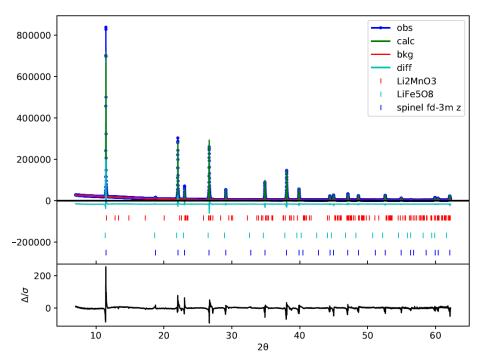

## Feasibility and Limitations of High-Voltage Lithium-Iron-Manganese Spinels

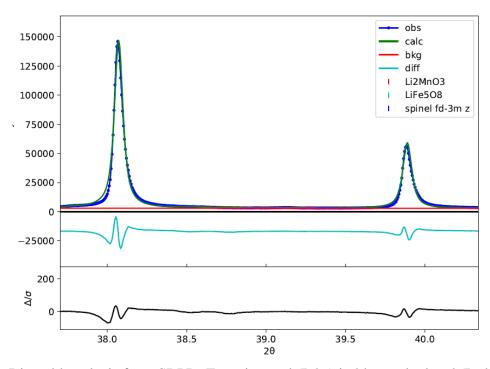
## **Supporting information**

Anna Windmüller<sup>1,z</sup>, Tatiana Renzi<sup>2,3,4</sup>, Hans Kungl<sup>1</sup>, Svitlana Taranenko<sup>1</sup>, Emmanuelle Suard<sup>4</sup>, François Fauth<sup>5</sup>, Mathieu Duttine<sup>2</sup>, Chih-Long Tsai<sup>1</sup>, Ruoheng Sun<sup>1</sup>, Yasin Emre Durmus<sup>1</sup>, Hermann Tempel<sup>1</sup>, Peter Jakes<sup>1</sup>,

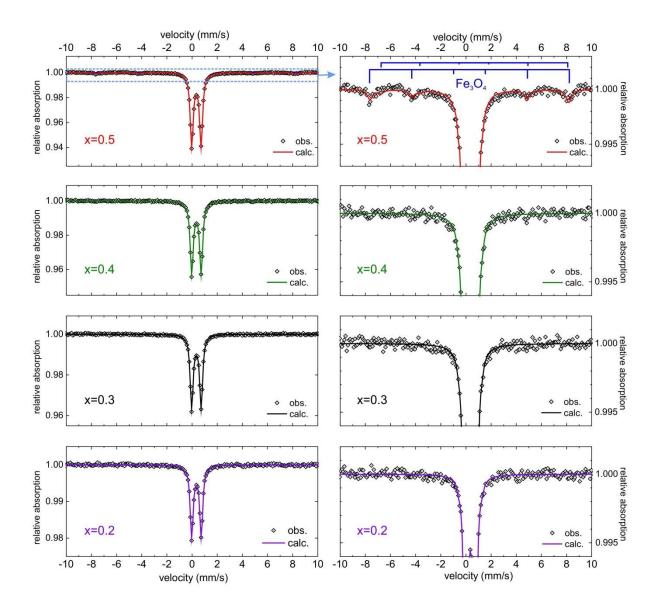
Christian Masquelier<sup>3,6</sup>, Rüdiger-A. Eichel<sup>1,7</sup>, Laurence Croguennec<sup>2,6</sup>, Helmut Ehrenberg<sup>8</sup>


- Institute of Energy and Climate Research (IEK-9), Forschungszentrum Jülich, 52425 Jülich, Germany
- 2 Univ. Bordeaux, CNRS, Bordeaux INP, ICMCB UMR 5026, F-33600, Pessac, France.
- 3 Laboratoire de Réactivité et de Chimie des Solides, Université de Picardie Jules Verne, NRS-UMR 7314, F-80039 Amiens Cedex 1, France
- 4 Institut Laue-Langevin, 71 avenue des Martyrs, 38042 Grenoble, France
- 5 CELLS-ALBA synchrotron, 08290 Cerdanyola del Vallès, Barcelona (Spain)
- RS2E, Réseau Français sur le Stockage Electrochimique de l'Energie, FR CNRS 3459, F-80039 Amiens Cedex 1, France.
- 7 Institut für Materialien und Prozesse für elektrochemische Energiespeicher- und wandler, RWTH Aachen University, D-52074 Aachen, Germany
- 8 Institute for Applied Materials (IAM), Karlsruhe Institute of Technology (KIT), Eggenstein-Leopoldshafen D-76344, Germany
- z Corresponding author, Dr. Anna Windmüller, E-Mail: a.windmueller@fz-juelich.de

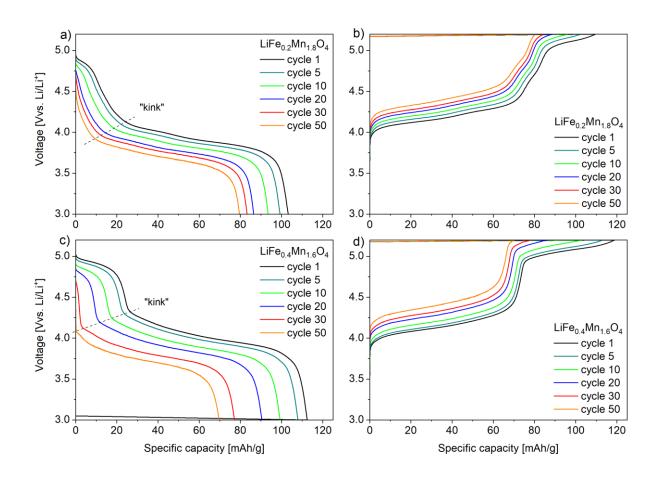



**Figure S1:** Synchrotron powder diffraction patterns for LiFe<sub>x</sub>Mn<sub>2-x</sub>O<sub>4</sub> ( $0.2 \le x \le 0.6$ ). Secondary phase reflections are highlighted with the symbol \* for Li<sub>2</sub>MnO<sub>3</sub>

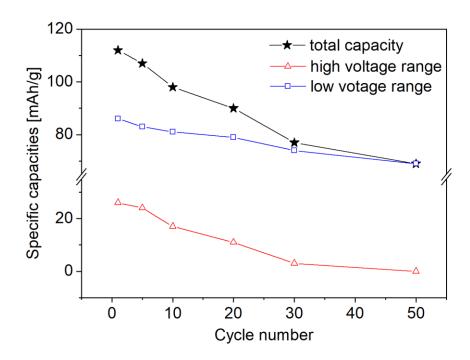
**Table S1:** Calculated weight fractions of phases identified from SRPD data. Considering Li<sub>2</sub>MnO<sub>3</sub> fractions is critical for the refinement of the spinel parameters, as main reflections of Li<sub>2</sub>MnO<sub>3</sub> overlap with the spinel main reflections. Given the small amount of free standing and low intense Li<sub>2</sub>MnO<sub>3</sub> reflections the listed statistical errors might be underestimated.


| x in LiFe <sub>x</sub> Mn <sub>2-x</sub> O <sub>4</sub> | LiFe <sub>5</sub> O <sub>8</sub> wt% | Li <sub>2</sub> MnO <sub>3</sub> wt% | Spinel wt%     |
|---------------------------------------------------------|--------------------------------------|--------------------------------------|----------------|
| 0.4                                                     | < 1                                  | $1.0 \pm 0.1$                        | $98.2 \pm 0.2$ |
| 0.5                                                     | < 1                                  | $2.0 \pm 0.1$                        | $97.5 \pm 0.2$ |




**Figure S2**: Rietveld analysis from SRPD: Experimental (Iobs) in blue, calculated (Icalc) in green and difference (Iobs – Icalc) in light blue for x = 0.6 to point out intensity residuals in the difference plot for the applied model.




**Figure S3**: Rietveld analysis from SRPD: Experimental (Iobs) in blue, calculated (Icalc) in green and difference (Iobs – Icalc) in light blue for x = 0.6 for two individual reflections to point out the difficulties in describing the observed asymmetric peak shapes by the applied model.



**Figure S4**: Room temperature <sup>57</sup>Fe Mössbauer spectra recorded for the series of LiFe<sub>x</sub>Mn<sub>2-x</sub>O<sub>4</sub> spinel materials  $(0.2 \le x \le 0.5)$  with a high-velocity scale. See Table 2 for the refined hyperfine parameters of the different sub-spectra.



**Figure S5:** Charge and discharge curves of selected cycles for LiFe<sub>x</sub>Mn<sub>2-x</sub>O<sub>4</sub> cycled at a C/5 rate with an upper cut-off voltage at 5.2 V and a lower cut-off voltage at 3.0 V vs. Li<sup>+</sup>/Li. a) discharge LiFe<sub>0.2</sub>Mn<sub>1.8</sub>O<sub>4</sub> b) charge LiFe<sub>0.2</sub>Mn<sub>1.8</sub>O<sub>4</sub> c) discharge LiFe<sub>0.4</sub>Mn<sub>1.6</sub>O<sub>4</sub> d) charge LiFe<sub>0.4</sub>Mn<sub>1.6</sub>O<sub>4</sub>. Repeated cycling to 5.2 V vs. Li<sup>+</sup>/Li leads to a shift of charge "plateaus" in the high voltage range towards higher voltages and - for the discharge "plateau" - towards lower voltages, from cycle to cycle. Yet, the same behavior can be observed for the "plateaus" in the 4 V range. This behavior needs to be interpreted as an increase in overvoltages.



**Figure S6:** Specific discharge capacities for selected cycles for LiFe<sub>0.4</sub>Mn<sub>1.6</sub>O<sub>4</sub> cycled at C/5 rate with upper cut-off voltage at 5.2 V and lower at 3.0 V vs. Li/Li<sup>+</sup> above and below the "kink" in the discharge curve (Figure S5), which indicates the change from the Mn<sup>4+/3+</sup> reaction to the Fe<sup>4+/3+</sup> reaction. Lines are drawn to guide the eye. The figure illustrates that most of the total capacity degradation is caused by degradation in the high voltage region.