Self-Timed Masking Implementing First-Order Masked S-Boxes Without Registers
Mateus Simoes, Lilian Bossuet, Nicolas Bruneau, Vincent Grosso, Patrick Haddad

To cite this version:
Mateus Simoes, Lilian Bossuet, Nicolas Bruneau, Vincent Grosso, Patrick Haddad. Self-Timed Masking Implementing First-Order Masked S-Boxes Without Registers. 21st Smart Card Research and Advanced Application Conference, Nov 2022, Birmingham, United Kingdom. hal-03726428v2

HAL Id: hal-03726428
https://hal.science/hal-03726428v2
Submitted on 5 Oct 2022

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
Self-Timed Masking: Implementing Masked S-Boxes Without Registers

Mateus Simões1,2, Lilian Bossuet1, Nicolas Bruneau2, Vincent Grosso1, Patrick Haddad2, and Thomas Sarno2

1 Laboratoire Hubert Curien, CNRS, Saint-Étienne, France
2 STMicroelectronics, Rousset, France

Abstract. Masking is one of the most used side-channel protection techniques. However, a secure masking scheme requires additional implementation costs, e.g. random number, and transistor count. Furthermore, glitches and early evaluation can temporarily weaken a masked implementation in hardware, creating a potential source of exploitable leakages. Registers are generally used to mitigate these threats, hence increasing the implementation’s area and latency.

In this work, we show how to design glitch-free masking without registers with the help of the dual-rail encoding and asynchronous logic. This methodology is used to implement low-latency masking with arbitrary protection orders. Finally, we present a side-channel evaluation of our first and second order masked AES implementations.

Keywords: Side-channel analysis · Masking · Asynchronous circuits.

1 Introduction

Different techniques exist to counter side-channel attacks; one of the most studied is the Boolean masking \cite{6,10,13}, which splits the sensitive variable into several shares. In this manner, a secret \(x \) is \(d \)-th order masked with \(d+1 \) shares as shown in Eq. (1), with \((x_0, x_1, \ldots, x_{d-1}) \) the random shares and \(x_d \) the masked value. The \(\oplus \) symbol denotes the XOR operation.

\[
x_d = x_0 \oplus x_1 \oplus \ldots \oplus x_{d-1} \oplus x
\]

(1)

Thereupon, instead of manipulating the plain data, the circuit performs computation on the shares. This results in a more complex relationship between the side-channel leakages and the sensitive data. At the appropriate moment, the shares can be recombined to uncover the secret data, that is, \(x = \bigoplus_{i=0}^{d} x_i \). Note that security comes at the cost of higher implementation complexity, raising the transistor count.

The circuit needs to be transformed to perform the desired computation of the plain data while manipulating the shares. Securely masking a linear function is trivial, since each input share can be manipulated independently and in parallel. For instance, let \(z = f(x, y) \) be a linear Boolean operation, its \(d \)-th order masking can be expressed as shown in the Eq. (2).
\begin{align}
 z = \bigoplus_{i=0}^{d} z_i = \bigoplus_{i=0}^{d} f_i(x_i, y_i) = f \left(\bigoplus_{i=0}^{d} x_i, \bigoplus_{i=0}^{d} y_i \right) = f(x, y)
\end{align}

On the other hand, the masking of a non-linear function, such as inversion in \mathbb{F}_{2^n}, manipulates the sharing in such a way that its intermediate terms require the recombination of several shares of a variable. Moreover, the sharing recombination may be the source of exploitable side-channel leakages, rendering the masking of the non-linear operations a critical task for security engineers. In this context, techniques such as threshold implementations (TI) [23] were proposed. TI limits the share recombination leakages. In this manner, the occurrence of glitches is an important factor to take into account when implementing the masking scheme in hardware. In fact, a glitchy function has an unexpected behavior that can be correlated to the unshared variable [17] — or more broadly to several shares. To guarantee the security of non-linear functions in the presence of glitches, register barriers can be employed to cease the spurious signal propagations [26], thus increasing the overall latency of the masked function.

Mathematical analysis is required to strengthen confidence in the protection brought by the masked implementation. To evaluate the security of a masking scheme, several methods based on the probing model of Ishai et al. [13] exist. In this security analysis, the adversary can place up to d probes on different wires of the circuit in order to obtain their current logic level, providing clues about a potential dependence between the unshared value and the internal signal states. This model was enhanced to take into account physical defaults such as glitches [8] and composability [2].

Satisfying security in those security models requires additional overhead such as register layers, fresh random bits and higher silicon area. Therefore, reducing the masking costs is a pertinent branch of research in side-channel countermeasures. In this context, this work aims at reducing the number of clock cycles needed to compute masked functions. For that, we present a self-timed masking implementation built upon the Muller c-element [21] latches. We show how to replace registers with those latches, assuring data synchronization among different combinatorial layers. Furthermore, we present our locally asynchronous globally synchronous (LAGS) AES design. Finally, we evaluate the side-channel leakages based on experimental measurements up to the second-order protection.

2 Background

The use of asynchronous methodologies and dual-rail logic to implement low-latency masking was first introduced by Moradi and Schneider in [20]. They designed fully unrolled first-order threshold implementations of PRINCE and Midori based on WDDL gates [30]. Later, Sasdrich et al. [27] used the LUT-based Masked Dual-Rail with Pre-charge Logic (LMDPL) [16] masking scheme to implement a low-latency AES, which is also limited to first-order security.
More recently, Nagpal et al. [22] presented a low-latency domain-oriented implementation [12] also built upon WDDL gates, but employing Muller c-elements as synchronization modules, whose results have shown to be higher-order secure.

Similarly to these works, we aim at the study of low-latency masking, using dual-rail encoding with pre-charge logic and Muller c-elements to implement masked S-boxes with arbitrary protection order. For that, we rely on the domain-oriented masking (DOM) [12]. We focus on presenting and evaluating a generic methodology to replace registers with self-timed latches to design single-cycle masked functions.

2.1 Notations

We denote binary random variables in \(\mathbb{F}_2 \) with lower-case letters, e.g. \(x \). A random variable \(x \) is Boolean masked with \(d + 1 \) shares \(x_i \), whose sharing is denoted with calligraphic fonts — e.g., \(S = (x_0, x_1, \ldots, x_d) \) — in such a manner that \(x = \bigoplus_{i=0}^d x_i \).

We use typewriter fonts to denote binary random variables \(x \), vectors \(X \) and signals encoded in the dual-rail protocol with a pair of wires \((x.t, x.f)\). The wire \(x.t \) is used for signalling \(x.t = x \) while \(x.f \) signalizes the complement \(x.f = \overline{x} \). A dual-rail token of a variable \(x \) is then referred as \(\overline{x} = (x.t, x.f) = (x, \overline{x}) \).

2.2 The domain-oriented masking

This work relies on the domain-oriented masking (DOM) [12], a known secure arbitrary order masking scheme. Since their gadget has already been formally verified in the original paper, we do not present theoretical proofs of security in this work. In order to satisfy \(d \)-glitch-extended probing security, their gadget is divided into two register-isolated steps, which we identify, in this work, as processing and compression.

Let us take the 2-share DOM-indep gadget \(Z = A \wedge B \) with \(A = (a_0, a_1) \) and \(B = (b_0, b_1) \) the input shares and \(Z = (z_0, z_1) \) the output sharing. In short, assuming that the input sharing is uniform, we want to find a secure way to compute \((z_0 \oplus z_1) = (a_0 \oplus a_1) \wedge (b_0 \oplus b_1) \). Hence, the process step computes the product terms \(a_0 b_0, a_0 b_1, a_1 b_0, a_1 b_1 \) and adds a fresh random share \(r \) to the cross-domain ones, that is, \(a_0 b_1 \) and \(a_1 b_0 \). Then, to assure non-completeness, registers (\(\longrightarrow \)) store the resulting shares \((x_0, x_1, x_2, x_3) \), as we can see in the Eq. (3).

\[
\begin{align*}
 f_0(a_0, b_0) &= a_0 b_0 & \longrightarrow x_0 \\
 f_1(a_0, b_1) &= a_0 b_1 \oplus r & \longrightarrow x_1 \\
 f_2(a_1, b_0) &= a_1 b_0 \oplus r & \longrightarrow x_2 \\
 f_3(a_1, b_1) &= a_1 b_1 & \longrightarrow x_3
\end{align*}
\] (3)

The processing step produces four shares. To reduce the number of output shares, there exists the compression step, as shown in the Eq. (4). Thanks to the
register barrier between both steps and the fresh randomness, 1-glitch-extended security is satisfied.

\[
\begin{align*}
 z_0 &= x_0 \oplus x_1 \\
 z_1 &= x_2 \oplus x_3
\end{align*}
\]

Based on the domain-oriented scheme, Gross et al. proposed the first generic low-latency masking (GLM) in [11]. In their work, they skip the compression step after the non-linear operations, eliminating the registers after the shared processing. However, the number of shares grows quadratically after each masked multiplication. In consequence, the area and randomness costs increase substantially. In our work, we maintain the compression step and use a dual-rail synchronization element to obtain a generic low-latency masking.

2.3 The dual-rail encoding

The dual-rail protocol encodes a bit using two signal wires: a wire \(x.t\) carries the logic value of a variable \(x\) while a second wire \(x.f\) transports its complement [7]. In this configuration, a valid token is obtained when one, and only one, signal wire is active (i.e. in a high logic state), although the null token is encoded when both wires are deactivated, that is, \(\emptyset = (0, 0)\). The encoding \((1, 1)\) is never used, and the behavior of our design after the injection of this invalid token is out of scope of this work. Table 1 summarizes the dual-rail encoding.

<table>
<thead>
<tr>
<th>Data</th>
<th>Token</th>
</tr>
</thead>
<tbody>
<tr>
<td>(x.t)</td>
<td>(x.f)</td>
</tr>
<tr>
<td>null</td>
<td>0</td>
</tr>
<tr>
<td>(x = 0)</td>
<td>0</td>
</tr>
<tr>
<td>(x = 1)</td>
<td>1</td>
</tr>
<tr>
<td>not used</td>
<td>1</td>
</tr>
</tbody>
</table>

Moradi and Schneider presented the first work that borrowed asynchronous dual-rail techniques with the purpose of implementing low-latency masking [20]. Different from our choice of design, they designed a fully unrolled threshold implementation of two lightweight block-ciphers Prince and Midori using WDDL cells.

In contrast, we opted for an LAGS design, creating a single-cycle S-box within a synchronous AES architecture. The dual-rail encoding was also present in the implementation proposed by Sasdrich et al. [27] to create a first-order secure low-latency AES based on the LMDPL masking scheme [16]. Similar to the LMDPL, we employ the pre-charge / evaluation logic with monotonic functions to obtain a glitch-free circuit [24]. To eliminate the glitches, only regular AND and OR
gates are used to construct our dual-rail functions, due to their monotonic behavior [14].

We refer to Eqs. (5) and (6) for the AND and XOR functions, respectively, used in our work. We use the DPL_noEE AND gate [4], shown in Eq. (5), instead of the WDDL AND [30] to avoid the early propagation in the evaluation phase [15, 18].

\[
\begin{align*}
z &= a \land b \iff z.t = a.t \land b.t \\
z.f &= (a.t \land b.f) \lor (a.f \land b.t) \lor (a.f \land b.f)
\end{align*}
\] (5)

\[
\begin{align*}
z &= a \oplus b \iff z.t &= (a.t \land b.f) \lor (a.f \land b.t) \\
z.f &= (a.f \land b.f) \lor (a.t \land b.t)
\end{align*}
\] (6)

Encoded as dual-rail tokens, the information in the communication channel carries the data itself and the validity signal. For instance, the output token of a dual-rail logic gate is valid when \(z.f \lor z.t = 1\), supposing \(z.f \neq z.t\) to avoid the illegal case. Thus, the validity signal can be used to control the flow of tokens. Based on this idea, the data synchronization is managed by the tokens, eliminating the need of register layers, as we will explain in the next subsection.

2.4 Data synchronization with the Muller c-elements

Registers are important components in hardware masking due to their role in synchronizing the boundaries of different combinatorial blocks [26, 8]. However, although limiting the combinatorial data path, registers increase the overall latency by requiring additional clock cycles to process the whole circuit.

In this work, we use an alternative state-holding element to obtain single cycle S-box implementations. The state-holding module used in this work is built upon the Muller c-element [21], whose symbol is shown in Figure 1 along with a gate-level implementation and a summary of its logical behavior. The Muller c-element operates as a Boolean function \(f(a, b) = a \circ b\) that outputs 0 when all inputs have a low logic level, and when all inputs have a high logic level it outputs 1. In contrast, the Muller c-element maintains its current steady state if at least one input is different from the others.

\[
\begin{align*}
a \quad b \quad c \\
\quad b \\
a \quad b \\
\quad z
\end{align*}
\]

\[
\begin{array}{c|c|c|c}
 a & b & z \\
0 & 0 & 0 \\
0 & 1 & z_{-1} \\
1 & 0 & z_{-1} \\
1 & 1 & 1 \\
\end{array}
\]

Fig. 1. A Muller c-element symbol (left), a gate-level design (middle) and its truth table (right).
Recently, Nagpal et al. [22] presented a domain-oriented gadget built upon Muller c-elements. They use WDDL gates in combination with the Muller cells in order to create a generic single-cycle masking in hardware that is higher-order secure. Similarly, we use Muller c-elements with the purpose of designing self-timed dual-rail latches to replace the register layers in any masking implementation. Figures 2 and 3 show a 2-bit wide design of the self-timed latches used in our designs.

The dual-rail latches can be characterized as either strongly indicating or weakly indicating, depending on how their acknowledgement signal is computed. A strongly indicating latch, Figure 2, waits for all of its inputs to become valid, or null, before sending the respective acknowledgement. In contrast, a weakly indicating latch, Figure 3, waits for only one specific input token to become valid or null before authenticating its current state [28].

![Fig. 2. A 2-bit wide strongly indicating asynchronous latch.](image)

![Fig. 3. A 2-bit wide weakly indicating asynchronous latch.](image)

We use the term “self-timed” due to the handshake logic within the data storage unit that is managed by the data itself, excluding the need of a clock signal to pace the token flow. In this context, the data streams like a wave, with the intermediate states oscillating between null and valid tokens, configuring what is known as pre-charge / evaluate logic.

In both cases, weakly or strongly indicating, \(n \) pairs of Muller c-elements store a \(n \)-bit token \(\mathbf{x} \) and a regular 2-input NOR gate computes the validity signal for each pair — or a single pair for the weakly indicating version — to obtain the correspondent acknowledgement signal state.

The handshake logic contains two signals: a request input, denoted \(\text{req}_i \), and an acknowledgement output, identified as \(\text{ack}_o \). In fact, the acknowledge-
Self-Timed Masking

ment signal indicates when the latch stores a valid ($\text{ack}_o = 0$) or a null ($\text{ack}_o = 1$) token. The request signal paces the data flow and is connected to one of the Muller c-element inputs. Thus, $\text{req}_i = 0$ requests a null token (i.e., the pre-charge), while $\text{req}_i = 1$ means that the combinatorial block following the latch is ready to evaluate a new valid token. Figure 4 shows the functioning of the handshake logic.

![Fig. 4. Self-timed handshake in a pre-charge / evaluate logic.](image)

In our designs, we favor the weakly indicating version based on three aspects.

1. **Speed**: since a single bit triggers the acknowledgement signal, the handshake logic depth is lower.
2. **Area**: a single traditional 2-input NOR gate is used to compute the acknowledgement signal, reducing the total silicon area.
3. **Security**: a single bit triggers the acknowledgement, instead of the whole word, mitigating data dependent evaluation time leakages.

To illustrate the operation of a self-timed circuit, consider the following two-stage pipeline, Figure 5, in which C denotes a combinatorial circuit. For ease of visualization, \star represents a random valid token and \emptyset denotes the null token. There are two latches (A) and (B) in this example, whose initial states are, respectively, \emptyset and \star. The req_i of the (A) is connected to the ack_o of (B). This wire is identified as ack_s.

Considering that C_A is pre-charged, the valid token is processed once it arrives at the pipeline input. The latch (A) keeps its logic state since its $\text{ack}_s = 0$. When req_i switches to 0, (B) absorbs the \emptyset from (A) and sets $\text{ack}_s = 1$; The pre-charge phase of C_B is complete, which is signalized by (B) setting $\text{ack}_s = 1$. In consequence, (A) absorbs the valid token $C_A(\star)$.

![Fig. 5. Initial state.](image) ![Fig. 6. req_i switches to 0.](image)
The external circuit issues a null token, pre-charging the combinatorial circuit C_A; the latches (A) and (B) stand by, since the request input remains constant at $req_i = 0$. Next, the req_i switches to 1, triggering the absorption of the output valid token $C_B(C_A(\star))$, completing one self-timed processing cycle. This absorption sets the $ack_s = 0$.

Although being a generic example, we aim at obtaining the same behavior for the AES S-box. Thus, in the following sections, we show how this can be implemented and discuss the implementation results for this solution.

3 Self-timed masking implementation

This section presents the design of a self-timed AES S-box based on the simple variant of the domain-oriented masked (DOM) AES S-box proposed by Gross et al. in [12]. We start from a known implementation whose security performance has been already assured in the original work. Thus, we can study the resulting overheads when enabling self-timed features and evaluate first and higher-order security performance against side-channel analysis.

The d^{th} order DOM gadget has d^2 registers, which will be replaced by dual-rail latches with the purpose of enabling the aforementioned self-timed features. To illustrate, consider the resulting 1^{st} order DOM gadget shown in Figure 9, in which all logic gate symbols express their dual-rail variant.
The request input is common to all latches and the Eq. 7 shows the complete detection logic for the general case, with the symbol \circ denoting the Muller c-element operation. In this manner, the acknowledgement signal indicates the token state stored in the current latch.

$$\text{ack}_o = \neg \left((x_0 \cdot f \lor x_0 \cdot t) \circ (x_1 \cdot f \lor x_1 \cdot t) \circ \cdots \circ (x_d \cdot f \lor x_d \cdot t) \right) \quad (7)$$

Hence, for any protection order, only the first output share is used to compute the acknowledgement signal. By limiting the number of shares used to compute the validity signal, we aim at avoiding data dependent time of evaluation. Moreover, note that the more validity bits we use, the later the acknowledgement signal will be obtained, reducing the handshake speed.

Our S-box implementation, shown in the Figure 10, is based on the Canright’s design [5]. Basically, we implemented the simple variant shown in [12] using self-timed latches instead of registers. Each multiplier outputs a single acknowledgement signal and Muller c-elements are used to link the handshake of the two last multiplication stages. Indeed, the Muller c-elements are also employed in our design to join different acknowledgement signals.

We opt for the Canright’s AES S-box design to evaluate our solution. However, we highlight that replacing register by self-timed latches is a generic solution, that can be applied in different implementations.

Our AES128 architecture is locally asynchronous and globally synchronous (LAGS), as we are interested in employing asynchronous techniques to obtain a single-cycle S-box. Nevertheless, a fully unrolled design can be obtained using self-timed latches.

Moreover, as the asynchronous pipeline can process several valid tokens, our AES architecture has a 32-bit single-rail data path with a single S-box. Thus, four substitution bytes are computed per clock cycle. In this context, a positive clock edge triggers the domino logic, allowing us to synchronize the computation.
of the correct tokens. If the clock period is adequate, the four SubBytes are ready before the next positive edge using only one S-box.

![Diagram](image_url)

Fig. 11. The LAGS AES128 architecture with a 32-bit data path.

The interface between the synchronous and asynchronous worlds are managed by two modules: the synchronous to asynchronous (S2A) and the asynchronous to synchronous (A2S) blocks shown in the Figure 11.

The S2A block converts the 32-bit single-rail data into four 8-bit dual-rail tokens. This block issues the tokens to the S-box input with the help of a multiplexer. The S2A is also able to identify whenever the circuit requests a pre-charge token. In other words, the acknowledgement output signal of the S-box block indicates when a token has been absorbed, triggering the pre-charge or the evaluation phase, depending on the acknowledgement signal state.

In parallel, the A2S module manages the S-box output — converting the valid token back to single-rail logic — and its request input signal. We count the number of occurrences of the positive acknowledgement edge in order to track the desired token progression in the pipeline. This block contains a 32-bit wide self-timed latch to store each output token. However, this latch has four acknowledgement signals, one for each output token, in order to identify the validity of each computation. The request signals are demultiplexed to obtain a single request output. At the end of the S-box computation, the four substitution bytes are available at the S-box output and the A2S module waits for the next positive edge of the clock signal to trigger the next computation. Since the A2S module stands by until the next positive edge of the clock signal, the request signal remains constant as well as the internal states of the S-box.

Different from previous low-latency AES128 implementations, such as [27, 22], we compute an AES128 round in five cycles. This is a choice of design. As we will show in the implementation results, this design allows us to obtain a relatively small AES architecture at the cost of higher encryption latency. Thus, to compute the AES128 encryption we need $10 \times 5 + 4 = 54$ clock cycles. Our
AES architecture is based on the one by Moradi et al. [19], which relies on state and key arrays built upon shift registers.

Table 2 summarizes the control used during one encryption round of the AES, with SB_o, MC_o and $MUXC_o$ denoting the S-box, mix columns and MUX C outputs, respectively. Also, the $K0_o$ and $K3_o$ represent the output and input columns of the key array. The rotated $K3_o$, for example, is used as the S-box input for the key scheduling. One clock cycle is used to perform the shift rows in the state array. The combinatorial mix columns operation is performed in the first four cycles of each encryption round.

<table>
<thead>
<tr>
<th>Cycle</th>
<th>Round Key</th>
<th>S-box Input</th>
<th>State Array</th>
<th>Key Array</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>$K0_o \oplus SB_o \oplus rcon$</td>
<td>$MC_o \oplus MUXC_o$</td>
<td>shift rows</td>
<td>round key</td>
</tr>
<tr>
<td>1</td>
<td>$K0_o \oplus K3_o$</td>
<td>$MC_o \oplus MUXC_o$</td>
<td>SB_o</td>
<td>round key</td>
</tr>
<tr>
<td>2</td>
<td>$K0_o \oplus K3_o$</td>
<td>$MC_o \oplus MUXC_o$</td>
<td>SB_o</td>
<td>round key</td>
</tr>
<tr>
<td>3</td>
<td>$K0_o \oplus K3_o$</td>
<td>$MC_o \oplus MUXC_o$</td>
<td>SB_o</td>
<td>round key</td>
</tr>
<tr>
<td>4</td>
<td>--</td>
<td>rotate[$K3_o$]</td>
<td>SB_o</td>
<td>stand by</td>
</tr>
</tbody>
</table>

Since we compute four S-boxes within one clock cycle, we need $4 \times 36(d + d^2)/2$ refresh bits to obtain a secure AES implementation, with d the masking protection order.

4 Implementation results

We use Synopsys Design Compiler S-2021.06-SP1 in order to synthesize our design using the STM 40nm standard cell library with a target frequency of 100 MHz. The area results are normalized in terms of gate equivalents (GE) with a two-input NAND gate from the selected library as reference. No compile Ultra scripts were used in this work.

We refer to Table 3, which reports the performance figures of our self-timed S-box implementations compared to the state-of-the-art. We present the implementation results of our design up to the third protection order.

Among the low-latency S-boxes, Sasdrich et al. [27] present the best first-order design. On the other hand, our solution can be considered competitive in terms of gate counting due to its arbitrary protection order, similar to Nagpal et al. [22] work. Compared to the design proposed by Gross et al. [11], the area and randomness overheads of our solution show a better result, thanks to the presence of the compression step after the synchronization layers. Nevertheless, similar to other low-latency solutions in the state-of-the-art, we note a significant increase in the gate counting, due to the use of dual-rail logic.

Since we built our designs upon DOM gadgets, one S-box computation requires $36(d + d^2)/2$ fresh randomness per clock cycle. However, to securely com-
Table 3. Performance figures of different masked S-box implementations.

<table>
<thead>
<tr>
<th>Design</th>
<th>Masking Area</th>
<th>Refresh Latency</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Order</td>
<td>[kGE]</td>
</tr>
<tr>
<td>Ueno et al. [31]</td>
<td>1st</td>
<td>1.4</td>
</tr>
<tr>
<td>Wegener and Moradi [32]</td>
<td>1st</td>
<td>4.2</td>
</tr>
<tr>
<td>Sugawara [29]</td>
<td>1st</td>
<td>3.5</td>
</tr>
<tr>
<td>Gross et al. [12]</td>
<td>1st</td>
<td>2.6</td>
</tr>
<tr>
<td>Arribas et al. [1]</td>
<td>1st</td>
<td>25.8</td>
</tr>
<tr>
<td>Gross et al. [11]</td>
<td>1st</td>
<td>60.7</td>
</tr>
<tr>
<td>Sasdrieh et al. [27]</td>
<td>1st</td>
<td>3.5</td>
</tr>
<tr>
<td>Nagpal et al. [22]</td>
<td>1st</td>
<td>7.6</td>
</tr>
<tr>
<td>this work</td>
<td>1st</td>
<td>6.1</td>
</tr>
<tr>
<td>Gross et al. [11]</td>
<td>2nd</td>
<td>57.1</td>
</tr>
<tr>
<td>Nagpal et al. [22]</td>
<td>2nd</td>
<td>14.8</td>
</tr>
<tr>
<td>this work</td>
<td>2nd</td>
<td>11.4</td>
</tr>
<tr>
<td>this work</td>
<td>3rd</td>
<td>18.6</td>
</tr>
</tbody>
</table>

To compute the AES encryption, our design requires $144(d + d^2)/2$ refresh bits, since four SubBytes are computed within one clock cycle with a single S-box.

However, despite being able to compute four SubBytes in a single cycle, our design has shown to be slow compared to other solutions. Indeed, the throughput of our first-order S-box is approximately 5.3MB/s. Hence, our self-timed masking offers a trade-off between latency and throughput to designers. Although the number of cycles is reduced, a clocked S-box would perform better in terms of throughput, since a smaller combinatorial data path may result in a higher maximum frequency.

The main reason for this lack of performance is the number of S-box stages in our design. In fact, the simple variant of the DOM AES S-box has eight stages, as shown in the Figure 10. Since the handshake signal needs to travel from the request input to the acknowledgement output to shift a token from a latch N to a latch $N + 1$, the higher is the number of stages, the slower is the token flow. Moreover, the latches have to be pre-charged after evaluating a valid token, which also compromises the speed. Based on this aspect, our solution may be more suitable for S-box designs with less combinatorial stages, such as [29, 1].

Thanks to our choice of design, our AES encryption can be computed in 54 clock cycles and the gate count results are significantly lower, compared to other low-latency solutions, as shown in Table 4. In this manner, low-latency masked S-boxes built within our 32-bit AES architecture would allow the hardware designer to obtain a smaller silicon area at the cost of increasing the number of clock cycles needed to perform an AES encryption.
Table 4. Performance figures of different low-latency masked AES implementations.

<table>
<thead>
<tr>
<th>Design</th>
<th>Masking Area</th>
<th>Refresh Latency</th>
<th>Order</th>
<th>kGE</th>
<th>bits</th>
<th>cycles</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sasdrich et al. [27]</td>
<td>1st</td>
<td>157.5</td>
<td>720</td>
<td>11</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nagpal et al. [22]</td>
<td>1st</td>
<td>104.9</td>
<td>680</td>
<td>11</td>
<td></td>
<td></td>
</tr>
<tr>
<td>this work</td>
<td>1st</td>
<td>14.2</td>
<td>144</td>
<td>54</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nagpal et al. [22]</td>
<td>1st</td>
<td>203.9</td>
<td>2048</td>
<td>11</td>
<td></td>
<td></td>
</tr>
<tr>
<td>this work</td>
<td>2nd</td>
<td>23.4</td>
<td>432</td>
<td>54</td>
<td></td>
<td></td>
</tr>
<tr>
<td>this work</td>
<td>3rd</td>
<td>34.6</td>
<td>864</td>
<td>54</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

5 Side-Channel Analysis

To verify the effectiveness of a countermeasure, it is common to simulate the power consumption of a device under attack. Moreover, implementing self-timed circuits on an FPGA is not straightforward, since the Muller c-elements and the handshake logic contains combinatorial loops. For these reasons, we use simulated traces in order to evaluate the side-channel vulnerability of our design.

To obtain a realistic acquisition, our simulations take into account the standard cell timing behavior so that the occurrence of glitches is possible. The logic simulation outputs value change dump (VCD) files which can be parsed to model the power consumption by processing the toggling activity of all wires in the device under test (DUT). Thus, we model the system’s power consumption in a noiseless manner with a sampling frequency of 1 GHz. We refer to Figure 12, which shows the block diagram illustrating the process to obtain the power consumption traces used in this work.

![Fig. 12. Modeling power traces from VCD files generated after timing simulations.](image)

We apply the fixed vs random t-test methodology\(^3\) proposed by Goodwill et al. [9]. It uses the Welch’s t-test to determine whether the difference of two dataset means provides sufficient evidence to reject the null hypothesis.

\(^3\) We use SCALib for side-channel analysis: github.com/simple-crypto/scalib
5.1 AES S-box analysis

We start with a side-channel evaluation of our AES S-box. Figures 13 and 14 show the first and second-order univariate t-test results using one million simulated traces for the first-order implementation of our self-timed AES S-box. As expected, no exploitable side-channel leakages were identified in the first-order analysis. But second-order leakages were spotted for our first-order implementation.

![Fig. 13. 1st order TVLA results for the 1st order masked AES S-box based on one million simulated traces.](image1)

![Fig. 14. 2nd order TVLA results for the 1st order masked AES S-box based on one million simulated traces.](image2)

Figures 15 and 16 show the second and third-order univariate t-test results using one million simulated traces for the second order implementation of our self-timed AES S-box.

![Fig. 15. 2nd order TVLA results for the 2nd order masked AES S-box based on one million simulated traces.](image3)

![Fig. 16. 3rd order TVLA results for the 2nd order masked AES S-box based on one million simulated traces.](image4)

Again, the results confirm the robustness of our designs against side-channel analysis, even for the second-order implementation. These results are in adequacy with the DOM [12]. Thus, replacing registers by Muller c-element latches does not introduce weaknesses in the higher-order design.
5.2 Full design analysis

We evaluate the whole AES encryption in the same manner. Figures 17 and 18 show the first and second-order univariate \(t \)-test results using one hundred thousand simulated traces for the first-order implementation of our AES. Similar to the S-box, no first-order leakages were detected for the first-order design.

Figures 19 and 20 show the second and third-order univariate \(t \)-test results using one hundred thousand simulated traces for the second-order implementation of our self-timed AES. Once again, the side-channel evaluation was performed on whole the encryption. As expected, the second-order evaluation shows no leakage, but third-order univariate analysis shows that some points cross the threshold line.

These results show that if time leakages are present in our design, they are difficult to exploit and to detect even in high resolution and low noise environment.
5.3 Bivariate analysis

Finally, we also perform multivariate analysis. Figure 21 shows the bivariate analysis for the second-order AES S-box for one million traces, whereas Figure 22 shows the t-test results for the second-order AES encryption using one hundred thousand traces.

We stress that our side-channel evaluations were made in a noiseless high-resolution setting. This is due to measurement methodology used in this work, resulting in power consumption traces modeled from post-synthesis simulation taking into account the gate-level delays.

In both analysis, the upper triangle shows the results when random mask refresh is disabled, while the lower triangle illustrates the side-channel analysis when fresh randomness is employed. The result obtained from the unprotected setting uses only 10% of the amount of traces used in the protected scenario: one hundred thousand traces for the S-box and ten thousand traces for the AES encryption.

![Fig. 21](image1.png)

Fig. 21. Bivariate analysis of the 2nd order self-timed AES S-box implementation. The lower triangle shows the 2nd order t-test using one million traces with mask refresh enabled. The upper triangle shows the 2nd order t-test using one hundred thousand traces with mask refresh disabled.

![Fig. 22](image2.png)

Fig. 22. Bivariate analysis of the 2nd order self-timed AES encryption implementation. The lower triangle shows the 2nd order t-test using one hundred thousand traces with mask refresh enabled. The upper triangle shows the 2nd order t-test using ten thousand traces with mask refresh disabled.

The blue and red dots shown in the Figures 21 and 22 represent sample points in which the multivariate t-statistics exceed the ± 4.5 threshold. For ease of visualization, only the first encryption round is shown in the AES analysis. As expected when the random number generator is shut off, second-order leakages are detected in our design, confirming the need of random refresh in DOM. It also confirms that our replacement approach do not bring any weakness at higher-order in bivariate setting.
6 Conclusion

As previously stated, synchronizing the intermediate shares at the boundaries of combinatorial blocks is of high importance to obtain a secure masking implementation. Thus, this work presented a generic solution, that may be applied to different masked S-boxes, permitting the designer to obtain single-cycle implementations while assuring secure masking properties. Indeed, the main asset of our work is the reduction of the S-box latency to a single clock cycle, a feature achieved when replacing the register layers by self-timed latches. Nevertheless, the dual-rail logic adds a significant gate-count overhead to the final implementation, limiting its application in low area scenarios.

We observe that our solution has a low throughput compared to other low-latency solutions. This is due to the number of S-box stages in the pipeline, slowing the handshake logic propagation. For example, the throughput could be improved by reducing the number of S-box stages, enhancing the acknowledgement logic depth by reducing the number of intermediate handshakes.

Although being resistant against glitches, our design uses the pre-charge / evaluate logic with monotonic cells, eliminating this hazard. Further research can be done to relax the security properties of the masked gadget when glitches are eliminated in order to reduce the overall implementation costs.

In order to evaluate our designs, we describe the implementation of a self-timed AES S-box and provide leakage assessment results based on noiseless side-channel analysis. One of the motivations behind a noiseless leakage assessment is to observe potential timing leakages due to the self-timed behavior of our S-box.

Furthermore, we present a 32-bit data path AES128 architecture to obtain a smaller silicon area design at the cost of computing one encryption round of the AES in five clock cycles. We highlight that our first-order AES encryption requires 34 clock cycles with a total area of 14 kGE approximately.

Finally, despite the area and throughput overheads, replacing the register by self-timed latches does not bring any weakness to the DOM implementation, even in second-order multivariate leakage analysis.

References

