Mateus Simoes

Lilian Bossuet

Nicolas Bruneau

Vincent Grosso

Patrick Haddad

Mateus Simões

Thomas Sarno

Self-Timed Masking Implementing First-Order Masked S-Boxes Without Registers

Keywords: Side-channel analysis, Masking, Asynchronous circuits

published or not. The documents may come

Introduction

Dierent techniques exist to counter side-channel attacks; one of the most studied is the Boolean masking [START_REF] Chari | Towards sound approaches to counteract power-analysis attacks[END_REF][START_REF] Goubin | DES and dierential power analysis (the duplication method)[END_REF][START_REF] Ishai | Private circuits: Securing hardware against probing attacks[END_REF], which splits the sensitive variable into several shares. In this manner, a secret x is d th order masked with d + 1 shares as shown in Eq. [START_REF] Arribas | LLTI: low-latency threshold implementations[END_REF], with (x 0 , x 1 , . . . , x d-1) the random shares and x d the masked value. The ⊕ symbol denotes the XOR operation.

x d = x 0 ⊕ x 1 ⊕ . . . ⊕ x d-1 ⊕ x (1)
Thereupon, instead of manipulating the plain data, the circuit performs computation on the shares. This results in a more complex relationship between the side-channel leakages and the sensitive data. At the appropriate moment, the shares can be recombined to uncover the secret data, that is, x = d i=0 x i . Note that security comes at the cost of higher implementation complexity, raising the transistor count.

The circuit needs to be transformed to perform the desired computation of the plain data while manipulating the shares. Securely masking a linear function is trivial, since each input share can be manipulated independently and in parallel. For instance, let z = f (x, y) be a linear Boolean operation, its d th order masking can be expressed as shown in the Eq. [START_REF] Barthe | Strong non-interference and type-directed higher-order masking[END_REF].

z = d i=0 z i = d i=0 f i (x i , y i) = f d i=0 x i , d i=0 y i = f (x, y) (2)
On the other hand, the masking of a non-linear function, such as inversion in F 2 n , manipulates the sharing in such a way that its intermediate terms re- quire the recombination of several shares of a variable. Moreover, the sharing recombination may be the source of exploitable side-channel leakages, rendering masking of the non-linear operations a critical task for security engineers. In this context, techniques such as threshold implementations (TI) [START_REF] Nikova | Threshold implementations against sidechannel attacks and glitches[END_REF] were proposed.

TI limits the share recombination leakages. In this manner, the occurrence of glitches is an important factor to take into account when implementing the masking scheme in hardware. In fact, a glitchy function has an unexpected behavior that can be correlated to the unshared variable [START_REF] Mangard | Side-channel leakage of masked CMOS gates[END_REF] or more broadly to several shares. To guarantee the security of non-linear functions in the presence of glitches, register barriers can be employed to cease the spurious signal propagations [START_REF] Reparaz | Consolidating masking schemes[END_REF], thus increasing the overall latency of the masked function.

Mathematical analysis is required to strengthen condence in the protection brought by the masked implementation. To evaluate the security of a masking scheme, several methods based on the probing model of Ishai et al. [START_REF] Ishai | Private circuits: Securing hardware against probing attacks[END_REF] exist.

In this security analysis, the adversary can place up to d probes on dierent wires of the circuit in order to obtain their current logic level, providing clues about a potential dependence between the unshared value and the internal signal states. This model was enhanced to take into account physical defaults such as glitches [START_REF] Faust | Composable masking schemes in the presence of physical defaults & the robust probing model[END_REF] and composability [START_REF] Barthe | Strong non-interference and type-directed higher-order masking[END_REF].

Satisfying security in those security models requires additional overhead such as register layers, fresh random bits and higher silicon area. Therefore, reducing the masking costs is a pertinent branch of research in side-channel countermeasures. In this context, this work aims at reducing the number of clock cycles needed to compute masked functions. For that, we present a self-timed masking implementation built upon the Muller c-element [START_REF] Muller | A theory of asynchronous circuits[END_REF] latches. We show how to replace registers with those latches, assuring data synchronization among dierent combinatorial layers. Furthermore, we present our locally asynchronous globally synchronous (LAGS) AES design. Finally, we evaluate the side-channel leakages based on experimental measurements up to the second-order protection.

Background

The use of asynchronous methodologies and dual-rail logic to implement lowlatency masking was rst introduced by Moradi and Schneider in [START_REF] Moradi | Side-channel analysis protection and low-latency in action -case study of PRINCE and midori[END_REF]. They designed fully unrolled rst-order threshold implementations of PRINCE and Midori based on WDDL gates [START_REF] Tiri | A logic level design methodology for a secure DPA resistant ASIC or FPGA implementation[END_REF]. Later, Sasdrich et al. [START_REF] Sasdrich | Low-latency hardware masking with application to AES[END_REF] used the LUTbased Masked Dual-Rail with Pre-charge Logic (LMDPL) [START_REF] Leiserson | Gate-level masking under a path-based leakage metric[END_REF] masking scheme to implement a low-latency AES, which is also limited to rst-order security.

More recently, Nagpal et al. [START_REF] Nagpal | Riding the waves towards generic single-cycle masking in hardware[END_REF] presented a low-latency domain-oriented implementation [START_REF] Groÿ | Domain-oriented masking: Compact masked hardware implementations with arbitrary protection order[END_REF] also built upon WDDL gates, but employing Muller c-elements as synchronization modules, whose results have shown to be higher-order secure.

Similarly to these works, we aim at the study of low-latency masking, using dual-rail encoding with pre-charge logic and Muller c-elements to implement masked S-boxes with arbitrary protection order. For that, we rely on the domainoriented masking (DOM) [START_REF] Groÿ | Domain-oriented masking: Compact masked hardware implementations with arbitrary protection order[END_REF]. We focus on presenting and evaluating a generic methodology to replace registers with self-timed latches to design single-cycle masked functions.

Notations

We denote binary random variables in F 2 with lower-case letters, e.g. x. A random variable x is Boolean masked with d + 1 shares x i , whose sharing is denoted with calligraphic fonts e.g., S = (x 0 , x 1 , . . . , x d) in such a manner that x = d i=0 x i . We use typewriter fonts to denote binary random variables x, vectors X and signals encoded in the dual-rail protocol with a pair of wires (x.t,x.f). The wire x.t is used for signalling x.t = x while x.f signalizes the complement x.f = x.

A dual-rail token of a variable x is then referred as * x = (x.t, x.f) = (x, x).

2.2

The domain-oriented masking This work relies on the domain-oriented masking (DOM) [START_REF] Groÿ | Domain-oriented masking: Compact masked hardware implementations with arbitrary protection order[END_REF], a known secure arbitrary order masking scheme. Since their gadget has already been formally veried in the original paper, we do not present theoretical proofs of security in this work. In order to satisfy d-glitch-extended probing security, their gadget is divided into two register-isolated steps, which we identify, in this work, as processing and compression.

Let us take the 2-share DOM-indep gadget Z = A ∧ B with A = (a 0 , a 1) and B = (b 0 , b 1) the input shares and Z = (z 0 , z 1) the output sharing. In short, assuming that the input sharing is uniform, we want to nd a secure way to compute (z 0 ⊕ z 1) = (a 0 ⊕ a 1) ∧ (b 0 ⊕ b 1). Hence, the process step computes the product terms a 0 b 0 , a 0 b 1 , a 1 b 0 , a 1 b 1 and adds a fresh random share r to the cross-domain ones, that is, a 0 b 1 and a 1 b 0 . Then, to assure non-completeness, registers (-→) store the resulting shares (x 0 , x 1 , x 2 , x 3), as we can see in the Eq. [START_REF]Cryptographic Hardware and Embedded Systems -CHES 2014 -16th International Workshop[END_REF].

f 0 (a 0 , b 0) = a 0 b 0 -→ x 0 f 1 (a 0 , b 1) = a 0 b 1 ⊕ r -→ x 1 f 2 (a 1 , b 0) = a 1 b 0 ⊕ r -→ x 2 f 3 (a 1 , b 1) = a 1 b 1 -→ x 3 (3)
The processing step produces four shares. To reduce the number of output shares, there exists the compression step, as shown in the Eq. (4). Thanks to the register barrier between both steps and the fresh randomness, 1-glitch-extended security is satised.

z 0 = x 0 ⊕ x 1 z 1 = x 2 ⊕ x 3 (4)
Based on the domain-oriented scheme, Gross et al. proposed the rst generic low-latency masking (GLM) in [START_REF] Groÿ | Generic low-latency masking in hardware[END_REF]. In their work, they skip the compression step after the non-linear operations, eliminating the registers after the shared processing. However, the number of shares grows quadratically after each masked multiplication. In consequence, the area and randomness costs increase substantially. In our work, we maintain the compression step and use a dual-rail synchronization element to obtain a generic low-latency masking.

2.3

The dual-rail encoding

The dual-rail protocol encodes a bit using two signal wires: a wire x.t carries the logic value of a variable x while a second wire x.f transports its complement [START_REF] Davis | Asynchronous circuit design: Motivation, background, & methods[END_REF].

In this conguration, a valid token is obtained when one, and only one, signal wire is active (i.e. in a high logic state), although the null token is encoded when both wires are deactivated, that is, ∅ = (0, 0). The encoding (1, 1) is never used, and the behavior of our design after the injection of this invalid token is out of scope of this work. Table 1 summarizes the dual-rail encoding. x = 0

0 1 x = 1 1 0 not used 1 1
Moradi and Schneider presented the rst work that borrowed asynchronous dual-rail techniques with the purpose of implementing low-latency masking [START_REF] Moradi | Side-channel analysis protection and low-latency in action -case study of PRINCE and midori[END_REF].

Dierent from our choice of design, they designed a fully unrolled threshold implementation of two lightweight block-ciphers PRINCE and Midori using WDDL cells.

In contrast, we opted for an LAGS design, creating a single-cycle S-box within a synchronous AES architecture. The dual-rail encoding was also present in the implementation proposed by Sasdrich et al. [START_REF] Sasdrich | Low-latency hardware masking with application to AES[END_REF] to create a rst-order secure lowlatency AES based on the LMDPL masking scheme [START_REF] Leiserson | Gate-level masking under a path-based leakage metric[END_REF]. Similar to the LMDPL, we employ the pre-charge / evaluation logic with monotonic functions to obtain a glitch-free circuit [START_REF] Popp | Masked dual-rail pre-charge logic: DPA-resistance without routing constraints[END_REF]. To eliminate the glitches, only regular AND and OR gates are used to construct our dual-rail functions, due to their monotonic behavior [START_REF] Jukna | Notes on hazard-free circuits[END_REF].

We refer to Eqs. (5) and (6) for the AND and XOR functions, respectively, used in our work. We use the DPL_noEE AND gate [START_REF] Bhasin | Countering early evaluation: an approach towards robust dual-rail precharge logic[END_REF], shown in Eq. (5), instead of the WDDL AND [START_REF] Tiri | A logic level design methodology for a secure DPA resistant ASIC or FPGA implementation[END_REF] to avoid the early propagation in the evaluation phase [START_REF] Kulikowski | Power attacks on secure hardware based on early propagation of data[END_REF][START_REF] Moradi | Early propagation and imbalanced routing, how to diminish in FPGAs[END_REF].

z = a ∧ b ⇐⇒ z.t = a.t ∧ b.t z.f = (a.t ∧ b.f) ∨ (a.f ∧ b.t) ∨ (a.f ∧ b.f) (5) z = a ⊕ b ⇐⇒ z.t = (a.t ∧ b.f) ∨ (a.f ∧ b.t) z.f = (a.f ∧ b.f) ∨ (a.t ∧ b.t) (6)
Encoded as dual-rail tokens, the information in the communication channel carries the data itself and the validity signal. For instance, the output token of a dual-rail logic gate is valid when z.f ∨ z.t = 1, supposing z.f ̸ = z.t to avoid the illegal case. Thus, the validity signal can be used to control the ow of tokens. Based on this idea, the data synchronization is managed by the tokens, eliminating the need of register layers, as we will explain in the next subsection.

Data synchronization with the Muller c-elements

Registers are important components in hardware masking due to their role in synchronizing the boundaries of dierent combinatorial blocks [START_REF] Reparaz | Consolidating masking schemes[END_REF][START_REF] Faust | Composable masking schemes in the presence of physical defaults & the robust probing model[END_REF]. However, although limiting the combinatorial data path, registers increase the overall latency by requiring additional clock cycles to process the whole circuit.

In this work, we use an alternative state-holding element to obtain single cycle S-box implementations. The state-holding module used in this work is built upon the Muller c-element [START_REF] Muller | A theory of asynchronous circuits[END_REF], whose symbol is shown in Figure 1 The dual-rail latches can be characterized as either strongly indicating or weakly indicating, depending on how their acknowledgement signal is computed.

A strongly indicating latch, Figure 2, waits for all of its inputs to become valid, or null, before sending the respective acknowledgement. In contrast, a weakly indicating latch, Figure 3, waits for only one specic input token to become valid or null before authenticating its current state [START_REF] Sparsø | Introduction to Asynchronous Circuit Design[END_REF].

D[0].f D[0].t D[1].f D[1].t C C C C Q[0].f Q[0].t Q[1].f Q[1].t ack o req i C Fig. 2. A 2-bit wide strongly indicating asynchronous latch. D[0].f D[0].t D[1].f D[1].t C C C C Q[0].f Q[0].t Q[1].f Q[1].t ack o req i
Fig. 3. A 2-bit wide weakly indicating asynchronous latch.

We use the term self-timed due to the handshake logic within the data storage unit that is managed by the data itself, excluding the need of a clock signal to pace the token ow. In this context, the data streams like a wave, with the intermediate states oscillating between null and valid tokens, conguring what is known as pre-charge / evaluate logic.

In both cases, weakly or strongly indicating, n pairs of Muller c-elements store a n-bit token *

x and a regular 2-input NOR gate computes the validity signal for each pair or a single pair for the weakly indicating version to obtain the correspondent acknowledgement signal state.

The handshake logic contains two signals: a request input, denoted req_i, and an acknowledgement output, identied as ack_o. In fact, the acknowledge-ment signal indicates when the latch stores a valid (ack_o = 0) or a null (ack_o = 1) token. The request signal paces the data ow and is connected to one of the Muller c-element inputs. Thus, req_i = 0 requests a null token (i.e., the pre-charge), while req_i = 1 means that the combinatorial block following the latch is ready to evaluate a new valid token. Figure 4 shows the functioning of the handshake logic.

pre-charge evaluate pre-charge req i ack o Fig. 4. Self-timed handshake in a pre-charge / evaluate logic.

In our designs, we favor the weakly indicating version based on three aspects.

1. Speed: since a single bit triggers the acknowledgement signal, the handshake logic depth is lower.

2. Area: a single traditional 2-input NOR gate is used to compute the acknowledgement signal, reducing the total silicon area.

3. Security: a single bit triggers the acknowledgement, instead of the whole word, mitigating data dependent evaluation time leakages.

To illustrate the operation of a self-timed circuit, consider the following twostage pipeline, Figure 5, in which C denotes a combinatorial circuit. For ease of visualization, ⋆ represents a random valid token and ∅ denotes the null token.

There are two latches (A) and (B) in this example, whose initial states are, respectively, ∅ and ⋆. The req_i of the (A) is connected to the ack_o of (B). This wire is identied as ack_s.

Considering that C A is pre-charged, the valid token is processed once it arrives at the pipeline input. The latch (A) keeps its logic state since its ack_s = 0. When req_i switches to 0, (B) absorbs the ∅ from (A) and sets ack_s = 1; The pre-charge phase of C B is complete, which is signalized by (B) setting ack_s = 1. In consequence, (A) absorbs the valid token C A (⋆). Although being a generic example, we aim at obtaining the same behavior for the AES S-box. Thus, in the following sections, we show how this can be implemented and discuss the implementation results for this solution.

3

Self-timed masking implementation

This section presents the design of a self-timed AES S-box based on the simple variant of the domain-oriented masked (DOM) AES S-box proposed by Gross et al. in [START_REF] Groÿ | Domain-oriented masking: Compact masked hardware implementations with arbitrary protection order[END_REF]. We start from a known implementation whose security performance has been already assured in the original work. Thus, we can study the resulting overheads when enabling self-timed features and evaluate rst and higher-order security performance against side-channel analysis.

The d th order DOM gadget has d 2 registers, which will be replaced by dualrail latches with the purpose of enabling the aforementioned self-timed features.

To illustrate, consider the resulting 1 st order DOM gadget shown in Figure 9

= ¬((x 0 .f ∨ x 0 .t) • (x 1 .f ∨ x 1 .t) • • • • • (x d .f ∨ x d .t)) (7)
Hence, for any protection order, only the rst output share used to compute the acknowledgement signal. By limiting the number of shares used to compute the validity signal, we aim at avoiding data dependent time of evaluation. Moreover, note that the more validity bits we use, the later the acknowledgement signal will be obtained, reducing the handshake speed.

Our S-box implementation, shown in the Figure 10, is based on the Canright's design [START_REF] Canright | A very compact S-box for AES[END_REF]. Basically, we implemented the simple variant shown in [START_REF] Groÿ | Domain-oriented masking: Compact masked hardware implementations with arbitrary protection order[END_REF] using self-timed latches instead of registers. Each multiplier outputs a single acknowledgement signal and Muller c-elements are used to link the handshake of the two last multiplication stages. Indeed, the Muller c-elements are also employed in our design to join dierent acknowledgement signals.

L L L L L L L L req i ack o c c A Map L ν ⊗ γ 2 GF (2 4) Multip. N ⊗ Γ 2 GF (2 2) Multip. () -1 GF (2 2) Multip.
GF (2 2) Multip.

GF (2 4) Multip.

GF (2 4) Multip. The interface between the synchronous and asynchronous worlds are managed by two modules: the synchronous to asynchronous (S2A) and the asynchronous to synchronous (A2S) blocks shown in the Figure 11.

Map

The S2A block converts the 32-bit single-rail data into four 8-bit dual-rail tokens. This block issues the tokens to the S-box input with the help of a multiplexer. The S2A is also able to identify whenever the circuit requests a precharge token. In other words, the acknowledgement output signal of the S-box block indicates when a token has been absorbed, triggering the pre-charge or the evaluation phase, depending on the acknowledgement signal state.

In parallel, the A2S module manages the S-box output converting the valid token back to single-rail logic and its request input signal. We count the number of occurrences of the positive acknowledgement edge in order to track the desired token progression in the pipeline. This block contains a 32-bit wide self-timed latch to store each output token. However, this latch has four acknowledgement signals, one for each output token, in order to identify the validity of each computation. The request signals are demultiplexed to obtain a single request output. At the end of the S-box computation, the four substitution bytes are available at the S-box output and the A2S module waits for the next positive edge of the clock signal to trigger the next computation. Since the A2S module stands by until the next positive edge of the clock signal, the request signal remains constant as well as the internal states of the S-box.

Dierent from previous low-latency AES128 implementations, such as [START_REF] Sasdrich | Low-latency hardware masking with application to AES[END_REF][START_REF] Nagpal | Riding the waves towards generic single-cycle masking in hardware[END_REF], we compute an AES128 round in ve cycles. This is a choice of design. As we will show in the implementation results, this design allows us to obtain a relatively small AES architecture at the cost of higher encryption latency. Thus, to compute the AES128 encryption we need 10 × 5 + 4 = 54 clock cycles. Our AES architecture is based on the one by Moradi et al. [START_REF] Moradi | Pushing the limits: A very compact and a threshold implementation of AES[END_REF], which relies on state and key arrays built upon shift registers.

Implementation results

We use Synopsys Design Compiler S-2021.06-SP1 in order to synthesize our design using the STM 40nm standard cell library with a target frequency of 100

MHz. The area results are normalized in terms of gate equivalents (GE) with a two-input NAND gate from the selected library as reference. No compile_ultra scripts were used in this work.

We refer to Table 3, which reports the performance gures of our self-timed S-box implementations compared to the state-of-the-art. We present the implementation results of our design up to the third protection order.

Among the low-latency S-boxes, Sasdrich et al. [START_REF] Sasdrich | Low-latency hardware masking with application to AES[END_REF] present the best rstorder design. On the other hand, our solution can be considered competitive in terms of gate counting due to its arbitrary protection order, similar to Nagpal et al. [START_REF] Nagpal | Riding the waves towards generic single-cycle masking in hardware[END_REF] work. Compared to the design proposed by Gross et al. [START_REF] Groÿ | Generic low-latency masking in hardware[END_REF], the area and randomness overheads of our solution show a better result, thanks to the presence of the compression step after the synchronization layers. Nevertheless, similar to other low-latency solutions in the state-of-the-art, we note a signicant increase in the gate counting, due to the use of dual-rail logic.

Since we built our designs upon DOM gadgets, one S-box computation requires 36(d + d 2)/2 fresh randomness per clock cycle. However, to securely com- However, despite being able to compute four SubBytes in a single cycle, our design has shown to be slow compared to other solutions. Indeed, the throughput of our rst-order S-box is approximately 5.3MB/s. Hence, our self-timed masking oers a trade-o between latency and throughput to designers. Although the number of cycles is reduced, a clocked S-box would perform better in terms of throughput, since a smaller combinatorial data path may result in a higher maximum frequency.

The main reason for this lack of performance is the number of S-box stages in our design. In fact, the simple variant of the DOM AES S-box has eight stages, as shown in the Figure 10. Since the handshake signal needs to travel from the request input to the acknowledgement output to shift a token from a latch N to a latch N + 1, the higher is the number of stages, the slower is the token ow. Moreover, the latches have to be pre-charged after evaluating a valid token, which also compromises the speed. Based on this aspect, our solution may be more suitable for S-box designs with less combinatorial stages, such as [START_REF] Sugawara | 3-share threshold implementation of AES S-box without fresh randomness[END_REF][START_REF] Arribas | LLTI: low-latency threshold implementations[END_REF].

Thanks to our choice of design, our AES encryption can be computed in 54 clock cycles and the gate count results are signicantly lower, compared to other low-latency solutions, as shown in Table 4. In this manner, low-latency masked Sboxes built within our 32-bit AES architecture would allow the hardware designer to obtain a smaller silicon area at the cost of increasing the number of clock cycles needed to perform an AES encryption. To verify the eectiveness of a countermeasure, it is common to simulate the power consumption of a device under attack. Moreover, implementing self-timed circuits on an FPGA is not straightforward, since the Muller c-elements and the handshake logic contains combinatorial loops. For these reasons, we use simulated traces in order to evaluate the side-channel vulnerability of our design.

To obtain a realistic acquisition, our simulations take into account the standard cell timing behavior so that the occurrence of glitches is possible. The logic simulation outputs value change dump (VCD) les which can be parsed to model the power consumption by processing the toggling activity of all wires in the device under test (DUT). Thus, we model the system's power consumption in a noiseless manner with a sampling frequency of 1 GHz. We refer to We apply the xed vs random t-test methodology 3 proposed by Goodwill et al. [START_REF] Goodwill | A testing methodology for side-channel resistance validation[END_REF]. It uses the Welch's t-test to determine whether the dierence of two dataset means provides sucient evidence to reject the null hypothesis.

3 We use SCALib for side-channel analysis: github.com/simple-crypto/scalib

AES S-box analysis

We start with a side-channel evaluation of our AES S-box. Figures 13 and14 show the rst and second-order univariate t-test results using one million simulated traces for the rst-order implementation of our self-timed AES S-box. As expected, no exploitable side-channel leakages were identied in the rst-order analysis. But second-order leakages were spotted for our rst-order implementation. Again, the results conrm the robustness of our designs against side-channel analysis, even for the second-order implementation. These results are in adequacy with the DOM [START_REF] Groÿ | Domain-oriented masking: Compact masked hardware implementations with arbitrary protection order[END_REF]. Thus, replacing registers by Muller c-element latches does not introduce weaknesses in the higher-order design.

Full design analysis

We evaluate the whole AES encryption in the same manner. Figures 17 and18 show the rst and second-order univariate t-test results using one hundred thousand simulated traces for the rst-order implementation of our AES. Similar to the S-box, no rst-order leakages were detected for the rst-order design. These results show that if time leakages are present in our design, they are dicult to exploit and to detect even in high resolution and low noise environment.

Bivariate analysis

Finally, we also perform multivariate analysis. Figure 21 shows the bivariate analysis for the second-order AES S-box for one million traces, whereas Figure 22 shows the t-test results for the second-order AES encryption using one hundred thousand traces.

We stress that our side-channel evaluations were made in a noiseless highresolution setting. This is due to measurement methodology used in this work, resulting in power consumption traces modeled from post-synthesis simulation taking into account the gate-level delays.

In both analysis, the upper triangle shows the results when random mask refresh is disabled, while the lower triangle illustrates the side-channel analysis when fresh randomness is employed. The result obtained from the unprotected setting uses only 10% of the amount of traces used in the protected scenario:

one hundred thousand traces for the S-box and ten thousand traces for the AES encryption. points in which the multivariate t-statistics exceed the ±4.5 threshold. For ease of visualization, only the rst encryption round is shown in the AES analysis. As expected when the random number generator is shut o, second-order leakages are detected in our design, conrming the need of random refresh in DOM.

It also conrms that our replacement approach do not bring any weakness at higher-order in bivariate setting.

Conclusion

As previously stated, synchronizing the intermediate shares at the boundaries of combinatorial blocks is of high importance to obtain a secure masking implementation. Thus, this work presented a generic solution, that may be applied to dierent masked S-boxes, permitting the designer to obtain single-cycle implementations while assuring secure masking properties. Indeed, the main asset of our work is the reduction of the S-box latency to a single clock cycle, a feature achieved when replacing the register layers by self-timed latches. Nevertheless, the dual-rail logic adds a signicant gate-count overhead to the nal implementation, limiting its application in low area scenarios.

We observe that our solution has a low throughput compared to other lowlatency solutions. This is due to the number of S-box stages in the pipeline, slowing the handshake logic propagation. For example, the throughput could be improved by reducing the number of S-box stages, enhancing the acknowledgement logic depth by reducing the number of intermediate handshakes.

Although being resistant against glitches, our design uses the pre-charge / evaluate logic with monotonic cells, eliminating this hazard. Further research can be done to relax the security properties of the masked gadget when glitches are eliminated in order to reduce the overall implementation costs.

In order to evaluate our designs, we describe the implementation of a selftimed AES S-box and provide leakage assessment results based on noiseless sidechannel analysis. One of the motivations behind a noiseless leakage assessment is to observe potential timing leakages due to the self-timed behavior of our S-box.

Furthermore, we present a 32-bit data path AES128 architecture to obtain a smaller silicon area design at the cost of computing one encryption round of the AES in ve clock cycles. We highlight that our rst-order AES encryption requires 54 clock cycles with a total area of 14 kGE approximately.

Finally, despite the area and throughput overheads, replacing the register by self-timed latches does not bring any weakness to the DOM implementation, even in second-order multivariate leakage analysis.

Fig. 1 .

 1 Fig. 1. A Muller c-element symbol (left), a gate-level design (middle) and its truth table (right).

Fig. 5 .= 1 Fig. 6 . 1 Fig. 7 .Fig. 8 .

 516178 Fig. 5. Initial state.

Fig. 9 .

 9 Fig. 9. The 1 st order self-timed DOM gadget.

 ack_o

Fig. 11 .

 11 Fig. 11. The LAGS AES128 architecture with a 32-bit data path.

Figure 12 ,Fig. 12 .

 1212 Figure 12, which shows the block diagram illustrating the process to obtain the power consumption traces used in this work.

 Fig. 13. 1 st order TVLA results for the 1 st order masked AES S-box based on one million simulated traces.

Fig. 15

 15 Fig. 15. 2 nd order TVLA results for the 2 nd order masked AES S-box based on one million simulated traces.

Fig. 16 . 3 rd order TVLA results for the 2 nd

 162 Fig. 16. 3 rd order TVLA results for the 2 nd order masked AES S-box based on one million simulated traces.

Fig. 17

 17 Fig. 17. 1 st order TVLA results for the

 Fig. 17. 1 st order TVLA results for the 1 st order masked AES encryption based on one hundred thousand simulated traces.

Fig. 18

 18 Fig. 18. 2 nd order TVLA results for the

Fig. 19

 19 Fig. 19. 2 nd order TVLA results for the 2 nd order masked AES encryption based on one million simulated traces.

Fig. 20 . 3 rd order TVLA results for the 2 nd

 202 Fig. 20. 3 rd order TVLA results for the 2 nd order masked AES encryption based on one million simulated traces.

 Fig. 21. Bivariate analysis of the 2 nd or- der self-timed AES S-box implementation. The lower triangle shows the 2 nd order ttest using one million traces with mask refresh enabled. The upper triangle shows the 2 nd order t-test using one hundred thousand traces with mask refresh disabled.

Table 1 .

 1 The dual-rail encoding.

	Data	Token x.t x.f
	null	0	0

Table 2

 2 summarizes the control used during one encryption round of the AES, with SB o , MC o and MUXC o denoting the S-box, mix columns and MUX C outputs, respectively. Also, the K0 o and K3 o represent the output and input columns of the key array. The rotated K3 o , for example, is used as the S-box input for the key scheduling. One clock cycle is used to perform the shift rows in the state array. The combinatorial mix columns operation is performed in the rst four cycles of each encryption round.

Table 2 .

 2 AES control during one encryption round.

	Cycle	Round Key	S-box Input State Array Key Array
	0 1 2 3 4	K0o ⊕ SBo ⊕ rcon MCo ⊕ MUXCo shift rows round key K0o ⊕ K3o SBo round key MCo ⊕ MUXCo K0o ⊕ K3o SBo round key MCo ⊕ MUXCo K0o ⊕ K3o SBo round key MCo ⊕ MUXCo -rotate[K3o] SBo stand by

Since we compute four S-boxes within one clock cycle, we need 4 × 36(d + d 2)/2 refresh bits to obtain a secure AES implementation, with d the masking protection order.

Table 3 .

 3 Performance gures of dierent masked S-box implementations.

	Design	Masking Area Refresh Latency
		Order [kGE]	[bits]	[cycles]
	Ueno et al. [31]	1	st	1.4	64	5
	Wegener and Moradi [32]	1 st	4.2	0	16
	Sugawara [29]	1 st	3.5	0	3
	Gross et al. [12]	1 st	2.6	18	8
	Arribas et al. [1]	1	st 25.8	0	1
	Gross et al. [11]	1 st 60.7	2048	1
	Sasdrich et al. [27]	1 st	3.5	36	1
	Nagpal et al. [22]	1	st	7.6	18	1
	this work	1 st	6.1	36	1
	Gross et al. [11]	2 nd 57.1	4446	1
	Nagpal et al. [22]	2	nd 14.8	51	1
	this work	2	nd 11.4	108	1
	this work	3	rd 18.6	216	1

pute the AES encryption, our design requires 144(d + d 2)/2 refresh bits, since four SubBytes are computed within one clock cycle with a single S-box.

Table 4 .

 4 Performance gures of dierent low-latency masked AES implementations.

		Design	Masking Area Refresh Latency
			Order [kGE]	[bits]	[cycles]
		Sasdrich et al. [27]	1	st 157.5	720	11
		Nagpal et al. [22]	1	st 104.9	680	11
		this work	1 st 14.2	144	54
		Nagpal et al. [22]	1	st 203.9	2048	11
		this work	2 nd 23.4	432	54
		this work	3 rd 34.6	864	54
	5	Side-Channel Analysis		

st order masked AES encryption based on one hundred thousand simulated traces.