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ABSTRACT

Recent observations of supermassive black holes have brought us new information on their magnetospheres. In this study, we
attempt a theoretical modelling of the coupling of black holes with their jets and discs, via three innovations. First, we propose
a semi-analytical MHD description of a steady relativistic inflow—outflow structure characteristic to the extraction of the hole
rotational energy. The mass-loading is ensured in a thin layer, the stagnation surface, by a two-photon pair production originating
to a gamma-ray emission from the surrounding disc. The double flow is described near the polar axis by an axisymmetric
meridionally self-similar MHD model. Secondly, the inflow and outflow solutions are crossing the MHD critical points and are
matched at the stagnation surface. Knowledge of the MHD field on the horizon gives us the angular momentum and energy
extracted from the black hole. Finally, we illustrate the model with three specific examples of double-flow solutions by varying
the energetic interaction between the MHD field and the rotating black hole. When the isorotation frequency is half of the black
hole one, the extracted Poynting flux is comparable to the one obtained using the force-free assumption. In two of the presented
solutions, the Penrose process dominates at large colatitudes, while the third is Poynting flux dominated at mid-colatitudes.
Mass injection rate estimations, from disc luminosity and inner radius, give an upper limit just above the values obtained for two

solutions. This model is pertinent to describe the flows near the polar axis, where pair production is more efficient.

Key words: black hole physics —magnetohydrodynamics (MHD) —relativistic processes — galaxies: jets.

INTRODUCTION

The recent images taken by the Event Horizon Telescope of the
M87 black hole and also the black hole at the centre of our
Galaxy (Sgr Ax) have brought us new information on the black
hole magnetospheres, such as the estimation of the diameter of
its photon ring, or the magnitude of its surrounding magnetic field
(Event Horizon Telescope Collaboration 2019, 2021). This can help
us to understand the mechanisms involved in such magnetospheres,
especially the origin of their observed powerful jets.

Despite recent progress on the magnetohydrodynamics (MHD) of
rotating black holes (e.g. Huang, Pan & Yu 2019; Pu & Takahashi
2020; Yao et al. 2021), several properties of their plasma-filled
magnetospheres are not completely known. In particular, the energy
release at the base of jets associated with active galactic nuclei
(AGNs) and gamma-ray bursts (GRB) may be explained via several
mechanisms, depending on the geometry and the physical content of
the black hole magnetosphere. The extraction of rotational energy
from spinning black holes started to be theoretically investigated al-
ready in the 1970s (Penrose & Floyd 1971) and continued afterwards.

* E-mail: loic.chantry @obspm.fr

A necessary condition for an extraction mechanism to take place is
the existence of an ergo-region in the immediate vicinity of the black
hole horizon. In the case where the black hole is pervaded with a
magnetic field, this extraction may take place in two different ways.
The extraction occurs either via the plasma itself, or via the elec-
tromagnetic field. In particular, if the plasma inertia dominates, we
have the so-called generalized Penrose mechanism. If the Poynting
flux dominates, we have the so-called generalized Blandford—Znajek
mechanism. Strictly speaking, the Blandford—Znajek mechanism
applies in a force-free magnetosphere.

Penrose (1969) was the first to propose a mechanical process for
extracting black hole energy, using the splitting of particles in the
ergo-sphere. This process happens if one of the particles resulting
from the splitting falls on to the black hole with negative energy and
the other one reaches infinity with more energy than the entering
particle.

On the other hand, neglecting the plasma inertia, Blandford &
Znajek (1977) proposed a stationary model for energy extraction
via the Poynting flux of the bulk electromagnetic field threading
the black hole. In this model, where the fluid energy flux is
negligible, they developed a perturbation method for the force-free
equations of electrodynamics as a function of the black hole spin
parameter. Then, they applied this analytical description to a split
monopole configuration modelling a black hole surrounded by an
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accretion disc. Thus, they showed that, for a given black hole angular
momentum variation, the energy extracted from the black hole can
reach 50 per cent of the maximum extractable energy.

These two fundamental mechanisms and their application to
astrophysical phenomena are still discussed for different reasons.
For example, causality agreement in the extraction of black hole
rotational energy has been clearly established only for the Penrose
process. The Blandford—Znajek mechanism does not explained how
the electromagnetic Poynting flux is causally produced and how the
black hole rotational energy is reduced (Punsly & Coroniti 1990;
Komissarov 2009; Koide & Baba 2014; Toma & Takahara 2016).

The expected very low rate of particle production with a relative
velocity between the two fragments larger than ¢/2 seems to produce
a very inefficient Penrose process (Bardeen, Press & Teukolsky 1972;
Wald 1974). Yet, Wagh, Dhurandhar & Dadhich (1985) showed that
the electromagnetic field may provide the required energy to put
one fragment on to a negative energy orbit, without any constraint
on its relative velocity (for a review of the mechanical Penrose-
type processes, see Wagh & Dadhich 1989). Then, a magnetic
Penrose process could be extremely efficient in the entire range of
expected magnetic fields (Dadhich et al. 2018). The plasma within
the ergo-region plays the role of negative energy particles in the
rotational energy extraction from the black hole. Time-dependent
numerical simulations tend to support that the energy is supplied
into jets from the rotational energy of the black hole (Koide et al.
2002; Komissarov 2004; Komissarov & McKinney 2007; McKin-
ney, Tchekhovskoy & Blandford 2012). However, simulations (e.g.
Komissarov 2005; McKinney 2006) show that the Penrose process
seems to be a transient phenomenon, which is lately replaced by a
pure electromagnetic mechanism similar to the original Blandford—
Znajek one.

In this study, we consider AGN jets produced in the immediate
environment of rotating supermassive black holes. Jets are multicom-
ponent outflows. Most present models are based on having a faster,
mainly leptonic, core flow (the spine jet) surrounded by an outer
hadronic component with mildly relativistic speeds (the sheath layer
or disc wind). This two stream model was firstly proposed by Sol,
Pelletier & Asseo (1989) and allowed to get a unification scheme for
BL Lac and radiogalaxy sources emission (Ghisellini, Tavecchio &
Chiaberge 2005). The disc wind component (proton—electron) can
be modelled by radially self-similar models including the effects
of magnetic fields, gravity, and enthalpy (Vlahakis & Konigl 2003;
Ceccobello et al. 2018). For the inner spine jet, we proposed in
Chantry et al. (2018) an extension, in Kerr metric, of meridionally
self-similar models (Sauty & Tsinganos 1994; Meliani et al. 2006;
Globus et al. 2014). This non-force-free model is adapted to describe
the spine jet close to its polar axis. The Chantry et al. (2018) model
was built without neglecting the light cylinder radius and allowed to
define a magnetic collimation criterion.

In steady, axisymmetric and ideal MHD, the mass flux is a
conserved quantity along the magnetic flux tubes. Material slides
along magnetic flux tubes. Thus to have a jet one needs to have mass
injection within the flow (see the upper part of Fig. 1). Therefore,
sufficiently close to the system axis, magnetic flux tubes should be
necessarily anchored on to the black hole horizon. Therefore, the
only way to obtain an outflow on such tubes is to inject mass at some
location above the horizon. The main process capable of mass loading
is the creation of electron—positron pairs. Levinson & Rieger (2011)
estimate the amount of pairs produced from the hard photons emitted
by a radiatively inefficient accretion disc. The authors conclude that
the disc could not produce enough pairs to obtain the necessary
Goldreich—Julian charge density in the black hole magnetosphere
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Figure 1. Schematic representation of the inflow/outflow configuration in
the poloidal plane. The black surface corresponds to the black hole horizon
and the light grey-shaded region to the ergo-region. The blue lines correspond
to the magnetic field lines anchored on the black hole horizon and reaching
infinity, while arrows indicate the fluid velocity direction. The green lines
correspond to those lines of the black hole magnetosphere that link the disc
to the black hole. The magenta lines and arrow correspond to the magnetic
field line anchored in the disc and reaching infinity. The blurred blue zone
corresponds to the region, where we expect that pair creation is efficient.
The red zone corresponds to the disc and the blurred red zones correspond
to the accretion column. The dashed blue line corresponds to the stagnation
surface, and the green dotted line to the slow-magneto-sonic transition, the
magenta dashed line corresponds to the Alfvénic transition. The black line
corresponds to the position of the inner and outer light cylinders.

(Hirotani & Pu 2016 and references therein). Additionally, because
of this low charge density, an electric gap forms, accelerating the
particles along the flow. Due to an inverse Compton mechanism,
the acceleration goes together with an increase of hard photon
production. This induces the creation of additional pairs. These
gap models have been studied extensively in the literature (Beskin,
Istomin & Par’ev 1992; Hirotani & Okamoto 1998; Hirotani et al.
2016; Hirotani & Pu 2016; Levinson & Segev 2017). In particle-in-
cell simulations (Crinquand et al. 2021), the magnetic reconnection
on the equatorial plane and the formation of an intermittent spark
gap lead to bursts of pair creation near the inner light cylinder.
During these bursts, the density of pairs can reach values more than
a thousand times the Goldreich—Julian density.

The extraction of rotational energy from a central supermassive
black hole is a mechanism suspected to play a dominant role in the
formation of flows around it. Those energy extraction mechanisms
are not limited a priori to the Penrose, or the Blandford—Znajek
processes. One can generalize the problem of energy extraction by
studying directly the Noether currents associated with the energy and
angular momentum, as explained in Lasota et al. (2014). It allows us
to study the interactions between the black hole and the surrounding
hydromagnetic field. We recall that the spine jet is launched from the
vicinity of the black hole magnetosphere around the rotation axis. The
source of the spine jet energy can be the injection of matter/energy
(pair creation, flow of energy in the magnetosphere, or any other
mechanism), or the extraction of rotational energy from the black
hole. The outflow starts at some stagnation radius where the poloidal
velocity is zero, to reach a large distance and the inflow starts also
at the same stagnation radius to fall into the black hole horizon (see
Fig. 1).

Camenzind (1986), Takahashi et al. (1990), and Hirotani et al.
(1992) developed a general formalism, allowing to solve the lon-
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gitudinal fluid motion in a Kerr metric for a steady, axisymmetric,
and magnetized flow in ideal MHD. This method requires that the
geometry of the poloidal field lines is given in order to solve the
Bernoulli equation along the poloidal magnetic lines. Another way to
deduce the field line shape is to solve the transverse Grad—Shafranov
equation (see Nitta, Takahashi & Tomimatsu 1991; Beskin & Par’ev
1993; Gourgoulhon et al. 2011). For a fixed geometry of the magnetic
field lines, several approaches have been used to match the inflow
and outflow solutions with loading terms localized on the stagnation
surface (Globus & Levinson 2013; Pu et al. 2015; Pu & Takahashi
2020). For example, Huang et al. (2019) pursue this inflow—outflow
matching approach by using the numerical methods introduced by
Nathanail & Contopoulos (2014) to solve the Grad—Shafranov equa-
tion in the force-free approximation. Globus & Levinson (2014) used
the Camenzind (1986) formalism with loading terms, controlling the
magnitude of the bulk mass flux.

In this paper, we use the meridionally self-similar model developed
in Chantry et al. (2018) to create inflow—outflow solutions. By using
a non-force-free model, we aim at producing a spine jet with a non-
zero density on the polar axis. At the interface between the inflow and
the outflow, we need to include loading terms and are able to produce
inflow solutions by reversing the flow direction. Our goal is to build
complete solutions of inflow/outflow to reproduce a spine-jet with a
given isorotation frequency for an AGN with a given black hole mass,
spin, and magnetic field at a few gravitational radii above the black
hole. In Section 1, we summarize the Chantry et al. (2018) model and
realize an extension of the MHD equations for an ideal plasma in Kerr
metric adding mass loading terms. This extension is written using
the 3 4 1 formalism and some general results of axisymmetric and
steady configuration are deduced. In Section 2, we solve the MHD
equations for the inflow and outflow parts, satisfying the matching
conditions at the stagnation surface, where the loading of matter
occurs in a thin layer. This allows us to correctly quantify the energy
and angular momentum exchanges between the rotating black hole
and the magnetized flow surrounding it, without assuming force-free
condition. Hence, we may deduce the mass, angular momentum, and
energy injected at the stagnation surface. In Section 3, we analyse
three inflow/outflow solutions. In particular, we discuss the role of
the magnitude of the mass injection rate, the kinetic and dynamical
behaviour of the flows, as well as the interaction between the black
hole and the MHD fields.

1 INFLOW AND OUTFLOW VIA PAIR
INJECTION

We model the problem under the assumptions of stationarity and
axisymmetry. This means that all physical quantities in our study
are invariant with time and along the azimuthal coordinate. We
also consider an ideal relativistic plasma in which takes place pair
creation.

1.1 Space-time geometry

The Kerr space—time is the simplest geometrical frame, allowing to
study energetic and angular momentum exchanges between black
holes and magnetized fluids. Choosing a Kerr space—time implies
that we neglect the self-gravitation of the energy—momentum tensor
field (plasma + radiation 4 electromagnetic fields). It is a reasonable
assumption, because a perturbation to the Kerr metric due to the self-
gravitation of the energy-momentum field is negligible compared to
the Kerr geometry.

MNRAS 515, 3796-3817 (2022)

Let (M; g) be the Kerr manifold using the usual Boyer-Lindquist
map coordinates. Its line element is

2A 2 2
ds? = — P 2242 4 2 (d(p - gcdt) + a2 4 0202, ()
2 c A
where
A=rr+ r§a2 —2r,r, 2=+ rﬁaz)2 — rgazA sin% @,
b 2rlacr
p?=r’4ria*cos’d, w=—sinf, o= ;2 ,
. Jc gM . . .
witha = —— and r, = — the dimensionless black hole spin (0
M ‘ c?

< a < 1) and the gravitational radius, respectively. We note that 7
is the angular momentum of the massive central object and M its
mass. Also note that @ corresponds to the usual Boyer-Lindquist
cylindrical coordinate, i.e. 2w @ is the perimeter of the circle centred
on the axis at constant 7, 6, and r.

A Kerr space-time has two Killing vectors, n = (1/c)d; and
& = 9, associated with stationarity and axisymmetry of this space—
time. For a circular space—time as the Kerr space—time (Gourgoulhon
2010), the fiducial observer is called the zero-angular-momentum
observer (ZAMO). The ZAMO 4-velocity of the Kerr space—time

d
isn=—(n— ), where h = bl is the lapse function converting

Boyer—Lindquist time to ZAMO proper time,

2rgr v 172 pf
h=(1- po + BB, =5 A, 2)

and B = —faq, is the shift vector of the ZAMO, where w is the
¢

ZAMO shift pulsation. The ZAMO frame, the conventions and
notations are introduced in Chantry et al. (2018).

1.2 Overview of the self-similar MHD model in Kerr metric

We built a semi-analytical magnetohydrodynamic model (MHD)
based on a self-similar separation of the variables, in Kerr metric.
This model was already presented in Chantry et al. (2018) and is
an extension of a similar one developed in Schwarzschild metric
(Meliani et al. 2006). After recalling the assumptions, we summarize
briefly what has been presented in Chantry et al. (2018).

The Alfvén surface is spherical and we note with the subscript
* the value of quantities at the intersection of the polar axis and
the Alfvén surface. On the polar axis, the Alfvén radius is noted by
r., while we fix the typical magnetic flux scale B,r2/2 where B, is
the radial magnetic field value. We assume that the dimensionless
magnetic flux is equal to & = f(r) x sin 2@, where fis an unknown
function to be determined. The cylindrical radius on a flux tube
is then equal to w (e, ) = G(r)/a = Ja/ayw (g, r). The shape
of the flux tube set is simply deduced from a radial function or
from another flux tube. Another consequence is that the magnetic
flux can be used as the second variable in our self-similar approach
instead of the colatitude. Then we assume a variable separation for
the poloidal Alfvén Mach number M,y = M(r)m () and for the
pressure P = Py + (B2/87)I1(r)m () (P being a constant value).
The continuity conditions on the Alfvén surface lead to determine
the expansion of m; () to first order and of the isorotation frequency
Q2 to zeroth order. Then, it is possible to expand at order two in sin 6
the Euler equation.

Two parameters (u and /) are derived from the physical properties
of the Kerr black hole, the gravitational radius r, and its spin a. These
parameters p and [ are normalized relatively to the radius r, of the
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Alfvén surface,

2
po e e B )
T Ty 2
Another parameter (v) allows to link the gravitational potential to
the flow kinetics, and is defined as the ratio of the escape speed to

the flow speed at the Alfvén surface on the polar axis,

1 [26M

Vi T

)

V.. the radial component of the flow on the polar axis at the Alfvén
surface, will be negative for an inflow and positive for an outflow.

Some functions have to be expanded in a limited «-based de-
velopment and other parameters are used for it. Without matter
injection, the model assumptions lead to a conservation of mass
flux par unit of magnetic flux, of angular momentum flux per unit
of magnetic flux and energy integrals. Those quantities depend only
on the dimensionless magnetic flux. The Euler equation has to be
expanded to the second order in colatitude. It requires the following
form for the square of the mass-to-magnetic flux, W3 o 1 + da.
LW, is the angular momentum per unit of magnetic flux and is
also conserved along the flow. Then, we introduce the parameter A
to write LW, o Ac. Note that the toroidal velocity and magnetic
field are written in the form Ag(r)sin6. The last motion integral
gives the total specific energy £ (see equations 24 and 60 in
Chantry et al. 2018). We need to take only the first-order term
in an expansion of £ on «, £ « (1 4+ ej) with e¢; a parameter
describing deviations from a spherical symmetry energy in this
first-order scheme. Similarly to this last constant of motion, we
applied the same choice for the pressure. In the 7; function, we
introduced a parameter x measuring how the pressure evolves with
the magnetic flux, i.e. deviates from a spherically symmetric value. ¥
> () means an underpressurized jet, while ¥ < 0 an over pressurized
jet at the launching region. The four final ordinary differential
equations are presented in appendix C of Chantry et al. (2018). A
solution of these equations that crosses the different critical surfaces
is fully determined by an additional parameter Il, quantifying
the dimensionless pressure at the Alfvén surface and on the polar
axis.

Finally, the MHD field solutions of this model are determined
from eight model parameters A, «, 8, i, v, I, e;, and I1,.

For the Newtonian case (x = 0 and / = 0), or in a non-rotating
black hole [ = 0, in the ordinary differential equations system v
and A appear only with a square, and thus the system is invariant
under the transformation v<— — v or A<— — A. This property
is due to the symmetry of ideal, axisymmetric and stationary
MHD equations in Newtonian gravity or around a Schwarzschild
black hole. Nevertheless, in Kerr configuration the Lense-Thirring
term breaks the previous symmetry. The system of equations for
our model (equations C.3 and C.4 of Chantry et al. 2018) is
invariant under sign change preserving the product Av/. Then
the model system of equations is invariant under the following
transformations:

A <— —A | «— —I | «— —I
V<— —v V<— —V or AL<«— =1 . (5
| «— | A<— A vV <—> Vv

This discussion on the invariance of ideal, axisymmetric and station-
ary MHD equations around Kerr black hole is postponed to a future
work.

A careful look of the self-similar model developed in Chantry et al.
(2018) shows that it produces inflow and outflow solutions, starting

Meridionally self-similar double flows 3799

from the radius where the poloidal velocity of the flow is zero. This
radius defines the stagnation radius and the stagnation sphere.

We build inflow solution by taking negative values of v. Taking v
negative means that we allow the value of V, to be negative. Thus, it
becomes the radial component of velocity at the intersection of the
Alfvén surface and the axis. However, v negative is not sufficient to
distinguish an inflow solution from an outflow one. A solution can
be interpreted as a physical inflow only if it accelerates from the
stagnation surface towards the black hole horizon, crossing first the
slow magnetosonic surface and then the Alfvén/fast magnetosonic
surface before reaching the horizon.

In this framework, we can build a combination of outflow and
inflow solutions in order to describe the jet from the black hole up to
large distances. For that purpose, we need to consider the physics of
magnetized fluid with particle injection.

1.3 Particle number continuity

Here, we consider a scenario where highly energetic photons or
relativistic neutrinos, which are in the very close black hole vicinity,
load the magnetosphere with electron—positron plasma via the
mechanism of pair creation,

y+ry=erte_, (6)

v+ =e;+e_. (7)

In the following, we refer to neutrinos or photons as the radiative
component and index quantities linked to these with the subscript ,.. In
amedium composed of radiation and leptonic plasma, the mechanism
of pair creation implies a modified expression of the particle number
continuity equation. For electrons and positrons, equations (6) and
(7) we get, respectively,

1 84 ncrealed

T ey, st

4, created
1 &*ng

—-———,V.n_u_
¢ 83V, 8ty

Vonsu, = 3)
where n_ (n4) is the electron (positron) number density, z_ (u.) is
the four velocity of the electron (positron) fluid, §*V,_ (or §*°V,,)
is the elementary volume in the reference frame of the electron
(positron) fluid, 874 (§7_) is the positron (electron) fluid proper time,
and §*pereded (§*p<reated) s the total injection of electrons (positrons)
due to photon or neutrino annihilation in the respective elementary
time and volume.

For each process, equation (6) or (equation 7), the number of
created electrons is equal to the number of created positrons, which is
also equal to the number of disappearing photons for the first process,
equation (6) or neutrinos for the second one, equation (7). This
exchange of different components implies that the electron—positron
fluid component pou=m, (n,u, + n_u_) is no longer conserved,

3+1 formalism

V.(pou+m,N,)=0"= """V .pohyV, = chk,, 9)

where V indicates the covariant derivative on the spatial ¥, manifold,
N, is the Feynman number 4-current of radiative component and p
is the mass density in the electron—positron fluid reference frame.
The second equation derives from the steadiness and axisymmetry
assumptions.

84mcrealed
3Vud1,
to the rate of the created electron-positron mass per unit volume
measured in the fluid reference frame and per fluid proper time unit.
83V, is the elementary volume in the fluid reference frame and 7,
is the elementary proper time.

The term ck,, = in equations (8) and (9) corresponds

MNRAS 515, 3796-3817 (2022)
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Then, chk,, is the rate of created electron—positron mass per unit
volume measured by the ZAMO and per unit time in the Boyer—
Lindquist coordinates. We have

54 mcreated

53VZAM08Z ’

We remind that 8V, = y83Vzamo0, 6T = 874 and 81 = hét.

chk, = —cm,hV -N, = (10)

1.4 4-current density and Maxwell’s equations

For both pair creation processes, the initial particles are not charged,
so the source terms of the electromagnetic field j are due only
to the electron-positron plasma, j = e (nyu, —n_u_). Hence, the
3 + 1 decomposition of Maxwell’s equations in a Kerr space-time
maintains their ordinary expressions,

V. E =4mnp,, 1n
V.-B=0, (12)
w
Vx@E):(B-V;)w%, (13)
Vx@Bﬁ:ﬁ%J—@?Vg)w%, (14)
c C

where p, is the electric charge density and J the charged current
measure by the ZAMO, given by the 3 + 1 decomposition of the
4-current density j = p.n + J. We also assume infinite electrical
conductivity,

V><B_
=

E +

0. 15)

1.5 Euler’s equation and effective enthalpy equation

The momentum and the energy equations, respectively, the Euler’s
equation and the first law of thermodynamics, are obtained using the
3 + 1 decomposition of the energy—momentum conservation. Here,
our energy—momentum tensor is composed of the electromagnetic
part T'gy, the electron—positron part 7T's. and the radiative part T,.
We note that Tyiyp = Tr + Tem is the MHD part of the energy—
momentum tensor and k= —V - T, =V - Tyup is the 4-force
exerted by radiation on the fluid of pairs. It may also include Compton
or Inverse-Compton forces due to pair creation. We will focus our
attention on the motion and dynamics of the electron—positron fluid.
We make the additional assumption that the distribution function
of the considered electron—positron plasma (my + m_)f = m_f, +
m_f_ is isotropic for the particle 4-velocities in the fluid reference
frame. With these assumptions the energy—momentum of the pair
plasma is,

T = pokc’u®@u + Pg, (16)

where P is an effective pressure. Here, the effective enthalpy per unit
mass in the fluid frame &, which plays a role in the fluid inertia,
differs from that obtained for an ideal fluid in thermodynamical
equilibrium at a relativistic temperature. We have £.,(®) where
©® = P/pyc® the dimensionless temperature, given by Synge law (see
Synge 1957; Chernikov 1963; Marle 1969) or the Taub—Matthews
equation of state (see Mathews 1971). The difference Se/c> = & —
&.q(O) is positive, where the wings of the distribution function are
larger than those of thermodynamics equilibrium fluid and negative
in the reverse case. For more details, see part 3.3.2 of Chantry
(2018).

MNRAS 515, 3796-3817 (2022)

From the previous equations, we deduce the 3 + 1 decomposition,

woV?

poy (V- V)(YEV) + poéy? [PV Inh +
J x B

C

Vhhw|+ VP

= pE +

+k-nm)n+k—yéck,V, a7

where V is the speed of the electron—positron fluid measured by
the ZAMO. Note that the mechanism of pair creation produces
forces on the electron—positron fluid. One force comes from the
direct effect of the radiative components, the second one comes from
the variation of the inertia due to the transformation. In Huang et al.
(2019), one assumption is added that in our notations is written as
k = ¢*(V - pou) u. This assumption leads to some differences in the
treatment of the matching conditions compared to ours, as we will
see below.

The projection of the energy—momentum conservation equa-
tion along the electron—positron fluid 4-velocity in the comoving
frame gives,

mm%-vﬂahz(w,v)P—fka, (18)

where the p subscript means poloidal projection of a vector field.

.. C .
The additional term —k - u corresponds to the way the injection of

14
pairs contributes to the effective internal enthalpy.

1.6 Integrals of motion

The first integrals derived from Maxwell equations in Chantry et al.
(2018) are still valid here because those equations are not modified by
the introduction of pair production. Therefore, due to axisymmetry,
magnetic flux conservation can be written,

_ VA xe,

B, = ——*. (19)

with A the magnetic flux function and 9,A = 0. Faraday’s induction
law (equation 13) leads immediately to the existence of an electrical

potential @, such that the electric field is written as hE = gVA -

V®. Axisymmetry also implies that 9,® = 0. From the symcmetries
and Ohm’s law for infinite electrical conductivity (equation 15), we
deduce that the poloidal velocity and the poloidal magnetic field are
aligned. Hence, there is a function W4 such that,

Yy B, =4mpohyV, . (20)

Inserting this result into equation (9), we can interpret W, as the
mass flux per unit magnetic flux on a given magnetic flux tube.
Combining the continuity equation, equation (9), the divergence-
free property of the magnetic field, equation (12) together with the
previous equation, we get

B, VW, = dnchk, . @1

which governs how the mass flux per unit of magnetic flux W, varies
along a poloidal field line. Together with Ohm’s law, equation (15),
we get

1 . W,B?
Vo= |w+ — (hV? ——L— )| VA
@ 4mtpoy

The electrical potential @ is then a function of A, ® = $(A). We
may introduce the so-called frequency of isorotation €2, which is a
function of the magnetic flux,

do Q-
QA)=c o with E =~ VA. (22)
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We introduce the poloidal Mach number,
V)2 Amhipogy?V,t  EW,P

M3, =h*—2 = (23)
. V/Zlf sz

B 4mpo

Following Lasota et al. (2014), we calculate Noether’s current
densities associated with the two space—time Killing vectors,

Myup = Twnp(., §), (24)

Pyp = —Twpp(.. 1) . (25)

Myup (Pyup) corresponds, respectively, to the Noether’s current
density, also called flux, associated with the symmetry generator &
(). In what follows, we will refer to these quantities as the Noether’s
angular momentum and energy current or flux of the MHD part of
the energy—momentum tensor.

From equation (16), the previous equation and the usual 3 + 1
decomposition of the electromagnetic energy—momentum tensor
allow to get the poloidal component of these Noether’s current
densities,

WL
hMyup,p = ame Beo (26)
w,E
hPMHD p— Amte p> (27)
where
. hB?
L=w (yEV“’ - —) , (28)
Wy
wwV? hoQ .
E=yEh (1 - B? 29
y&he < t e ) v, 2 (29)

are the usual specific angular momentum and specific energy. Using
k = V - Tyyp and the Killing vector definition, we get

V- (hMyupy) = hk £ (30)
\' (hPMHD,p) = —hk'ﬂ, (31)
which leads to

B, -V (V,L) = 4mh(k - &), (32)
B, V(W& = —4nch(k-n). (33)

Those equations describe how the angular momentum and energy
fluxes of the MHD fields evolve along a poloidal field line. Thus
the mass, the angular momentum and the energy of the fluid plus
the electromagnetic fields are loaded by the mechanism of pair
creation. Therefore, the isorotational function remains a constant
along a poloidal field line.

1.7 Energetic balance on the black hole horizon

It is well known that a Kerr black hole can transfer part of its
rotational energy to its environment. The processes of Penrose &
Floyd (1971) and Blandford & Znajek (1977) explain how a Kerr
black hole may transfer part of its rotational energy to particles, or
the electromagnetic field. Penrose’s process involves particles and
Blandford—Znajek’s process force-free MHD fields obtained by a
perturbation method, expanding the spin for radial or paraboloidal
fields. In fact, the black hole may transfer angular momentum and
rotational energy to the plasma, as explained and discussed in Lasota
et al. (2014).

In our configuration, we consider the interaction between the non
force-free magnetized fluid and the black hole. We neglect how the
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Figure 2. Schematic representation of two neighbouring flux tubes 74 and
Ta+aa anchored in the black hole horizon at the ry radius. The stagnation
surface is defined as the surface with null poloidal speed (V, = 0). It is the
red disc labelled with rg,. Np and P, are the poloidal flux of particle and the
poloidal Noether’s energy flux in the outflow and inflow.

radiation exchanges energy and angular momentum with the Kerr
black hole. The exchange of rotational energy of angular momentum
is determined by the value of the T'yyp tensor at the horizon of the
black hole. As in Lasota et al. (2014), we can integrate Noether’s flux
conservation equations (30)—(31), or the equivalent system, but this
time in the volume of space—time between two neighbouring flux
tubes 74 and 74,44 anchored on the horizon of the black hole (see
Fig. 2). This integration is performed for radii between ry and r > ry
and for a time interval between ¢ and 7 4 dz. In fact, we could directly
integrate equation (21) and equations (32)—(33) along a poloidal field
line anchored into the black hole (see Fig. 2):

M)t / " dmhck (34)
da — " o 1By Il |y
¢ drhk - &
WyL =Wy gLy (A)+ TR —— de, (35)
0 || BP || A=cst
¢ dmthek - g
WA =Wy p€n (A) —/ —_—— (36)
0 || BP || A=cst

These equations are easily interpreted, since the mass, the angular
momentum, and the energy fluxes, per unit magnetic flux, at a given
point of a poloidal field line are composed of the contribution of the
black hole and the injection of mass, angular momentum and energy,
respectively, due to the radiation.

Horizon is a one-way hypersurface, then W, 5 < 0. Energy is
extracted from the black hole if W4 ;€ (A) > 0, which is equivalent
to &y < 0. The black horizon absorbs negative energy per unit mass
Ey (see also Toma & Takahara 2016).

Then, following Christodoulou (1970) and Thorne, Carter &
Hartle (1987), the black hole physical parameters evolve in time
according to

ry =Ty, d* M. c?

2y drda =~ (Yanlu —onVanln) . (37)
% =—-Wauly, (38)
d:tn(;[;z = ~Vantu. (39)
where M, is the irreducible mass of the black hole,

Y (e w“

2
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Here, we apply the formulation given by Thorne et al. (1987) to link
the Noether’s energy and angular momentum fluxes on the horizon
to the black hole parameters.

In order to interpret physically the energy, it is useful to decompose
the energy flux in its different physical contributions,

vé )
OV —hwoB?
hc?

= Op. + Ppum. (41

O

W, E = WupEhc? (1 +

The first term is the Noether energy flux of the fluid ®p.. The
Noether Poynting flux ®gy corresponds to the electromagnetic
energy flux. The fluid term ®p is composed of two terms. The
first term ®y = Wy Ehc? (negative on the black hole horizon)
contains the absorption by the black hole of pure massive energy,
plus the internal and the kinetic energy of the fluid. We must have
y&—> + 00 on the horizon in order to let hy & finite and non-zero.
The second term is ®;p = W yEwwV? that we call the Lense—
Thirring term. It can be positive. Its sign will depend on the sign of
V%. Note also that the pair fluid contribution ®g can be written as

Qp = —WaEc () . (42)

As a consequence, . can be positive in an inflow (V4 < 0), only
if n is not a time-like future oriented vector, that is to say in the
ergo-region.

Blandford & Znajek (1977) show that under certain conditions
the Poynting flux can be transported to infinity, meaning that the
electromagnetic field is fed by the rotation energy of the Kerr black
hole. We say that the electromagnetic extraction process is active
where ®py|y > 0. We also say that the pair fluid process is active,
where ®gp |y = Pml|y + Prrly > 0.

The null energy condition applying to T yup on the horizon (see
Lasota et al. 2014) writes

q)g|H < \I/AL|Ha)H, (43)

which implies the impossibility of generalized energy extraction
(®gly > 0) for non-rotating black hole. With regard to equa-
tion (37), this condition implies an increase of the irreducible mass,
which also implies an increase of the black hole entropy.

We can pursue the calculation of this decomposition, by inverting
the motion integrals system on the black hole horizon. For the details
of the inversion procedure, see Chantry et al. (2018). The result on
the horizon is

2
MAlf’H

Mf\lf’H + @H(Q — wy)?/c?

Py, = - (WaLoy — WiE), (44)

®1|, = Valoy
w%,wH(Q — a)H)/c2
M/%lt‘|H + ZUIZJ(Q —wy)?/c?
wf,Q(a)H — Q)/c2

My, + wHQ - )/

(\I]ALLUH - \IJAS), (45)

(DEM H (\IJAL(J)H — \I»’Ag) N (46)

where each quantity is evaluated on the black hole horizon.

We focus our attention on a generic field line. Let us now consider
the case where injection on this line is entirely located on a point
r = r; > ry. We also suppose that injection on this line is sufficient
to have both an inflow (¥, < O for r < r;), and an outflow (W, > 0
for r > r). On this line, there is no injection k,,, k = 0 except at the
injection point (the black dot in the right part of Fig. 3). We should

now look at the conditions that the extraction process imposes on the
position of the starting point, which is the injection point at 7;.

MNRAS 515, 3796-3817 (2022)

rr

Figure 3. Representation of a typical poloidal velocity and magnetic field
line. The injection of pairs is supposed to be located on the black dot outside
the ergo-sphere, i.e. r; > rg. Without a magnetic field, energy extraction is
impossible, if the injection point is outside the ergo-region.

In the case of a pure pair fluid, without electromagnetic field,
®gy = 0, on the section of the poloidal field line going from the
black hole to the location of injection (ry < r < ry) (see Fig. 3),
we have W, = Cst < 0. In addition, equations (36) and (41) imply
that for all r € Jry; r; [ we have W, E(r) = Op(r) = Cst. In this
case, the fluid extraction process cannot be active if the injection
is located outside of the ergo-sphere. Indeed, if the injection starts
outside of the ergo-sphere (r; > rg), then for a point outside of the
ergo-sphere and below the injection point (rg < r < r1) ®PpLpy =
Dp(r) = —WaEc? (- ) < 0. In this zone, —W,(r) > 0 (r < r7)
and (u - ) < 0 because outside of the ergo-sphere 7 is time-like and
future oriented. This is equivalent to the necessity in the Penrose
process to get the fission of the particles inside the ergo-sphere.

In the MHD case, we can have extraction via a process of fluid
extraction and have a point of injection outside of the ergo-sphere
because we can have exchange between the ideal fluid energy flux
and the Poynting flux. Thus, in this case, the Poynting flux increases
as one moves out of the ergo-sphere while the ideal fluid flux became
positive inside the ergo-sphere, being negative outside of the ergo-
sphere. Equation (46) implies that the electromagnetic process is
active where 0 < Q < wpy, which is a result already obtained by
Blandford & Znajek (1977).

2 THE MODEL ON THE BLACK HOLE
HORIZON AND ON THE PAIR CREATION
LAYER

2.1 Inflow/outflow model with a thin layer

In order to describe the MHD field, from horizon to infinite, we need
to use source of material to match under some continuity conditions
(matching conditions) an inflow to an outflow. We propose here to
link an outflow and an inflow solutions of the self-similar model,
which have the same stagnation radius, with a thin injection (pair
creation or other processes) layer at the level of the stagnation surface.

Indeed, this means that the pair creation terms k,, and k are null
except at the stagnation surface of the solution (a sphere). Similar
kind of double flow are exposed in Globus & Levinson (2013) or
Huang et al. (2019). In the following, we will use the notations
adopted by Chantry et al. (2018). We also use i, and o subscripts
to refer to a quantity calculated just down the stagnation radius (for
inflow) and just up the stagnation radius (for outflow).
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The electromagnetic field source is only due to the electron—
positron 4-current. Nevertheless, the creation of pairs or other
processes on this thin layer can be at the origin of current and
charge density in the layer, which will imply the discontinuity of
some components of the electromagnetic fields. The electromagnetic
surface sources are then located on the stagnation sphere.

2.2 Matching conditions for both flows

First, let us consider some thin layer at the stagnation surface
position (r € [rya — 55 e + 4 ]), where the pairs are created. The
Maxwell-Flux equation (12), the Maxwell-Faraday equation (13),
and the assumptions of axisymmetry and ideality (equation 15)
ensure the continuity of the magnetic flux and the isorotation function
along the field line of magnetic field

B, VA= 0 [A (rga, )1 = 0
Ar—0

=Y (47)
Bp .V = 0 [ (Ftas 9)]?\1J =0

We require the same stagnation radius for both the inflow and the
outflow, assuming Ar — 0. Thus, the two flows coincide on the
stagnation surface

out __ _in __
Tsta = Tsta = Tsta - (48)

The stagnation surface is spherical. This induces a continuity of
the radial magnetic field component B’ and, as a consequence, of
dpA. Thus, the integration of the Maxwell-Flux equation (12) on
a infinitesimal volume around the stagnation surface leads that the
magnetic field component B’ perpendicular to this surface, has to
be continuous. It is equivalent to the continuity of dgA,

(06 A (rsa, O] = 0. (49)

Matching inflow and outflow solutions of the meridional self-similar
model (Chantry et al. 2018), the continuity of dyA is directly obtained
from the continuity of the magnetic flux (the first line of equation 47)
and from,

Ain/out finjour(R) sin® .. (50)

Here, R corresponds to the dimensionless radius R = r/r,, where r,
is the Alfvén radius. Finally, equation (49) does not add a matching
constraint, since it is equivalent to the continuity of the magnetic
field component B” across the stagnation layer.

In the same way, the integration of Maxwell-Faraday equation (13)
on a small surface delimited by a small loop, using the continuity
of the magnetic flux, induces that the latitudinal electric field
component, E?, is also continuous across the stagnation layer. We
may have a discontinuity of the derivative d,A across the stagnation
layer, and this jump is due to the toroidal surface current flux, J¢, and
the surface charge density, .. After integrating the Maxwell-Gauss
equation (11) and the Maxwell-Ampere equation (14), we get

Q

—w
_m [0-A (7sta s 9)]?,?[ = 4no, ,
p

Ain/out =

(51

X Ot = A7
wh, 8 n c o’

. rstatAr/2 Sk
dimy Sy I

where the surface current is defined by J, § =
with k =6 or ¢.

As in Chantry et al. (2018), the equations (22), (23), (28), and (29)
can be reversed in order to get the expression of the B component as
a function of the different physical quantities. The toroidal magnetic
field is also linked to the intensity of charges, which cross the surface

inside a circle C,p ={M € X | (M) =0, r(M) = r}. In order to

Meridionally self-similar double flows 3803

calculate, the intensity of charges across this surface per unit Boyer—
Lindquist time #, we need to calculate the flux of 4 J across it. We use
h J instead of J because the current flux J is calculated in the ZAMO
proper time. Thus, we are able to show, in the frame of our assump-
tions, that I(r,0) = fD hJ -dS = "Z5° Under axisymmetric
and stationarity condmon the poloidal electromagnetlc Noether’s
flux can be expressed as Py = — wﬁ‘jw B, = 2;}'9( B,.

The matching conditions induced by pos51ble electromagnetic
surface sources do not impose the continuity of the global current
intensity / across the stagnation surface. The current is also propor-
tional to the Poynting flux per unit of magnetic flux gy = —2%.
The global current can be expressed from the inversion of the motion
integrals as it has been done in Chantry et al. (2018), using the
cylindrical radius per unit of light cylinder radius x = % For
the current, we get

21 M2, + 220G

= oWl |l

¢ M} —h2 (1 —x?)
\I/AS o2 (Q — w)

52
= M3y — 6

It implies that the continuity of the global current requires another
constraint on how the injected angular momentum AW,L is related
to the injected energy AW, E. Since there is no physical reason to
have this requirement, our way of matching can support to have a
discontinuity in the global current.

Equations (21), (32), and (33) imply the discontinuity of W,, W, L
and W, & across the stagnation layer. In other words, the r.h.s of
those three equations are zero except on to the stagnation surface
itself where they are equal to a Dirac delta function. Thus, from
equation (52), we also get a discontinuity of the current intensity 7,
which is equivalent to a discontinuity of B?, becoming a discontinuity
of the Poynting flux. It implies the presence of some meridional
surface current J¢.

A paradox seems to appear because charges may accumulate
somewhere on the stagnation surface due to the existence of non
null J¢. To solve it, we use a schematic view of constant intensity /
tube in the poloidal surface (see Fig. 4).

In our assumptions Ar — 0 and we get a discontinuity of the
intensity function, which implies a discontinuity of #J". It is linked
to the variation with 0 of the surface current Jf . Using the charge
conservation, we can calculate the jump of the radial current at a
co-latitude 6,

19
hJ} (rga) = hJh (red) + ——— (p sin6.J ) (53)

¥ sin6 96
Integrating this equation in order to let appear the discontinuity of
the current function, we get

Iin = Lo + 2700 (rga, ) sin 0.7 . (54)

For each component of the flow, the parameters of the physical
quantities are normalized to their own Alfvén radius. Thus, we need
to adjust the two components of the flows, such that they correspond
to ablack hole of a given mass and spin. From the previous discussion,
we also get a continuity of the isorotation function and the radial
magnetic field component. Then, the matching conditions write

[rg] out

The first three conditions combined with the assumption written
in equation (48) lead to the three following jump conditions for the

0 [a]out _ O [Q]Dut _ O [Bf]om =0. (55)

m
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parameters:

|:&- out _ 0’

ll' <4 1m

l-oul

{; L0 (56)

<41n

M3 AM3/2 M - out
S+ 1= =0.

2(1+12) v L+

We use those three conditions for numerical matching. Note that
the third condition ensures the continuity of the isorotation function
across the stagnation surface.

The last equation of equations (55) set and the equation (48)
provide for the two flows the ratio between the Alfvén radii and
the one between the magnetic field values on the axis at the Alfvén
surfaces,:

in
e  Mout

r ,(() ue Min
Bin _ ( Min )2 fout.
B:)ul Mout fin
The second equation ensures the continuity of the magnetic flux. It
imposes the ratio between BI™ and B°“* without bringing any extra
constraint. As already seen above, in our model the continuity of the
radial magnetic field component written in equation (49) is directly
derived from the continuity of the magnetic flux.

Here, we do not impose continuity of the Poynting flux between
the inflow and the outflow because pair creation can induce the

production of Poynting flux. Discontinuity of the Poynting flux is
equivalent to discontinuity of the total current intensity / (see Fig. 4).

(57)

2.3 Energetic balance at the stagnation surface

Once, we have the inflow and outflow solutions from our semi-
analytical model, which satisfy the system of equations (56), we
deduce the mass injection rate k,, of the pair creation and the 4-
force k of the radiation field on the fluid of pairs. This includes the
Compton, inverse Compton and pair creation. These terms take the
following forms:

km = km,sta (0)(S (r - rsta) s (58)

k= ksla @)6(r — rya) - (59)

The integration on the stagnation surface of equations (21), (32),
and (33) gives the variation of the mass, angular momentum, and
energy fluxes. On the stagnation surface, we get the following system:

out in 47TCth
\IJA (A) = “IIA (A) + Tkm,sm (gsta (A)) ) (60)
out in 47Thh’
(WA L)™ (A) = (WA L)" (A) + B & kya (0sa (A)) (61)
. 4richh,
(WAE)™ (A) = (W4E)™ (A) — ”;; Nk O (A) . (62)

In the outflow, the mass flux is positive, i.e. directed outwards,
whereas in the inflow, it is negative, i.e. directed inwards. Applying
the first condition to equation (60) implies that for each colatitude,
we have ‘”;—;’hkm,m 0 (A)) > (—\Il;“ (A)), which means that the rate
of pair creation needs to be sufficient to reverse the mass flux. The
mass, angular momentum, and energy injected per unit time and per
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>
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Figure 4. The meridional surface current jf in the stagnation layer of
thickness Ar creates a discontinuity of the global current function /.

unit dimensionless magnetic flux «, evaluated for the inflow solution,
are given by the following expressions:

EMu 4 (Go\ ¥ [ G e
Inj _ Ml,;j . ( out) [C OAl _ < 2m ) ¢ ;\:| , (63)
drda Mout Gin B*u Goul Byl(

g _ .8 (Gm)“ [wx‘“Lm B (uomc%n) ‘PXILin}

drde M How \ Gin Bt 1inGow ) Bitrin
64
d2EInj _ E',,, 4 Gout ¢ WXUIgOth Glzn "Ij,:ngin (65)
drda M2, \ Gi BYc Gow/ Bive |’
with the following constants for the injection:
. r, 2B rlBin? cry?Bin?
MInj = gTv ‘]Inj =-£ ) ’ Elnj = g2 . (66)

To get an order of magnitude for these quantities, we need the black
hole mass and the value of the magnetic field at the Alfvén surface on
the axis for the outflow BX™. For M87 the mass of the supermassive
black hole is My ~ (6.6 £ 0.4) x 109M® (Gebhardt et al. 2011). On
the axis of the M87 jet, Kino et al. (2014) give at the distance of 20r,
a magnetic field of the order of few Gauss, B(20r,) ~ 5 & 4G. In
our model, along the axis B” = B,/G” (see Chantry et al. 2018). We
restrain ourselves to solutions with r, < 20r,. Inarecent publication,
the Event Horizon Telescope Collaboration uses polarized emission
imaging to estimate the magnetic field. They obtain a typical value of
B~ 1-30G in the region near the horizon. They also use a one-zone
isothermal sphere model to estimate the magnitude of the magnetic
field and get ~5 G at 5r,. For solutions with ry, < 5r,, we prefer to
use the last observational constrain to fix the value of B*. Then B"
is calculated using the last equation of equation (57) set.

Since the fluxes are conserved in the inflow along a given magnetic
field line, which crosses the horizon of the black hole, and using
equations (38) and (39), the fluxes can be related to the variations of
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the black hole mass, angular momentum and energy. It writes

2

(WAL (4) = -8 <9H(A)>+ g kB (A) . (67)
d2M h
(WaE)™ (4) = = d‘f @A) — T kB A)) . (69)

Thus, for a line, which crosses the black hole horizon, the flux
at infinity is constituted from the flux given by extraction from the
black hole and the flux given by the photons which are transformed
into pairs.

In the frame of the model proposed by Chantry et al. (2018), the
rate at which energy is extracted from the rotating black hole is

_dEg A )

d[ :/0 \I’AgdA B*ms 2 3/2w(aH,8 61) (69)
with
w(ay,$, er)

2 3ejay  2e 2e;
= U +8ag)? 1+ —= - ) -1+
38 {( +8arn) *ts 55 *5s

3 DOUBLE FLOW SOLUTIONS

3.1 Parameters of three matching solutions

As explained above, a solution of inflow or outflow is fully deter-
mined by eight parameters called the input parameters (A, «, &, v,
I, i, I1,, and e;). They must be fixed in order to solve the ordinary
differential equations system (see appendix C of Chantry et al. 2018).
For the outflow solution, the I1, value is automatically adapted by
lowering its value to the limiting value to avoid oscillations in the
jet. Thus, the non-oscillating outflows are determined by seven input
parameters. Conversely, inflows are determined by eight parameters,
as I1, remains free.

A necessary condition, to extract energy at some colatitude from
the black hole, is to choose negative values of e; for the inflow
solution. In this case, it is possible to inject negative energy (see
equation 60 of Chantry et al. 2018), as long as the black hole accretes
enough magnetic flux. The magnetic flux on the equator of the black
hole horizon must be higher than a minimum threshold value. In
dimensionless form, it writes as ay(0 = 7/2) > —1/e;. In Table 1, we
give the set of input parameters used for building three inflow/outflow
solutions of the meridionally self-similar model.

Meridionally self-similar double flows 3805

Table 2. Output parameters for the three solutions. For each of them, the
first line lists the parameters for the inflow solution and the second line the
parameters for the outflow solutions. We give a the dimensionless black
hole spin, Q/wy the dimensionless isorotation frequency and ry,/ry the
dimensionless stagnation radius using minimal matching conditions, for the
three solutions M1, M2, and M3. The two last columns give the maximum
Lorentz factor along the fluid axis and the effective enthalpy &, at the Alfvén
point, on the polar axis.

Solution a Qlwy Tsta/TH Y max, ax Ex
Ml 11 0.5429 62167 x 102 3.1777 15 3430
(0 0.5410 62047 x 1072 3.1771 1.47 1.42
M2 12 04316  9.6912 x 1072 1.5031 11 1360
02 04316  9.6912 x 1072 1.5031 4 1.5
M3 13 0.5189 0.5022 1.1755 12 1470
03 0.5189 0.5022 1.1750 10 19.6

We show in Table 2 the output results of our three inflow/outflow
solutions, under minimal matching conditions given in equation (56).
We give a the usual dimensionless black hole spin in unit of the
gravitational radius, Q/wy the isorotation frequency in unit of angular
velocity on the black hole horizon, and ry,/ry the stagnation radius
in unit of black hole horizon radius. We also give, for the three global
solutions, the maximum Lorentz factor and the effective enthalpy &,
at the Alfvén point, both along the polar axis.

We choose the input parameters, both for the inflow and the
outflow, in order to satisfy specific conditions for the solutions and to
match them under the minimal conditions equation (56). We require
the final inflow Lorentz factor on the axis to be higher than 10.
The variation of the Lorentz factor with the magnetic flux in the
inflow is negative or null on the north pole horizon. Thus, we use
numerical gradient descent techniques in the parameter space (see
Appendix B).

We start by building three inflow solutions with different kind
of energy exchange with the black hole that satisfy our constraints.
Then using a numerical gradient descent technique, we build three
outflow solutions, each matching one of our inflow solutions. We get
a discrepancy for a, Q/wpy and rg,/ry between the inflow solution (I1,
12, or I3) and the outflow solution (O1, O2, and O3, respectively)
lower than 1072, The parameters are listed in Table 2. The numerical
value of ¥ max, ax 1S not infinite on the black hole horizon along the
axis. It is numerically impossible to get an inflow solution with y =
400 on the horizon so we choose to have y ., 2x > 10. We could
tune IT, in the inflow to get this constrain for y close to the horizon.

Table 1. Input parameters for the three solutions. For each of them, the first line presents the parameters for the inflow solution
and the second line the parameters for the outflow solutions. The parameter A is the dimensionless ratio of angular momentum flux
per unit of magnetic flux. The parameter « is the deviation from spherical symmetry of the pressure, while § is the deviation from
spherical symmetry of the number density/enthalpy ratio. v is the escape speed per unit velocity of the fluid at the Alfvén point, along
the polar axis. / is the dimensionless black hole spin and y the Schwarzschild radius per unit Alfvén radius. I, is the dimensionless
pressure at the Alfvén point along the polar axis, and e; is the deviation from spherical symmetry of the total energy.

Solution A K B v 1 n I, el
Ml 11 0.036 0.468 0.075 —1.79 0.12 0.442 1.4 —0.21
0l 0.985 0.230 1.328 0.386  1.016 x 1072 3.758 x 1072 6.892 x 1073
M2 2 0.392 1.341 0355 —1.562 0.17 0.807 0.859 —0.349
02 0.998 0.280 1.296 0234 6502 x 1073 3.012 x 1072 6.892 x 1073
M3 I3 0.388 5.898 0259  —1.443 0.25 0.978 0.275 —0.555
03 1.171 0.291 1.319 0.600  4.767 x 1072 0.184 —6,268 x 1072
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Table 3. In the first and second columns, we give the estimated values of the magnetic field on the inflow
Alfvénic point and on the black hole horizon, respectively. In the three last columns, we plot the constant values
for the mass, angular momentum, and energy per infinitesimal intervals of time and of dimensionless magnetic
flux for a black hole mass equal to the one of M87. Each line corresponds to one of the three inflow/outflow
solutions of the meridional self-similar model. We use B(20r,) ~ 1G to calculate B2 for the solution M1
since the stagnation radius is around 5r, and B(5r,) =~ 4.9G for the two other solutions, M2 and M3.

Solution Bin By My Jini Ef;
(Cm71/2 g1/2 Sfl) (Cm71/2 gl/Z Sfl) (g Sfl) (g sz S72) (erg Sfl)
MI 8.7 x 10! 5.84 x 102 1.21 x 103 3.56 x 10%8 1.09 x 10%
M2 8.2 x 10! 4.7 x 102 1.1 x 105 3.2 x 10% 9.8 x 10%
M3 1.3 x 10% 3.19 x 10? 2.62 x 108 7.7 x 10% 2.36 x 10*

As explained in Appendix A, getting y i 1/h, implies that the IT
H

function on the horizon tends to In (R — Rp), but if y is not infinite at
R = Ry, 1 behaves as 1/(R — Ry). Instead of adapting the inflow IT,
in order to increase y max, ax» We prefer to keep a degree of freedom to
solve the difficulties of the matching conditions. Let us also remind
that, in the outflow with high asymptotic Lorentz factor, this factor
deviates slightly from its maximal value in the asymptotic regime.
This is due to numerical reasons, because it is not possible to get a
sufficiently precise value of I, to tune it to the non-oscillating value.

To obtain the solution we also need to fix the value of the three
parameters M, B,, and &,. The geometry and the velocity profiles of
one solution are not depending on these free parameters. We set the
black hole mass to 6.6 x 10°Mg, which is the value mentioned in
Gebhardt et al. (2011) for the M87 black hole mass. This is within
the range measured by the Event Horizon Telescope Collaboration,
M=06.5=+0.7 x lOgMo. As discussed above, we use observational
constraints to fix the magnitude of the second parameter, the magnetic
field strength B,. Since the solution M1 has a stagnation radius larger
than 57,, we use B(20r,) ~ 1G and we take B, o ~ G2,,(20r,)G.
For solutions M2 and M3, the stagnation radius is lower than 5r,
then we use B(5r,) ~ 4.9G and we take B, o ~ 4.9G§m(5rg)G. We
put in Table 3 the values of Bi" obtained for each solution.

Once the value of B, is determined, the value of p,&, is known
from the definition of the Alfvén surface. From equations (73) and
(74) of Chantry et al. (2018), the effective enthalpy and the mass
density fields are scaled by the factors &, and p,, respectively. Once
&, is given, both the effective enthalpy and the mass density field
scaling are fixed.

We choose &, for the outflow solution as in Chantry et al. (2018),
such that the effective internal energy at infinity on the axis reduces
to the internal energy of a gas at thermodynamic equilibrium.

Zamaninasab et al. (2014) define a scaling law ®f =

. 2
fz\/Mc (%) between the magnetic flux of the jet and the total

disc accretion rate M. They assume that the jet power is the result

of a pure Blandford—Znajek mechanism. Thus they deduce the black

hole magnetic flux ®py and from observations a value of f, ~ 50.
We use a similar scaling law for the black hole magnetic flux

. s 2 . .
®pu = finr\/ MintC (%) and the inflow mass rate. Our scaling

factor f;,r must be larger than f; since the magnetic flux of the jet is
only part of the one threading the black hole in the magnetosphere.
We choose fi,r ~ 150, a value three times higher than f, ~ 50,
because we choose My of order one tenth of M for the same
magnetic flux ®py. In our model, the efficiency to create magnetic
flux from the pair inflow is higher that the one deduced from standard
Blandford—Znajek theory applied in the jet at 1 pc. This scaling law
is used to define the value of &, in the inflow.

MNRAS 515, 3796-3817 (2022)

Indeed, from the model, we can derive

JEEY, (1 +4/1- (3)2>
i

ro\ 2
o, ~ we (5) 70
BH .G, 2 (70)
which leads to
v|h, G2
& = 2 G (71)

N2 (1+m)f‘

where all the quantities are evaluated in the inflow.

3.2 Field line geometry with quasi-isotropic coordinates

Fig. 5 shows the field line geometry of the matching solutions.
We plot for each solution a zooming view of the field lines close
to the environment of the black hole for the inflow, and a larger
view of the outflow, including the external light cylinder. Instead of
using a simple Cartesian version of the Boyer—Lindquist coordinates,
or what is called pseudo-Cartesian coordinates, we opted for the
use of so-called quasi-isotropic coordinates. In Chantry, Cayatte &
Sauty (2020), we discussed in details their properties. This choice
of coordinates presents two main advantages. First, it allows a
conformal representation and therefore a correct representation of
the angles. Thus, the property of the orthogonal field line penetration
into the horizon is correctly visualized. Secondly, these coordinates
expand the representation in the black hole environment, which
allows to show more details in this area.

We plot in the left-hand panel of Fig. 5 the poloidal field geometry
only for the open field lines linking the black hole horizon to infinity
(A < Apge). First, our model (inflow and outflow) is deduced from
an expansion to second order of the colatitude in Euler’s equations.
This explains why it is physically relevant close to the axis and in the
region with small colatitudes. For a given second order expansion
in colatitude we should quantify the deviation to the equilibrium of
Euler’s equations and normalize with the strongest volumic force to
estimate the region of validity. This calculation is quite complicated,
and we decide to examine the solutions inside of the region defined
by the last open field line that contains the region of validity.

Secondly, we cannot use our model for the magnetospheric dead
zone (A > Apge and 7 < 7). It would induce artificial source terms
on the equatorial plane with ry < r < rmag. FOr r > ry,g, the source
terms could be explained by the presence of the accretion disc, but
we prefer to avoid this region in our modelling.

As explained in Takahashi et al. (1990), the stagnation surface
and the injection are located between the two light cylinders. All the
field lines are continuous but not C! at the stagnation surface. On this
surface, there is a kink in the fieldlines related to the surface current
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Figure 5. Poloidal field lines on two different scales for the three solutions (M1 top solution, M2 middle one, and M3 bottom one). On the left we zoom
inside the stagnation radius, and on the right the scale encloses the outer light cylinder radius. The red arrows represent the mass flux pohy Vp, and the thin
blue lines represent the poloidal magnetic field lines. The thick blue line marks the last open magnetic field line of the flow connected to the black hole. The
yellow line represents the position of the corotation surface where €2 = w. The cyan circle corresponds to the stagnation surface, the green ones correspond to
the slow-magnetosonic surfaces, and the magenta ones correspond to the Alfvén surfaces. The light cylinder surfaces are noted by the black solid lines. The
magnetosphere is represented in purple, the open line flow region in light red. The region where we expect the disc wind is in green, the ergo-region in light
grey, and the inner horizon region in black. We used quasi-isotropic coordinates to plot this figure.

density. Two different trends are observed for the expansion factor
of the streamlines F'. In the matching solutions M1 and M2, the field
lines are flaring more in the starting region of the inflow than at the
base of the outflow Fy, in > Fiu, our- The situation is the opposite

for the M3 solution Fy, in < Fga, our- The corotation surface location
appears below the stagnation surface for the solution M1 and above
for the solutions M2 and M3. The larger is €2, the smaller is the mean

radius of the corotation surface.
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We also observe different sizes for the magnetosphere. The equa-
torial extent of the last open line in the outflow is significantly larger
for the M2 solution. The size of the magnetosphere of the M2 solution
reaches on the equatorial plane an approximate value of 75r,. This
is slightly larger than the Alfvén radius of the outflow. While for the
other solutions, the magnetosphere is located inside the Alfvén sur-
face and reaches approximately 40r, for solution M1 and 87, for solu-
tion M3, on the equatorial plane. The open lines represent 14 per cent
of the total magnetic flux passing through the black hole horizon for
M1, less than 1 per cent for M2 and around 8, 5 per cent for M3.

3.3 Interface between inflow and outflow

The interface corresponds to the region with poloidal velocities close
to zero. This region, in our model, is the one where the flow is loaded
via creation of pairs or any other mechanism. In fact, the matching
of the inflow and the outflow solutions puts some constraints on
the loading terms, as detailed in Section 2.3. Once the matching
of the two solutions is obtained the injection or loading terms can
be calculated. First, we discuss the surface charge density and the
toroidal current flux sources we obtain at this interface. Then we
explain how we inject mass, angular momentum, and energy.

3.3.1 Electromagnetic sources on the stagnation surface

The electromagnetic sources on the stagnation surface are fully
determined by o, and Jf because the ratio of o, on J? is given
by equation (51),

0,.C (2 —w)
Jo hc N
where x is the dimensionless cylindrical radius.

First, let us note that the sign of o, is the same as the one of
—(Fya. out — Feta, in)(©2 — @)sa- We plot o, and J? in Fig. 6. For the
M1 solution, the corotation surface is located below the stagnation
surface where Q2 > w. We observe that Fg, ou < Fia, in and the flaring
of the poloidal field lines increases where they cross the stagnation
surface (see Fig. 5). These two facts explain the positive sign of o,
and the negative one of J#. For M2, the corotation surface is above
the stagnation surface. The same increase of the magnetic field line
flaring occurs at the crossing of the stagnation surface implying o,
< 0. For the last solution M3, the corotation surface is also above
the stagnation surface, but the flaring of the magnetic poloidal lines
decreases across the stagnation surface implying Fi, out > Fista, in and
o, > 0. .

As it can be seen in Fig. (6), J? is negative for M1 and positive for
M2 and M3. The sign of J, f is determined by the direction of the shift
at the stagnation surface of the current line with 7 = cst [see Fig. (4)
where J¢ < 0]. A positive surface current J implies a decreasing
of the current / across the stagnation surface (see equation 54) and
then an increasing of the Poynting flux o« — /<.

—x, (72)

3.3.2 Loading terms

The loading terms bring mass, angular momentum and energy
to the MHD fields and to the black hole. Here, these quanti-
ties are the result of the minimal matching conditions given by
equation (56).

The injection terms are proportional to the scaling factors of
equation (66) determined by the value of B". We already gave an es-
timation of the magnetic field along the polar axis at the Alfvén radius
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Figure 6. Electromagnetic surface sources as a function of the colatitude for
the different solutions. The top solution is M1, the middle one is M2, and
the bottom one is M3. In red, the surface density of charge is plotted as a
function of the colatitude and, in blue, we plot the dimensionless toroidal
surface current. The vertical dotted green lines represent the colatitude on the
stagnation surface of the last open poloidal magnetic field lines.

for the M87 black hole (see Table 3). We found B, ot & Ggm(ZOrg)G
for M1 and B, ou ~ 4.9G(2,ut(5rg)G for M2 and M3. From this value,
we can estimate, for the inflow solution, the alfvénic magnetic field on
the axis B, i, and the magnetic field on the black hole horizon By. For
the three solutions we get a magnetic field on the black hole horizon
between 300 and 600 Gauss. Equation (66) allows us to estimate,
for the inflow solution, the constant values for the mass, energy,
and angular momentum injected per unit time and dimensionless
magnetic flux, «. These quantities have been calculated for the three
global inflow/outflow solutions as shown in Table 3.

Now, we can compare the physical quantities for the three
matching solutions with the ones obtained by other works. They
depend on the considered phenomena and injection models. For
example, let us evaluate the amount of mass that can be injected
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Table 4. The first column indicates the dimensionless magnetic flux for the last open magnetic field line, which marks the
limit of the magnetosphere in the outflow. In the second, third, and fourth columns, we give the minimum, the maximum, and
the mean value of the mass injected per unit time and unit dimensionless magnetic flux, at the stagnation surface, for A <
Amag. respectively. The fifth and sixth columns give the total mass injected and the mass injected in the inflow per unit time at
the stagnation surface for A < Apyg, respectively. Each line corresponds to one of the three inflow/outflow solutions.

. d2 My d2 My A2 My . .
Solution Mag Ml* e Ml* T <# dtd(lxj> MIIS_]l Mltﬁj‘.m
Inj Min Inj Max Inj ’
Mi 0.95 8.2 x 1073 1.12 x 1072 9.7 x 1073 1.1 x 10?2 g.s~! 2.4 x 100 gs7!
M2 0.99 8.63 x 1072 8.87 x 107> 8.8 x 1073 9.5 x 1018 g.s7! 8,95 x 1018 g.s7!
M3 0.98 825 x 1074 1.12 x 1073 9.7 x 10~ 1.3 x 1020 g.s~! 4,3 x 1019 g.s~!

via pair creation from hard photons emitted by the accretion disc.
Following Levinson & Segev (2017), the injection rate per unit
volume is estimated as own?,c, where n, is the density of hard
photons with an energy €, (¢, > 1 MeV ~ 2m,c?). We use the
Thomson cross-section o, &~ 6.6 x 1072 cm? for estimating the
cross-section of pair production. Now let introduce the dimensionless
radius of the hottest part of the disc R, = r,/r,, the dimensionless
mass m = M/Mg, and the dimensionless luminosity £, = L, /Lggq,
where L, is the luminosity of hard photons and Lggq the Eddington
luminosity. Then the luminosity, coming essentially from the disc, is
related to the photon density L, = 47rr§nycey, which leads to

¢
~ 102 —L cm™3. 73
n, mR% cm (73)

The mass injection rate can be written as

2 Cm

. om
My ~ 1.6 x 1020# gs7! =26 x 10*6ﬁ Moyr™'.  (74)
Y Y

Using values of luminosity mentioned in Prieto et al. (2016) for M87,
we get£,, ~ 1077 —107*. The Event Horizon Telescope Collaboration
(2021) have shown, using their library of disc models, that the inner
radius of the disc lays within ~10—20r,. Taking m ~ 6 x 10° and
R, ~ 10—10?, we get My, = 108-10% gs~!. The factor R;“ makes
this estimate extremely sensitive to the value of R,. Calculations
based on Pu et al. (2015), with different matching conditions, lead to
similar conclusions. Nevertheless, many works (Levinson & Rieger
2011, Hirotani et al. 2016) show that this injection does not allow to
reach the Goldreich—Julian density necessary for the screening of the
transverse electric field. In this case, spark gap may form (Levinson &
Segev 2017) along the magnetic field. The electric acceleration
combined with Compton and Inverse Compton processes allow an ad-
ditional source of pair production. This mechanism leads to mass in-
jection in the lower range, up to 10''-10'?g s~!. Indeed, the pair pro-
duction in the gap cannot explain the injection required in our model.
It is consistent with the infinite conduction assumption, which leads
to a charge density equals to the Goldreich—Julian one everywhere.
However, recent works with particle-in-cell simulations (e.g.
Crinquand et al. 2021) explore the dynamics of the formation of such
gaps and the role of magnetic reconnection allowing to visualize the
location of pair formation. Their conclusions tend to suggest that
gaps are intermittent. Thus, we use more recent radiative GRMHD
simulations to give a more precise estimation of the mass injection
rate (Yao et al. 2021). Fig. 10 of this publication gives an average in
time of the pair production rate as a function of the radial distance
in a region close of the axis. Assuming a spherical symmetry and
the value mentioned in this plot for the MAD W18 disc model, we
can estimate the total injected mass. We obtain a total amount of

My ’ 14 o o—1 oo s
5 M x 10" gs™'. For M87, it gives a total injected mass
o}

~ 8 x 10'¢ g s~!. This amount is sufficient to screen the electric field
and avoid the formation of the spark gap along the axis region close
to the black hole.

Typical values of a few solar masses per year are usually inferred
for the accretion rate of hadrons from the disc. This is much larger
than the total rate of pairs accreted in the inflow, which we have found
to be a few 107% Mg yr~! (from equation 74). Thus, the inflow of
pairs has a negligible contribution to the increase of the mass of the
central black hole. Conversely, its contribution in removing angular
momentum may be significant, especially if the disc wind is efficient
in extracting angular momentum from the disc.

Globus & Levinson (2013) explored the injected critical mass for
which no extraction occurs. For a cold flow and a magnetic flux
~ 10*” G cm?, which crosses the black hole, the mass flux limit find
by the authors depends from the value of a and 6 but is around
1025_103() g Sil.

In Table 4, we put the minimum, the maximum and the mean
value of the injected mass per unit time and per unit dimensionless
magnetic flux. After integration for A < A, we obtained the total
injected mass and the injected mass in the inflow per unit time.
These values are put in the Table 4. In the first column, we indicate
the dimensionless magnetic flux for the last open magnetic field
line of the outflow. Note that the values of a,, are similar for the
three global solutions, despite the large variation of the sizes of the
magnetosphere on the equatorial axis.

In Table 4, the total injected mass is for M2 and M3 in the upper
range of the estimation based on the EHT emission ring size. We get
a larger value only for solution M1. Globally, we obtain an injected
mass which is two to four orders of magnitude higher than the one
obtained by Yao et al. (2021). For the M1 and M3 solutions, most
of the injected mass per unit time is flowing outwards, quantitatively
80 per cent for M1 and 66 per cent for M3. Conversely, for the M2
solution, only 6 percent of the total injected mass per unit time is
flowing outwards.

In Fig. 7, we plot in blue the injected angular momentum rate per
unit dimensionless magnetic flux. Its sign is positive for solutions
M1 and M3 and negative for solution M2. The total amount of
angular momentum rate per unit time is equal to (10_3—10_2)JI:U-.
‘We also plot the injected power per unit magnetic flux. This quantity
decreases slowly with the magnetic flux due to the negative value
of e for the inflow solutions. The order of magnitude of the total
amount of injected energy is 5.4 £}, for M1, 6.3 x 1072 Ef; for M2,
and 107" Ej,; for M3.

3.4 Kinetics and dynamics of the inflow

Fig. 8 shows the fluid celerity y B measured by the ZAMO observer
along the polar axis. The Lorentz factor reaches relatively high values
(10—25) as expected. In fact, the parameters could be tuned in order
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Figure 7. Injected angular momentum and energy at the interface per unit
time and dimensionless magnetic flux, as a function of the magnetic flux for
the different solutions. On top, we plot M1 (¢Mag A 0.95), in the middle M2
(aMag A 0.99), and at the bottom M3 (apag A~ 0.98). The angular momentum
is plotted in blue. It is divided by its scaling value JI:)j' The energy is plotted

in red and divided by its scaling value Efnj.

to have y —> +o00 and to smooth the pressure function IT behaviour
close to the black hole horizon.

Considering the forces acting on the inflow, the situation is quite
similar for the different solutions. We plot in Fig. 9 the transverse and
longitudinal forces for a field line close to the axis for solution M2.

The upper part of Fig. 9 represents the transverse forces for the
M2 inflow solution. Positive values correspond to the collimating
forces. Near the stagnation surface the gravitational force is the
main decollimating force, which is in quasi-equilibrium with the sum
of the magnetic forces (i.e. mainly the magnetic poloidal pressure
and the magnetic tension) and the pressure gradient. Near the black
hole the gravitational and electrical forces (decollimating) are in
equilibrium with the magnetic forces, i.e. essentially the magnetic
poloidal tension, plus the poloidal advection force.

The bottom part of Fig. 9 corresponds to the longitudinal forces.
Negative (positive) values mean that the forces are directed towards
(outwards) the black hole centre. The main force driving the flow
is gravity. The pressure also plays an important role in the part of
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Figure 8. Plot of the celerity 8 y of the inflow plasma along the axis as a
function of the quasi-isotropic radial distance for the different solutions, M1
on top, M2 in the middle and M3, bottom. The vertical lines correspond to
the different critical surfaces, namely the Alfvén one in dotted magenta, the
slow-magnetosonic one in dotted green and the stagnation surface in red. The
grey shaded area corresponds to the inner part of the black hole horizon.

the flow where the acceleration decreases the pressure, i.e. by a
cavitation effect. The main opposite force is due to the fluid inertia,
the advection term, plus the pressure in areas near the stagnation
layer and the black hole horizon.
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Figure 9. For the inflow of solution M2, we plot the transverse forces as
function of the quasi-isotropic radial distance, on top, with a positive value
for forces directed inward the flux tube. We plot the longitudinal forces,
bottom, with a positive value for decelerating forces. The grey shaded area
corresponds to the inner part of the black hole horizon.

3.5 Exchange between the black hole and the MHD fields

We plot in Fig. 10 the Noether’s energy and angular momentum
exchanges between the MHD inflow and the black hole. The
colatitude of the open-field lines at the black hole horizon is plotted
by green dotted points. We have drawn the Noether’s energy and
angular momentum exchange beyond this angle because we were
interested for getting these fluxes up to & = 7/2. The fluxes on the
black hole are determined by the MHD fields on the horizon.

Because we impose that the last inflow field line corresponds to
the last open outflow field line, the colatitude of this last field line on
the horizon depends also of the chosen outflow solution.

Angular momentum is extracted from the black hole for each
inflow/outflow solution for the whole range of colatitude except on
the axis. In Fig. 10, the amount of extracted angular momentum in
dimensionless units is maximum that varies by one order of mag-
nitude from solution to solution. Nevertheless taking into account
the constant values in Table 3, we calculated the extracted angular
momentum integrated over the open field lines and on the whole
black hole horizon. These values are mentioned in columns 2 and 3
of Table 5. On the open field lines, the extracted angular momentum
from the black hole horizon, jHA,open is 40 times lower for the M2
solution compared to the other ones. But on the whole black hole
horizon, M2 extracts more efficiently angular momentum than the
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Figure 10. Global balance on the black hole horizon of the Noether energy
and angular momentum for the three solutions, M1 on top, M2 middle, and M3
bottom. In red, the dimensionless extracted Noether angular momentum per
unit colatitude and time. In blue, the dimensionless extracted Noether energy
per infinite intervals of colatitude and time. The dotted green lines indicate
the colatitude of the last magnetospheric field line at the horizon radius.

two other solutions. This result is due to the very small extension
of the open field line region on the black hole horizon for the M2
solution and to some change of the stagnation radius. The colatitude
of the last open magnetic field line on the black hole horizon is
equal to, Ogpen, n = 0.1257 for M1, 0.037 for M2, and 0.107 for
M3, respectively. Note that the ratio between the extracted angular
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Table 5 Tota] angular momentum and power injected by pairs or extracted from the black hole for the three solutions in the region inside the last open field

lines. EX (H open)

is the Poynting power extracted from the black hole inside the inner region. J'(H‘tm), E<H,mt), and E(P}(I’?'[m) are the angular momentum, the power,

and the Poynting power extracted from the whole black hole horizon. E(Om,open) is the total power of the outflow spine jet in the inner region..

Solution j(lnj,npen) j(H,open) j(H,tm) E(lnj,npen) E(H,npen) : F}({)’yopen) E(H,tOl) E(};-([),y[o[) E(”“LOF‘E")

(gem’*s7?)  (gem’s™?)  (gem?s7?)  (ergsTh) (ergs™") (ergs™") (ergs™") (ergs™h (ergs™")
M1 2.9 x 1047 1.4 x 1047 6.5 x 10% 59 x 10  —59x10% 87x10" —36x10% 32x10% 1.3 x 10%
M2 27 x10% 34 x10% 5.6 x 10% 62 x 102  —62x102 16x10¥ —34x10% 12x10% 1.1 x 10%
M3 1.1 x 1047 1.4 x 1047 1.8 x 10% 24 x 10 —22x108  37x10Y  —1.1x10% 28 x10% 1.9 x 10%

momentum rate for the total and the inner regions is much higher for
the M2 solution.

None of our solutions are capable of having a positive global
extraction of Noether energy along the open magnetic field lines.
This is due to the fact that, close to the axis, the inertial energy is
dominant (see equation 41). This energy is negative on the black
hole horizon. For the global solutions M2 and M3, there is a positive
extraction of energy but only at colatitudes close to the equatorial
plane. We tried with our gradient descent method (see Appendix B)
to tune the inflow parameters in order to decrease the angle where the
global extraction starts. We need further studies to see if solutions
exist with a global extraction of Noether’s energy occurring on some
of the opening magnetic field lines. However, this may be an intrinsic
limitation of our model due to the self-similarity.

As presented above, the Noether energy flux of the MHD fields
can be decomposed in three main terms, the inertial energy term,
®y = WahyEc? strictly negative on the black hole horizon, the
Lense-Thirring term, & = W,y & wwV?, and the Poynting flux,
®py = —ho QB?. InFig. 11, we plot these fluxes per unit colatitude.
In the first solution M1, the energy flux is fully dominated by the
fluid one and the Poynting flux is extremely small. This could be
explained by the value of Q/wy (see Table 2). The Lense—Thirring
flux is negative which means that the fluid falls into the hole with
positive V#. In the second solution M2, the Poynting flux is still
small, but outside of the open field lines the Lense—Thirring flux
turns positive. For biggest colatitudes, the Noether energy flux of the
fluid, the sum of @1 and ®,,;, becomes positive, which means that
the Penrose fluid process is efficient. In the last solution M3, we get
almost the maximum value of 0.5 for Q/wp. The Poynting flux starts
to increase even in the open-field line region.

Blandford & Znajek (1977) derived the Poynting flux, using the
boundary conditions given by Znajek (1977) close to the black hole
horizon in Carter tetrad. In our model, these boundary conditions are
satisfied because of the infinite conduction given by equation (15) if
the poloidal velocity in the ZAMO frame is equal to the speed of light.
If we use this condition in ZAMO tetrad, we also get B® + E =0
on the horizon. In our mode}, at first order in colatitude, the fluid
enter in the horizon with V? = V? = 0 (see Chantry et al. 2018).
If we tune the parameter such that V' = —c on the horizon pole,
this condition is then satisfied to the order one in colatitude, as a
consequence of the infinite conductivity. We find for the Poynting
power extracted from the black hole between the colatitudes 0 and 6,

- Po 0 s dA
Efly(e):/ thE"@dG
0

_4Q Q C<I> a’
on 128712 214+ V1—a2—a?/)2

0
0 d A
></ : s;n _ (@7) o, (5
0 - m Sin H
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where the magnetic flux A is evaluated on the horizon and is a
function of 6 only, and ®gy = 2w Ay. The Poynting power is then
determined by 2 and the magnetic flux function on the black hole
horizon. No fluid quantity is entering in this expression. It means
that we obtain a Poynting power similar to the one obtained in the
force-free assumption (Blandford & Znajek 1977). Equation 26
of Globus & Levinson (2013) gives the Poynting power in the
force-free limit, a monopole geometry with Q = wg/2.

3.6 Angular momentum and energy sources

Now we can compare the sources of injected angular momentum,
in dimensionless units, by pair injection in the stagnation surface
and by the black hole. In Table 5, we note J'(Inj,(,pen) the angular
momentum flux injected by pair creation, limited to the inner region
of open magnetic field lines. For the M1 and M3 solutions, the angular
momentum injected by pair creation, J'(Inj,open), is of the same order
than the angular momentum extracted from the black hole, J'(H,Opcn).
However, note that for M2 the pair creation causes an absorption of
angular momentum, J'(Injiyope,,) < 0, two orders lower than the injected
angular momentum in M1 and M3. This is equivalent to say that the
total angular momentum flux transported in the open magnetic field
region of the inflow is larger than the one in the outflow.

In Table 5, we put the injected power by the pairs into the inner
region Eanj,open), and the power extracted from the black hole into the
inner region Ey open)- In order to quantify the weight of the Poynting
flux in the energetic balance we include the extracted Poyntlng power

into the inner region EPe H Open) We also give the total power EH ot and

the total Poynting power extracted from the black hole E(ngmt). In

Table 3, the last column is the outflow total power Eout,open.

If most of the injected energy flux is going down in the inflow, we
already remarked that most of the mass is moving outwards for the
M1 and M3 solutions. Nevertheless the analysis in terms of mass is
depending on the enthalpy value &,. This is a free parameter which
does not change the analytical solution. This value for the inflow
depends on the choice of the ratio between the inflow mass rate and
the black hole magnetic flux. £, of the outflow is given by the choice
of Py (see equation 54 and the discussion in section 5.2 of Chantry
et al. 2018).

In the inner region, the solutions present a negligible Poynting
power E (Plfl’_yopen) in comparison to the power extracted from the black
hole E(H,Gpen). 13 inflow solution has been optimized to reach the
canonical value of Q/wy = 1/2 and the ratio between the Poynting
power Egi)?open) and E g open) 18 at least one order of magnitude higher
than for the two other solutions. The size of the M2 magnetosphere
leads to a small opening angle of the last open field lines at the black
hole horizon and then we get a small value of extracted Poynting
power on the inner region for the M2 solution. On the whole black
hole horizon, the ratio between the extracted Poynting power and the
total power is again higher for the M3 solution.
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Figure 11. Noether energy flux component per unit colatitude flowing across
black hole horizon in function of the colatitude for the three solutions (M1
on top, M2 on middle, and M3 on bottom). In red shown is the Poynting flux,
in blue the inertial flux, in green the Lense—Thirring flux, and in black the
total MHD flux. As before the dotted green lines indicates the colatitude of
magnetosphere field line at the horizon radius.

As explained above in Section 3.3.1, the pairs are contributing to
the Poynting flux of the outflow via the surface current J?. For the
M3 solution, inside the open field lines, the Poynting power at the
base of the outflow is around 5.4 x 10* erg s~!, while it is around
1.2 x 10* erg s~! below the stagnation radius in the inflow. Thus,
the contribution to the Poynting power from Jﬁ , created by pairs, is
of the same order as the Poynting power extracted from the black
hole at the horizon.

Meridionally self-similar double flows 3813

4 DISCUSSION

Near the system axis, the energy fluxes have different behaviour. The
Poynting flux ®gy; is proportional to 2 and the fluid energy flux
@ has a non-zero constant term in its e expansion. Then around
the axis the fluid energy flux will be the dominant term. Furthermore,
itis difficult to increase the Poynting flux relatively to the fluid energy
flux. This can be explained by the equality at the Alfvén point on the
axis,

B2

1
= 7p*%.*y*2v*2’ (76)
8m 2

which links the typical volumetric magnetic energy to the typical
kinetic energy of the fluid.

In our model in order to increase the ratio of the Poynting and
fluid energy fluxes, one way is to increase the flow speed at the

2 2
Alfvén point and the factor yzv—; = & For the inflow, the
e 1 —p/v?
parametric study seems to lead to a decreasing of the inflow Alfvén
radius and then to the stagnation surface. However for small values of
the stagnation radius, it is more difficult to match an outflow solution
because the escape speed is higher.

Equation (75) shows that the extracted Poynting flux depends
strongly on a. Increasing the Poynting flux of the M3 solution can
be achieved by an increase of the black hole spin, keeping the ratio
Q/wy equal to 1/2.

For the three solutions, most of the injected energy flux E'Inj, open
goes to the inflow E(H,open) and only about 10 percent goes to the
outflow E oy, open)> as it can be seen in Table 5. The inflow energy
is absorbed by the black hole since E open) 18 negative. Part of this
energy flux is given back by the black hole into a positive Poynting
flux (see Fig. 11). Poynting flux transfer occurs between the black
hole and the inflow on the horizon. In a further study, we aim at
searching for solutions that could extract energy from the black hole.
There may be a way to optimize the eight parameters of the inflow.
The first step would be to get less flaring of the inflow flux tubes
in order to increase the size of opening magnetic field line region
on the horizon. It is equivalent to have the last open magnetic line
connected to the black hole starting at a larger colatitude. Secondly,
we should increase the parameter ratio involved in equation (76)
without reducing to much the radius of the stagnation in order to
increase the magnetization and then the ratio of the Poynting flux to
the fluid power.

Solving the Bernoulli equation, Globus & Levinson (2013, 2014)
and also Pu et al. (2015) have developed models with a fixed
geometry, obtaining double flow. The pair creation zone is either
a thin layer as in our model either a volumetric injection. Despite the
assumption of a radial geometry, which is a limitation of the model,
Globus & Levinson (2013) use the particle source g, (that we note k,,
in the present publication) as a parameter. Above a given threshold for
particle injection, the total energy flux cannot be extracted any longer.
This threshold depends on the field line colatitude and on the black
hole spin. The higher the spin, the easier the extraction. Globus &
Levinson (2014) define the source term as a radial power law. In both
publications, they find a low total energy extraction around the axis,
which our results confirm. Pu et al. (2015) use a geometry obtained
from a parabolic force free field solution. They inject pairs on a
stagnation surface. They impose in addition two matching conditions
at the stagnation surface, the continuity of Poynting flux and the
equality of inflow and outflow pair fluxes. Their double flow solution
is electromagnetically dominated and similar to the results of the
GRMHD simulations of McKinney & Narayan (2007).
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In our case, once the inflow solution has been fixed the three
matching conditions leaves us with four degrees of freedom for the
outflow solution. These degrees could be used in a further study
for different aims. First, in order to get the total current continuity
condition and second, in order to obtain a smaller magnetosphere
and to increase the horizon colatitude angle of the last opened field
lines. Differently by selecting some radial solution for the outflow as
the K4 solution presented in Chantry et al. (2018), we could obtain
a larger colatitude extension on the stagnation surface. It will allow
to match an inflow with a larger colatitude extend at the horizon.
Finally, since for our three solutions, the total MHD power of the
outflows corresponds to the range of the power transition between
FR1 and FR2 galaxies as mentioned in Massaglia et al. (2019), we
could search for different outflows, which match the same inflow to
increase or decrease the outflow jet power.

Using an iterative procedure on the magnetic flux, the current and
isorotation integrals, Nathanail & Contopoulos (2014) solved the
Grad-Shafranov equation in a force free configuration. It allows, in
the force free assumption, to recover the field geometry starting from
a radial or a paraboloidal configuration. To pursue this theoretical
approach, Huang et al. (2019) solved the Grad—Shafranov equation in
the same way without neglecting the fluid forces, and simultaneously
solved the Bernouilli equation. With different matching conditions
compared to our model, they obtained double flow solutions with
injection on the stagnation layer. Their 4-force k of the radiation
field on the pair fluid is assumed to be equal to the product of the
source term k,, and the 4-velocity u. Huang, Pan & Yu (2020) applied
their model to produce double flow solutions for the stratified M87
jet. In their Cases V and VI, the outflow fluid energy is equal to
43 per cent of the total energy, lower than the ratio we obtained for
our M3 solution, which is ~ 71 per cent.

Several authors studied electrical gaps of charge separation in
black hole magnetospheres (Levinson & Segev 2017; Hirotani & Pu
2016) showed that the formation of a gap occurs for small accretion
rates. In these works, the flow geometry is fixed and mainly radial.
The kinetic and the dynamics of the electron fluid, the positron one
and the radiation are treated separately, leading to a self-consistent
model of pair formation. If the electrical gap is spherical and the black
hole rotates maximally in Levinson & Segev (2017), we can estimate
the mass creation rate of pairs inside the gap. Take as an example the
case of M87. Using the maximal value of the magnetospheric current
of fig. 2 in Levinson & Segev (2017), it gives arate &~ 10''gs~!. This
value is seven orders of magnitude less than the rates we obtained in
our solutions. We calculate the pair multiplicity n/ng; on the Alfvén
surface on the polar axis both for inflow and outflow, and we obtain
values between 10'° and 10'2. This amount is not consistent with pair
production in potential gaps near the polar axis in the magnetosphere,
since the current theory and simulations of potential gap process
predict values not higher than few thousands.

In fact, electrical gaps are thought to be intermittent phenomena.
The gap induces pair creation. The pairs fills the gap and produce high
energy emission via the inverse Compton mechanism. Then the gap
reforms that is the reason for an intermittent emission at high energy.
Particle-in-cell (Crinquand et al. 2021) and radiative GRMHD (Yao
et al. 2021) simulations have shown that the gap size is difficult
to estimate and could be as small as 0.05r,. Moreover, on the axis
the gap could disappear as in the MAD W18 disc model of Yao
et al. (2021). Our solutions without gap are relevant to describe the
double-flow near the polar axis. The value of the electron temperature
mentioned in Yao et al. (2021) is similar to the one we obtained for
our three solutions (around ~0.5MeV).
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5 CONCLUSIONS

We presented here a meridionally self-similar MHD model of a rela-
tivistic double flow in Kerr geometry that incorporates mass, angular
momentum and energy loading on magnetic field lines threading
the black hole horizon. The semi-analytical model of Chantry et al.
(2018) allows us to produce double flow solutions above the black
hole pole, passing critical surfaces with a spherical stagnation
surface, where the loading of pairs occurs. The pair production is
supposed to be due to two-photon interaction via the gamma-ray
emission from the accretion disc. The goal of this modelling is to
describe MHD fields close to the polar axis, where the total power
is matter dominated resulting in a fast spine-jet propagating at large
distances and a polar pair accretion on to the horizon.

To perform the loading we introduced two source terms, the
mass injection rate and the 4-force exerted by the radiation at
the origin of pairs. It implies that mass, angular-momentum and
energy fluxes along the field lines are not conserved. We derived the
corresponding particle number continuity and energy—momentum
conservation equations. We fixed the following working assumptions
at the stagnation surface in order to match the inflow and outflow
solutions, the continuity of the radial magnetic field component and
the magnetic flux, the continuity of the isorotation frequency and
a meridional surface current, which creates a discontinuity of the
current intensity along the polar axis. This meridional surface current,
accompanied by a charge density on the stagnation surface, causes a
discontinuity of the toroidal magnetic field component and the field
line opening. It implies a contribution of the injected pairs to the
electric current and then to the Poynting flux.

With those assumptions we got three matching conditions for the
inflow and outflow parameters. Since we have to fix eight parameters
for the inflow component and seven for the outflow component, the
three matching conditions reduce the number of free parameters in
the outflow to four. Since we model a flow without neglecting fluid
forces, we are able to discuss the possibilities of extracting energy
from the black hole with a fluid alone and in a non-force-free MHD
configuration. Once the inflow/outflow solution is obtained by solv-
ing a system of first order differential equations, this model allows to
quantify the exchange between the black hole and the MHD fields,
and the sources of energy and angular momentum due to pair loading.

In this paper we present three inflow/outflow solutions (M1,M2
and M3) and we apply them to the case of the black hole mass of M87.
We use for the magnetic field magnitude, the values observed by the
EHT at a distance of a few Schwarzschild radii. The inflow model
respects a scaling law similar to that mentioned in Zamaninasab
et al. (2014) between the magnetic flux and the mass flux. In our
publication, we use this scaling-law, assuming that the mass inflow
rate is a fraction of the mass accretion rate. The efficiency is three
times higher to create magnetic flux. The magnitude of the specific
enthalpy in our model is fixed thanks to this law.

We estimate a range of mass injection rates by pair formation
from hard disc photons. Our solutions M2 and M3 require a large
amount of injected mass and are located close to the upper boundary
of this estimated range. The M1 solution requires an injection rate
higher than the maximum value by an order of magnitude. It could
involve other mechanisms of injection to be physically relevant.
The number of injected pairs in our three models is too high to
be associated with pair production in spark-gaps seen as unscreen
parallel electric field regions.

As expected the inflow acceleration is dominated by gravity.
Pressure also plays a role, decelerating the inflow close to the
stagnation layer and close to the black hole horizon and accelerating
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itin between. Due to the flaring of the flux tubes, the gravity works for
opening the tubes where the radius increases. This force is counter-
balanced by the magnetic forces, mainly composed of magnetic
poloidal pressure. For the transverse equilibrium, the pressure also
counter-balances gravity at the beginning and at the end of the inflow.

Inside the open field lines, the injected angular momentum on the
stagnation surface can be of both signs and is of the same order
of magnitude as the extracted one from the black hole. In terms
of Noether’s energy, most of the injected energy falls down into
the black hole. Inside of the open magnetic field lines the energetic
distribution is dominated by the inertial term. The black hole is
fed by mass, kinetic and internal energy. At larger colatitudes, the
energetic budget is dominated by the Lense—Thirring effect for the
inflow of M2 and by the Poynting flux for the inflow of M3. For
this last solution M3, the total Poynting power on the horizon, even
if it is less than the inertial energy, represents a quarter of the total
energy absorbed by the black hole. The pair injection contribution
to the Poynting flux has been calculated for the M3 solution and is
comparable to the Poynting flux extracted from the black hole.

To conclude, the solution M3 is the most interesting solution,
having an isorotation frequency equals to one half of the black hole
one. It has a quite high but still reasonable injection mass rate and also
a reasonable value for total outflow power. The final Lorentz factor
of the outflow is around y ~ 10. The extracted Poynting power from
the black hole is comparable to the one given by a force-free model
in a monopole geometry with the same isorotation frequency and the
same total magnetic flux. The outflow of the M3 solution has a quite
high magnetisation just above the stagnation surface and the total
power is inside the expected range for extragalactic jets.

DATA AVAILIBILITY

A catalogue of the three complete inflow/outflow solutions is avail-
able on request to the main author.
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APPENDIX A: BEHAVIOUR OF THE INFLOW
SOLUTIONS NEAR THE BLACK HOLE
HORIZON

Let discuss how the model equations and the four functions M?,
G?, F, TI behave close to the black hole horizon (see appendix C
of Chantry et al. 2018). We adopt here all notations coming from
Chantry et al. (2018). M is the poloidal Alfvén Mach number on the
polar axis, G is the dimensionless cylindrical radius in unit of the
Alfvén radius, F is the expansion factor of the streamlines, and IT
is the dimensionless pressure along the polar axis. The equations of
the model are determined by the functions D, N2, N, and N
depending of R, M?, G?, F, and T1. To determine the behaviour
of our solutions near the black hole horizon, we need to express

20\
these functions at the radius R = Ry = % 1+4/1— (—)
m

expressed in Alfvén radius unit. As explained in Chantry et al.
(2018) and previous meridional self-similar models, we build from
this model a constant, €, which measures the efficiency of magnetic
collimation (see Appendix C of Chantry et al. 2018). This parameter
writes as

1 , (A*Np @,
e_h2 {2)» ( D + A>+

z

v2(Q2m, —2e; +k —8)R
)

2,72
+ (k _2ml)L+”>

Mm* 12
- = (-
G2h4(R? + I?) ( (R +1?) G?

VIPRG?  M*h?F? , ( ANy \?
— + £ +A | —) . (A1)
(R? +12)3 h*G? h,GD
; 2 L 2 N1
Close to the black hole horizon, we have h Ry Bt M(R

Rpy). Numerically, we find that the function A F R—R> 0 near the
—> Ky

horizon. The functions M? and G? remain finite and do not reach 0
on R = Ry. Since € is constant, it implies that there exist a constant
€ such that

4 X, I? v2I’RG?
—————— (| + (k= 2m)— — —
G2hil(R2 + 12) G2 (R2 + 12) (R2 _|_ 12)3
2 2 =
L B _ 2 (ANp | o o 2
" (Ze 2m + 6 K)+2)» < D + A) R%RHehZ,
(A2)

where we used (R?> 4+ I?) = Ry on the black hole horizon. The
function D can be singular only for R = 0. The function N2 could
also have a singularity if G> = 0 or M?> = 0. Another possibility
of singularity could happen for R = Ry. The function Ay,2 can be
written as

N uh*DRG> X_ [ M* Lt e — 2mn X 2
2 = — | = K—2m)— — —
T RIX L ME X, | GPhd Yer X,
212G2 2
Y 5 —V—(Zel—2m1—|—8—/<)
W Ry M

AN D,
o2 ( DB+°;~)}+RM2. (A3)
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R, does not have any singularity for R = Ry. The equation (A2)
insures the regularity of Ny (R, M?, G2, F,T1), where M?, G,
F, T1 are solutions of model equations. It explains the numerical
regularity of the M? function close to the horizon. Indeed, we
found numerically that M? reaches a limit value different of 0.
Such arguments no longer hold for the F function. In this case,
Nr (R, M?,G*, F.TI) o %
then we expect a behaviour such as F % , In(R — Ry), which is

(with a non-vanishing constant),

the observed behaviour of the numerical solution. Nevertheless, the
angle of the magnetic field line with the radial direction yx is linked
to the colatitude with,

1 VX h,F
tan y = E%tan@. (A4)

/X, h.F/R reaches 0 on the horizon even if F diverges because
F varies logarithmically. This ensures that the magnetic field lines
are always perpendicular to the even horizon, as expected. The
behaviour of F implies the convergence of G to a finite value on the
horizon.

The solutions of the model verify on the axis y & R_)—R>H +o00, where

& is the specific enthalpy. In order to avoid & e 400, we may
—> Ky
tune the inflow parameters to get y i 1/h; on the horizon. This
—Kpg

requirement also induces the IT function behaviour on the horizon.

It implies that v2h?* — ”Gi; i hf Using the model equations, we
—RKp
get I1 X ~R In(R — Ry) on the horizon. If y instead does not behave
— Ry

like 1/h,, then I1 it (R — Ry)~". Nevertheless, this requirement
H

-
is difficult to obtain in practical terms, during the matching procedure
between inflow and outflow solutions.

APPENDIX B: GRADIENT DESCENT
TECHNIQUES

To adapt the input parameters of the outflow to the inflow, we do
not use a simple technique of optimization of a residual function.
Instead, we decided to follow the direction in parameter space,
obtained by a technique able to calculate dual-like basis of the
space generated by linear combination of gradients in the param-
eter space. Indeed, the minimization of a residual function often
leads to difficulties of different kinds. It also leads to regions
where the automation of the crossing of the slow magnetosonic
point undergoes a discontinuity due to the non-linearity of the
equations or the crossing is impossible. Then, we need to explore
the parameter space using different possibilities for the chosen
direction.

For the matching, we need to find the outflow parameter (A, «, u,
v, [, i, e) such that the quantities,

Rsla
fi= ,
m
f= 1
2= (B1)

A . sy R
2(142)° v 1412

are equal to some specific values [the corresponding values given
in equation (56) and calculated for the inflow]. In what follows, we
discuss a more general procedure where we have n (with n < 7)
function (f; ) — 1., of the solution parameter (A, k, u, v, [, u, e;) to
adapt. We will refer to them as control functions.
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If we note

u,=VfeR for kell,n]. (B2)

Assume that (ux)r—1,., are linearly dependent, and call E, the
subspace generated by linear combination of (uy)¢—1,., and E,, ; =
Span {uy |k = 1...n and k # j} for each j = 1...n. Then,

lldjll =1
dj'uj>0 s (B3)
di L E,;

3ld; € E, such that

d; is the normalized projection of u; and orthogonal to E, ;. We
calculate d; using a recurrence formula. Note p, (u s (u")kf;g n
J

the unit vector embedded in E,, orthogonal to E,
- uj > 0. Then for all i # j, it follows that,

..j» and such that d;

Pn (uﬁ(uk)k?l.._.n) = pu_t | P2(ujsu;); (pa(up, u)k=1..n | , (B4)
#J ’lc;{
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which allows to explicitly calculate d;, considering that for each
non-colinear vector u, v,

u-v
et
p2(u;v) = . (B5)
u-v
u— ——7v
H ]2 ‘

If we note s = (A, k, i, v, I, i, ), then for all j and for a small
displacement ed;, we expect that forall i € [1, n] a typical behaviour,

fi(s +ed;) = fi(s) + 8ije (u; - d;) + O(e?).

which makes it possible to deal with the control functions one after
the other. Nevertheless due to the strong non-linear behaviour of the
system of equations, mentioned in the appendix of Chantry et al.
(2018), the control functions suffer of a lot of discontinuities. It
implies that this method can be used only locally. The closer the
family (uy)x = 1., 1S to the orthogonal family, the more efficient this
method. This method can be used to fit the solutions of the self-similar
model to the observational constraint.

This paper has been typeset from a TeX/IATEX file prepared by the author.
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