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Abstract. A model accounting for fluidisation by pore gas pressure in dense granular flows is
presented. A viscoplastic rheology, based on the Drucker-Prager criterium, is used to describe
the granular medium which is a mixture of air and glass beads. The pore gas pressure, which
satisfies an advection-diffusion equation, reduces the friction between the particles and thus the
value of the apparent viscosity. As a consequence, dense fluidised granular flows can travel longer
distances. In laboratory experiments, the run-out distance reached by dense granular columns
when collapsing is almost doubled when fluidisation is applied. This fundamental result, in the
context of pyroclastic density currents, is reproduced by numerical simulations performed with
the fluidised model.

1 INTRODUCTION

Pyroclastic density currents (PDCs) are one of the most important hazards occurring in
volcanic eruptions. Indeed, PDCs are mixtures of solid particles (pyroclasts and lithic fragments)
and air that are able to travel over long distances from the eruption source, which may exceed
100 km in some cases. PDCs are generally induced by the collapse of a volcanic dome or an
eruptive column. They often consist of a dense basal flow overlain by a dilute turbulent flow.
The dense part behaves like a fluid and is able to travel long distances. Understanding the
mechanisms responsible for this peculiar behaviour of concentrated PDCs is one of the major
scientific question related to volcanic processes. A possible answer is a fluidisation effect of the
pore gas pressure that reduces friction between particles. This question has been addressed
through laboratory experiments in [1]. The main result is that the run-out distance reached
by a dense granular columns when released is almost doubled when fluidisation is applied.
Numerical simulations with an averaged (i.e. one layer) model has been used in [2] to reproduce
experiments.
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In the case of the collapse of eruptive columns, the initial height of the collapsing granular
mixture is significantly greater than the width so that averaged models could not, in principle,
be applied. In this context, we introduce a non-averaged model, which also accounts for flu-
idisation by pore gas pressure. The model is based on the mass and momentum conservation
equations with a viscoplastic rheology. The yield stress is a Drucker-Prager criterium depending
on the solid (inter-particle) pressure. As in [3], the pore gas pressure obeys a diffusion-advection
equation, which is obtained by assuming that a Darcy law is satisfied in the solid-fluid mixture
and that the gas is perfect. In our work, the air surrounding the granular deposit during its
slump is also taken into account by considering the incompressible Navier-Stokes equations. In
order to obtain a unified model and unknowns (velocity, pressure) for both the granular and
fluid phases a level set formulation is used as in [4].

The viscoplastic rheologies have the particularity of being defined with a non-differentiable
term which induces mathematical and numerical difficulties. As in [5, 6], we overcome these
difficulties by rewriting the definition of the plastic part of the stress tensor as a local pro-
jection. Based on this formulation, a bi-projection scheme for the time discretisation of the
Bingham equations has been proposed and analysed in [5] and extended in [6] to viscoplastic
fluids with variable density, viscosity and yield stress. In the bi-projection scheme, the plas-
tic part of the stress is computed with a Picard fixed point procedure accelerated by adding a
pseudo-relaxation term which makes the convergence geometric. This approach avoids the use of
regularisation methods [7] and the formalism of variational inequalities [8]. The performance of
the bi-projection scheme was evaluated by simulating Bingham flows in a lid-driven cavity in [5]
as well as by successfully reproducing experiments of the collapse of non fluidised dense granular
columns, i.e. without pore gas pressure, in [4]. The model, based on the µ(I)-rheology [9],
reproduces the internal dynamics of such granular flows characterised by the presence of an in-
terface which separates a static basal deposit and an upper moving part. The interface migrates
upwards in the course of time and controls the deposition rate of the particles.

The aim of this paper is to reinforce the results obtained in [10] on relatively coarse grids,
which show that incorporating the effect of pore gas pressure in the model recovers a fundamen-
tal result observed experimentally: fluidisation allows granular flows to propagate over longer
distances from their source compared to non fluidised flows. A grid twice the size in [10] is
used in the work presented here. Moreover, instead of using a space and time variable granular
viscosity as in [10], we have chosen to take a constant value as in a previous work on non-
fluidised columns [4]. In [10], emphasis was given on the analysis of simulation results in many
different configurations while here we focus on the description of the mathematical model and
its numerical approximation.

The paper is organised as follows. In Section 2, the mathematical model is described. In
Section 3, the numerical schemes are summarised. In Section 4, the results of a numerical
simulation of the collapse of a fluidised column of glass beads, with an aspect ratio of 2 over a
horizontal plane, are presented and compared with experimental results.
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Figure 1: Schematic representation of the granular mass at time t > 0 during its slump in the computa-
tional domain Ω = (0,L)× (0,H). The granular phase (blue), which is a solid-fluid mixture, occupies the
region Ωg(t) while in the remaining part Ωf(t) = Ω\Ωg(t) only air is present. The interface ∂Ωg(t)∩∂Ωf(t)
between the granular medium and the air is denoted Γgf(t).

2 THE MATHEMATICAL MODEL

2.1 The governing equations

As the experimental apparatus used in [1] is a narrow channel (10 cm wide and 3 m long), we
assume that the granular flow is mainly two-dimensional. In that context, the computational
domain is Ω = (0,L)×(0,H). At time t ≥ 0, the granular medium, consisting of 58% per volume
unit of glass beads surrounded by air, occupies the subdomain Ωg(t) while Ωf(t) = Ω\Ωg(t)
contains only air (see Figure 1). Therefore, the volume concentration of particles φ is equal to
0.58 in Ωg(t) and 0 in Ωf(t).

In Ωf(t), we assume that the flow is governed by the incompressible Navier-Stokes equations,
namely the velocity field uf and the pressure pf are solutions of

ρf

(
∂tuf + uf · ∇uf

)
+∇pf = ρfg + ηf∆uf ,

divuf = 0,
(1)

where ηf = 2 × 10−5 Pa s is the air viscosity, ρf = 1 kg m−3 is the air density and g = (0,−g)
with g the gravitational constant.

In Ωg(t), the particles are spherical glass beads of density ρs = 2500 kg m−3 and mean size
ds = 75µm. As this study is restricted to dense granular flow, the volume concentration φ is
assumed to be constant during the slump of the granular mass, namely φ = 0.58, so that the
velocity field us of the granular medium is solenoidal. The granular medium is modelled as an
incompressible fluid with a specific rheology. Due to the presence of air between the glass beads
(see Figure 1), the total granular pressure is decomposed as the sum of the solid (effective)
pressure ps and the pore gas pressure pf . The dynamics of the latter is modelled by a diffusion-
advection equation. This approach is supported by experimental results (see [11, 1]). Hence,
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the velocity field us, the pressures ps and pf are solutions of the following set of equations

φρs

(
∂tus + us · ∇us

)
+∇(ps + pf) = φρsg + divTs,

divus = 0,

∂tpf + div
(
uspf

)
= κf∆pf ,

(2)

where κf is a diffusion coefficient. Note that, as in [3], the pore gas pressure equation is obtained
from the mass conservation equation of the fluid phase in Ωg(t) by assuming that the density ρf

is proportional to the pore pressure (perfect gas law) and that the fluid velocity is given by the
Darcy law.

2.2 The rheology of the granular medium

A granular medium flows only if the stress exceeds a threshold value, the yield stress. Oth-
erwise, it does not deform and behaves like a solid. To date, the most advanced model for this
particular behaviour is the µ(I)-rheology [9] which defines the deviatoric stress tensor Ts by{

Ts =
(

tan(α) + (µ∞−tan(α))I
(I+I0)

)
ps

D(us)
|D(us)| , if D(us) 6= 0,

|Ts| ≤ tan(α)ps, if D(us) = 0,
(3)

where α is the internal friction angle of the particles, µ∞ is an asymptotic friction coefficient
and I0 is a dimensionless number. The inertial number I is defined by

I = 2|D(us)|ds

√
ρs

ps
. (4)

In (3) and (4), D(us) = 1
2(∇us + T∇us) is the strain-rate tensor. Also, the tensorial norm

|λ| =
√

1
2

∑
i,j λ

2
ij , for any tensor λ ∈ R2×2, is used. By reporting the expression (4) in (3), we

easily deduce the following form of the deviatoric stress in the zones where deformation occurs
(i.e. D(us) 6= 0),

Ts = 2ηs(|D(us)|, ps)D(us) + tan(α)ps
D(us)

|D(us)|
, (5)

with ηs(|D(us)|, ps) = (µ∞−tan(α))ps

2|D(us)|+ I0
ds

√
ps
ρs

. The above expression of the deviatoric stress tensor

modelled by the µ(I)−rheology separates the diffusion and plastic terms; the latter satisfy a
Drucker-Prager yield criterium. Note that by replacing the time and space varying viscosity
ηs(|D(us)|, ps) in (5) by a constant value ηs, we obtain the Drucker-Prager viscous rheology,
hereafter referred to as the D-P model.

As in [5], we introduce the symmetric traceless tensor Σ defined by{
Σ = D(us)

|D(us)| , if D(us) 6= 0,

|Σ| ≤ 1, tr(Σ) = 0, TΣ = Σ, if D(us) = 0,
(6)

so that (5) rewrites
Ts = 2ηs(|D(us)|, ps)D(us) + tan(α)psΣ.

4



A. Aravena, L. Chupin, T. Dubois and O. Roche

H

0

Hc

Lc
L

Ωg(t = 0)
ρs, ηs,
φ = 0.58

Ωf(t = 0)
ρf, ηf, φ = 0

NavierCoulomb Friction

Free BC

N
a
v
ie

r
C

o
u
lo

m
b

fr
ic

ti
o
n

D
iric

h
le

t

g

Figure 2: Initial domains Ωg(t = 0) = (0, Lc) × (0, Hc) and Ωf(t = 0) and boundary conditions. The
domain Ωg(t = 0) (blue) corresponds to a fluidised column of granular material.

The tensor Σ can be equivalently defined as a projection. Indeed, we have

∀r > 0, Σ = P
(
Σ + rD(us)

)
where P is the orthogonal projection on the unit ball in the space of symmetric traceless tensor
(see [5] or [6] for the details). Note that this formalism avoids the use of a regularised viscosity
(see [7] for instance). Indeed, the rheology for a yield-stress fluid leads to an infinite viscosity in
regions where the strain-rate is zero. Regularisation methods replace the singular viscosity by a
large but finite one. This is not necessary with the formalism based on a projection introduced
above: the effective viscosity is now everywhere well-defined.

The model for the granular flow is now complete and reads

φρs

(
∂tus + us · ∇us

)
+∇(ps + pf) = φρsg + div(2ηsD(us)) + div(tan(α) psΣ), (7a)

divus = 0, (7b)

Σ = P
(
Σ + rD(us)

)
, r > 0, (7c)

∂tpf + div
(
uspf

)
= κf∆pf . (7d)

2.3 Boundary conditions

The equations (1) and (7) must be supplemented with appropriate boundary conditions.
Free, Navier and Dirichlet boundary conditions are imposed to the air velocity field uf on the
boundary ∂Ω ∩ ∂Ωf(t) as shown on Figure 2 (in the particular case where t = 0). As in [12],
Coulomb friction conditions are imposed to the granular flow on the boundary ∂Ω ∩ ∂Ωg(t),
namely they read {

σs,t = − tan(αb)(−σs,n)+ us,t

|us,t| , if us,t 6= 0,

|σs,t| ≤ tan(αb)(−σs,n)+, if us,t = 0,
(8)

where αb is the basal friction angle, σs,t (resp. σs,n) is the tangential (resp. normal) component
of the total stress tensor σs = Ts − 1

2psI and us,t is the tangential component of the granular
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velocity field. By analogy with (6), we introduce a vector s with Euclidean norm less or equal
than unity, defined by {

s = − us,t

|us,t| , if us,t 6= 0,

|s| ≤ 1, if us,t = 0,

so that (8) rewrites : σs,t = tan(αb)(−σs,n)+s. As previously, s can be equivalently rewritten
as a projection on the unit ball in R2, namely

∀rb > 0, s = Pb(s− rbus,t). (9)

During the experiment a constant air flux is applied at the bottom of the granular column
in the reservoir, that is for x ∈ (0, Lc) × {0} (see Figure 2). This is modelled by applying
in the numerical simulations a constant pressure gradient ∂pf

∂n = −0.9φρsg on this part of the
boundary. The factor 0.9 is based on experimental constraints [13]. Everywhere else on ∂Ω
homogeneous Neumann condition is applied. Accordingly, the pore gas pressure at t = 0 is
defined by pf(x, y, t = 0) = 0.9φρsg(Hc − y) in Ωg(t = 0) = (0, Lc)× (0, Hc) and 0 in Ωf(t = 0).

2.4 Level set formulation

The equations (1) and (7) describing the evolution of the flow in Ωf(t) and Ωg(t) can be
reformulated in one set of equations on the whole computational domain Ω by using a level-set
formulation, namely

∂tΦ + u ·∇Φ = 0 in Ω, (10a)

ρ(Φ)
(
∂tu+ u · ∇u

)
+∇(p+ pf) = ρ(Φ)g + div

(
2η(Φ)D(u)

)
+ div

(
τ(Φ)Σ

)
in Ω, (10b)

divu = 0 in Ω, (10c)

Σ = P
(
Σ + rD(u)

)
, r > 0, in Ωg(t) (10d)

σt = τb(Φ)s, s = Pb(s− rbut), rb > 0, on ∂Ωg(t), (10e)

∂tpf + div
(
upf

)
= div

(
κ(Φ)pf

)
in Ω. (10f)

The level-set function Φ characterises the interface between the air and the granular medium.
Indeed, at each time t > 0 , we define: Γgf(t) = {x ∈ Ω; Φ(x, t) = 0}, Ωg(t) = {x ∈ Ω; Φ(x, t) >
0} and Ωf(t) = {x ∈ Ω; Φ(x, t) < 0}. At time t = 0, the level-set function is initialised as
the signed distance to the interface. In order to keep Φ as close as possible to the signed
distance function, it must be periodically reinitialised in time; this is achieved by applying the
redistancing algorithm proposed in [14].

In (10b), the viscosity η(Φ) is defined as the harmonic mean of ηs and ηf (see [4] for details).
Let a parameter ε > 0, we introduce the following regularised Heaviside function

Hε(Φ) =


0 if Φ < −ε,
1
2

(
1 + Φ

ε +
sin(πΦ

ε
)

π

)
if |Φ| ≤ ε,

1 if Φ > ε.

The density and the diffusion coefficient are defined with the help of Hε by

ρ(Φ) = ρsHε(Φ) + ρf(1−Hε(Φ)) and κ(Φ) = κfHε(Φ) + κ∞(1−Hε(Φ)).
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The parameter κ∞ is set to a large value (1016 in practice), so that the solution of the pore gas
pressure equation (10f) is a smooth extension by zero outside Ωg(t) of the solution of (7d). The
jumps across the interface Γgf(t) of the yield stress and the friction coefficient are also regularised
by using the function Hε, indeed

τ(Φ) = tan(α)pHε(Φ) and τb(Φ) = tan(αb)(−σs,n)+Hε(Φ).

3 The numerical schemes

3.1 A bi-projection time scheme

Let δt > 0 a time step and tn = nδt a sequence of associated discrete times. Let us assume
that, at tn, the approximations (un, pn, pnf ,Φ

n,Σn, sn) of the solutions (u, p, pf ,Φ,Σ, s) of the
set of equations (10a)-(10f) are known and that un is solenoidal. The time discretised scheme
consists in the steps described below.

Step 1: Computation of Φn+1. The equation (10a) is discretised in time with a TVD RK3 scheme.
The redistancing algorithm [14] is applied about every ten time steps.

Step 2: The computational domain is partitioned into Ω = Ωn+1
f ∪ Ωn+1

g ∪ Γn+1
gf . The parameters

depending on the level set function are updated, namely we set

ρn+1 = ρ(Φn+1), κn+1 = κ(Φn+1), τn+1 = τ(Φn+1) and τn+1
b = τb(Φn1).

Step 3: Computation of the pore gas pressure pn+1
f from

3pn+1
f − 4pnf + pn−1

f

2δt
+ div(κn+1pn+1

f ) + 2un ·∇pnf − un−1 ·∇pn−1
f = 0.

Step 4: Prediction of the velocity field ũn+1 and computation of (Σn+1, sn+1) by solving

ρn+1
(3ũn+1 − 4un + un−1

2δt
+ 2un ·∇un − un−1 ·∇un−1

)
+∇(pn + pn+1

f )

= ρn+1g + div
(
2ηn+1D(ũn+1)

)
+ div(τn+1Σn+1),

Σn+1 = P
(
Σn+1 + rD(ũn+1)

)
, r > 0, in Ωn+1

g ,

σt
n+1 = τn+1

b sn+1, sn+1 = Pb(sn+1 − rbũt
n+1), rb > 0, on ∂Ω ∩ ∂Ωn+1

g .

(11)

Step 5: Projection step, i.e. computation of un+1 and pn+1 by solving
3ρn+1

2δt

(
un+1 − ũn+1

)
+∇δpn+1 = 0 in Ω,

divun+1 = 0 in Ω,(
un+1 − ũn+1

)
· n = 0 on ∂Ω.

Steps 1 to 3 and 5 are standard while Step 4 requires additional effort. Indeed, the unknowns
ũn+1, Σn+1 and sn+1 in Step 4 are nonlinearly coupled. They can be expressed as the fixed
point of a non differentiable functional which is approximated by an iterative Picard procedure
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as in [5] and [6]. Let a parameter θ > 0, k an integer and (Σn+1,0, sn+1,0) = (Σn, sn), the
iterations are written as

ρn+1
(3ũn+1,k+1 − 4un + un−1

2δt
+ 2un ·∇un − un−1 ·∇un−1

)
+∇(pn + pn+1

f )

= ρn+1g + div
(
2ηn+1D(ũn+1,k+1)

)
+ div(τn+1Σn+1,k),

Σn+1,k+1 = P
(
Σn+1,k + rD(ũn+1,k+1) + θ(Σn −Σn+1,k)

)
, r > 0, in Ωn+1

g ,

σt
n+1,k+1 = τn+1

b sn+1,k+1,

sn+1,k+1 = Pb

(
sn+1,k − rbũt

n+1 + θ(sn − sn+1,k)
)
, rb > 0, on ∂Ωn+1

g .

(12)

The pseudo-relaxation terms added in the projections ensure a geometric convergence of the
sequences {ũn+1,k+1, Σn+1,k+1 and sn+1,k+1} towards the solutions of (11) with common ratio
(1− θ). The proof of convergence is detailed in [6].

3.2 The spatial discretisation

We denote by (u, v) the components of the velocity field u. The computational domain
Ω = (0,L)×(0,H) is discretised by using a Cartesian uniform mesh. This results in a sequence of
nodes denoted (xi, yj) for a given mesh size. Let a computational cell Kij = (xi, xi+1)×(yj , yj+1).
The discrete unknowns of the velocity (resp. pressure) are placed in the middle of the edges
(resp. in the centre) of the Kij mesh. The discrete unknowns associated with Σ and pf are also
placed at the centre of the mesh cell. Figure 3 summarises this staggered arrangement of the
unknowns. Cell-centred second-order finite volume schemes are applied to discretise first and
second-order partial derivatives with respect to the spatial directions in equations (10b), (10c)
and (10f). The transport equation of the level set function (10a) is discretised with an upwind
WENO5 scheme. The code is parallel, written in F90 and using the MPI library to handle
communications between processes. The PETSc library is used to assemble and solve the linear
systems.

rΦijpf,ij

pij Σij

--
ui+1,juij

6

vi,j+1

6

vij

(xi+1, yj+1)

(xi+1, yj)

(xi, yj+1)

(xi, yj)

Figure 3: Location of the discrete unknowns in the mesh cell Kij = (xi, xi+1)× (yj , yj+1).
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Figure 4: Profile of the granular flow at various times obtained with the value κf = 0.035 m2 s−1 of the
diffusion coefficient. The shape of the final deposit measured from experiment [1] is shown for comparison.

Figure 5: Time evolution of the front position during the spreading of the granular mass. Results
obtained with the value κf = 0.035 m2 s−1 of the diffusion coefficient are shown and compared with
experimental results [1]. The collapse of a column without fluidisation is also shown.

4 Numerical simulations versus experiment

We consider the collapse of a dense column of glass beads of width Lc = 20 cm and height
Hc = 40 cm initially at rest and fluidised in a reservoir which is connected with a horizontal
channel with a smooth base through a gate opened at t = 0 s. In the simulation, we assume that
the whole granular column is released at t = 0 s. The internal friction angle of the material is
α = 27° and the basal friction angle at the bottom and on the vertical back-wall of the channel
is αb = 15° (see [4]). In agreement with the experiment, the pore pressure at time t = 0 is set
to 90% of the weight of the particles, that is : pf(x, y, t = 0) = 0.9φρs(Hc − y) in Ωg(t = 0)
and pf(x, y, t = 0) = 0 in Ωf(t = 0). Results of a simulation with a mesh size h = 1.7578 mm,
corresponding to 256 cells in the vertical direction, and with κf = 0.035 m2 s−1 are reported
(Figure 4). As in [4], the D-P model is used as rheology for the granular flow with an apparent
viscosity ηs = 0.1 Pa s. A simulation with the same initial configuration but on a two times
coarser mesh and with the variable granular viscosity of the µ(I)-rheology has been reported
in [10]. The value of the time step, δt = 10−5 s, is chosen so that the CFL number remains
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Figure 6: Surface profiles of the granular flows at different times after release obtained with the values
of the diffusion coefficient κf = 0.035 m2 s−1 (blue line). The surface profile of the benchmark analogue
experiment [1] (black dashed lines) is shown for comparison.

smaller than 0.1 during the whole simulation.
The model underestimates by about 8.5% the run-out distance found in the experiment (see

Figure 5). The simulation predicts a distance of 1.6874 m from the reservoir gate, whereas 1.8443
m was found in the experiment. The run-out distance is almost doubled when fluidisation is
applied (see Figure 5). Note that in [10] the granular flow profile extended only to 1.4 m from
the reservoir gate which corresponds to an underestimate of about 32%. The simulation (see
Figure 5) reproduces reasonably well the three phases of propagation described in [1] and the
duration of each phase. Note that the granular flow stops a bit earlier in the experiment. As
shown on Figure 4, the height of the deposit at the back wall of the channel rapidly decreases
(t ≤ 0.7 s) and then becomes stationary. During the initial phase, the height of the deposit
is underestimated whereas a perfect match is obtained later. The thickness of the deposit is
slightly underestimated for x− Lc ∈ [0.1, 0.5] m and overestimated at longer distance from the
gate. However, the overall profile of the granular flow deposit is well predicted with a peak of
the thickness near the reservoir x−Lc = 0 m and a gentle decrease downstream. By comparing
Figure 5 at t = 1.2 s and Figure 2f in [10], we observe that a better approximation of the profile
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is obtained with the D-P model. Especially, near the front position, namely for x − Lc ≥ 1.2
m the profile is thicker when the granular viscosity is kept constant. This remark should be
mitigated by the fact that in the present work the grid is two times as small. A fair comparison
of the models should be done with the same numerical parameters.

As a summary, in terms of run-out distance, dynamics of the collapse and shape of the gran-
ular mass, the model provides results in good agreement with the experimental measurements.
The effect of the pore gas pressure observed in experiments is reproduced by the model.
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