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Abstract—Networks, mainly composed of cables, are prone
to failures. Faults in cables are initially benign (so-called soft
faults) and then evolve over time to a much more severe form
of faults as short or open circuits (so-called hard faults). It is
thus of prime importance to detect and localize efficiently the
soft faults. Residuals may be calculated by comparing online
computed transmission coefficients with reference transmission
coefficients. In this paper, the sensitivity of the residuals with
respect to the fault is studied for a simulated but realistic Y-
shaped network. The residuals are represented in the residuals
space. Using intensive simulations, the residuals are analyzed
with respect to the position of the fault in a branch, the severity
of the fault and the signal-to-noise ratio.

Index Terms—Soft fault, Sensitivity analysis, Fault monitoring,
Electrical cables, Power Line Communication.

I. INTRODUCTION

Electrical cables are omnipresent to transfer data or energy
in technological systems. These cables are subject to degrada-
tion or faults e.g. humidity in a submarine can cause water-
treeing [5], mechanical stress can cause insulation cuts [17]
etc . . . . These degradation or faults are considered as soft
faults if the cables are still able to provide power or data,
and once that transmission is interrupted, they are considered
as hard faults. Hard faults (short-circuit, open circuit) are the
faults that led to the TWA 800 (in 1996) and Swissair 111
(in 1998) tragedies [11]. Hence, a monitoring system that is
capable of detecting soft faults in networks before they turn
into hard faults, is needed. The most used fault detection
and localization methods in the literature are based on time
domain reflectometry or frequency domain reflectometry [12].
A review of existing reflectometry-based methods is conducted
in [13]. Almost all reflectometry-based methods can detect
and locate hard faults without problems. However, they are
limited when it comes to detecting soft faults especially
online [16], [22]. These methods are based on the analysis
of the waves reflected back to the injection port (the source
side). Alternative methods propose the analysis of the waves
received by the receiver side as in [14] and [15]. These
alternative methods are based on the comparison between the
reference transmission coefficients of the network estimated
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when the network is considered in the no-fault situation and
those estimated online. The estimation of the transmission
coefficients can be done online by the installed Electronic
Control Unit (ECU) through Orthogonal Frequency Division
Multiplexing (OFDM) using the Power Line Communication
(PLC) technique [6], without using additional instruments or
sensors.

In [3], [4], residuals based on the transmission coefficients
were proposed. It was theoretically shown that these residuals
equal zero in no-fault situation and are different from zero in
presence of soft faults. They can thus be used to detect the
faults. Residuals may be computed for different couples of
receivers and sources leading to a set of structured residuals.
The obtained residual signature allows not only the detection
of the fault but also the localization of the faulty branch in a
network. The method was tested on a real test bench and the
results were reported in [2].

Since it is physically impossible to test a physical network
in many different faulty situations, simulation-based data are
needed to study the sensitivity of the residuals. The trans-
mission chain model [10], [18] is a well-known model that
can be used to simulate the signal transmission in a network
with great accuracy, if the targeted network characteristics
(topology, load impedance, physical characteristics of the
cable) are perfectly known. It is reported in the literature
that the simulated data and the test bench data match each
other not only when the network is non-faulty [19] but also
in different fault situations where the faults are simulated as
additive impedance [20].

The main contribution of this paper is the study of the
sensitivity of the residuals with respect to :

• The position of the fault on a branch.
• The fault amplitude for a given position.
• The level of the noise on the transmission coefficients.

Intensive simulations of the transmission chain model are
performed to analyse the impact of the characteristics of the
soft faults (position and amplitude) on the residuals. Due to the
presence of noise, for a given fault characteristic, the residuals
form a distribution represented by a cluster in the residuals
space. The Mahalanobis distance between each sample and a
reference cluster is used to study the influence of the faults
and of the environment noise on the residuals.



This paper is organized as follows. In section II, the fault
detection method based on the transmission coefficients is
briefly described, along with the studied Y-shaped transmission
network. In section III, the data generation procedure and the
analysis of the obtained clusters are detailed. Then, in section
IV, the sensitivity of the residuals is analysed with respect
to the position of the fault, its severity and the level of the
additive noise. Conclusions and future work close this paper.

II. BACKGROUND

A. Network and residuals

The studied network is a Y-shaped network as shown in Fig.
1. It is composed of one node, three branches Bi and three
electronic control units ECUi (with i ∈ {0; 1; 2}). Each ECU
acts either as a source Si or as a receiver Ri. This network
is shown in its no-fault situation (all branches are fault free),
and its three possible faulty situations (A fault is on one of the
three branches). Note that the multiple faults case is outside
the scope of this paper.

Fig. 1: Y-shaped network.

Remark 1. A Y-shaped network is considered here, but
the monitoring method is easily usable for other networks
topologies, as a complex network can always be decomposed
into several Y-shaped subnetworks.

In real life application, thanks to the power line communi-
cation (PLC) technology, the transmission coefficient, denoted
Hj,i(f), between a source Si and a receiver Rj can be
estimated through orthogonal frequency division multiplexing
(OFDM) process by each receiver (f denotes the frequency).
In [2], it was shown that Hj,i(f) is theoretically sensitive to
the fault. In a Y-shaped network, two transmission coefficients
per receiver can be estimated resulting in six transmission
coefficients. Health indicators based on those transmission
coefficients are proposed to detect a fault.

Definition 1. Health indicators, denoted Ij,i(f), are defined
by the following expression

Ij,i(f) =

∣∣∣∣∣H
Reference
j,i (f)

Hj,i(f)

∣∣∣∣∣− 1 (1)

where HReference
j,i (f) is the transmission coefficient between

the source Si and the receiver Rj estimated when the network
is considered in the no-fault situation and Hj,i(f) is the
transmission coefficient that is estimated online.

Remark 2. In total, six health indicators can be computed for
a Y-shaped network. However, it will be shown in the following
that only four indicators are needed to detect and locate the
faulty branch. To reduce the computation and communication
costs only four among the six health indicators are thus
computed.

Residuals, denoted ri, based on these health indicators
are proposed to distinguish between the no-fault and faulty
situation of the network.

Definition 2. A residual, ri, is defined by the following
expression

ri =
1

N

f=fN∑
f=f1

|Ij,i(f)− Il,i(f)| (2)

with f ∈ BW = [f1 : fN ]. BW is the bandwidth of interest
that starts from the frequency f1 and ends at the frequency
fN , N is the number of frequency components. i is the index
of the ECU acting as the source, j and l are the indices of
the ECU acting as the receivers with i ̸= j ̸= l.

A residual per ECU acting as a source is computed resulting
in three residuals. However, only two residuals are needed to
get different residual fault signatures, the third residual is a
redundant residual. The expressions of r0 and r1 are

r0 =
1

N

f=fN∑
f=f1

|I1,0(f)− I2,0(f)| (3)

r1 =
1

N

f=fN∑
f=f1

|I0,1(f)− I2,1(f)| (4)

It has been shown in [1]–[4] that the residuals are theoretically
sensitive to faults and they can be used to detect faults and
to locate the faulty branch using the signature matrix shown
in Table I. The columns of this signature matrix represent the
four situations of the network namely, no-fault situation, faulty
B0, faulty B1 and faulty B2. The rows represent the residuals
r0 and r1 respectively computed at the sources S0 and S1. All
residuals fault signatures are different which shows that it is
possible to identify the faulty situation with only two residuals.

TABLE I: Signature matrix of the residuals.

ri No-fault Faulty B0 Faulty B1 Faulty B2

r0
r1

0
0

0
1

1
0

1
1

0 indicates that ri is equal to zero.
1 indicates that ri is different from zero.
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Fig. 2: Module of the transmission coefficients.

0 1 2 3 4 5 6 7 8 9 10

Frequency (Hz) 10
7

-3

-2

-1

0

1

2

3

I j,
i(f

)

10-5

I
2,1

(f) I
2,0

(f) I
0,1

(f)=I
1,0

(f)

Fig. 3: Health indicators.

B. Residual computation method

The residual computation method consists of three steps :

1) Step 1 : In a physical network, the transmission coef-
ficients Hj,i(f) are estimated online at the jth receiver
through OFDM process sent by the ith source in the
bandwidth of interest BW [7]. As previously mentioned,
in this paper, intensive simulations of the transmission
chain model are performed, thus the Hj,i(f) values are
directly given (see Fig. 2).

2) Step 2 : The indicators Ij,i(f) are computed at the
receiver Rj then they are sent to the source Si via PLC
link (see Fig. 3).

3) Step 3 : The residuals ri are computed at the source Si

and plotted in the residuals space.

A point (r0, r1) in the residuals space represents the state of
the network. Depending on the position of the point, the fault
is detected and the faulty branch is located. This computation
method was applied, in [4] and in [2], using actual data
extracted from a test bench and simulated data but without
looking at the influence of noise, the position of the fault in a
branch and the severity of the fault. Since it is not physically
possible to repeatedly change the position, the severity of
the fault and the noise level on a real test bench, intensive
simulations are performed to generate data. The next section
will be dedicated to data generation and the influence of
changing the fault and noise characteristics on the residuals.

III. DATA GENERATION AND CLUSTER ANALYSIS

A. Data set generation

The network shown in Fig. 1 is simulated via MATLAB us-
ing the chain matrix model [18]. As argued in the introduction
section, the simulation is preferred here to be able to generate
data in many different faulty situations, with the objective to
study the sensitivity/robustness of the residuals. Soft faults are
represented in simulations by the insertion of an impedance
in series. The relevance of this representation was confirmed
in [20], where real data and simulated ones were found to be
consistent.

The primary parameters of the network R, L, C and G,
needed to simulate the network, are computed using the
analytical equations found in [9], [21]. R, L, C and G
denote respectively the resistance, inductance, capacitance and
conductance per unit length of the network. The lengths of the
branches B0, B1 and B2 are respectively l0 = 4 m, l1 = 10 m
and l2 = 7 m. The characteristic impedance, Zc, of each
branch is equal to 120Ω. A soft fault is defined as a small
change in the local impedance of the cable, it is represented
in simulations by the insertion of an impedance Zf in series
[20].

B. Data set representation in the residuals space

As an illustration, the following example with fixed fault
and noise characteristics is considered. The four situations of
the network are considered by fixing the signal-to-noise ratio
(SNR) to 100 dB in both no-fault and faulty situations. In the
faulty situations, the fault severity Zf is fixed to 5 Ω and the
distance between the fault and the node is fixed to xi = 1 m.
The generated data are :

• The transmission coefficients, H1,0(f) and H2,0(f), be-
tween the source S0 and the receivers R1 and R2.

• The transmission coefficients, H0,1(f) and H2,1(f), be-
tween the source S1 and the receivers R0 and R2.

Using those two couples of transmission coefficients, the
two residuals r0 and r1 are computed. These residuals are
represented in the residuals space. The three steps presented
in the sub-section II-B are repeated 100 times in the no-fault
situation of the network resulting in 100 points in the residuals
space. Due to the noise, the 100 points form a cluster.

Remark 3. In a no-fault situation, the points representing
the residuals should vary around zero. Due to the non-linear
character of the residual, the residuals are not around zero.
To simplify the fault monitoring procedure, the mean values of
the residuals in the no-fault situation (ν0, ν1) are subtracted
from the computed residuals. As a consequence, the new set of
points becomes centered around zero in the no-fault situation
(green points in Fig.4). ν0 and ν1 are subtracted to each couple
of computed residuals in the following.

To illustrate the construction of clusters according to the
situation of the network, the same steps are repeated also for
each faulty situation. The resulting clusters are presented in
Fig. 5 and they are consistent with Table I.
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1) The no-fault situation represented by a green cluster
centered at (0,0) (r0 = 0; r1 = 0).

2) Faulty B0 represented by a magenta cluster located at
the r1-axis (r0 = 0 ; r1 ̸= 0).

3) Faulty B1 represented by a blue cluster located at the
r0-axis (r0 ̸= 0 ; r1 = 0).

4) Faulty B2 represented by a red cluster located in the
plan formed by r0 and r1 (r0 ̸= 0 ; r1 ̸= 0).

To study the influence of the fault and noise characteristics
on the residuals, the distance between the reference cluster in
green and each new sample is computed. The distance between
a sample and a Gaussian distribution may be evaluated using
the Mahalanobis distance [8]. Henceforth, half of the green
cluster (50 points) is considered as the reference cluster,
Zref , and the distance between each new sample, zk, and
this cluster will be computed using the Mahalanobis distance,
MD. Instead of monitoring r0 and r1, MD will be monitored.

MD(k) =
√
(zk − Zref )T · C−1

Zref
· (zk − Zref ) (5)

where Zref is the data matrix containing 50 reference samples
in the rows computed for the two residuals r0 and r1 in the
columns. Zref and C−1

Zref
denote respectively the mean value

and the variance–covariance matrix of Zref . zk is the kth

sample whose distance from the reference cluster is calculated
(zk = [r0, r1]k). The transposed matrix is indicated by T .

Remark 4. In a Y-shaped network, two residuals are moni-
tored. In more complex networks, a larger number of residuals
is required, making it challenging to track the variation of all
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residuals. Monitoring the MD reduces the dimension of the
problem and thus simplifies the decision making.

The MD between the reference cluster, Zref , and each
sample, zi, in no-fault situation and in faulty B0 situation
are computed and shown in Fig.6. The distributions of the
distances between the reference cluster and the samples in the
no-fault and in the faulty B0 situations are shown in Fig. 7.

In the next section, the evolutions of the clusters and the MD
are studied with respect to the fault severity Zf , the distance
between the fault position and the node x and the signal-to-
noise ratio (SNR) when an additive white Gaussian (AWG)
noise is added to the transmission coefficients.

IV. CLUSTER DISTANCE ANALYSIS

Three characteristics, namely xi, Zf and SNR, can change
either the cluster size or its distance from the reference cluster.
A separate analysis of the influence of each of them is made
in the following subsections where intensive simulations are
performed by changing :

• The severity of the fault Zf from 0.1 Ω to 15 Ω with a
step of 0.1 Ω.

• The distance between the position of the fault and the
position of the node xi from 0.1 m to li m with a step
of 0.1 m.

• The level of the noise that is added to the simulated
transmission coefficients where the SNR varies from
0 dB to 50 dB with a step of 10 dB.
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A. Influence of the position of the fault

Intensive simulation are performed while changing the dis-
tance, xi, between the position of the fault and that of the
node in each branch Bi.

The severity of the fault and the SNR are fixed respectively
to Zf = 5 Ω and SNR = 100 dB. Two faulty situations, B0

and B2, of the network are explored separately.
1) Faulty B0: The distance, x0, between the fault position

and that of the node varies between 0.1 m and 3.9 m with
a step of 0.1 m resulting in 400 clusters. Each cluster is
composed of 100 points. Each point represents the values of
the residuals r0 and r1. The results are reported in Fig.8 where
a faulty cluster is represented in red, and the no-fault cluster
is represented in green. As it can be seen, the distance is
maximum when the fault is close to the node, the distance is
quite constant for all x0 > 0.5m.

2) Faulty B2: The same procedure as before is repeated by
inserting a fault in the branch B2 and by changing the distance,
x2, from 0.1 m to 7 m. The red faulty clusters and the no-
fault green cluster are represented in Fig. 9. As in the previous
faulty situation, the MD is maximum when the fault is close
to the node, and it is quite constant for all x0 > 0.5m.
Conclusion : When the position of the fault in a branch is
greater than 0.5 m from the node, this position has quite no
influence on the residuals. The fault influence on the residual
grows when the fault approaches the node.

B. Influence of the severity of the fault

In this subsection, the fault position is fixed at 1 m from
the node while the SNR equals 100 dB. Two faulty situations
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Fig. 11: Effect of the severity of the fault (Faulty B1).

of the network, faulty B0 and faulty B1, are discussed in the
following.

1) Faulty B0: The severity of the fault is increased from
0.1 Ω to 15 Ω with a step of 0.1 Ω, the other two variables
(x0 and SNR) are fixed. The results are reported in Fig 10.
As it can be seen, the faulty clusters deviate from the no-
fault green cluster as a function of the fault severity and the
distance between the faulty cluster and the no-fault cluster also
increases linearly with the fault severity.

2) Faulty B1: The same procedure is repeated with a fault
in the branch B1. As in the previous case, the distance between
a faulty cluster and the no-fault cluster depends on the fault
severity and it increases linearly as shown in Fig. 11. The
difference between the two situations is the direction of the
evolution of the clusters, as expected by the signature matrix
shown in Table I. In faulty B0, the clusters evolve in a direction
following the r1 axis. If the fault is in B1 the clusters evolve
in a direction following the r0 axis.
Conclusion : The severity of the fault has a linear influence
on the residuals which can be used to estimate the severity of
the fault. The direction of this evolution depends on the faulty
branch, as it is expected by the structured fault signature matrix
(Table I).

C. Influence of the signal-to-noise ratio

In this subsection, both the severity of the fault and its
distance from the node are fixed respectively at 5 Ω and at
1 m. The SNR changes from 0 dB to 50 dB with a step of
10 dB. Two of the faulty situations of the network, faulty B0

and faulty B1, are considered in what follows.
The results are reported in Fig.12 and Fig.13. As it can be



-0.02 -0.01 0.01 0.02 0.03 0.04

r
0

-0.05

0.05
r
1

Cluster variation with respect to the signal-to-noise ratio

5 10 15 20 25 30 35 40 45 50

SNR

500

1000

M
a

h
a

la
n

o
b

is

 d
is

ta
n

c
e

  

Distance between reference and faulty clusters

20 dB
10 dB

Fig. 12: Effect of the noise on the clusters (Faulty B0).

-0.03 -0.02 -0.01 0.01 0.02 0.03 0.04 0.05 0.06

r
0

-0.02

0.02

0.04 r
1

Cluster variation with respect to the signal-to-noise ratio

5 10 15 20 25 30 35 40 45 50

SNR

500

1000

M
a

h
a

la
n

o
b

is
 

d
is

ta
n

c
e

  
  

Distance between reference and faulty clusters

50 dB

Fig. 13: Effect of the noise on the clusters (Faulty B1).

seen, the cluster size increases with the level of noise. The
distance between the no-fault cluster and the faulty cluster also
decreases with the noise level (when increasing the SNR).
Conclusion : By decreasing the SNR value, the reference and
the faulty clusters representing the residuals are increasing and
may overlap, making it difficult to differentiate between them.

V. CONCLUSION AND FUTURE WORK

In this paper, the sensitivity/robustness of the residuals for
the detection of soft faults in Y-shaped networks is analyzed
using intensive simulations. The influence of the fault position,
the fault severity and the noise level on the residuals is studied.
These residuals are represented as clusters in the residuals
space. The Mahalanobis distance is used as a criterion to
compare non-faulty and faulty data sets. It is concluded that
the size of a cluster and its distance from the reference cluster
depend on the severity of the fault and the noise level. The
position of the fault has a limited influence on the clusters.
These results may be used in future work to estimate the
severity of the fault along the time. A minimum detectable
fault for a given SNR can also be computed. In order to
improve the localization decision, a residual per source can
also be computed and represented in the residuals space.
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