubation durations as conditions for fungi and bacteria are not optimal (Hågvar, 1994; Stott and Martin, 1989). A possible reason for the higher CO₂ emissions could be the liming effect of residues that foster the priming of soil organic matter (Wang et al. 2017; Yaowu et al. 2016).

- 311
- 312

4.4.Climate impact on CO₂ emissions

The finding of this study pointed to higher residue CO₂ emissions under tropical conditions than under the other climates throughout the incubation days. Tropical climates tend to experience high temperature and rainfall conditions that are conducive for production of high plant biomass and microbial activity for decomposition. On the other hand, soils of subtropical or temperate climates have lower rainfall and cooler temperature thus limiting microbial activity and the biochemical processes involved in residue decomposition (Ontl and Schulte, 2012). As the data used in the present study come from laboratory experiments with controlled conditions of temperature and humidity, the higher decomposition rates and cumulative CO₂ emissions under tropical climates could be due to favourable conditions for microbial activity.

323

5. Conclusions

The analysis of 394 laboratory trials worldwide revealed that on average, legumes exhibited significantly higher CO₂ emissions than cereals, oilseed and fiber crops, with for instance alphalfa emitting 2.7 times more CO₂ after 120 days than maize (Figure 2, Table 6). Additionally, legumes (especially alfalfa) showed the lowest stability of CO₂ emissions over time (i.e., the highest decrease from 30 to 120 days) followed by grasses, cereals and oilseed crops.

Amongst the two models for enhanced C sequestration into soils the present analysis points to a global tendency for CO₂ emissions to decrease with the increase in residue lignin. This contrasted with the studies showing that high lignin concentration induce enhanced microbial decomposition and thus C outputs from soils i.e., alfalfa (low lignin and high N concentration) versus maize residue (high lignin and low N concentration). Providing soils with residues with high lignin such as through maize residues may improve C uptake by microbes (a key process in humus formation).

A large proportion of the variance in the data remained however unexplained thus calling for further analysis of variables such as soil nutrients, microbial communities and quality of lignin, and of other organic matter compounds. More work is also to be done on selecting crop cultivars for generating superior ones in our fight against land and climate degradation. Finally, the question whether the carbon remaining into the soil after 120 days of incubation will be stabilized to contribute to soil carbon stocks calls for further research to understand the fate and underlying mechanisms of C sequestration into soils.

345

346 **6.** Acknowledgements

347 This study received financial support from the Water Research Commission of the Republic
348 of South Africa (WRC Project No. K5/2721/4). The authors also extend their gratitude to the"

- 349 Carbon Crew" members Nozibusiso Mbava and Nhlakanipho Mbambo, both student from the
- 350 University of KwaZulu-Natal at the time of this study, for their support during gathering of
- the data used in the paper.

352

7. Reference

Abdalla, K., Chivenge, P., Ciais, P. and Chaplot, V., 2016. No-tillage lessens soil CO₂ emissions
the most under arid and sandy soil conditions: results from a meta-analysis. *Biogeosciences*, *13*(12), pp.3619-3633.

357 Abiven, S. and Recous, S., 2007. Mineralisation of crop residues on the soil surface or 358 incorporated in the soil under controlled conditions. *Biology and Fertility of Soils*, *43*(6), 359 pp.849-852.

360 Abiven, S., Recous, S., Reyes, V. and Oliver, R., 2005. Mineralisation of C and N from root,
stem and leaf residues in soil and role of their biochemical quality. *Biology and fertility of soils*, 42(2), p.119.

363 Abro, S.A., Tian, X., Wang, X., Wu, F. and Kuyide, J.E., 2011. Decomposition characteristics
of maize (Zea mays. L.) straw with different carbon to nitrogen (C/N) ratios under various
moisture regimes. *African Journal of Biotechnology*, *10*(50), pp.10149-10156.

366 Ajwa, H.A. and Tabatabai, M.A., 1994. Decomposition of different organic materials in soils. *Biology and Fertility of Soils*, *18*(3), pp.175-182.

368 Alvarez, R., 2005. A review of nitrogen fertilizer and conservation tillage effects on soil organic carbon
369 storage. *Soil Use and Management*, 21(1), pp.38-52.

370 Angers, D.A. and Recous, S., 1997. Decomposition of wheat straw and rye residues as affected
by particle size. *Plant and soil*, *189*(2), pp.197-203.

372 Anguria, P., Chemining'wa, G., Onwonga, R. and Ugen, M., 2017. Decomposition and nutrient

373 release of selected cereal and legume crop residues. *Journal of Agricultural Science*, 9(6),374 p.p108.

375 Arunachalam, K., Singh, N.D. and Arunachalam, A., 2003. Decomposition of leguminous crop
376 residues in a 'jhum'cultivation system in Arunachal Pradesh, India. *Journal of Plant*377 *Nutrition and Soil Science*, *166*(6), pp.731-736.

- 378 Aulakh, M.S., Walters, D.T., Doran, J.W., Francis, D.D. and Mosier, A.R., 1991. Crop residue
- type and placement effects on denitrification and mineralization. *Soil Science Society of America Journal*, 55(4), pp.1020-1025.
- 381 Begum, N., Guppy, C., Herridge, D. and Schwenke, G., 2014. Influence of source and quality of
- plant residues on emissions of N 2 O and CO 2 from a fertile, acidic Black Vertisol. *Biology*
- and fertility of soils, 50(3), pp.499-506.
- Berg, B. and McClaugherty, C., 2008. Decomposition as a process. *Plant Litter: Decomposition*, *Humus Formation, Carbon Sequestration*, pp.11-33.
- 386 Bertrand, I., Chabbert, B., Kurek, B. and Recous, S., 2006. Can the biochemical features and
- histology of wheat residues explain their decomposition in soil? *Plant and Soil*, 281(1-2),
 pp.291-307.
- Blaise, D. and Bhaskar, K.S., 2003. Carbon mineralization patterns of cotton leaves and stems in
 vertisols and inceptisols. *Archives of Agronomy and Soil Science*, 49(2), pp.171-177.
- 391 Bontti, E.E., Decant, J.P., Munson, S.M., Gathany, M.A., Przeszlowska, A., Haddix, M.L.,
- Owens, S., Burke, I.C., Parton, W.J. and Harmon, M.E., 2009. Litter decomposition in
 grasslands of central North America (US Great Plains). *Global Change Biology*, *15*(5),
 pp.1356-1363.
- 395 Cayuela, M.L., Sinicco, T. and Mondini, C., 2009. Mineralization dynamics and biochemical
 properties during initial decomposition of plant and animal residues in soil. *Applied soil ecology*, 41(1), pp.118-127.
- 398 Cong, W.F., Hoffland, E., Li, L., Janssen, B.H. and van der Werf, W., 2015. Intercropping
 affects the rate of decomposition of soil organic matter and root litter. *Plant and Soil*, 391(1-2), pp.399-411.

401 Clark, G.J., Dodgshun, N., Sale, P.W.G. and Tang, C., 2007. Changes in chemical and
biological properties of a sodic clay subsoil with addition of organic amendments. *Soil Biology and Biochemistry*, *39*(11), pp.2806-2817.

404 Corbeels, M., Hofman, G. and Van Cleemput, O., 2000. Nitrogen cycling associated with the
decomposition of sunflower stalks and wheat straw in a Vertisol. *Plant and soil*, *218*(1-2),
pp.71-82.

407 Curtin, D., Francis, G.S. and McCallum, F.M., 2008. Decomposition rate of cereal straw as 408 affected by soil placement. *Soil Research*, *46*(2), pp.152-160.

409 Datta, A., Jat, H.S., Yadav, A.K., Choudhary, M., Sharma, P.C., Rai, M., Singh, L.K.,
410 Majumder, S.P., Choudhary, V. and Jat, M.L., 2019. Carbon mineralization in soil as
411 influenced by crop residue type and placement in an Alfisols of Northwest India. *Carbon*412 *Management*, *10*(1), pp.37-50.

413 Davies, B.E., 1971. A statistical comparison of pH values of some English soils after
414 measurement in both water and 0.01 M calcium chloride. *Soil Science Society of America*415 *Journal*, 35(4), pp.551-552.

416 De Neergaard, A., Hauggaard-Nielsen, H., Jensen, L.S. and Magid, J., 2002. Decomposition of
417 white clover (Trifolium repens) and ryegrass (Lolium perenne) components: C and N
418 dynamics simulated with the DAISY soil organic matter submodel. *European Journal of*419 *Agronomy*, 16(1), pp.43-55.

420 Dignac, M.F., Derrien, D., Barre, P., Barot, S., Cécillon, L., Chenu, C., Chevallier, T., Freschet,
421 G.T., Garnier, P., Guenet, B. and Hedde, M., 2017. Increasing soil carbon storage:
422 mechanisms, effects of agricultural practices and proxies. A review. *Agronomy for*423 *sustainable development*, *37*(2), p.14.

424 Donahue, R.L., Miller, R.W. and Shickluna, J.C., 1983. Soils. An introduction to soils and plant
425 growth.

426 Duong, T.T.T., Baumann, K. and Marschner, P., 2009. Frequent addition of wheat straw
427 residues to soil enhances carbon mineralization rate. *Soil Biology and Biochemistry*, *41*(7),
428 pp.1475-1482.

429 Dlamini, P., 2014. *Grassland Degradation and Rehabilitation of Soil Organic Carbon and*430 *Nitrogen Stocks* (Doctoral dissertation, University of KwaZulu-Natal, Pietermaritzburg).

431 Drury, C.F., Yang, X.M., Reynolds, W.D. and McLaughlin, N.B., 2008. Nitrous oxide and
432 carbon dioxide emissions from monoculture and rotational cropping of corn, soybean and
433 winter wheat. *Canadian Journal of Soil Science*, 88(2), pp.163-174.

434 Elliott, E.T., 1986. Aggregate structure and carbon, nitrogen, and phosphorus in native and
cultivated soils. *Soil science society of America journal*, *50*(3), pp.627-633.

436 Finn, D., Page, K., Catton, K., Strounina, E., Kienzle, M., Robertson, F., Armstrong, R. and
437 Dalal, R., 2015. Effect of added nitrogen on plant litter decomposition depends on initial
438 soil carbon and nitrogen stoichiometry. *Soil Biology and Biochemistry*, *91*, pp.160-168.

439 Fontaine, S., Mariotti, A. and Abbadie, L., 2003. The priming effect of organic matter: a
question of microbial competition?. *Soil Biology and Biochemistry*, *35*(6), pp.837-843.

441 Fruit, L., Recous, S. and Richard, G., 1999. Plant residue decomposition: effect of soil porosity

442 and particle size. In *Effect of mineral-organic-microorganism interactions on soil and*

443 *freshwater environments* (pp. 189-196). Springer, Boston, MA.

444 Geisseler, D., Horwath, W.R. and Scow, K.M., 2011. Soil moisture and plant residue addition
445 interact in their effect on extracellular enzyme activity. *Pedobiologia*, *54*(2), pp.71-78.

446 Gezahegn, A.M., Abd Halim, R., Yusoff, M.M. and Abd Wahid, S., 2016. Decomposition and

447 Nitrogen mineralization of Individual and Mixed Maize and Soybean Residue. *Journal of*448 *Agricultural Science*, 2, pp.28-45.

449 Ghimire, B., Ghimire, R., VanLeeuwen, D. and Mesbah, A., 2017. Cover crop residue amount

450 and quality effects on soil organic carbon mineralization. *Sustainability*, *9*(12), p.2316.

- 451 Glasser, W.G., 1985. Lignin. In *Fundamentals of thermochemical biomass conversion* (pp.
 6176). Springer, Dordrecht.
- 453 Gregorich, E.G., Drury, C.F. and Baldock, J.A., 2001. Changes in soil carbon under long-term maize in
 454 monoculture and legume-based rotation. *Canadian journal of soil science*, *81*(1), pp.21-31.
- 455 Hågvar, S., 1994. Soil Biology: Decomposition and soil acidity. In *Long-term experiments with*456 *acid rain in Norwegian forest ecosystems* (pp. 136-139). Springer, New York, NY.
- 457 Havstad, L.T., Aamlid, T.S. and Henriksen, T.M., 2010. Decomposition of straw from herbage
 458 seed production: Effects of species, nutrient amendment and straw placement on C and N
 459 net mineralization. *Acta Agriculturae Scandinavica Section B–Soil and Plant*460 *Science*, *60*(1), pp.57-68.
- 461 Henriksen, T.M. and Breland, T.A., 2002. Carbon mineralization, fungal and bacterial growth,
 and enzyme activities as affected by contact between crop residues and soil. *Biology and Fertility of Soils*, 35(1), pp.41-48.
- 464 Henriksen, T.M. and Breland, T.A., 1999. Nitrogen availability effects on carbon mineralization,
- 465 fungal and bacterial growth, and enzyme activities during decomposition of wheat straw in
- soil. Soil Biology and Biochemistry, 31(8), pp.1121-1134.
- 467 Jambu, M., 1991. Exploratory and multivariate data analysis. Elsevier.
- 468 Jha, P., Garg, N., Lakaria, B.L., Biswas, A.K. and Rao, A.S., 2012. Soil and residue carbon
 469 mineralization as affected by soil aggregate size. *Soil and Tillage Research*, *121*, pp.57-62.
- 470 Jin, K., Sleutel, S., De Neve, S., Gabriels, D., Cai, D., Jin, J. and Hofman, G., 2008. Nitrogen
- and carbon mineralization of surface-applied and incorporated winter wheat and peanut
- 472 residues. *Biology and Fertility of Soils*, *44*(4), pp.661-665.
- 473 Johnson, J.M.F., Barbour, N.W. and Weyers, S.L., 2007. Chemical composition of crop biomass
- 474 impacts its decomposition. *Soil Science Society of America Journal*, 71(1), pp.155-162.

- 475 Juan, L., Yong, H.A.N. and Zu-Cong, C.A.I., 2009. Decomposition and products of wheat and
 476 rice straw from a FACE experiment under flooded conditions. *Pedosphere*, *19*(3), pp.389477 397.
- 478 Kuzyakov, Y., 2010. Priming effects: interactions between living and dead organic matter. *Soil*479 *Biology and Biochemistry*, 42(9), pp.1363-1371.
- 480 Khalil, M.I., Hossain, M.B. and Schmidhalter, U., 2005. Carbon and nitrogen mineralization in
- different upland soils of the subtropics treated with organic materials. *Soil Biology and Biochemistry*, *37*(8), pp.1507-1518.
- 483 Li, C., Frolking, S. and Harriss, R., 1994. Modeling carbon biogeochemistry in agricultural
 484 soils. *Global biogeochemical cycles*, 8(3), pp.237-254.
- 485 Li, L.J., Han, X.Z., You, M.Y., Yuan, Y.R., Ding, X.L. and Qiao, Y.F., 2013. Carbon and
 nitrogen mineralization patterns of two contrasting crop residues in a Mollisol: Effects of
 residue type and placement in soils. *European journal of soil biology*, *54*, pp.1-6.
- 488 Lierop, W.V., 1981. Conversion of organic soil pH values measured in water, 0.01 M CaCl₂ or 1
 489 N KCl. *Canadian Journal of Soil Science*, *61*(4), pp.577-579.
- 490 Lin, B. and Agyeman, S.D., 2020. Assessing Sub-Saharan Africa's low carbon development
 491 through the dynamics of energy-related carbon dioxide emissions. *Journal of Cleaner*492 *Production*, 274, p.122676.
- 493 Lou, Y., Ren, L., Li, Z., Zhang, T. and Inubushi, K., 2007. Effect of rice residues on carbon
 dioxide and nitrous oxide emissions from a paddy soil of subtropical China. *Water, Air, and Soil Pollution, 178*(1-4), pp.157-168.
- 496 Luxhøi, J., Magid, J., Tscherko, D. and Kandeler, E., 2002. Dynamics of invertase, xylanase and
 497 coupled quality indices of decomposing green and brown plant residues. *Soil Biology and*498 *Biochemistry*, *34*(4), pp.501-508.

499 Machinet, G.E., Bertrand, I., Chabbert, B. and Recous, S., 2009. Decomposition in soil and
500 chemical changes of maize roots with genetic variations affecting cell wall quality.
501 *European journal of soil science*, 60(2), pp.176-185.

502 Machinet, G.E., Bertrand, I., Barrière, Y., Chabbert, B. and Recous, S., 2011. Impact of plant
503 cell wall network on biodegradation in soil: role of lignin composition and phenolic acids in
504 roots from 16 maize genotypes. *Soil biology and biochemistry*, 43(7), pp.1544-1552.

505 Magid, J., Luxhøi, J. and Lyshede, O.B., 2004. Decomposition of plant residues at low
506 temperatures separate turnover of nitrogen and energy rich tissue components in time. *Plant*507 *and Soil*, 258(1), pp.351-365.

508 Marstorp, H. and Kirchmann, H., 1991. Carbon and nitrogen mineralization and crop uptake of
nitrogen from six green manure legumes decomposing in soil. *Acta Agriculturae Scandinavica*, 41(3), pp.243-252.

511 Martens, D.A., 2000. Plant residue biochemistry regulates soil carbon cycling and carbon
512 sequestration. *Soil Biology and Biochemistry*, *32*(3), pp.361-369.

513 Mathew, I., Shimelis, H., Mutema, M. and Chaplot, V., 2017. What crop type for atmospheric
514 carbon sequestration: Results from a global data analysis. *Agriculture, ecosystems &*515 *environment*, 243, pp.34-46.

516 Moreno-Cornejo, J., Zornoz, R. and Faz, A., 2014. Carbon and nitrogen mineralization during
517 decomposition of crop residues in a calcareous soil. *Geoderma*, 230, pp.58-63.

518 McClelland, S.C., Paustian, K. and Schipanski, M.E., 2021. Management of cover crops in
519 temperate climates influences soil organic carbon stocks: a meta-analysis. *Ecological*520 *Applications*, *31*(3), p.e02278.

521 Muhammad, W., Vaughan, S.M., Dalal, R.C. and Menzies, N.W., 2011. Crop residues and
fertilizer nitrogen influence residue decomposition and nitrous oxide emission from a
Vertisol. *Biology and Fertility of Soils*, 47(1), pp.15-23.

Müller, T., Magid, J., Jensen, L.S. and Nielsen, N.E., 2003. Decomposition of plant residues of
different quality in soil—DAISY model calibration and simulation based on experimental
data. *Ecological Modelling*, *166*(1-2), pp.3-18.

527 Mungai, N.W. and Motavalli, P.P., 2006. Litter quality effects on soil carbon and nitrogen
528 dynamics in temperate alley cropping systems. *Applied Soil Ecology*, *31*(1-2), pp.32-42.

529 Murungu, F.S., Chiduza, C., Muchaonyerwa, P. and Mnkeni, P.N.S., 2011. Decomposition,
nitrogen and phosphorus mineralization from winter-grown cover crop residues and
suitability for a smallholder farming system in South Africa. *Nutrient Cycling in Agroecosystems*, 89(1), pp.115-123.

533 Mutema, M., Chaplot, V., Jewitt, G., Chivenge, P. and Blöschl, G., 2015. Annual water,
sediment, nutrient, and organic carbon fluxes in river basins: A global meta-analysis as a
function of scale. *Water Resources Research*, *51*(11), pp.8949-8972.

536 Nourbakhsh, F., 2006. Fate of carbon and nitrogen from plant residue decomposition in a
calcareous soil. *Plant Soil and Environment*, 52(3), p.137.

538 Oda, T., Maksyutov, S. and Andres, R.J., 2018. The Open-source Data Inventory for 539 Anthropogenic Carbon dioxide (CO₂), version 2016 (ODIAC2016): A global, monthly 540 fossil-fuel CO₂ gridded emission data product for tracer transport simulations and surface 541 flux inversions. *Earth system science data*, 10(1), p.87.

542 Ontl, T.A. and Schulte, L.A., 2012. Soil carbon storage. Nature Education Knowledge, 3(10).

Pascault, N., Cécillon, L., Mathieu, O., Hénault, C., Sarr, A., Lévêque, J., Farcy, P.,
Ranjard, L. and Maron, P.A., 2010. In situ dynamics of microbial communities during
decomposition of wheat, rape, and alfalfa residues. *Microbial ecology*, *60*(4), pp.816-828.

546 Paustian, K., Six, J., Elliott, E.T. and Hunt, H.W., 2000. Management options for reducing CO2

547 emissions from agricultural soils. *Biogeochemistry*, 48(1), pp.147-163.

548 Perez, J., Munoz-Dorado, J., De la Rubia, T.D.L.R. and Martinez, J., 2002. Biodegradation and
biological treatments of cellulose, hemicellulose and lignin: an overview. *International microbiology*, 5(2), pp.53-63.

551 Probert, M.E., Delve, R.J., Kimani, S.K. and Dimes, J.P., 2005. Modelling nitrogen 552 mineralization from manures: representing quality aspects by varying C: N ratio of sub-553 pools. *Soil biology and Biochemistry*, *37*(2), pp.279-287.

554 Puyuelo, B., Ponsá, S., Gea, T. and Sánchez, A., 2011. Determining C/N ratios for typical
organic wastes using biodegradable fractions. *Chemosphere*, 85(4), pp.653-659.

556 Quemada, M. and Cabrera, M.L., 1995. Carbon and nitrogen mineralized from leaves and stems
557 of four cover crops. *Soil Science Society of America Journal*, *59*(2), pp.471-477.

558 Raiesi, F., 2006. Carbon and N mineralization as affected by soil cultivation and crop residue in

a calcareous wetland ecosystem in Central Iran. *Agriculture, ecosystems & environment, 112*(1), pp.13-20.

561 Redin, M., Guénon, R., Recous, S., Schmatz, R., de Freitas, L.L., Aita, C. and Giacomini, S.J.,

562 2014. Carbon mineralization in soil of roots from twenty crop species, as affected by their

chemical composition and botanical family. *Plant and soil*, 378(1-2), pp.205-214.

564 Ritchie, H. and Roser, M., 2020. CO2 and greenhouse gas emissions. Our world in data. Rousk,

J. and Bååth, E., 2007. Fungal and bacterial growth in soil with plant materials of different
C/N ratios. *FEMS microbiology ecology*, *62*(3), pp.258-267.

567 Schmatz, R., Recous, S., Aita, C., Tahir, M.M., Schu, A.L., Chaves, B. and Giacomini, S.J.,

2017. Crop residue quality and soil type influence the priming effect but not the fate of crop
residue C. *Plant and soil*, 414(1-2), pp.229-245.

570 Shahandeh, H., Chou, C.Y., Hons, F.M. and Hussey, M.A., 2011. Nutrient partitioning and 571 carbon and nitrogen mineralization of switchgrass plant parts. *Communications in soil* 572 *science and plant analysis*, 42(5), pp.599-615.

- 573 Shakoor, A., Shakoor, S., Rehman, A., Ashraf, F., Abdullah, M., Shahzad, S.M., Farooq, T.H.,
- 574 Ashraf, M., Manzoor, M.A., Altaf, M.M. and Altaf, M.A., 2021. Effect of animal manure,
- 575 crop type, climate zone, and soil attributes on greenhouse gas emissions from agricultural
 576 soils—A global meta-analysis. *Journal of Cleaner Production*, 278, p.124019.
- 577 Shi, A., Penfold, C. and Marschner, P., 2013. Decomposition of roots and shoots of perennial
 grasses and annual barley—separately or in two residue mixes. *Biology and fertility of soils*,
 49(6), pp.673-680.
- Stewart, C.E., Moturi, P., Follett, R.F. and Halvorson, A.D., 2015. Lignin biochemistry and soil
 N determine crop residue decomposition and soil priming. *Biogeochemistry*, *124*(1-3),
 pp.335-351.
- 583 Scott, N.A., Cole, C.V., Elliott, E.T. and Huffman, S.A., 1996. Soil textural control on
 decomposition and soil organic matter dynamics. *Soil Science Society of America Journal*, *60*(4), pp.1102-1109.
- 586 Stott, D.E. and Martin, J.P., 1989. Organic matter decomposition and retention in arid soils. *Arid*587 *Land Research and Management*, 3(2), pp.115-148.
- 588 Vachon, K. and Oelbermann, M., 2011. Crop residue input and decomposition in a temperate
 maize-soybean intercrop system. *Soil Science*, *176*(4), pp.157-163.
- 590 Vahdat, E., Nourbakhsh, F. and Basiri, M., 2010. Estimation of net N mineralization from shortterm C evolution in a plant residue-amended soil: is the accuracy of estimation timedependent?. *Soil use and management*, 26(3), pp.340-345.
- 593 Venter, Z.S., Hawkins, H.J., Cramer, M.D. and Mills, A.J., 2021. Mapping soil organic carbon
 594 stocks and trends with satellite-driven high resolution maps over South Africa. *Science of*
- 595 *The Total Environment*, 771, p.145384.

596 Waksman, S.A. and Gerretsen, F.C., 1931. Influence of temperature and moisture upon the
nature and extent of decomposition of plant residues by microorganisms. *Ecology*, *12*(1),
pp.33-60.

599 Wang, J.J., Pisani, O., Lin, L.H., Lun, O.O., Bowden, R.D., Lajtha, K., Simpson, A.J. and
Simpson, M.J., 2017. Long-term litter manipulation alters soil organic matter turnover in a

temperate deciduous forest. *Science of the Total Environment*, 607, pp.865-875.

602 Wang, W.J., Baldock, J.A., Dalal, R.C. and Moody, P.W., 2004. Decomposition dynamics of

603 plant materials in relation to nitrogen availability and biochemistry determined by NMR and

604 wet-chemical analysis. *Soil Biology and Biochemistry*, *36*(12), pp.2045-2058.

605 Weiß, C.H., 2007. Statsoft, inc., tulsa, ok.: Statistica, version 8.

606 Xiao, C., 2015. Soil organic carbon storage (sequestration) principles and management:

607 Potential role for recycled organic materials in agricultural soils of Washington State.

608 Waste Resources Program, Washington Department of Ecology.

609 Xu, J.M., Tang, C. and Chen, Z.L., 2006. Chemical composition controls residue decomposition
610 in soils differing in initial pH. *Soil Biology and Biochemistry*, *38*(3), pp.544-552.

611 Yaowu, T.I.A.N., Ning, W.A.N.G. and Jing, L.I.U., 2016. The Priming Effect of Soil Organic
612 Carbon Induced by Nustedge. *Journal of Nuclear Agricultural Sciences*, *30*(12), p.2418.

613 Zaccheo, P., Cabassi, G., Ricca, G. and Crippa, L., 2002. Decomposition of organic residues in

soil: experimental technique and spectroscopic approach. *Organic geochemistry*, *33*(3),
pp.327-345.

616 Zeng, D.H., Mao, R., Chang, S.X., Li, L.J. and Yang, D., 2010. Carbon mineralization of tree 617 leaf

618 litter and crop residues from poplar-based agroforestry systems in Northeast China: a
619 laboratory study. *Applied soil ecology*, 44(2), pp.133-137.

620 Zhang, D., Hui, D., Luo, Y. and Zhou, G., 2008. Rates of litter decomposition in terrestrial
621 ecosystems: global patterns and controlling factors. *Journal of Plant Ecology*, *1*(2), pp.85622 93.

Figure 1: Global distribution map of the study sites used in the present study.

Figure 3: CO₂ emissions from residues of different crop types incubated at different time periods (A: C_R30; B: C_R90; C: C_R120; and D: 1-C_R30/C_R120). Plots with the same lower-case letters are not significantly different at Chi-square probability of < 0.001 (Chi and H values= 0.16. 5.24 at A; 0.08. 6.72 at B; 0.00. 13.79 at C and 0.00. 21005 at D. respectively).

Figure 4: CO_2 emissions from soils of different texture ((%) -clayey. silt and sandy soil) at different day time periods. Plots with the same lower-case letters are not significantly different at Chi-square probability of < 0.001 (Chi and H values= 0.26. 2.67 at A; 0.63. 0.92 at B; 0.10. 4.70 at C; and 0.00. 14.07 at D. respectively).

Figure 5: CO_2 emissions from soils of different pH (highly basic. neutral. slightly acidic and highly acidic) at different day time periods. Strongly acidic (pH<5.4); slightly acidic (5.5-6.4); neutral (6.5-7.4); alkaline (>7.5) soil pH. Plots with the same lower-case letters are not significantly different at Chi-square probability of < 0.001 (Chi and H values= 0.01. 10.99 at A; 0.01. 12.64 at B. 0.25. 4.09 at C. and 0.00. 20.92 at D. respectively).

Figure 6: CO₂ emissions from climate of different rainfall and temperature level (as in tropical. sub-tropical and temperate (MAT. MAP) at different day time periods. Plots with the same lower-case letters are not significantly different at Chi-square probability of < 0.001 (Chi and H values= 0.84. 0.34 at A; 0.11. 4.40 at B; 0.68. 0.77 at C. and 0.00. 18.13 at D. respectively).

1 Table 1: References included in database with author, country, crops type, soil texture and

2 climatic zones under which the studies were conducted.

No.	Author	Country	Crop type	Soil texture	Climate
1	Abiven et al. (2005)	Brazil	Brachiaria; Rice; Sorghum; Soyabean; Wheat	Clayey	Tropical
2	Abiven and Recous (2007)	Brazil	Brachiaria; Rice; Sorghum; Soyabean; Wheat	Clayey	Tropical
3	Abro et al. (2011)	China	Maize	Clayey	Subtropical
4	Ajwa and Tabatabai (1994)	USA	Alfalfa; Maize; Sorghum; Soyabean	Silt	Subtropical
5	Angers and Recous (1997)	France	Rye; Wheat	Silt	Temperate
6	Anguria et al. (2017)	Uganda	Cowpea; groundnut; millet; sorghum	(blank)	Subtropical
7	Arunachalam et al. (2003)	India	Bean and pea	Sandy	Tropical
8	Aulakh et al. (1991)	USA	Vetch and wheat	Silt	Tropical
9	Begum et al. (2014)	Australia	Canola; Sorghum; Soyabean; Wheat	Clayey	Subtropical
10	Bertrand, et al. (2006)	France	Wheat	Silt	Subtropical
11	Blaise & Bhaskar (2003)	India	Cotton	clayey,	Subtropical
12	Cayuela et al. (2009)	Italy	Cotton; wheat	Sandy	Subtropical
13	Clark et al. (2007)	Australia	Alfalfa; Wheat	Clayey	Subtropical
14	Cong et al. (2015)	China	Bean; Maize; Wheat	Sandy	Temperate
15	Corbeels et al. (2000)	Morocco	Sunflower; Wheat	Clayey	Temperate
16	Curtin et al. (2008)	New Zealand	Barley; Wheat	Silt	Subtropical
17	Datta et al. (2019)	India	Maize; Rice; Wheat	Silt	Subtropical
18	De Neergaard et al. (2002)	Denmark	Clover; Grass	Silt	Temperate
19	Duong et al. (2009)	Australia	Wheat	Sandy	Subtropical
20	Finn et al. (2015)	Australia	Alfalfa; Grass; Wheat	clayey, Silt& sandy	Subtropical
21	Fruit et al. (1999)	France	Wheat	Silt	Subtropical
22	Gezahegn et al. (2016)	Malaysia	Maize; Soyabean	Sandy	Subtropical
23	Ghimire et al. (2017)	USA	Canola; Oat; Pea	Clayey	Subtropical
24	Havstad et al. (2010)	Norway	Barley; Clover; Grass; Meadow; Wheat	Silt	Subtropical
25	Henriksen and Breland (2002)	Norway	Barley; Clover; Wheat	Silt, sandy	Temperate
26	Jha et al. (2012)	India	Wheat	Clayey	Subtropical
27	Jin et al. (2008)	China	Peanut; Wheat	Silt	Tropical
28	Johnson et al. (2017)	USA	Alfalfa; Cuphea; Maize; Soyabean; Switchgrass	Silt	Subtropical
29	Juan et al. (2009)	China	Rice; Wheat	(blank)	Subtropical
30	Khalil et al. (2005)	Bangladesh	Bean; wheat	clayey, Silt &sandy	Tropical
31	Li et al. (2013)	China	Maize; Soyabean	Silt	Temperate
32	Lou et al. (2007)	China	Rice	Clayey	Tropical
33	Luxhoi et al. (2002)	Denmark	Clover; Grass; Rye	Sandy	Tropical
34	Machinet et al. (2009)	France	Maize	Silt	Temperate
35	Machinet et al. (2011)	France	Maize	Clayey	Temperate
36	Magid et al. (2004)	Denmark	Clover; Radish; Rye; Sugarcane; Vetch	Sandy	Temperate
37	Marstorp and kirchmann (1991)	Sweden	Clover	Sandy	Temperate
38	Martens (2000)	USA	Alfalfa; Canola; Maize; Oat; Prairie	Sandy	Subtropical
39	Moreno-Cornejo et al. (2014)	Spain	Pepper	Silt	Subtropical
40	Muhammad et al. (2011)	Australia	Cotton; Maize; Sorghum, Sugarcane	Clayey	Subtropical
41	Müller et al. (2003)	Denmark	Barley; Clover; Grass; Rape	Sandy	Temperate
42	Mungai and Motavalli (2006)	Kenya	Grass; Maize; Soyabean	clayey, Silt	Temperate
43	Murungu et al. (2011)	South Africa	Oat; Peas; Vetch	Sandy	Temperate
44	Nourbakhsh (2006)	Iran	Alfalfa; Wheat	Clayey	Subtropical
45	Pascault et al. (2010)	France	Alfalfa; Rape; Wheat	Clayey	Temperate
46	Quemada and Cabrera, (1995)	USA	Clover; Oat; Rye; Wheat	Sandy	Subtropical
47	Raiesi; (20065)	Iran	Alfalfa; Wheat	Clayey	Subtropical
48	Redin et al. (2014)	Brazil	Maize; Sorghum; Wheat, Soyabean; Sunflower; Vetch	Sandy	Tropical
49	Schmatz et al. (2017)	Brazil	Pea; Vetch; Wheat	clayey, sandy	Tropical
50	Shahande et al. (2011)	USA	Switchgrass	Silt	Subtropical
51	Shi et al. (2013)	Australia	Barley; Grass	Silt	Subtropical
52	Stewart et al. (20157)	USA	Maize; Sorghum; Soyabean; Sunflower; Wheat	Silt	Temperate
53	Vachon and Oelbermann (2011)	Argentina	Maize; Soyabean	Silt	Subtropical
54	Vahdat et al; (2010)	Iran	Alfalfa; Barley; Clover; Grass; Wheat	Clayey	Subtropical
55	Wang et al. (2004)	Australia	Brigalow; Grass; Sugarcane; Wheat	Sandy	Subtropical
56	Xu et al. (2006)	Australia	Alfalfa; Chickpea; Medic; Wheat	Sandy	Tropical
57	Zaccheo et al. (2002)	Italy	Alfalfa; Maize	Sandy	Temperate
58	Zeng et al. (2010)	China	Maize; Peanut; Poplar	Sandy	Temperate

Variable	Variable remarks	Category	Symbol	Class	Ref.	
		Wheat, sorghum,		Cereal,		
Course also	All different crop	grass,	Cror alass	Grass,	Mathew, et al.	
Crop class	into four classes	vetch bean, soyabean	Crop class	Legume and	(2017)	
		Canola, cotton		Oilseed		
Residue lignin	Initial lignin	<10	T ::-	Low		
concentration (%)	residues	>10	Lignin	High		
Residue lignin: N	Residue lignin to	>10	lignin: N	High		
ratio	nitrogen ratio	<10	8	Low		
	Crop residue carbon	<20		Low	Puyuelo, (2011)	
Residue C:N ratio	to nitrogen ratio	20-30	C: N	Medium	and Probert	
		>30		High	(2005)	
Residue N	Initial nitrogen concentration of	>10	TN	High		
concentration (%)	residues	<10		Low		
Residue C	Initial carbon concentration of	>50	TC	High	Abdalla et al., (2016)	
concentration (70)	residues	<50		Low	(2010)	
		>10		Clayey	Mathew et al.,	
Clay concentration (%)	Soil Texture based on clay fraction	20-32	Soil texture	Silt	(2017) and Abdalla et al.,	
		<20		Sandy	(2016)	
Soil pH concentration (CaCl ₂)	Soil pH	<5.4 5.5-6.4 6.5-7.4	pH	Strongly acidic Slightly acidic Neutral	Davies, 1971; Mathew et al. (2017)	
	Average bulk	>1.5		Aikainic		
Soil bulk density (g	density in soil	<1.3	BD	Low BD	Mathew et al.,	
cm ⁻³)	profile	>1.3		High BD	(2017)	
CFC (emol kg)	Soil cation exchange	>20	CEC	Low CEC		
	capacity	<20	CLC	High CEC		
	Based on the	>20	MAT	Tropical		
	average annual	>1500	MAP		Mutema et al.,	
Climate	temperature and	20-10		Sub-tropical	(2015) and Mathew at al	
	precipitation of the	<10 <10			2017	
	study site	120-1000	MAP	Temperate	2017	

Table 3: Crop quality, soils and environmental variables classification used in the study.

Table 4: Summary Statistics of plant, soil and environmental variables along with residue CO₂

	Lignin	C:N	TC	TN	Clay	Sand	Silt	pН	SOC	MAP	MAT	C _R 30	C _R 90	C _R 120	1- [C _R 30/C p120]
	%				g kg-1				%	mm	°C	n	ng CO ₂ -C g ⁻¹ C	2	R120]
Ν	192	304	394	365	295	259	243	333	293	386	386	394	394	394	394
Mean	9.55	58.45	13.24	9.38	29.53	37.81	32.40	6.73	13.13	906.16	17.01	196.5	519.0	914.2	0.80
Median	7.70	39.16	1.15	4.00	25.30	32.00	28.00	6.80	9.50	656.00	17.00	138.0	415.6	795.0	0.80
Min.	0.02	7.80	0.04	0.01	2.00	1.00	1.00	3.87	0.50	89.40	3.90	0.3	1.1	3.2	0.49
Max.	29.40	409.00	165.76	407.00	77.30	96.00	83.00	8.60	39.00	2500.00	30.00	920.1	3205	3640	0.98
Q1	5.35	20.30	0.40	0.90	14.30	17.90	16.30	5.60	8.41	551.00	10.00	31.0	118.4	200.4	0.75
Q3	12.55	75.40	4.12	11.00	40.00	60.00	47.00	7.66	17.40	1095.00	24.00	304.9	858.9	1431.0	0.86
Variance	36.07	3257.25	1164.81	592.74	370.64	737.14	483.34	1.34	65.33	263814.21	46.19	37353.5	213397	585331	0.01
SD.	6.01	57.07	34.13	24.35	19.25	27.15	21.99	1.16	8.08	513.63	6.80	193.3	461.9	765.1	0.07
SE.	0.43	3.27	1.72	1.27	1.12	1.69	1.41	0.06	0.47	26.14	0.35	7.7	18.4	30.5	0.00
CV	63.30	98.10	13.70	262.70	64.90	75.40	67.60	17.30	61.60	56.50	40.30	98.4	89.0	83.7	9.11
Skewness	1.06	2.52	2.97	12.47	0.92	0.51	0.68	-0.30	1.04	1.15	0.10	1.07	1.10	0.73	-0.25
Kurtosis	0.83	8.30	7.69	197.12	0.13	-0.79	-0.32	-1.03	0.69	0.51	-1.12	0.58	2.11	-0.15	-0.23

emissions in different time period.

.

Statistics: Min and Max =minimum and maximum, respectively. Q1 and Q3= first and third quartile, SD = standard deviation. C emission variables: C_R30 ; C_R90 ; C_R120 for cumulative residue CO_2 emissions to day 30, 90 and 120. Crop quality: lignin; C: N ratio; TC= total residue carbon; TN= total residue nitrogen. Soil variables: Clay concentration; sand concentration; silt concentration; soil pH (CaCl). SOC= soil organic carbon concentration; Climatic variables: MAP= mean annual precipitation; MAT= mean annuat temperature. "†" values are not zero. but rounded off to one decimal place.

		C _R 30			C _R 90				C _R 120		$1 - [C_R 30/C_R 120]$		
		n	Mean	STDEV	n	Mean	STDEV	n	Mean	STDEV	n	Mean	STDEV
Overall		394	196.3	193.3	394	518.8	461.9	394	914.2	765.1	394	0.81	0.07
	Cereal	195	171.0	185.9	195	473.9	445.4	195	846.6	777.1	195	0.82	0.07
Corrections	Grass	54	217.0	185.8	54	529.7	426.7	54	946.8	741.0	54	0.79	0.06
Crop type	Legume	120	228.0	203.2	120	586.7	505.7	120	1003.0	758.3	120	0.78	0.08
	Oilseed	25	196.0	211.9	25	519.2	459.2	25	944.0	742.5	25	0.83	0.07
Residue lignin	High	73	173.0	165.2	73	457.0	402.3	73	816.9	694.2	73	0.80	0.07
Concentration	Low	119	218.0	188.9	119	602.3	524.3	119	1055.0	853.0	119	0.84	0.05
	High	142	144.9	159.0	142	447.0	424.9	142	837.9	777.4	142	0.78	0.07
Residue C: N Ratio	Low	103	273.7	223.4	103	686.9	537.4	103	1163.1	814.7	103	0.80	0.07
	Medium	59	201.1	214.7	59	484.9	449.7	59	856.8	734.8	59	0.80	0.08
TC	High	284	201.8	198.7	284	524.6	450.5	284	927.3	759.9	284	0.80	0.08
IC	Low	110	181.9	168.9	110	503.6	635.6	110	880.2	803.9	110	0.82	0.07
	Clayey	121	224.4	179.0	121	587.5	440.7	121	1060.6	777.5	121	0.81	0.07
Soil texture	Silt	130	191.1	215.6	130	505.8	523.9	130	894.3	819.4	130	0.82	0.08
	Sandy	137	178.2	184.7	137	454.7	417.8	137	789.9	699.2	137	0.79	0.08
	Alkaline	133	178.1	170.0	133	487.2	410.7	133	869.2	712.5	133	0.82	0.07
	Neutral	57	195.4	165.4	57	532.3	362.0	57	919.4	613.8	57	0.79	0.07
Soil pH	Slightly	86	262.1	203.3	86	634.6	560.3	86	1140.2	874.0	86	0.78	0.07
	Strongly acidic	57	175.3	222.3	57	414.7	443.4	57	709.9	687.7	57	0.79	0.09
	High	39	149.4	148.9	39	356.7	529.6	39	591.4	695.8	39	0.81	0.07
Soil organic carbon Concentration	Low	153	157.5	188.9	153	421.3	430.9	153	746.9	725.8	153	0.81	0.07
	Medium	101	230.3	184.9	101	595.2	432.0	101	1066.4	746.6	101	0.81	0.07
	Subtropical	198	192.5	181.8	198	522.8	427.3	198	912.2	736.5	198	0.81	0.07
Climate	Temperate	101	149.8	213.8	101	430.3	536.5	101	779.7	828.1	101	0.82	0.08
	Tropical	95	253.4	193.7	95	604.5	444.7	95	1061.2	755.8	95	0.78	0.08

Table 5: Sample sizes of crop quality (n), soil and climatic factor categories in association with carbon emissions from residues.

			C _R 30			C _R 90			$C_{R}120$)	$1 - [C_R 30/C_R 120]$		
Crop type	Crop	n	Mean	STDEV	n	Mean	STDEV	n	Mean	STDEV	n	Mean	STDEV
	Overall	394	196.3	193.3	394	518.8	461.95	394	914.2	765.07	394	0.81	0.07
	Barley	9	177.7	156.8	9	547.2	436.1	9	1005	778.6	9	0.84	0.05
	Maize	59	85.8	124.3	59	275.1	319.8	59	495.0	541.7	59	0.84	0.08
	Oat	8	212.1	190.8	8	501.9	425.5	8	872.7	724.5	8	0.79	0.06
Cereal	Rice	10	251.9	255.7	10	657.1	662.3	10	1211	1196.6	10	0.82	0.08
	Rye	12	199.3	190.8	12	501.6	453.5	12	824.2	729.5	12	0.77	0.04
	Sorghum	16	261.1	218.8	16	714	496.7	16	1303	855.9	16	0.83	0.08
	Wheat	81	196.3	194.8	81	533.6	452.3	81	950.7	791.8	81	0.81	0.07
Grass	Grass	54	217	184.9	54	529.7	420.3	54	946.8	734.2	54	0.79	0.06
	Alfalfa	24	359.0	262.7	24	796.0	515.0	24	1319.0	801.0	24	0.76	0.07
	Bean	12	223.7	239.9	12	538.7	471.0	12	962.1	667.0	12	0.80	0.06
Laguma	Clover	26	184.2	139.6	26	580.6	661.0	26	940.3	866.5	26	0.78	0.06
Legume	Pea	27	184.2	152.7	27	452	343.8	27	809	554.1	27	0.78	0.07
	Soyabean	23	207.8	157.0	23	577.5	401.7	23	1039	715.6	23	0.81	0.10
	Vetch	8	190.2	182.6	8	531.1	433.4	8	870.4	696.1	8	0.80	0.05
	Canola	8	293.5	327.3	8	670.5	717.3	8	1211	1184.5	8	0.79	0.07
Oilseed	Cotton	9	135.5	98.8	9	442.5	281.0	9	841.1	513.9	9	0.85	0.03
	Sunflower	8	166.5	208.7	8	454.2	451.7	8	792.5	667.4	8	0.84	0.10

 Table 6: Sample sizes of crop type categories associated with residue carbon emission

 variables.

 C_R30 . C_R90 and C_R120 =Amount of CO_2 emitted from crop residues to day 30, 90 and 120 of the experiment, respectively.

	Lignin	C:N	TC	TN	Clay	Sand	Silt	pН	SOC	MAP	MAT	C _R 30	C _R 90	C _R 120	1- [CR30/CR
Lignin	1.00														
C:N	0.15	1.00													
TC	-0.06	-0.06	1.00												
TN	0.03	-0.19	-0.02	1.00											
Clay	-0.08	-0.11	0.51*	-0.19	1.00										
Sand	-0.02	-0.15	-0.42	0.32*	-0.64*	1.00									
Silt	0.10	0.30*	-0.02	-0.19	-0.26*	-0.57*	1.00								
рН	0.02	0.15	0.16	-0.63*	0.26*	-0.45*	0.29*	1.00							
SOC	-0.03	0.03	0.23*	-0.10	0.31*	-0.37*	0.14	-0.08	1.00						
MAP	-0.02	-0.03	-0.16	0.19	-0.41*	0.4*	-0.07	-0.58*	-0.20	1.00					
MAT	0.00	-0.20	-0.21	0.16	-0.40*	0.41*	-0.08	-0.40*	0.03	0.43*	1.00				
C _R 30	-0.08*	-0.14*	0.59*	-0.22	0.34*	-0.38*	0.12	0.38*	0.15	-0.31*	0.07	1.00			
C _R 90	-0.11*	-0.10*	0.46*	-0.28*	0.26*	-0.32*	0.13	0.44*	0.09	-0.32*	0.10	0.96*	1.00		
C _R 120	-0.12*	-0.09*	0.40*	-0.26*	0.22	-0.29*	0.14	0.42*	0.07	-0.31*	0.10	0.93*	0.99*	1.00	
1-[CR30/CR120]	0.15	-0.07*	0.37*	0.11	0.10	-0.12	0.05	-0.19	0.27*	0.19	0.21	0.27*	0.07	-0.03	1.00

Table 7: Correlation matrix statistic table of plant, soil and climatic influence on residue CO₂

emissions.

Residue CO₂ emission to day 30, 90 and 120 of the experiment. lignin: residue lignin concentration; C:N: residue carbon to nitrogen ratio; TC: Initial residue carbon concentration; Clay. sand & silt: soil texture based on clay fraction (%clay); pH: soil pH (KCl); SOC: soil organic carbon concentration; MAP&MAT: climatic factors-mean annual precipitation and mean annual temperature. * Significant at p<0.05.

Сгор	%
Alfalfa	58
Barley	44
Bean	25
Canola	63
Clover	27
Cotton	44
Grass	48
Maize	25
Oat	50
Pea	33
Rice	50
Rye	58
Sorghum	56
Soyabean	48
Sunflower	25
Vetch	38
Wheat	36
Mean	43

Table 8: Proportion of data points with "priming", i.e. with a 120 days cumulative $C-CO_2$ emissions above the amount of C added to the soil.