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The (sub-)millimeter wave spectrum of the non-rigid CH2OH radical is investigated both experimentally and
theoretically. Ab initio calculations are carried out to quantitatively characterize its potential energy surface
as a function of the two large amplitude ∠H1COH and ∠H2COH dihedral angles. It is shown that the
radical displays a large amplitude torsional-like motion of its CH2 group with respect to the OH group. The
rotation-torsion levels computed with the help of a 4-D Hamiltonian accounting for this torsional-like motion
and for the overall rotation exhibit a tunneling splitting, in agreement with recent experimental investigations,
and a strong rotational dependence of this tunneling splitting on the rotational quantum number Ka due to
the rotation-torsion Coriolis coupling. Based on an internal axis method approach, a fitting Hamiltonian
accounting for tuneling effects and for the fine and hyperfine structure is built and applied to the fitting
of the new (sub)-millimeter wave transitions measured in this work along with previously available high-
resolution data. 778 frequencies and wavenumbers are reproduced with an unitless standard deviation of 0.79
using 27 parameters. The N = 0 tunneling splitting, which could not be determined unambiguously in the
previous high-resolution investigations, is determined based on its rotational dependence.

I. INTRODUCTION

Although molecules displaying either a large ampli-
tude motion or an unpaired electron have been the sub-
ject of numerous spectroscopic investigations, far fewer
molecules displaying both features have been spectro-
scopically characterized. These include sodium trimer
(Na3), exhibiting both a pseudorotation tunneling mo-
tion and an electron spin-pseudorotation coupling,1 the
acetyl radical (CH3CO), in which the methyl group in-
ternal rotation is coupled to the fine structure,2 and the
triatomic methylene (CH2) and amidogen (NH2) radicals
in which an electron spin-rotation coupling takes place in
addition to a large amplitude bending motion.3,4

The present paper deals with the hydroxymethyl rad-
ical (CH2OH) presenting both an unpaired electron and
a large amplitude motion. This astrophysically rele-
vant species has not been detected yet in the interstel-
lar medium although its isomeric form CH3O has.5 The
spectrum of the hydroxymethyl radical was first observed
at low resolution using infrared (IR) matrix isolation
spectroscopy.6,7 The assignment to the radical was con-
firmed by the satisfactory agreement between observed
and calculated vibrational frequencies provided by an
approximate valence force field. Although the hydrox-
ymethyl radical is a short-lived, reactive species, difficult
to observe in the lab, it has since been the subject of sev-
eral infrared and microwave spectroscopic investigations.
Its infrared spectrum was recorded, with a higher reso-
lution than in the pioneering investigations,6,7 by Feng
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et al.8 who observed several vibrational bands with a
partially resolved rotational structure thanks to double
resonant ionization detected IR spectroscopy. Nearly ten
years later, a fully rotationally resolved absorption spec-
trum was reported by Roberts et al.9 for the symmetric
CH stretch ν3 fundamental band. The values of the ro-
tational constants B and C could be determined for the
ground and excited vibrational states along with an ac-
curate band center. The first pure rotational spectrum of
the radical was measured by Bermudez et al.10 who as-
signed nearly one hundred transitions with Ka = 0 and 1
in the millimeter wave domain and observed a tunneling
splitting for the first time. In the subsequent investi-
gation of Schuder et al.,11 tunneling and electron spin-
rotation splittings were observed for several rotational
components of the ν3 band. Since then, more than 150
new pure rotational transitions have been measured in
the millimeter wave domain by Chitarra et al.12 also for
Ka = 0 and 1. The high-resolution data10–12 were in-
terpreted in terms of a slightly asymmetric top molecule
with rotational levels split into several components due
to the fine and hyperfine couplings and to the tunnel-
ing. The rotational dependence of the tunneling splitting
was ignored and a constant tunneling splitting of about
150 MHz was assumed. For the fine and hyperfine cou-
plings, the splittings were found to be on the order of
100 MHz.

Early ab initio calculations13–15 revealed that the hy-
droxymethyl radical is a non-rigid species exhibiting a
complicated potential energy surface (PES) where 3 sta-
tionary points, shown in Fig. 1, were found: a C1 mini-
mum (S), a planar local maximum (m) 300 cm−1 higher,
and a pyramidal Cs saddle point (M) 1500 cm−1 above
the minimum. The subsequent ab initio calculations of
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Schuder et al.11 were consistent with a large amplitude
motion of the radical that can be pictured as an internal
rotation of the CH2 group, exchanging its two hydrogen
atoms and hindered by a two-fold symmetry potential.
In this paper, the rotation-tunneling energy levels

of the CH2OH radical are investigated and its high-
resolution spectrum is analyzed. New transitions mea-
sured in the (sub-)millimeter wave domain are re-
ported which, compared to the previous millimeter-wave
measurement,10,12 extend the frequency and Ka-value
ranges and include the astrophysically relevant 110 ← 101
cold transition. Starting from an ab initio PES, the rad-
ical energy level diagram is first quantitatively described
using a 4-D model in which the large amplitude tor-
sional motion and the overall rotation of the molecule
are treated simultaneously; the torsional motion and the
hindering potential being determined from the ab initio

PES. This preliminary calculation allowed us to assign
the appropriate symmetry label to the rotation-tunneling
levels and revealed that a strong rotational dependence of
the tunneling splitting takes place.16 Using then an inter-
nal axis method (IAM) formalism,17,18 a fitting approach
is build which accounts for the effects of the large am-
plitude motion and for the fine and hyperfine couplings.
With this approach, a line position analysis of the al-
ready available10–12 microwave and infrared data and of
the newly measured sub-millimeter wave transitions is
carried out. A total of 778 transitions are reproduced
with a unitless deviation of 0.79 using 27 parameters.
These include the magnitude of the tunneling splitting
which could be determined unambiguously exploiting its
rotational dependence.
The paper has four remaining sections. In Section II,

the experimental setup used for the new measurements is
described. In Section III, a qualitative description of the
two-dimensional PES of the radical is given and rotation-
tunneling energies are deduced. The fitting approach is
described in Section IV and the analysis results are given
in Section V. Section VI is the discussion.

II. EXPERIMENTAL SPECTRUM

In this work, the CH2OH radical was synthesized
from methanol using an H abstraction technique where
F atoms, produced by a microwave discharge, are in-
jected into a reaction cell where they collide with the
precursor.19 To record new pure rotational transitions of
the radical, we used an upgraded version of the absorp-
tion experimental set-up described in Chitarra et al.12

The upgrade consists in three points: i) multiple injec-
tions of F atoms along the cell for increased radical pro-
duction; ii) longer absorption path length by implement-
ing double-pass; and iii) a fast identification of transi-
tions belonging to open-shell species thanks to Zeeman
modulation. The main aspects of the set-up and data
acquisition are described in the following and a detailed
description will be presented in a subsequent paper.

Figure 1. Geometry of the stationary points displayed by
the hydroxymethyl radical potential energy surface. The two
methylenic hydrogen atoms, H1 and H2, are labeled 1 and 2,
respectively. For the geometries in the left column, the COH
atoms are contained in the figure plane. For the geometries
in the middle column, the CO bond is perpendicular to this
plane. The letters M, m, and S are shorthand notations for
the stationary points.

F atoms are produced by a 100 W microwave discharge
in an F2/He mixture (5 % dilution) and injected into
the reaction cell through three separate inlets distant by
30 cm. The reaction cell is a 2 m long Pyrex cell cov-
ered by a fluorinated wax to limit surface reactions and
equipped with a Teflon window on one end. The op-
timization of CH2OH signal led to partial pressures of
about 5 µbar of methanol and 25 µbar of F2/He.
The (sub-)millimeter radiation is generated by a radio-

frequency synthesizer (Rhodes & Schwarz), referenced
to a Rubidium atomic clock, feeding a solid-state fre-
quency multiplication chain (Virginia Diode Inc., VDI).
It allows for a broad tunability, covering here the 140–
900 GHz spectral range. A wire grid polarizer (5 µm
diameter and 22 µm spacing wires, PureWavePolarizers
Ltd.) and a roof-top mirror allow for a double pass of the
collimated radiation into the absorption cell; an off-axis
parabolic mirror focuses the output radiation onto the
detector. Between 140 and 330 GHz, we used Schottky
diode detectors (VDI) and, at higher frequencies, a liq-
uid Helium cooled InSb hot electron bolometer detector
(Infrared Labs) operating at 4 K. For all recordings, the
frequency modulation of the (sub-)millimeter radiation
was set to 48.157 kHz. Because of increasing values of
the Doppler linewidths with increasing frequencies, both
the modulation depth and frequency steps were adjusted
based on the spectral range; they were set to values rang-
ing from 500 to 1800 kHz and from 50 to 200 kHz, re-
spectively. Relatively long acquisitions were required to
achieve reasonable signal-to-noise ratio on CH2OH lines,
typically from 4 to 16 s per frequency point.
To perform Zeeman modulation, an alternating current
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Figure 2. Example of a recording in the 247605–247625 MHz
range. The top (bottom) trace displays the spectrum at the
first (second) demodulation stage. On the top trace, the sig-
nal is dominated by a strong line of methanol (about 1000
times stronger than the neighboring features but saturated
at the sensitivity level of the lock-in) and the resulting base-
line variation. On the bottom trace, transitions of open-shell
species are clearly visible over a flat baseline. Two lines of
CH3O and three lines of CH2OH are seen. Residual noise
in the region of the strong CH3OH absorption (most likely
induced by saturation effects) clearly affects the lowest fre-
quency transition of CH2OH.

(at a 71 Hz frequency) circulates through an 800-spires
coil, wrapped along approximately 1.3 m of the reaction
cell length, resulting in an alternating magnetic field of
∼ 20 Gauss. The alternating current is generated by a
waveform generator followed by an audio amplifier (Ana-
logue Associated) and a diode. As evidenced by Fig. 2,
the double modulation scheme essentially acts as a fil-
ter for both close-shell species contribution and baseline
effect.

Two lock-in amplifiers (Ametek and Stanford Re-
search), connected in series, perform the signal recov-
ery. The first lock-in demodulates the signal at the
second harmonic of the source frequency modulation
while the second one demodulates the source-frequency-
demodulated signal at the magnetic field modulation fre-
quency. Both signals are retrieved by the acquisition
computer.

Using this set-up, 464 pure rotational transitions of
CH2OH have been measured with a line position accu-
racy ranging from 30 to 800 kHz. It should be stressed
that the magnetic field modulation is key to the assign-
ments carried out in this work. It allows us to discrim-
inate the weak CH2OH lines from the numerous strong
transitions of the precursor and of the reaction products,
mainly H2CO.

III. ENERGY LEVELS CALCULATION

Ab initio calculations are carried out and show that
the large amplitude torsional motions can be parameter-
ized in terms of a single large amplitude angular-type co-
ordinate. The corresponding hindering potential is also
retrieved from these ab initio calculations. These results
are used to compute rotation-torsion energy levels with
the help of a 4-D model accounting for the large ampli-
tude motion and the overall rotation. The spin of the
unpaired electron is ignored in this preliminary energy
levels calculation.
In non-rigid molecules displaying internal rotation of

a methyl group, the torsional motion can be pictured as
a rigid methyl group undergoing internal rotation with
respect to a rigid frame; the axis of internal rotation re-
maining parallel to the three fold symmetry axis of the
methyl group and fixed with respect to this frame. Such
a description is appropriate for methanol,20 which is a
benchmark molecule for hindered rotation, but not for
the CH2OH radical because its OCH2 group does not
remain rigid during the large amplitude motion. As em-
phasized by the previous11,13–15 and present ab initio cal-
culations, the geometry of this group changes and the line
bisecting the HCH bond angle, which might be taken as
the axis of internal rotation, does not remain parallel to
the CO bond.

A. Potential energy surface

Using the Gaussian 16 package,21 a two-dimensional
ab initio PES was calculated in the two angles ξ1 =
∠H1COH and ξ2 = ∠H2COH, where the two dihedral
angles are defined with the atom labeling of Fig. 1. The
ωB97X-D/cc-pVTZ level of theory was chosen and the
remaining 7 internal coordinates were optimized. The
two-dimensional surface was calculated for ξ1 and ξ2 such
that ξ1− ξ2 − π mod 2π is in the range −40 to +40◦ al-
lowing us to explore energy values below 5000 cm−1. A
contour plot of the surface is shown in Fig. 3 where the
contours span energy values ranging from 0 to 1900 cm−1

only. The stationary points, described in the previous ab
initio calculations11,13–15 and shown in Fig. 1, are indi-
cated in Fig. 3. The lines of steepest descent, also shown
in this figure, connect these stationary points.
Along the line of steepest descent, ξ1 and ξ2 are ex-

pressed in terms of two functions ξs1(η) and ξs2(η), de-
pending on the variable η, such that the derivative vec-
tor with components ξs1

′(η) and ξs2
′(η) is parallel to the

gradient of the potential energy function. Figure 3 em-
phasizes that following the line of steepest descent al-
lows us to reach the non-equilibrium configurations of
the radical that are important for the tunneling en-
ergy level calculation. This suggests that the harmonic
approximation22–24 should be made and that the 9 inter-
nal coordinates of the radical should be replaced by the
single angular-type large amplitude coordinate η and 8
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Table I. Structural parametersa and stationary points energy

η ξ1 ξ2 SPb Ec

MP3/6-31G** level of theory13

0.0 0.0 −180.0 m 32

15.7 33.3 −181.9 S 0

90.0 104.8 −104.8 M 1392

CCSD(T)/pVTZ level of theory14,15

0.0 0.0 −180.0 m 140

9.3 23.9 −185.3 S 0

90.0 - - M 1643

CCSD(T)/aVQZ level of theory11

0.0 0.0 −180.0 m 96

90.0 - - M 1661

ωB97X-D/cc-pVTZ level of theory (this work)

0.0 0.0 −180.0 m 96

8.6 22.2 −185.0 S 0

90.0 100.2 −100.2 M 1711

a The angles η, ξ1, ξ2 are given in degrees.
b The letter identifying the stationary points is listed in this
column.

c Ab initio energies are given in this column in cm−1.

small amplitude coordinates. The coordinate η is taken
such that 0 ≤ η ≤ 2π. Symmetry considerations allow us
to express ξs1(η) and ξ

s
2(η) in the following way:

{

ξs1(η) = η + f(η),

ξs2(η) = η − π − f(η),
(1)

where f(η) is an odd function of η with 2π periodicity
fulfilling f(π−η) = f(η). Equations (1) allow us to write
η and f(η) as:

{

η = [ξs1(η) + ξs2(η) + π]/2,

f(η) = [ξs1(η)− ξs2(η)− π]/2.
(2)

In the case of a C2v rigid OCH2 group rotating about its
CO bond, the relation ξ1 − ξ2 − π = 0 would hold, the
function f(η) would be zero, and η would be the angle
of internal rotation of the CH2 group with respect to the
hydroxyl group. The second of Eqs. (2) implies that f(η)
is a measure of how much the OCH2 group departs from
C2v symmetry. There is no analytical expression for f(η)
which was retrieved from the ab initio calculations and
its variations are depicted in Fig. S1, available in the
supplementary material. As emphasized by this figure,
f(η) displays strong variations near stationary point m
corresponding to η = 0, π, and 2π. Table I compares η,
ξ1, ξ2 values and energies for the stationary points found
in the previous11,13–15 and present ab initio calculations.
For stationary point S, the smallest value of η was found
in this work. For stationary point m, the energy value
retrieved in this work is in between those reported in the

Figure 3. A contour plot of the potential energy surface of
CH2OH. The coordinates used are the angles ξ1 and ξ2 which
are shorthand notations for the dihedral angles ∠H1COH and
∠H2COH. 10 contours with color-coded energies E are drawn
with solid lines. Energy value are equally spaced from 100 to
1900 cm−1. Stationary points are indicated by the letters M,
m, and S; the latter being the minimum. The lines of steepest
descent are drawn with a dashed line.

early investigations13–15 and equal to that found more
recently.11 For stationary point M, the energy obtained
in this work is higher than those previously reported and
the closest to that of Schuder et al.11

B. Torsional motion and hindering potential

Using the atom labeling of Fig. 1, the three bond angles
and four bond lengths are expressed in terms of η. For
the bond angles ∠H1CO and ∠H2CO, we find:























∠H1CO =

nb
∑

i=0

bi cos iη,

∠H2CO =

nb
∑

i=0

bi(−1)i cos iη,
(3)

where bi, with 0 ≤ i ≤ nb, are expansion coefficients. For
the bond angle ∠COH, we obtain:

∠COH =

nc
∑

i=0

c2i cos 2iη, (4)

where c2i, with 0 ≤ i ≤ nc, are expansion coefficients.
For the r(CH1) and r(CH2) bond lengths, equations sim-
ilar to Eqs. (3) arise. Finally, for both the r(CO) and
r(OH) bond lengths, an equation similar to Eq. (4) can be
used. The parameterization in Eqs. (1), (3), and (4) en-
sures that hydrogen atoms H1 and H2 are equivalent. The
transformation η → η±π interchanges the two hydrogen
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atoms as it leads to ξ1 ↔ ξ2, ∠H1CO ↔ ∠H2CO, and
r(CH1) ↔ r(CH2). The parameterization in Eqs. (1),
(3), and (4) also ensures that molecular configurations
characterized by η and 2π − η are mirror images from
each other. The expansion parameters in Eqs. (3) and
(4) were fitted to the present ab initio results and are
their values reported in Table S1 available in the supple-
mentary material.
The hindering potential V (η) was computed as the

electronic energy retrieved in Section IIIA plus the zero-
point energy arising from the small amplitude modes.
In addition to the contribution from the 7 modes corre-
sponding to the three bond angles and four bond lengths,
the contribution from ν8, a mode corresponding to small
variations δξ1 and δξ2 of the two dihedral angles, was
also taken into account. Describing ν8 with the small
amplitude coordinate δq8, the small variations of the two
dihedral angles are then:

{

δξ1 = −[1− f ′(η)]δq8,

δξ2 = +[1 + f ′(η)]δq8.
(5)

This equation ensures that the ν8 mode is not redundant
with that corresponding to small variations of η. Figure 4
depicts the variations of the hindering potential V (η). It
displays two barriers at η = π/2 and 3π/2 characterized
by a height of 1600 cm−1 and corresponding to station-
ary point M. At η = 0, π, and 2π, there arise three local
maxima corresponding to stationary point m with a bar-
rier height of 60 cm−1. Near these local maxima, strong
variations of the hindering potential are observed. The
hindering potential V (η) retrieved in this work is quanti-
tatively close to that of Schuder et al.11 plotted in their
Fig. 9. When comparing the two figures, it should be
kept in mind that the relation φCOH = η + π/2 holds
between the large amplitude coordinate used by these
authors and that used in this work.

C. Rotation-torsion energy levels

Rotation-torsion energy levels were computed using
the usual Eulerian angles χ, θ, φ to describe the orien-
tation of the xyz molecule-fixed axis system with respect
to the laboratory-fixed axis system. The molecule-fixed
axis system is attached to the molecule so that the car-
bon atom is located at the origin. The COH group is
contained in the xz-plane with the CO bond coinciding
with the z-axis and pointing in the same direction as this
axis. The hydrogen atom of this group is characterized
by a negative x-value. Altering the atom coordinates
with the η-dependent transformation given in Eq. (2) of
Lauvergnat et al.25 ensures that the center of mass of
the molecule is at the origin of the molecule-fixed axis
system. The permutation-inversion symmetry group to
be used for the non-rigid hydroxymethyl radical is G4

consisting of {E, (12)∗, (12), E∗} and isomorphic to C2v.
The effects of the various permutation-inversion symme-
try operation on the large amplitude coordinate η and

Figure 4. The hindering potential V (η) in cm−1 is plotted as
a function of the large amplitude coordinate η in degrees. The
letters M, m, and S identify the stationary points described
in Fig. 1 and in Section III A. Horizontal lines indicate the
N = 0 torsional levels, reported in Section IIIC, labeled with
the torsional quantum number vt. The tunneling splitting
between the vt = 0, 1 and 2, 3 pairs of levels has been greatly
increased for clarity.

on the Eulerian angles χ, θ, φ are given in Table II along
with the G4 character table.

A 4-D rotation-torsion Hamiltonian Hr-t is derived us-
ing the same ideas as in Section 4.1 of Lauvergnat et al.25

Starting from I(η) the generalized 4× 4 inertia tensor,26

the 4 × 4 inverse inertia tensor µ(η) is obtained and al-
lows us to obtain the kinetic energy part of Hr-t. The
rotation-torsion Hamiltonian is then:

Hr-t =
1
2

∑

α,β

Nα µ(η)αβ Nβ + V (η), (6)

where α, β = x, y, z, and η; Nx, Ny, and Nz are molecule-
fixed components of the rotational angular momentum;
Nη = −i∂/∂η is the momentum conjugate to η; µ(η)αβ
are the components of the generalized inverse inertia ten-
sor µ(η); and V (η) is the hindering potential retrieved
in Section III B. As emphasized by Eq. (6), the pseu-
dopotential term given in Eq. [10] of Mekhtiev et al.26

is ignored. The volume element to be used for Hr-t is
dη sin θdθdφdχ.

The results given in Sections 4.2 and 4.3 of Lauvergnat
et al.25 for the internal rotation of the CH2DOHmolecule
can also be used in the present investigation. The higher
symmetry of the CH2OH internal rotation problem com-
pared to that of CH2DOH leads to a few changes concern-
ing the form of the torsional functions and the expression
of the torsional matrix elements. The torsional functions
introduced in Eq. (15) of Lauvergnat et al.25 should be
replaced by two symmetry adapted torsional functions,
distinguished by the superscripted letters A and B, which
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Table II. Coordinate transformations and G4 character table

PIa E (12) E∗ (12)∗

Tunnelingb η η + π 2π − η π − η

Rotationc R0 R0 Rπ
y Rπ

y

A1 +1 +1 +1 +1

A2 +1 +1 −1 −1

B1 +1 −1 −1 +1

B2 +1 −1 +1 −1

a Permutation-inversion operations.
b Effects of the permutation-inversion operations on the large
amplitude coordinate η.

c Effects of the permutation-inversion operations on the Eulerian
angles. R0 and Rπ

y are shorthand notations for the identity and
the transformation χ, θ, φ → π − χ, π − θ, π − φ, respectively.

are the following:























φANk,vt
(η) =

nt
∑

n=−nt

ANk,vt
n |2n〉,

φBNk,vt
(η) =

nt
∑

n=−nt

BNk,vt
n |2n+ 1〉,

(7)

where ANk,vt
n and BNk,vt

n are expansion coefficients;

|n〉 = exp(inη)/
√
2π are free internal rotation functions;

and nt is a positive integer corresponding to the size of
the torsional matrix. The G4 symmetry operation (12)
has no effect on the torsional function φANk,vt

(η), but

changes φBNk,vt
(η) into its negative value because of the

eiπ factor arising from the free internal rotation func-
tion. When using the results of Lauvergnat et al.,25 the
next step is setting up the matrix of the rotation-torsion
Hamiltonian. This requires evaluating torsional matrix
elements of the potential energy function and of the gen-
eralized inverse inertia tensor components. For the po-
tential energy function and for components which are an
even function of η, Eq. (19) of Lauvergnat et al.25 can
be used. For components which are an odd function of
η, Eq. (24) of the same authors can be used. In these
equations, the function F (α) should be replaced by F (η)
displaying π-periodicity because of the higher symme-
try of the CH2OH internal rotation problem compared
to that of CH2DOH. As a result, the coefficients gp in
Eqs. (19) and (25) of Lauvergnat et al.25 vanish when p
is odd.
Spinless rotation-torsion energies were calculated us-

ing the parameterization of the internal coordinates and
the expansion potential retrieved in Section III B. Since
the potential energy function displays two energetically
equivalent minima, the calculation should lead to pairs of
close lying levels split by the tunneling splitting. Calcu-
lated energies are listed up to N = 3 in Table III where
rotation-torsion levels are labeled using the usual rota-
tional quantum numbers NKaKc, the torsional quantum
number vt ≥ 0, and their rotation-torsion G4 symmetry

species. For N = 0 the maximum value of vt is 3 and
there arise two pairs of levels separated by a vibrational
energy of 6.029 THz (201 cm−1). For the lower and upper
pairs, consisting of the vt = 0 and 1; and of the vt = 2 and
3 levels, respectively, the tunneling splittings are 88 and
974 MHz. The splitting found for the lower pair is about
half that calculated by Schuder et al.,11 listed in their
Table VII. For the vibrational energy, the value obtained
in this work is closer to that of Marenich and Boggs,14,15

281 cm−1, than to that of Schuder et al.,11 329 cm−1.
For N > 0, Table III only reports the vt = 0 and 1 lower
pair of levels. A strong rotational dependence of the tun-
neling splitting with the rotational quantum number Ka

can be seen. For Ka = 0, the tunneling splitting remains
close to 88 MHz, with the vt = 0 sublevel below vt = 1.
For Ka = 1, the tunneling splitting decreases down to
57 MHz, with the vt = 1 sublevel now below vt = 0.
For Ka = 2, the tunneling sublevels are still inverted
and the tunneling splitting is only 18 MHz. It should
be pointed out that vt values are assigned to tunneling
sublevels using symmetry considerations compatible with
those in Section IVA. The way vt is defined differs from
the way it is defined in the previous investigations10–12

where vt = 0 (1) is the lower (upper) tunneling sublevel.
Figure 5 shows the variations with the large amplitude
coordinate η of the torsional functions for N = 0 and
0 ≤ vt ≤ 3. The results in this figure and Table III em-
phasize that the CH2OH radical is well described in the
high barrier limit. The torsional functions are consistent
with tunneling through the potential barriers at η = π/2
and 3π/2. The vt = 0 and 1 functions are respectively
the sum and the difference of two functions localized at
η = 0 and π. This also applies for the the vt = 2 and
3 functions except that the localized functions display a
node. The small potential barriers at η = 0, π, and 2π
have little effects on the torsional functions since even
the vt = 0 function, which should be the most affected
by these small barriers, still displays a maximum for these
values of η.

IV. FITTING APPROACH

The effective IAM approach used in this
investigation17,18 allows us to express the tunneling-
rotational energy in terms of several parameters to
be determined by data fitting. The IAM approach
accounts for the rotational dependence of the tunneling
splitting, but does not allow us to predict its value
from a potential energy surface. The IAM approach
has already been applied to two non-rigid molecules,
nitric acid (HNO3) and difluoroboric acid (BF2OH),
displaying a large amplitude internal rotation of their
OH group analogous to that in the CH2OH radical. The
theoretical results27–29 obtained for these two molecules
will be used in the following sections where the main
results of the IAM approach will be recalled and the
effects of the fine and hyperfine structure will be added
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Table III. Spinless rotation-torsion energiesa

N Ka Kc vt Γ E N Ka Kc vt Γ E

0 0 0 0 A1 0 2 2 0 1 B2 831085
1 B2 88 0 A1 831104
2 B1 6028934 3 0 3 0 A2 341121
3 A2 6029908 1 B1 341213

1 0 1 0 A2 56884 3 1 3 1 B1 497998
1 B1 56973 0 A2 498056

1 1 1 1 B1 220633 3 1 2 1 B2 514494
0 A2 220689 0 A1 514563

1 1 0 1 B2 223382 3 2 2 1 B2 1001338
0 A1 223440 0 A1 1001356

2 0 2 0 A1 170616 3 2 1 1 B1 1001521
1 B2 170706 0 A2 1001540

2 1 2 1 B2 331590 3 3 1 0 A2 1826970
0 A1 331647 1 B1 1827049

2 1 1 1 B1 339839 3 3 0 0 A1 1826971
0 A2 339901 1 B2 1827049

2 2 1 1 B1 831049
0 A2 831067

a Energies calculated in Section III C are given for levels labeled
with the usual rotational quantum numbers NKaKc, the
torsional quantum number vt, and their rotation-torsion G4

symmetry species. Energies are given in MHz with respect to
the N = 0, vt = 0 level.

Figure 5. Variations with the large amplitude coordinate η
of the torsional functions φvt(η) for N = 0 and 0 ≤ vt ≤ 3.
The vt = 2 and 3 functions are purely imaginary and their
imaginary part is plotted.

as in Coudert.3

A. Effective rotation-tunneling approach

The theoretical results obtained for nitric acid by
Coudert and Perrin27 can be used with only minor
changes. In Eqs. (1)–(6) of this reference, the large am-
plitude coordinate γ should be replaced by η and the
small amplitude vibrational modes should be ignored.
The vibrational reference functions defined in Eq. (2) of
Coudert and Perrin27 will be written ψn(η), with n = 1
and 2, and correspond to the two reference configura-

tions depicted in Fig. 6 of the present paper. Although
the S minimum of the two-dimensional PES has C1 sym-
metry, these reference configurations are assumed planar
because the vt = 0 and 1 torsional levels have energies
much higher than that of the local maximum m, as em-
phasized by Fig. 4. Also, as confirmed by Fig. 5, their
torsional function is well centered around η = 0, π, and
2π. Consequently, the vibrational wavefunction ψ1(η) is
taken even and localized about η = 0. ψ2(η) = ψ1(η+π)
is localized about η = π. The actual form of these two vi-
brational wavefunctions is not important, but their sym-
metry transformation is.17,18 In agreement with Eq. (6)
of Coudert and Perrin,27 these vibrational wavefunctions
allow us to write the reference basis wavefunctions as:

ΨNKαn = ψn(η) · |NKα〉, (8)

where n = 1 and 2; and |NKα〉, with 0 ≤ K ≤ N and
α = ±1, are the Wang-type rotational wavefunctions de-
fined in Eq. (1) of Coudert and Hougen.30 They belong to
the Cs symmetry species A′ and A′′ for α(−1)N+K = +1
and −1, respectively. The main results of the IAM
approach17,18 are the tunneling matrix elements given in
Eqs. (9) and (10) of Coudert and Perrin.27 They involve
two Eulerian-type angles θ2 and φ2 describing the rota-
tional dependence of the tunneling splitting. The tunnel-
ing matrix elements were derived adding the contribution
of the two equivalent paths connecting reference Config-
urations 1 and 2. Between two reference basis wavefunc-
tions of Eq. (8), the tunneling matrix elements assume
the following expression:

HNK′α′ 1;NK′′α′′ 2 = 2h2 (−1)K
′

× [cos(Kpφ2) d
(N)(θ2)K′,K′′

+ α′′ cos(Kmφ2) d
(N)(θ2)K′,−K′′ ],

(9)

if both rotational wavefunctions belong to the same Cs

symmetry species, and:

HNK′α′ 1;NK′′α′′ 2 = 0, (10)

if the two rotational wavefunctions belong to different
Cs symmetry species. In Eq. (9), h2 is a constant corre-
sponding to the tunneling splitting; Kp = K ′ +K ′′ and

Km = K ′ −K ′′; and d(N)(θ)K,M is defined in Eq. (15.8)
of Wigner.31 If either K ′ or K ′′ is equal to zero, but not
both, the term on the right of Eq. (9) must be divided by√
2; if bothK ′ andK ′′ are equal to zero, a division by 2 is

required. Tunneling-rotation energy levels are obtained
using the following27 symmetry-adapted linear combina-
tions of the reference basis wavefunctions in Eq. (8):

Ψvt
NKα = (ΨNKα 1 ±ΨNKα2)/

√
2, (11)

where vt = 0 and 1 for the upper and lower sign, respec-
tively. When the rotational symmetry species is A′ (A′′),
the linear combination Ψvt

NKα belongs to the symmetry
species A1 (A2) and B2 (B1) when vt = 0 and 1, re-
spectively. The symmetry-adapted linear combinations
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of Eq. (11) allow us to block diagonalize the rotation-
torsion Hamiltonian into four submatrices corresponding
to the G4 symmetry species. For a given submatrix, we
have the following matrix elements:

〈Ψvt
NK′α′ |Hr-t|Ψvt

NK′′α′′〉 =
〈NK ′α′′|Hr|NK ′′α′′〉 ±HNK′α′ 1;NK′′α′′ 2,

(12)

where vt = 0 and 1 for the upper and lower sign, respec-
tively; and Hr is the rotational Hamiltonian of either
reference configurations written using the Ir representa-
tion.

The values of the angles θ2 and φ2 could be determined
solving numerically Eqs. (49) of Hougen.17 However, they
were obtained here fitting the rotation-torsion energies
computed in Section III C with the present rotation-
tunneling approach. The analysis yielded θ2 = 2.1261◦,
φ2 = 205.18◦, h2 = −24 MHz, A = 194 GHz, B =
29.8 GHz, and C = 27.1 GHz. It can be seen that 4|h2|
is the N = 0 tunneling splitting. The small value of θ2 is
consistent with the slow variation of the tunneling split-
ting with the rotational quantum number N . Conversely,
the large value of φ2 is consistent with the strong varia-
tion of the tunneling splitting with the rotational quan-
tum number Ka. The smallness of θ2 suggests that it
should be set equal to zero in Eqs. (9) and (10) in order
to approximate the expression of the tunneling-rotation
energy Er-t(NKaKc, vt). This yields:

Er-t(NKaKc, vt) =

Er(NKaKc)± 2h2(−1)Ka cos 2Kaφ2,
(13)

where vt = 0 and 1 for the upper and lower sign, respec-
tively; and Er(NKaKc) is the asymmetric top rotational
energy. With this approximate expression, tunneling ef-
fects depend mainly on the rotational quantum number
Ka. Since, as can be inferred from the symmetry species
in Table III, the selection rule ∆vt = 0 holds for ∆Ka = 0
parallel a-type transitions, Eq. (13) means that their line
position does not depend on h2. For ∆Ka = 1 perpen-
dicular b-type transitions, the selection rule ∆vt = 0 also
holds. As can be gathered from Eq. (13), the contribu-
tion from the tunneling splitting for such transitions will
be:

±2h2(−1)K
′

a [cos 2K ′

aφ2 + cos 2K ′′

aφ2]. (14)

Since φ2 is different from π/2, this equation means that
the tunneling parameter h2 can be determined from the
line position of perpendicular b-type transitions.

In order to account for distortion effects, the rotational
Hamiltonian Hr in Eq. (12) is rewritten adding Watson’s
S-set of distortion parameters. Distortion terms are also
added to the tunneling using, as in Christen et al.32 and
Margulès et al.,33 a rotational operator D with matrix
elements given by Eqs. (9) and (10) where h2 is set to
1. With this operator, the tunneling matrix element in

Figure 6. The two planar reference configurations to be used
with the IAM approach17,18 are drawn. Configurations 1 and
2 correspond to the vibrational reference functions ψ1(η) and
ψ2(η) localized about η = 0 and π, respectively, and intro-
duced in Section IVA.

Eqs. (9) and (10) now reads:

HNK′α′ 1;NK′′α′′ 2 = 1
2 〈NK ′α′|{h2 + h2kN

2
z + h2nN

2

+ f2(N
2
+ +N2

−) + s2xz{Nx, Nz}+ h2kkN
4
z

+ h2knN
2
zN

2 + h2nnN
4 + f2k{N2

+ +N2
−, N

2
z }/2

+ f2n(N
2
+ +N2

−)N
2, D}|NK ′′α′′〉,

(15)
where h2k, h2n, f2, s2xz, h2kk, h2kn, h2nn, f2k, and f2n
are distortion parameters; Nx, Ny, and Nz are defined as
for Eq. (6); N± = Nx ± iNy; and {, } is the anticommu-
tator.

B. Fine effects

The unpaired electron of the CH2OH radical is ac-
counted for adding to the rotation-torsion Hamiltonian in
Eq. (12) an electron spin-rotation coupling Hamiltonian
Hs-r written using the centrifugal distortion terms corre-
sponding to the A-reduced form of Brown and Sears.34

We obtain:

Hs-r =
∑

δ=xyz

ǫδδNδSδ +
1
2 (ǫxz + ǫzx){Nx, Sz}

+ S∆NN
2(N · S) + 1

2
S∆NK{N2NzSz

+NzSzN
2}+ S∆KNN

2
z (N · S) + S∆KN

3
zSz

+ SδN (N2
+ +N2

−)(N · S)
+ 1

2
SδK{(N2

+ +N2
−), NzSz},

(16)

where ǫδδ, with δ = x, y, z, ǫxz, and ǫzx are components
of the spin-rotation coupling tensor; S, Sx, Sy, and Sz

are the electron spin operator and its components; and
S∆N , . . . ,

SδK are the distortion constants of Brown and
Sears.34 The form chosen for the electron spin-rotation
operators corresponding to the non-diagonal components
of the electron spin-rotation coupling tensor is appropri-
ate for a molecule with Cs symmetry.34

The Wang-type rotational wavefunction |NKα〉 in
Eq. (8) should be replaced by the electron spin-rotation
function |NKα, S, J〉 characterized by the rotational
quantum numbers NKα, by S corresponding to the elec-
tron spin, and by J corresponding to the total rotational
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plus spin angular momentum according to the coupling
scheme N+ S = J. The expression given in Eq. (12) for
the matrix elements of the rotation-tunneling Hamilto-
nian is still valid provided it is used for two rotation-
spin functions characterized by the same value of the
rotational quantum number N . The matrix elements
of the electron spin-rotation coupling Hamiltonian Hs-r

in Eq. (16) can be found in Brown and Sears.34 The
rotation-torsion-spin levels arising after diagonalizing the
rotation-torsion and rotation-spin Hamiltonians will be
labeled NKaKc, vt, J . The torsional quantum number vt
still is a good quantum number because it is related to
the G4 symmetry species of the wavefunction.

C. Hyperfine effects

The hyperfine coupling Hamiltonian Hhfs is built con-
sidering the effects of the Fermi contact and nuclear spin-
electron spin dipolar interaction for all three hydrogen
atoms:

Hhfs = aF IH · S+ a1F I1 · S+ a2F I2 · S
+ S ·T · IH + S ·T1 · I1 + S ·T2 · I2,

(17)

where IH, I1, and I2 are respectively the hydroxyl and
methylenic hydrogen atoms nuclear spin; aF , a

1
F , and a

2
F

are the corresponding Fermi contact coupling constants;
and T, T1, and T

2 the corresponding traceless nuclear
spin-electron spin dipolar interaction coupling tensors.
Symmetry considerations allow us to recast the hyperfine
coupling Hamiltonian as the sum Hs

hfs +Ha
hfs, where the

first (second) term involves rotation-tunneling operators
that are symmetric (antisymmetric) with respect to the
exchange of the two equivalent hydrogen atoms. These
terms assume the following expressions:

Hs
hfs = aF IH · S+S ·T · IH + asF Is · S+S ·Ts · Is, (18)

and

Ha
hfs = aaF Ia · S+ S ·Ta · Ia, (19)

where arF = (a1F ± a2F )/2; T
r = (T1 ± T

2)/2; and
Ir = I1 ± I2, with r = s and a for the upper and lower
signs, respectively. The hyperfine structure is computed
using the same coupling scheme as Chitarra et al.,12

J+IH = F1, I1+I2 = I, and F1+I = F. The correspond-
ing hyperfine wavefunctions |J, IH, F1, I, F 〉 are symmet-
ric and antisymmetric with respect to the G4 symme-
try operation (12) when I = 1 and 0, respectively. The
hyperfine structure of an NKaKc, vt, J rotation-torsion-
spin level can be computed considering only hyperfine
wavefunctions characterized by the same value of I. In
this case, for symmetry reasons, we need only evaluate
the matrix elements arising from Hs

hfs between rotation-
torsion-spin levels characterized by the same value of vt.
As shown by Eq. (18), the resulting hyperfine energies
only depend on the averaged hyperfine coupling of hy-
drogen atoms H1 and H2. A more accurate computation

Table IV. Analysis results summarya

Data set N M WRMS RMS

Bermudez et al.10 94 77 0.84 0.07

Chitarra et al.12 182 147 1.04 0.08

Schuder et al.11 38 34 0.91 27.31

This work 464 249 0.54 0.18

All 778 507 0.75 6.04

a The data number N , the number of measured lines M , the
unitless weighted root-mean-square deviation WRMS, and the
root-mean-square deviation RMS in MHz are given for each
data set.

of the hyperfine energies could be carried out consider-
ing hyperfine wavefunctions with I = 0 and 1. In ad-
dition to the ∆I = ∆vt = 0 matrix elements just de-
scribed, ∆I = ∆vt = 1 matrix elements involving Ha

hfs
would also arise. As emphasized by Eq. (19), the re-
sulting hyperfine energy would also depend on the differ-
ence between the hyperfine coupling of hydrogen atoms
H1 and H2. This triplet-singlet coupling depends on the
value of the tunneling splitting and should be observed
for rotation-spin levels with a small tunneling splitting.
It should be kept in mind that the total rotation-torsion-
spin-hyperfine wavefunction should belong to the B1 or
B2 symmetry species of G4 so as to obey the Pauli ex-
clusion principle.

V. LINE POSITION ANALYSIS

Four data sets were considered in the line position anal-
ysis, the already available millimeter wave transitions
of Bermudez et al.10 and Chitarra et al.,12 combination
differences obtained from the infrared measurements of
Schuder et al.,11 and the new transitions presented in
Section II. This amounts to a total of 778 transitions
which were least-squares fitted calculating the energy
with the approach in Section IV. Transitions were given
a weight equal to the inverse of their experimental uncer-
tainty squared. For the infrared combination differences,
an experimental uncertainty of 0.001 cm−1 was assumed.
For the (sub-)millimeter wave transitions, symmetric hy-
perfine effects were considered in the calculation in ad-
dition to the tunneling and fine coupling effects. Unre-
solved multiplets consisting of several hyperfine compo-
nents were treated as only one data point with a calcu-
lated frequency equal to the average value of the compo-
nents frequency. For the infrared combination differences
and for (sub-)millimeter wave transitions with an unre-
solved hyperfine pattern, hyperfine effects were ignored.
The unitless standard deviation of the analysis is 0.79
varying 27 parameters. Table IV summarizes the analy-
sis results for each data set. The observed minus calcu-
lated table is given in Table S2 available in the supple-
mentary material. Table V lists the 50 lowest frequency
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Figure 7. Doubly demodulated experimental signal for the
414, vt = 0, J = 3.5 ← 303, 0, 2.5 and 818, vt = 0, J = 7.5 ←
707, 0, 6.5 transitions at 370605 and 548181 MHz, respectively.
Calculated line frequencies for the hyperfine components are
indicated by vertical lines.

and the 50 highest frequency newly measured transitions
sorted with increasing frequency. Both tables show that
observed frequencies are reproduced within their exper-
imental uncertainty for well resolved hyperfine patterns.
This can be seen in Fig. 7 displaying portions of the ob-
served spectrum recorded with the double demodulation
technique near the 414, vt = 0, J = 3.5 ← 303, 0, 2.5 and
818, vt = 0, J = 7.5 ← 707, 0, 6.5 transitions. The fully-
resolved hyperfine patterns of both transitions are well
modeled. Conversely, the observed minus calculated ta-
bles show that large residuals tend to appear when the
hyperfine structure is partially resolved.

Table VI gives the value of the fitted parameters. The
tunneling parameter θ2, although not fitted and con-
strained to the value retrieved in Section IVA, also ap-
pears in this table. Parameters not listed in Table VI
were set to zero. For the fitted tunneling parameters
h2 and φ2, the values in Table VI are respectively less
than twice and within 0.2◦ from to those retrieved in
Section IVA. For the tunneling parameter, the agree-
ment is unexpectedly good since the value retrieved in
Section IVA is based on low level ab initio calculations.
A comparison between Table VI and Table 1 of Chitarra
et al.12 shows that the rotational constant reported for
vt = 0 by these authors are within 2 MHz from those
determined in this work. For the electron spin-rotation
constants, the agreement is even better since they differ
by less than 1 MHz. For the same constants, there is
also a convincing agreement with the values in Table V
of Schuder et al.11 In order to compare the hyperfine
coupling constants determined in this work with those
reported by Chitarra et al.,12 it should be kept in mind

that they are not labeled in the same way. The hyper-
fine coupling constants of the hydroxyl hydrogen atom H
are labeled aF , Tzz, Txx, and Txz in the present inves-
tigation and respectively aF (H1), Taa(H1), Tbb(H1), and
Tab(H1) in Chitarra et al.12 Similarly the symmetric hy-
perfine coupling constants asF , T

s
zz, T

s
xx, and T s

xz in the
present investigation correspond respectively to aF (H),
Taa(H), Tbb(H), and Tab(H) in Chitarra et al.12 For the
hyperfine coupling constants varied by these authors, the
agreement with the value obtained in the present investi-
gation is satisfactory. More precisely, the values reported
by Chitarra et al.12 for Txx, a

s
F , T

s
zz, and T

s
xx are within

0.5 MHz from those in Table VI. For the hyperfine cou-
pling constants, not varied by Chitarra et al.,12 which
were constrained to the ab initio values of Bermudez et

al.,10 the agreement is much less satisfactory. For aF
and Tzz, the hyperfine coupling constants obtained in
this work are about 50% smaller than those of Chitarra
et al.,12 for Txz, the values are opposite from each other,
and T s

xz was set to zero in the present analysis. This
seems to indicate that the ab initio values of Bermudez
et al.10 lack accuracy.

VI. DISCUSSION

This paper aims at accounting for the spectroscopy of
the CH2OH radical which is among the few molecules dis-
playing both a large amplitude motion and an unpaired
electron studied so far under high-resolution.
Starting from a two-dimensional PES depending on

the two large amplitude dihedral angles ∠H1COH and
∠H2COH, it is found in Sections III A and III B that
the non-equilbrium configurations of the radical can be
described in terms of a large amplitude torsional-like mo-
tion. The hindering potential, retrieved in Section III B,
displays π-periodicity, four minima corresponding to
four C1 configurations, and barriers with a height of
1600 cm−1 at the pyramidal Cs configurations. In agree-
ment with Schuder et al.,11 local maxima corresponding
to small barriers with a height of 60 cm−1 are also found
at the planar configurations. The spinless energy levels
calculated in Section III C with this hindering potential
display a torsional splitting of about 90 MHz for N = 0.
This emphasizes that the high barrier limit is appropriate
to describe the torsional motion of the CH2OH radical.
For N > 0, a strong rotational dependence of the tor-
sional splitting is found.
The approach developed in Section IV is among the

few approaches allowing us to treat a large amplitude mo-
tion in an open-shell molecule displaying electron spin-
rotation coupling. It is an effective approach to be used
when the large amplitude motion is an internal rotation
hindered by a two-fold symmetry potential. Provided the
molecule is well described in the high barrier limit, the
results derived in Section IV and given in Eq. (9) em-
phasize that tunneling effects can be accounted for using
three parameters only; one of them corresponding to the
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Table V. Portion of the observed minus calculated tablea

NKaKc vt J F1 F Obs.b O−Cc NKaKc vt J F1 F Obs.b O−Cc

11,0-10,1 1 1.5 1 168326.534(500) −156 150,15-141,14 0 14.5-13.5 15-14 15-14 762001.530(400) −119
11,0-10,1 1 1.5 2 168327.577(150) −73 150,15-141,14 0 14.5-13.5 14-13 15-14 762001.530(400) −179
11,0-10,1 0 1.5 1 2 168602.589(200) 59 150,15-141,14 0 14.5-13.5 14-13 14-13 762001.530(400) −542
11,0-10,1 0 1.5 2 3 168603.453(100) 43 150,15-141,14 0 14.5-13.5 15-14 14-13 762002.880(500) −40
11,0-10,1 0 0.5 1 2 168939.050(150) −57 150,15-141,14 0 14.5-13.5 14-13 13-12 762002.880(500) −516
21,1-20,2 1 1.5 2 172547.803(100) 98 150,15-141,14 1 15.5-14.5 15-14 762139.174(300) 437
21,1-20,2 1 1.5 1-2 172549.555(200) 418 150,15-141,14 1 15.5-14.5 16-15 762139.174(300) 22
21,1-20,2 1 1.5 2-1 172549.555(200) −117 150,15-141,14 1 14.5-13.5 15-14 762244.850(500) 36
21,1-20,2 1 1.5 1 172551.099(150) −6 150,15-141,14 1 14.5-13.5 14-13 762244.850(500) −441
21,1-20,2 0 2.5 2 1 172592.330(150) 60 141,14-130,13 1 13.5-12.5 13-12 800514.889(400) 161
21,1-20,2 0 2.5 2 2 172592.330(150) 36 141,14-130,13 1 13.5-12.5 14-13 800514.889(400) −629
21,1-20,2 0 1.5 2 2 172818.614(200) −44 141,14-130,13 1 14.5-13.5 14-13 800620.986(400) −520
21,1-20,2 0 1.5 1-2 1-2 172819.337(150) 5 141,14-130,13 1 14.5-13.5 15-14 800620.986(400) 226
21,1-20,2 0 1.5 1 1 172821.610(150) 251 141,14-130,13 0 13.5-12.5 13-12 12-11 800766.152(600) −137
21,1-20,2 0 1.5 2 1 172824.810(150) −152 141,14-130,13 0 13.5-12.5 14-13 13-12 800766.152(600) −927
31,2-30,3 0 2.5 2 2 178878.630(150) −42 141,14-130,13 0 13.5-12.5 13-12 13-12 800768.685(500) 532
31,2-30,3 0 2.5 3 2 178881.062(100) 14 141,14-130,13 0 13.5-12.5 13-12 14-13 800768.685(500) −153
31,2-30,3 0 2.5 2 1 178884.003(150) −34 141,14-130,13 0 13.5-12.5 14-13 14-13 800768.685(500) −198
60,6-51,5 0 5.5-4.5 6-5 7-6 192924.487(50) 25 141,14-130,13 0 13.5-12.5 14-13 15-14 800768.685(500) −896
60,6-51,5 1 6.5-5.5 6-5 193089.192(50) −51 141,14-130,13 0 14.5-13.5 14-13 13-12 800872.911(400) −821
60,6-51,5 1 6.5-5.5 7-6 193090.753(50) 29 141,14-130,13 0 14.5-13.5 14-13 14-13 800872.911(400) −309
60,6-51,5 1 5.5-4.5 6-5 193204.471(50) 16 141,14-130,13 0 14.5-13.5 14-13 15-14 800872.911(400) −476
60,6-51,5 1 5.5-4.5 5-4 193206.544(50) 16 141,14-130,13 0 14.5-13.5 15-14 14-13 800872.911(400) −136
11,1-00,0 0 0.5 1 2-1 220811.372(150) −110 141,14-130,13 0 14.5-13.5 15-14 15-14 800872.911(400) 389

111,10-102,9 1 11.5-10.5 11-10 234007.318(100) 37 141,14-130,13 0 14.5-13.5 15-14 16-15 800872.911(400) 271
111,10-102,9 1 11.5-10.5 12-11 234009.122(100) 14 160,16-151,15 0 16.5-15.5 16-15 15-14 820875.270(400) 104
111,10-102,9 0 11.5-10.5 11-10 10-9 234077.717(200) 8 160,16-151,15 0 16.5-15.5 16-15 16-15 820875.270(400) −130
111,10-102,9 0 11.5-10.5 12-11 11-10 234079.658(100) 142 160,16-151,15 0 16.5-15.5 16-15 17-16 820875.270(400) 110
111,10-102,9 0 11.5-10.5 11-10 11-10 234079.658(100) −69 160,16-151,15 0 16.5-15.5 17-16 16-15 820875.270(400) −181
111,10-102,9 0 11.5-10.5 11-10 12-11 234081.625(100) −45 160,16-151,15 0 16.5-15.5 17-16 17-16 820875.270(400) −422
111,10-102,9 0 11.5-10.5 12-11 12-11 234081.625(100) 99 160,16-151,15 0 16.5-15.5 17-16 18-17 820875.270(400) −217
111,10-102,9 0 11.5-10.5 12-11 13-12 234083.518(150) 27 160,16-151,15 0 15.5-14.5 16-15 17-16 820966.568(400) 329
111,10-102,9 1 10.5-9.5 11-10 234256.445(100) 45 160,16-151,15 0 15.5-14.5 16-15 16-15 820966.568(400) 49
111,10-102,9 1 10.5-9.5 10-9 234258.442(150) −32 160,16-151,15 0 15.5-14.5 15-14 16-15 820966.568(400) −11
111,10-102,9 0 10.5-9.5 11-10 12-11 234326.294(150) 30 160,16-151,15 0 15.5-14.5 15-14 15-14 820966.568(400) −281
111,10-102,9 0 10.5-9.5 11-10 11-10 234328.486(150) −252 151,15-140,14 1 14.5-13.5 14-13 844456.717(750) −250
111,10-102,9 0 10.5-9.5 10-9 11-10 234328.486(150) 171 151,15-140,14 1 14.5-13.5 15-14 844456.717(750) −976
111,10-102,9 0 10.5-9.5 10-9 10-9 234330.926(200) 147 151,15-140,14 0 14.5-13.5 844704.611(500) 937
111,10-102,9 0 10.5-9.5 11-10 10-9 234330.926(200) −311 151,15-140,14 0 15.5-14.5 15-14 14-13 844800.021(400) −683
111,10-102,9 0 10.5-9.5 10-9 9-8 234333.251(150) −49 151,15-140,14 0 15.5-14.5 15-14 15-14 844800.021(400) −258
81,7-80,8 0 7.5 8 9 247611.887(200) −106 151,15-140,14 0 15.5-14.5 15-14 16-15 844800.021(400) −436
81,7-80,8 0 7.5 7 7 247617.821(100) −91 151,15-140,14 0 15.5-14.5 16-15 15-14 844800.021(400) −103
81,7-80,8 0 7.5 8 7 247618.996(100) 14 151,15-140,14 0 15.5-14.5 16-15 16-15 844800.021(400) 332
70,7-61,6 1 7.5-6.5 7-6 257296.070(100) −32 151,15-140,14 0 15.5-14.5 16-15 17-16 844800.021(400) 196
70,7-61,6 1 7.5-6.5 8-7 257297.526(100) 33 170,17-161,16 0 17.5-16.5 17-16 16-15 878790.808(500) −151
70,7-61,6 1 6.5-5.5 7-6 257433.217(100) 21 170,17-161,16 0 17.5-16.5 17-16 17-16 878790.808(500) −327
70,7-61,6 1 6.5-5.5 6-5 257435.086(100) 30 170,17-161,16 0 17.5-16.5 17-16 18-17 878790.808(500) −104
21,2-10,1 1 1.5-0.5 2-1 272314.772(100) 21 170,17-161,16 0 17.5-16.5 18-17 17-16 878790.808(500) −368
21,2-10,1 0 2.5-1.5 3-2 2-1 272442.265(250) −133 170,17-161,16 0 17.5-16.5 18-17 18-17 878790.808(500) −550
21,2-10,1 0 2.5-1.5 2-1 2-1 272446.796(150) −463 170,17-161,16 0 17.5-16.5 18-17 19-18 878790.808(500) −357

a Assignments, observed frequencies, and observed minus calculated residuals are listed for the 50 lowest frequency and the 50 highest
frequency newly measured transitions sorted with increasing frequency. Columns headed NKaKc, vt, and J list respectively the
rotational quantum numbers, the torsional quantum number, and the half integer rotational plus electron spin quantum number
correponding to J = N+ S. For transitions with resolved hyperfine splittings, columns headed F1 and F list hyperfine quantum
numbers. The second one only applies for ortho levels. A dash is used to distinguish upper (left) and lower (right) level values when
different.

b Observed frequencies in MHz and experimental uncertainties, in kHz, in parentheses.
c Observed minus calculated residuals in kHz corresponding to the analysis reported in Section V.
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Table VI. Spectroscopic constantsa

Parameter Value Parameter Value

θ2 2.1261b ǫzz −458.620(54)

φ2 205.3522(29) ǫxx −121.438(13)

h2 −42.6029(36) ǫyy −1.400(14)

h2n×10
3
−15.588(84) S∆KN×10

3 13.1(12)

f2×10
3 9.03(10) SδN×10

6 115(16)

h2nn×10
6
−6.89(51) 1

2
(ǫxz+ǫzx) −48.69(20)

f2n×10
6 7.35(69)

aF −5.18(30)

A 194535.4966(75) Tzz×10
3

−596(192)

B 29843.43901(90) Txx 8.837(99)

C 25947.5409(10) Txz −16.9(28)

DK 5.7993(42) asF −54.462(78)

DKN×10
3 587.03(16) T s

zz −22.71(11)

DN×10
3 61.9941(51) T s

xx 19.229(63)

d1×10
3

−8.51266(93)

d2×10
3

−1.45406(84)

a Constants are given in MHz except for θ2 and φ2 which are in
degrees. For fitted constants, uncertainties are given in
parentheses in the same units as the last quoted digit.

b Constrained value

magnitude of the tunneling splitting for N = 0 and the
remaining two describing its rotational dependence.

The main results of this investigation are presented in
Section V where a line position analysis of a large body
of high-resolution spectroscopic data is carried out. The
data set includes previously measured millimeter wave
transitions,10,12 infrared combination differences,11 and
new sub-millimeter wave transitions measured in this
work and presented in Section II. The unitless standard
deviation of the analysis is 0.79 varying 27 parameters.

The value of the tunneling splitting is an important is-
sue. In the previous millimeter wave investigations,10,12

where only transitions with Ka = 0 and 1 were fitted, it
was assumed that the tunneling splitting is constant and
that the selection rules for the tunneling components are
∆vt = 1 in agreement with the way vt is defined in these
investigations. In order to analyze their data, Bermudez
et al.10 were led to use the same A rotational constant
for both tunneling components and different B and C
rotational constants for each tunneling components. The
value retrieved by the authors for the tunneling split-
ting was 139 MHz. In their subsequent analysis of a
larger data set, Chitarra et al.12 were led to use two sets
of rotational constants, one for each tunneling compo-
nents. The value they retrieved for the tunneling split-
ting was 20 MHz larger than that of Bermudez et al.10

For the limited data set considered in both analyses, the
actual contribution from the A rotational constant and
the tunneling is A ∓ 2h2[cos 2φ2 + 1] for Ka = 1 ← 0
b-type transitions as given by Eq. (14). This shows that

the contribution from the A rotational constant and the
tunneling cannot be discriminated for the limited data
set considered in the previous millimeter wave investi-
gations. In the present analysis, in agreement with the
symmetry species for the reference basis wavefunctions
given in Eq. (11), the selection rules for the tunneling
components are ∆vt = 0. Also since the fitted transi-
tions involve Ka values ranging from 0 to 2, we are able
to discriminate the contribution from the A rotational
constant and the tunneling. As evidenced by Table VI,
only one set of rotational constants is used and this is be-
cause the developed fitting approach accurately models
the rotational dependence of the tunneling splitting. It
should be stressed that the tunneling splittings reported
by Bermudez et al.,10 Schuder et al.,11 and Chitarra et

al.12 are smaller than the N = 0 value derived in this
work, which is 4|h2| = 170.4 MHz.

Due to the improved experimental setup used in this
work, the present re-investigation of the pure rotational
spectrum of the CH2OH radical allowed us to measure
at last several transitions expected to be intense under
cold interstellar conditions. Three out the four compo-
nents of the 110 ← 101 transition, not detected in the
previous investigations,10,12 where thus reported in this
work. As shown in Fig. 8, despite a very noisy signal due
to the weakness of this transition at room temperature,
unambiguous assignments and satisfactory modeling are
possible. These new data, combined with the measure-
ments published in Chitarra et al.,12 should allow for a
confident search of the radical in cold to warm environ-
ment of the interstellar medium.

SUPPLEMENTARY MATERIAL

See supplementary material for a figure showing the
variations of the function f(η) introduced in Section III A
and for two tables. The first one reports the expansion
parameters obtained with Eqs. (3) and (4); the second
one gives the observed minus calculated table for the line
position analysis described in Section V.
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Figure 8. Experimental spectra of the fine structure and tun-
neling components of the astrophysically relevant 110 ← 101
transition. Panels a), b), and c) correspond respectively to
the vt = 0, J = 0.5; vt = 0, J = 1.5; and vt = 1, J = 1.5
components. Experimental data points are indicated by dots.
Solid lines show a fit to the experimental signal using one
or more Gaussian second derivative line profiles. For panels
b) and c), 2 line profiles were used and each contribution is
plotted using dashed lines. Calculated line frequencies are
indicated by vertical lines.
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