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A B S T R A C T 

With its last observing run, the LIGO, Virgo, and KAGRA collaboration has detected almost one hundred gravitational waves 
from compact binary coalescences. A common approach to studying the population properties of the observed binaries is to use 
phenomenological models to describe the spin, mass, and redshift distributions. More recently, with the aim of providing a clearer 
link to astrophysical processes forming the observed compact binaries coalescences, several authors have proposed to employ 

synthetic catalogues for population studies. In this paper, we re vie w ho w to employ and interpret synthetic binary catalogues for 
gra vitational-wa ve progenitors studies. We describe how to build multichannel merger rates and describe their associated prob- 
abilities focusing on stellar progenitor properties. We introduce a method to quantify the match between the phenomenological 
reconstruction of merger rates with synthetic catalogues. We detail the implementation of synthetic catalogues for multichannel 
hierarchical Bayesian inference, highlighting computational aspects and issues related to hyper-prior choice. We find that when 

inferring stellar progenitors’ properties from gra vitational-wa ve observations, the relativ e efficienc y in compact objects produc- 
tion should be taken into account. Finally, by simulating binary black hole detections with LIGO and Virgo sensitivity expected 

for the O4 observing run, we present two case studies related to the inference of the common env elope efficienc y and progenitor 
metallicity of the binary black holes. We finally discuss how progenitors’ properties can be linked to binary black hole properties. 

Key words: gravitation – gravitational waves. 
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 I N T RO D U C T I O N  

ince their first detection in 2015 (Abbott et al. 2016 ), gravitational
a ves (GWs) ha ve opened a new channel to study our Universe.
esides representing another confirmation of Einstein’s General
elativity, GWs also provide us with a new tool for studying stellar
volution, cosmology, and the origin of compact objects. In just
 yr from their first direct detection, and during just three observing
uns, there has been meteoric progress in GW astrophysics. In 2017,
he first Binary Neutron Star (BNS) detection with electromagnetic
ounterpart allowed us to measure the Hubble constant H 0 (Abbott
t al. 2017a , b ), constrain the speed of gravity, confidently link
ilonovae and short γ -ray bursts and observe the formation of heavy
lements via r-process (Abbott et al. 2017c ). The LIGO and Virgo
nterferometers observed GW190521, a Binary Black Hole (BBH)
erger (Abbott et al. 2020a , c ) with masses falling in the Pair

nstability Supernova (PISN) gap. Another interesting example is
W190814 (Abbott et al. 2020b ), a compact binary merger that

ncludes a BH of ∼ 20 M � and a secondary object falling in the
xpected mass gap between neutron stars and the black holes. 

Interesting scientific results have also been achieved by studying
he population of Compact Binaries Coalescences (CBCs). Using the
W events from the last Gra vitational-Wa ve Transient catalogues

GWTC) (Abbott et al. 2021d , b ), the LIGO/Virgo/KAGRA collab-
 E-mail: simone.mastrogiovanni@oca.eu (SM); astrid.lamberts@oca.eu 
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Pub
ration (LVK) has been able to show that there is a smooth transition
etween neutron stars and black holes masses, that the preliminary
BH merger rate evolves in redshift and that the BBH mass spectrum
resents several features (Fishbach & Holz 2017 ; Abbott et al. 2021f ,
 ; Tiwari & Fairhurst 2021 ). The LVK has been able to constrain H 0 

sing BBHs provided with galaxy catalogues (Abbott et al. 2021e )
nd astrophysical source mass distributions (Abbott et al. 2021a ).
ll of this has been achieved with a catalogue of 90 GW candidates.
As the number of GW detections rapidly increases, population

tudies with GW sources are becoming a suitable tool to study the
strophysical formation channels of compact objects. Studying the
opulation of CBCs practically consists in reconstructing the astro-
hysical merger rate from the observed merger rate (Mandel, Farr &
air 2019 ; Vitale et al. 2022 ) or vice-versa. The astrophysical merger

ate is linked to astrophysical processes driving the production of
he CBC population. For instance, for BBHs, the presence of a
ISN process (Farmer et al. 2019 ; van Son et al. 2020 ) prevents

he formation of black holes (BHs) in the range 50 M � − 120 M �.
ee Mapelli ( 2021 ) for an e xtensiv e review of the different formation
hannels for compact binaries. Population studies are also important
o understand the nature of any particular ‘exceptional’ event. In

andel ( 2010 ), Galaudage, Talbot & Thrane ( 2020 ), Fishbach,
arr & Holz ( 2020 ), Moore & Gerosa ( 2021 ) the authors present a
ethodology to recompute the estimation of GW parameters in light

f population analyses, while works such as Fishbach & Holz ( 2020 ),
arah et al. ( 2022 ) try to reconcile GW190814 and GW190521 with

he observed population of BBHs. 
Currently, two methodologies are employed to reconstruct the

strophysical merger rates. The first one, which was also adopted
© 2022 The Author(s) 
lished by Oxford University Press on behalf of Royal Astronomical Society 
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Figure 1. Bayesian graph for comparing synthetic binaries with phenomeno- 
logical reconstructions of populations from real data. Each node represent an 
random variable, the shaded node indicates observed data. Each connection 
between a node and its parents indicates a conditional probability of that node 
given its parents. 
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y the LVK (Abbott et al. 2020c , 2021c ) reconstructs merger rates
n masses, spins, and redshift using inferential statistics and flexible 
henomenological models. This approach is widely used in current 
iterature (Fishbach & Holz 2017 ; Vitale et al. 2019 ; Callister et al.
021 ; Farah et al. 2022 ) and reconstructs the binary merger rate based
n astrophysical assumptions for the phenomenological models. For 
nstance, the BBHs merger rate as a function of redshift is usually
pproximated at low redshift with (1 + z) γ , in analogy to the
volution of the star formation rate at low redshift. On one hand,
his approach has the advantage of being flexible enough to fit an
nknown population. On the other hand, the disadvantage of this 
pproach is that it is not directly connected to the astrophysical 
rocesses producing BHs from their progenitors. 
In order to provide a more direct astrophysical interpretation of the 

bserved population, a parallel methodology has been employed (e.g. 
tevenson, Berry & Mandel 2017 ; Zevin et al. 2017 ; Wysocki et al.
018 ; Bouffanais et al. 2019 ; Bouff anais et al. 2021 ; Delf avero et al.
021 ; Mapelli et al. 2022 ; Ng et al. 2021 ; Zevin et al. 2021 ; Delfavero
t al., in preparation). This methodology consists in directly recon- 
tructing the merger rate from astrophysical synthesis simulations of 
inary mergers. The central paradigm of this type of approach is to
onstruct multichannel distributions, where the o v erall population is 
he sum of all the astrophysical channels simulated. As an example, 
ne can simulate BBHs formed in isolated stellar binaries and in 
lobular clusters and then define an o v erall population from them.
his type of approach has the advantage of being directly connected 

o the astrophysical processes forming the binary mergers but has the 
isadvantage of being less flexible in fitting the observed population. 
In this methodological paper, we focus on several aspects related 

o the interpretation and exploitation of synthetic populations of 
inaries for studying progenitors of GW sources. The paper is orga- 
ized as follows. In Section 2 we provide an easy statistical method to
uantify the match between phenomenological reconstructed merger 
ates and binary mergers catalogues. In Section 3 we introduce key 
oncepts for reconstructing and interpreting progenitors of mergers 
ith multichannel analysis. In Section 4 we re vie w and discuss

ritical issues of using several synthetic catalogues, that either change 
he astrophysical prescriptions or initial conditions, to fit observed 
W events. We refer to this type of analysis as ‘multichannel 

econstruction’. Dif ferently from pre vious literature, we will focus 
n the reconstruction of stellar progenitors properties from GWs ob- 
erv ations, sho wing ho w the relati ve ef ficiency in producing compact
bjects can be taken into account. In Section 5 , using synthetic BBHs
opulations, we present two case studies in which the methodologies 
iscussed could be employed: the estimation of the common envelope 
fficiency and the estimation of the progenitor’s metallicity. We 
lso sho w ho w stellar progenitors’ multichannel inference can be 
elated to the multichannel inference of BBHs population present in 
iterature. Finally, in Section 6 we provide our final remarks. 

All results presented in this paper are generated with GWPARENTS , 1 

 code for the multichannel inference released with this work. 

 M AT C H I N G  SYNTHETIC  M E R G E R  RAT ES  

ITH  P H E N O M E N O L O G I C A L  

E C O N S T RU C T I O N S  

e first discuss in this section a quick method to quantify the
greement between synthetic binary catalogues and binary merger 
ates reconstructed with phenomenological models. In practice, 
 ht tps://github.com/simone-mast rogiovanni/gwparents 

r
p  

p  
his is the case in which we want to compare a synthetic binary
atalogue with a previous analysis reconstructed merger rate using 
henomenological models (see Fishbach & Holz 2017 ; Vitale et al.
019 ; Wysocki, Lange & O’Shaughnessy 2019 ; Abbott et al. 2020c ,
021c ; Callister et al. 2021 ; F arah et al. 2022 , as an e xample) from
eal GW events. One qualitative avenue that was followed to perform
his comparison is to ‘check by eye’ the o v erlap of the merger rates in
erms of masses and redshift of the phenomenological reconstructed 
ates and the synthetic catalogues. 

On one hand, this method offers a quick tool to evaluate the
uitability of synthetic binaries from the phenomenological recon- 
truction. On the other hand, this method does not offer any statistical
or quality factor) indicator and it is hard to visualize in the case that
he binary parameters are more than two. 

In this section, we introduce for the first time, a more quantitative
ethod to assign a ‘match’ value to each synthetic binary model given 

he phenomenological reconstruction of astrophysical rates. Let us 
ssume that we have detected { x } GW events from which a previous
nalysis estimated a posterior p ( � | { x } ) on some population-level
arameters � that describe the phenomenological rate. For instance, 
 population-level parameter could be the maximum mass of the 
BHs mass spectrum or parameters related to the BBHs merger rate
s a function of redshift. The population-level parameters, and the 
henomenological models, can be used to construct a population 
istribution p pop ( θ | � ), where θ represents GW source parameters
uch as the two masses, and a number of expected detections N exp .
n order to assess the suitability of a synthetic population ϕ j , we
hould compare the expected number of detections predicted by ϕ j 

ith the one predicted from the phenomenological model. From this 
omparison, we w ould lik e to assign a probability to each model ϕ j 

o fit the observed data, namely p ( ϕ j | { x } ). 
The statistical model to compute p ( ϕ j | { x } ) is depicted in Fig. 1 .

he graph provides a quick tool for e v aluating 

p 

(
ϕ j |{ x} ) = ∫ 

p ( � |{ x} ) p pop ( θ | � ) p 

(
N exp | � 

)
p 

(
ϕ j | θ, N exp 

)
d � d N exp d θ

= 

∫ 

p ( � |{ x} ) p pop ( θ | � ) p 

(
ϕ j | θ, N exp ( � ) 

)
d � d θ. (1) 

n the abo v e equation, we have have performed the integral on N exp 

y using the relation p ( N exp | � ) = δ( N exp ( � ) − N exp ), that is basically
epresenting the fact that for each phenomenological model we can 
redict an expected number of GW detections. In equation ( 1 ),
 ( � | { x } ) is the posterior distribution on the phenomenological
MNRAS 517, 3432–3444 (2022) 
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Figure 2. Primary mass distribution for the three synthetic catalogues ϕ iso , 
ϕ gcl , ϕ tot , and the reconstructed distribution with phenomenological model. 
The y-axis represent the number of binaries produced per mass bin. The 
figure sho ws qualitati vely ho w much the synthetic merger rates o v erlap with 
the phenomenological reconstruction of the merger rate. 
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opulation-level parameters inferred from data and p pop ( θ | � ) the
inary parameters distributions that can be reconstructed from them.
he term p ( ϕ j | θ , N exp ( � )) is a probability representing our degree of
elief on the astrophysical model ϕ j , given a set of binary parameters
and expected detections N exp . This term can be rewritten using the
ayes Theorem as 

 ( ϕ j | θ, N exp ( � )) = 

p ( N exp ( � ) | ϕ j ) p pop ( θ | ϕ j ) p( ϕ j ) ∑ 

k p ( N exp ( � ) | ϕ k ) p pop ( θ | ϕ k ) p( ϕ k ) 
, (2) 

here p ( ϕ j ) is a prior belief for the j th formation channel, p pop ( θ | ϕ j ) is
he population prior defined in equation ( 5 ) and p ( N exp ( � ) | ϕ j ) match-
ng the number of expected detections from the phenomenological
odel with the number of expected detections from the astrophysical
odel. When calculating equation ( 2 ), one should include also

he ‘complementary’ channel ϕ̄ that co v ers the parameter space θ
ot co v ered by an y of the other channels, i.e. p( ̄ϕ | θ, N exp ( � )) =
 − ∑ 

j p( ϕ j | θ, N exp ( � )). Note that equation ( 2 ) reduces to the ratio
f the population priors in the limit that all the models predict the
ame number of expected detections. Note also that in this analysis
e do not need to include selection biases as they have already been
econvolved by the analysis that fit the phenomenological model. In
ther words, we are comparing astrophysical rates and not observed
ates. 

Equation ( 1 ) can be computed using the following procedure: if
e are provided with a set of N � 

posterior samples for the population
henomenological parameters � i , for each � i one can compute the
xpected number of events N exp ( � i ), then draw N θ binaries from
he population distribution p pop ( θ | � i ) and e v aluate the integral in
quation ( 1 ) as 

 ( ϕ j |{ x} ) = 

1 

N � 

N θ

N � ∑ 

i 

N θ∑ 

k 

p ( ϕ j | θk , N exp ( � i )) . (3) 

Let us give an example. We simulate two populations of BBHs
hat we refer to ‘isolated’ ( ϕ iso ) and ‘globular clusters’ ( ϕ gcl ) in
nalogy with the current BBHs formation channels re vie wed in
apelli ( 2021 ). The ϕ iso population produces a total of 10 5 BBHs
ith primary mass m 1 distributed according to a truncated power

aw p( m 1 ) ∝ m 

−2 
1 between 5 M � and 50 M �, while m 2 is distributed

etween 5 M � and m 1 with a power law p ( m 2 | m 1 ) ∝ m 2 . The ϕ gcl 

roduces a total of 5 × 10 3 BBHs with primary mass uniform in
0 M � and 90 M � and secondary mass uniform in 5 M � and m 1 . The
 v erall population of BBHs is defined as the sum of the two channels,
.e. ϕ tot = ϕ iso + ϕ gcl . We also assume that a previous analysis using
BHs from the ϕ tot population has been able to fit the mass spectrum
ith a broken power and obtained a 10 per cent error on the mass

pectrum parameters and o v erall merger rate. The three populations
 iso , ϕ gcl , ϕ tot , and the phenomenological reconstruction of ϕ tot are
epresented in Fig. 2 . The figure shows how ϕ tot o v erlaps with the
henomenological reconstruction. While ϕ iso , ϕ gcl fit only the total
opulation in the low and high mass regions with an o v erlap between
0 M � and 50 M �. We now want to assess the three models ϕ iso , ϕ gcl ,
 tot with the reconstructed population and find which one is preferred.
The first ingredient that we need, is the e v aluation of equation ( 2 )

s a function of the BBH masses. In Fig. 3 we show p ( ϕ j | m 1 ,
 2 ) computed for all the formation channels. The figure shows

he interpretation of p ( ϕ j | m 1 , m 2 ): when we have mass values in
he range m 1, 2 < 20 M �, the most probable formation channel is
 iso , while when we are looking at binaries with m 1, 2 > 50 the
ost probable formation channel is ϕ gcl . It is also interesting to note

hat the complementary formation channel is 100 per cent probable
here none of the models considered produces masses, e.g. for the
NRAS 517, 3432–3444 (2022) 
egion m 2 > m 1 which is excluded by our simulation. With an
 v aluation of p ( ϕ j | m 1 , m 2 ), we can now calculate equation ( 3 ) by
sing samples from the phenomenological reconstructed rate. For
idactic purposes, let us consider two cases. In the first, we will
ssume that each formation channel predicts the same amount of
BHs; the preference is solely given by comparing the different
ass distributions. In the second, we will include information on

ow many BBHs each formation channel predicts. 
In the first case we obtain p( ϕ iso |{ x} ) = 34 per cent , p( ϕ gcl |{ x} ) =

5 per cent , p( ϕ tot |{ x} ) = 34 per cent , p( ̄ϕ |{ x} ) = 7 per cent . These
robabilities can be used to e v aluate ho w much the population
robabilities p ( θ | ϕ j ) o v erlap with the population probability of the
henomenological rates p ( θ | � ). For instance, ϕ tot fits 1.36 times bet-
er the distribution of masses with respect to ϕ gcl . If we now include
he fact that each formation channel predicts a different amount of
BHs produced, we obtain p( ϕ iso |{ x} ) = 0 . 5 per cent , p( ϕ gcl |{ x} ) =
 . 5 per cent , p( ϕ tot |{ x} ) = 91 per cent , p( ̄ϕ |{ x} ) = 8 per cent . The
lear preference for the ϕ tot channel is now given by the fact
hat the number of BBHs produced by ϕ iso and ϕ gcl alone is not
nough to match the total number of BBHs reconstructed by the
henomenological model. 
So far, we have discussed a quantitative method to compare

ynthetic binary catalogues with phenomenological merger rate
econstructions. This method e v aluates the o v erlap of each model
y considering it independent from the others. In the next sections,
e will focus on analyses that aim at reconstructing the binary merger

ates as a combination of the progenitors’ simulation at our disposal.

 BU I LDI NG  M U LT I C H A N N E L  M E R G E R  

ATES  F RO M  T H E  BLACK  H O L E S  

RO G E N I TO R S  

n this section, we follow a top-to-bottom derivation to show how
t is possible to build binary merger rates from synthetic binary
atalogues. In the rest of this work, we will focus mostly on BBHs. 

Let us assume that we have generated a population of BBHs
rogenitors N 

ϕ j 
∗ that we evolve through an astrophysical channel

 j to obtain a certain number of BBH mer gers N 

ϕ j 
BBH . The mer ger

ate of BBHs for each astrophysical channel can be written as 

d N 

ϕ j 
BBH 

d θd zd t 
= T ϕ j ( θ, θ∗, z, z ∗, t, t ∗) 

d N 

ϕ j 
∗

d θ∗d z ∗d t ∗
, (4) 

art/stac2850_f2.eps
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Figure 3. Plots of p ( ϕ j | θ , N exp ( � )) given in equation ( 2 ) for the three synthetic catalogues as a function of the masses. The fourth model is the complementary 
model and represent the complementary model in the masses space to all the other models. The figures have been generated assuming that all the models predicts 
the same number of BBHs. This choice was made as in this limit equation ( 2 ) reduces to the ratio of the population probabilities of each model. The figures have 
been generated by dividing the mass space in 6400 bins equally sized. The colourbars indicate the values of models probability given a mass value. 
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here z ∗ is the redshift at which the BBH progenitor is formed,
∗ a set of the progenitor parameters such as metallicity and d t ∗

ndicates the time interval at the progenitor redshift. The function T 
an be understood as an operator that tells us if a progenitor with
arameters θ∗ at redshift z ∗ would produce a BBH with parameters θ
t redshift z. For instance, this quantity could be integral over all the
arious astrophysical properties of the progenitor. A central quantity 
or many population analyses is the population probability that is 
uilt from the binary merger rate as 

 pop ( θ, z, t | ϕ j ) = 

1 

N 

ϕ j 
BBH 

d N 

ϕ j 
BBH 

d θd zd t 
, (5) 

here the term N 

ϕ j 
BBH is the total number of BBHs predicted by the

ormation channel ϕ j . 
The idea behind multichannel analysis (Stevenson et al. 2017 ; 

evin et al. 2017 ; Wysocki et al. 2018 ) is to construct (and compare
ith observ ed ev ents) an o v erall BBH merger rate, built as a linear
ombination of various formation channels, namely 

d N BBH 

d θd zd t 
= 

N syn ∑ 

j 

λj 

d N 

ϕ j 
BBH 

d θd zd t 
. (6) 

he λj coefficients are a set of mixture coefficients, that are usually
t in the analysis. The rationale behind this idea is that one single
ormation channel could not be sufficient to describe the population 
f observed BBHs (e.g. in the case that BBHs are formed from
solated binary evolution or in globular clusters). 

Let us now comment on the physical interpretation for the { λ}
oefficients and their relation to the construction of synthetic binary 
atalogues. These terms can be understood in terms of progenitors’ 
opulation. Using equations ( 4 )–( 6 ), the o v erall BBHs merger rate
an be written as 

d N BBH 

d θd zd t s 
= 

∑ 

j 

T ϕ j ( θ, θ∗, z, z ∗, t, t ∗) λj 

d N 

ϕ j 
∗

d θ∗d z ∗d t ∗
. (7) 

f we assume that the BBHs progenitors distribution is common 
cross all the formation channels considered, then the set of { λ}
hould respect the condition 

∑ 

j λj = 1. Namely, the { λ} represents
MNRAS 517, 3432–3444 (2022) 
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Figure 4. The illustration shows the relation between the coefficients λj and 
� j by following the BBHs from the stellar progenitors. The figure starts from 

a common population of stellar progenitors, half of which enter a formation 
channel ϕ 1 (yellow) and the other half ϕ 2 (blue). The first formation channel 
is two times more efficient than the second in producing BBHs. At the end 
2/3 of the observable population of BBHs has been produced in ϕ 1 and 1/3 
in ϕ 2 . 
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he fraction of progenitors that produce BBHs through the formation
hannels { ϕ} . In this case we refer to the { λ} as fractional mixture
oefficients . 

A completely different case can be found when we want to fit the
bserved BBHs using synthetic catalogues generated from indepen-
ent populations of progenitors. Therefore, the o v erall population
f BBHs will be given by the sum of all the independent sub-
opulations. In this case, the set { λ} represents the abundance of
ach sub-population of BBHs in the observed data. If the observed
ata are correctly described by the modelled BBHs sub-populations,
e would expect each λj = 1. Values of λj > 1 will either indicate that

he sub-populations are more numerous or that the transfer function
s twice more ef fecti ve in producing BBHs from the progenitors. The
pposite is true for values of λj < 1. 
From equation ( 6 ) it is possible to define a population probability

iven as 

 pop ( θ, z, t |{ λϕ} ) = 

1 

N BBH 

d N BBH 

d θd zd t 
, (8) 

here with { λϕ} we indicate a collection of formation channels
ultiplied by their mixture coefficients. By using equation ( 6 ) and

he fact that N BBH = 

∑ 

j λj N 

ϕ j 
BBH , one can show that the o v erall

opulation probability is 

 pop ( θ, z, t |{ λϕ} ) = 

∑ 

j 

λj N 

ϕ j 
BBH ∑ 

k λk N 

ϕ k 
BBH 

p pop ( θ, z, t | ϕ j ) . (9) 

he equation abo v e has a direct astrophysical interpretation: if we
re provided with a formation channel ϕ j that predicts significantly
ore BBHs than the others, then the o v erall population probability
ust be dominated by this channel. The term 

( ϕ j |{ λϕ} ) = 

λj N 

ϕ j 
BBH ∑ 

k λk N 

ϕ k 
BBH 

(10) 

an be also understood as a probability of the model ϕ j given the
calar coefficients { λ} and the other models { ϕ} . With this definition,
quation ( 9 ) can be written as 

 pop ( θ, z, t |{ λϕ} ) = 

∑ 

j 

p( ϕ j |{ λϕ} ) p pop ( θ, z, t | ϕ j ) . (11) 

Note that there is a fundamental difference between the con-
truction of the abo v e population probability and the one used in
everal recent works such as Stevenson et al. ( 2017 ), Zevin et al.
 2017 ), Bouffanais et al. ( 2019 ), Mapelli et al. ( 2022 ), Bouffanais
t al. ( 2021 ), Wong et al. ( 2021 ). In these works, the multichannel
opulation probability is built as 

 pop ( θ, z, t |{ � } ) = 

∑ 

j 

� j p pop ( θ, z, t | ϕ j ) , (12) 

here 
∑ 

� j = 1. The parameters � j ef fecti vely represent the
raction of the BBH distribution given by a particular formation
hannel. Instead, the λj defined in this paper represent the fraction
f progenitors producing BBHs in a given formation channel. In
rder to define a progenitor-induced BBH population probability, it
s important to take into account the term p ( ϕ j | { λϕ} ). In Section 5.3.1
e provide an example to discuss how these two quantities are related

nd can be converted to each other. For now let us give a simple
xample illustrated in Fig. 4 to better understand the meaning of the
j and � j coefficients. 
Let us assume to be provided with a set of progenitors producing

BHs via two formation channels ϕ 1 and ϕ 2 , with the first formation
hannel predicting two times more BBHs than the other. Let us
NRAS 517, 3432–3444 (2022) 
lso assume that 1/2 of progenitors enter the first formation channel
nd 1/2 of the second. In other words λ1 = λ2 = 1/2. When we
ook at the population distribution of BBHs, we would find that
/3 of the BBHs are produced in the formation channel ϕ 1 and
/3 by ϕ 2 . In other words � 1 = 2/3, � 2 = 1/3. Therefore, if we
erform our inference using equation ( 12 ), we cannot directly use
he � j to draw conclusions about the BBHs progenitors. We can only
raw conclusions about the fraction of BBHs produced in a given
ormation mechanism. 

On the one hand, one of the advantages of this method is that
he mixture coefficients � j / λj are directly linked to the population
f BHs and their progenitors. On the other hand, this type of
ethodology is less flexible than phenomenological models and can

nly fit population features (e.g. PISN) that are already present in
he synthetic catalogues considered. In principle, one could also
onsider adding a phenomenological model to this approach by
efining an additional mixture coefficient � phenom 

/ λphenom 

associated
ith the phenomenological model. In this scenario, we could fit a

et of mixture coefficients associated with the synthetic catalogues
nd one mixture coefficient associated with the phenomenological
odel. Ho we ver, this approach could have two drawbacks. First, the

henomenological model needs to be fitted with a set of continuous
ariables thus increasing the dimensionality and computational cost
f the analysis. Secondly, phenomenological models are very flexible
nd thus we expect the inference on the phenomenological models to
e less informative. Therefore, we suggest performing two separate
nalyses. One uses synthetic catalogues and mixing coefficients, and
he other uses phenomenological models and then compares Bayes
actors. 

 P RO G E N I TO R S  M U LT I C H A N N E L  BAYE S IAN  

NALYSES  

e now discuss the case in which we would like to reconstruct
he merger rate for multiple formation channels starting from the
bserved BBHs. Differently from what we discussed in the previous
ection, in this case, we will not use phenomenological models
nd we will rely solely on synthetic binary catalogues. We will
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se the mixture model approach presented in Section 3 and write 
he o v erall BBHs merger rate as in equation ( 6 ). We will discuss
n Section 4.1 the statistical background for multichannel analyses 
ased on synthetic catalogues, in Section 4.2 how priors on the 
ixture coefficients can be chosen and in Section 4.3 computational 

ifficulties related to this kind of analysis. 

.1 Statistical method 

he hierarchical likelihood of having N obs GW events from data { x }
onditioned on the set of models ϕ j and the mixture coefficients λj is
see Vitale et al. 2022 for a bottom-to-top deri v ation) 

( { x}|{ λϕ} ) ∝ e −N exp 

N obs ∏ 

i 

T obs 

∫ 

p( x i | θ ) 

1 + z 

d N BBH 

d θd zd t 
d θd z, (13) 

here p ( x i | θ ) is the GW likelihood and N exp is the number of
 xpected ev ents observ able in a gi ven observing time T obs . The
W likelihood quantifies the uncertainties with which the source 

strophysical parameters, such as luminosity distance and detector- 
rame masses, are determined. Equation ( 13 ) can be rewritten in the
lternative form (Vitale et al. 2022 ) 

( { x}|{ λϕ} ) ∝ e −N exp N 

N obs 
exp 

N obs ∏ 

i 

∫ 
p( x i | θ ) p pop ( θ |{ λϕ} )d θ

β( { λϕ} ) , (14) 

here p pop ( θ | { λϕ} ) is the population probability defined as in
quation ( 11 ), and β( { λϕ} ) is the selection effect (see later). 

Our aim is to quickly e v aluate equation ( 14 ) as a function of the
ixture coefficients λj . We will factorize equation ( 14 ) in several

erms that can be computed once for each formation channel ϕ j and
escaled with λj to quickly e v aluate the hierarchical likelihood. The 
umerator factor in the product of equation ( 14 ) can be rewritten as, ∫ 

p( x i | θ ) p pop ( θ |{ λϕ } )d θ = 

∑ 

j 

p( ϕ j |{ λϕ } ) L i,j , (15) 

here we hav e e xpanded p pop ( θ | { λϕ} ) using equation ( 11 ) and we
ave defined 

 i,j = 

∫ 

p( x i | θ ) p pop ( θ | ϕ j )d θ. (16) 

he L i,j can be e v aluated numerically once for each i th GW event
nd j th formation channel. We also recall that p ( ϕ j | { λϕ} ) can be
onstructed using equation ( 10 ) and using only the number of BBHs
redicted by each model and the mixture coefficients λj . The selection 
ffect β( { λϕ} ) can be quickly computed by knowing the total number
f BBHs predicted by each formation channel and the fraction of
BHs detectable by each channel β( ϕ j ), namely 

( { λϕ} ) = 

∑ 

j λj N 

ϕ j 
BBH β( ϕ j ) ∑ 

j λj N 

ϕ j 
BBH 

. (17) 

Finally, the Poissonian term 

 

−N exp N 

N obs 
exp 

n equation ( 14 ) can be easily computed by recognizing that N exp =
 

j λj N 

ϕ j 
BBH β( ϕ j ). 

This term is usually marginalized out in multichannel analyses 
ocusing on BBHs population as performed in Zevin et al. ( 2017 ),
tevenson et al. ( 2017 ), Mapelli et al. ( 2022 ), Bouffanais et al. ( 2019 ,
021 ), Zevin et al. ( 2021 ). To do so, we need to introduce a ‘nuisance
caling parameter’ A in common to all the population models such 
hat N BBH = A 

∑ 

j λj N 

ϕ j 
BBH . If we take a prior on A uniformly

istributed in logarithmic space, it is possible to marginalize out 
he Poissonian term and equation ( 14 ) reduces to 

( { x}|{ λϕ} ) ∝ 

N obs ∏ 

i 

∫ 
p( x i | θ ) p pop ( θ |{ λϕ} ) dθ

β( { λϕ} ) . (18) 

Note that, in comparison to population analyses based on phe- 
omenological models (Fishbach & Holz 2017 ; Vitale et al. 2019 ;
bbott et al. 2020c , 2021c ; Callister et al. 2021 ; Farah et al.
022 ), the parameter A ef fecti vely act as a common rescaling for
he BBH merger rate density R 0 ( ϕ j ) identified by each model. In
ther words, equation ( 18 ) reconstructs the BBHs astrophysical 
istributions in terms of masses and redshift without accounting for 
he absolute merger rate. While this choice is mathematically correct 
nd reconstructs the correct distribution in masses and redshift of 
BHs, one should be careful about the astrophysical interpretation. 
or instance, the synthetic simulations might predict many more 
vents than the observed ones, while still being able to fit the redshift
nd mass distribution. This choice is usually done when the rates
f the different formation channels are highly uncertain and not 
orrelated with the astrophysical processes that characterize the mass 
nd redshift distributions of BBHs. 

To summarize, in order to quickly perform a multichannel analysis 
sing several formation channels ϕ j , we need to: (i) Estimate the
otal number of BBHs produced by each formation channel N 

ϕ j 
BBH 

nd their detectable fraction β( ϕ j ), (ii) for each formation channel
nd GW event estimate the term L i,j in equation ( 16 ) and (iii) for
ome values of the set { λ} use equations ( 15 ) and ( 17 ) to ef fecti vely
uild the hierarchical likelihood. 

.2 Priors on the mixture coefficients 

e now discuss how priors on the mixture coefficients { λ} can be
hosen according to the astrophysical case considered. In Section 3 
e considered two cases: the case in which each formation channel
as an independent sub-population of progenitors and the case for 
hich the population of BBHs progenitors is in common to each

ormation channel. In the former, the λj are independent of each 
ther and a value of λj = 1 indicates that the BBH formation channel
s observed in data as the model predicts. In this case, each prior on λj 

an be chosen independently and from an astrophysical point of view,
his case corresponds to changing the initial astrophysical conditions 
e.g star formation rate) of the simulation. In the latter, the set of { λ}
ust satisfy the constraint 

∑ 

j λj = 1, and these parameters ef fecti vely
epresent the relative fraction of BBHs observed produced by each 
hannel. In terms of astrophysics, this represents the case for which
he initial conditions of the simulation are set but the astrophysical
volution prescriptions are changed. 

When the { λ} must be normalized (common BBHs progenitors), 
 non-trivial bound is introduced in the joint prior of the mixture
oefficients. One possibility is to build a joint prior that satisfies the
ormalization constraint by drawing sequentially the values of λj 

rom a cascade of conditional probabilities. Namely, we write the 
oint prior as 

( { λ} ) = 

∏ 

j 

p( λj |{ λ} i<j ) , (19) 

here { λ} i < j indicates a set of λi with index lower than j . By
hoosing uniform conditional priors, the abo v e equation can be
MNRAS 517, 3432–3444 (2022) 
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Figure 5. Representation on a 2-simplex of the logarithm of the prior probability distribution on the fractional mixture coefficients { λ} of three models. From 

left to right: Conditional uniform prior with ordering preference, ‘Flat’ Dirichlet prior with concentration parameters 1, Dirichlet prior fa v ouring single models 
with concentration parameters 0.5 and Dirichlet prior fa v oring mixture models with concentration parameters 3.0. 

Figur e 6. Mar ginal priors on five mixture models. The different panels 
correspond to the marginal priors for different choices as described in Fig. 5 
and Section 4.1 . The conditional uniform prior is given in equation ( 19 ). 
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ritten as 

p( λ1 ) = p( λ1 ) 

p( λj |{ λ} i<j ) = 

{
p( λj |{ λ} i<j ) if 0 ≤ λj ≤ 1 − ∑ 

i<j λi 

0 if λj > 1 − ∑ 

i<j λi 

p( λN |{ λ} i<N ) = δ

( 

1 −
∑ 

i<N 

λi 

) 

. 

e note that this prior choice is not optimal for multichannel studies
s it introduces an ordering preference. In Fig. 5 (left-hand panel),
e show the logarithm of a joint prior to built in this way for the case

hat we are provided with three astrophysical formation channels. As
t can be seen from the figure, this prior naturally prefers the first
rdered model. In the case that multiple models are provided, this
ype of prior will strongly disfa v our models that are ordered in the
ast. We display this effect in Fig. 6 by showing the marginal prior
NRAS 517, 3432–3444 (2022) 
istributions in the case that we are provided with five astrophysical
hannels. 

A more natural choice that remo v es the problem of model ordering
s to use a Dirichlet distribution on the { λ} as done in Stevenson et al.
 2017 ), Zevin et al. ( 2017 ), Wysocki et al. ( 2018 ). The Dirichlet
istribution ensures the normalization of the { λ} and also provides
 set of concentration parameters { ζ} go v erning how the probability
s distributed on the plane identified by 

∑ 

λj = 1. Fig. 5 shows
he logarithm of the Dirichlet prior to different choices of the { ζ}
arameters. If ζ j = 1, the prior probability is uniform across the
ombination of all the formation channels. If ζ j < 1, the prior will
refer to build the o v erall BBH rate using a single formation model.
inally, if ζ j > 1, the prior will prefer to build the BBH rate as
 superposition of all the models. In general, as we will show in
ection 5.3 , the { ζ} parameters can also be treated as free parameters

o infer. The marginal priors on the λj in the cases presented for a
irichlet distribution are shown in Fig. 6 . One can observe that the
arginal priors are equal for all the models. 
We therefore argue that Dirichlet priors should be used when

erforming this type of analyses. 

.3 Evaluating Monte Carlo integrals 

he calculation of the hierarchical likelihood in equation ( 13 )
equires the e v aluation of se v eral numerical inte grals. A first implicit
ntegral is given by the calculation of the fraction of BBHs that
e expect to detect. This integral is given by the product of the
etection probability as a function of the BBHs parameters with
he BBHs population distribution and merger rate. The integral is
ot e v aluated analytically and a common technique to estimate it
s by using injection studies. The idea is simply to generate GW
njections in noise from the desired BBH population and estimate
hat is the detectable fraction. Farr ( 2019 ) showed that the number
f detectable injections should be at least four times higher than the
W events considered in the analysis. Otherwise, the e v aluation of

he hierarchical likelihood is not numerically stable. 
The other term that requires an inte gral o v er the BBH population

s equation ( 16 ). This integral is usually e v aluated as a Monte
arlo integral by using N s samples from the posterior of each BBH
etected. This approach consists in approximating the integral as 

 i,j ≈ 1 

N s 

N s ∑ 

j 

p pop ( θ | ϕ j ) 

p 0 ( θ ) 
, (20) 
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here p 0 ( θ ) is a prior applied to calculate the BBH posteriors on the
inary parameters and p pop ( θ | ϕ j ) is the population prior associated
o the formation channel. Alternatively, one can decide to perform 

he Monte Carlo integral by summing o v er simulated BBHs from the
ormation channel p pop ( θ | ϕ j ) and write 

 i,j ≈ 1 

N s 

N s ∑ 

j 

p( θ | x i ) 
p 0 ( θ ) 

. (21) 

n principle, we would expect equations ( 20 ) and ( 21 ) to return the
ame result. Both approaches have in common one necessity, either 
he BBH population of the formation channel or the GW posterior
f observ ed ev ents should be known as a function of the parameters
. These analytic functions are not usually known, in fact, we are
sually provided with either a list of posterior samples from p ( θ | x i ) or
 list of BBHs simulated from p pop ( θ | ϕ j ). One possibility to compute
nalytically this probability from a set of samples, is by using kernel
ensity estimates, histograms, or non-parametric fitting such as the 
nes proposed in Wysocki et al. ( 2018 ), Golomb & Talbot ( 2022 ),
el Pozzo et al. ( 2018 ), Tiwari, Fairhurst & Hannam ( 2018 ), Sadiq,
ent & Wysocki ( 2022 ), Delfavero et al. ( 2021 ), Rinaldi & Del
ozzo ( 2022 ), Delfavero et al. (in preparation). If equation ( 20 ) is
sed, the sum is performed o v er GW posterior samples and the fit is
n the BBH population of the formation channel. If equation ( 21 ) is
sed, the sum is o v er the BBHs predicted by the formation channel
nd the GW posterior is e v aluated by the fit. In both cases, a possible
aussian kernel fitting should always be validated against the original 
istribution. 
A rule of thumb to decide what is best suited to e v aluate the
onte Carlo Integral is the following. Equation ( 20 ) can be used if

he formation channel has a phenomenological (or semi-analytical) 
odel and no fitting is needed. Equation ( 20 ) can also be used when

he BBH parameters from GW data are measured with a precision 
ignificantly lower than the typical ranges co v ered by the BBH
ormation channels. Equation ( 21 ) can be used in this case that
he range spanned by the BBH formation channels is comparable 
r significantly lower than the precision with which we are able to
easure BBH parameters from data. 
Current population studies are based on BBHs, for which we 

xpect formation channels to cover a wider range in masses and 
edshift to the typical error budgets estimated from GW data. That 
s why so far Monte Carlo Integrals are mostly e v aluated with
quation ( 20 ). 

 CASE  STUDIES:  T H E  C O M M O N  ENVEL OPE  

FFIC IEN C Y  A N D  P RO G E N I TO R S  

ETA LLICITY  

n this section, we present case studies to show how synthetic 
atalogues of BBH mergers can be used with GW population studies.
or all the test cases (unless specified), we consider the BBH rates
ith the hierarchical likelihood in equation ( 14 ). We use the model
y Srini v asan et al. (in preparation) for our binary population. In
his simple model, the binary population is based on the code 
OSMIC (Breivik et al. 2020 ) to simulate BBH mergers. The star
ormation rate is parametrized in terms of star metallicity, galaxy 
ass, and redshift of formation of the binary following Lamberts 

t al. ( 2016 ). For e very v alue of metallicity, a population of BBH
erger progenitors is generated by using COSMIC to evolve zero-age 
ain-sequence stars, selecting those that form BBH mergers. The 
 v erall population of BBH mergers is obtained by re-weighting the
osmic BBHs progenitors by the star formation rate. 
.1 COSMIC simulations 

OSMIC simulates binary evolution based on prescriptions that model 
hysical processes such as stellar winds, mass transfers between the 
inary, and supernovae kicks. One of the prescriptions of interest is
he unstable mass transfer during the binary evolution that results in
 common envelope (CE) phase parametrized by an efficiency αCE . 
epending on the value of the CE efficiency, stellar binaries can be
ore or less efficient in producing BBH mergers (Barrett et al. 2018 ).
e explore the effect of CE efficiencies. Specifically, we consider CE

f ficiency v alues of αCE = { 0.3, 0.5, 1.0 } . The other prescriptions
f the COSMIC simulations are set to their default values reported
n COSMIC 3.4.0. 2 As this study focuses on statistical inference, we
hoose not to optimize the model to fit observed distributions and
ates. For each simulation, COSMIC provides us with the distribution 
f time delays between the progenitor formation and the BBH merger. 
he procedure of building the population depends on the type of
ultichannel analysis we consider (see later). 

.2 Generation of the GW mock catalogue 

o build a mock catalogue of observed GW events, we use an
pproach similar to Fishbach, Holz & Farr ( 2018 ), Farr et al. ( 2019 )
o simulate the detection of GW events and the estimation of source
asses and redshift for each detected binary. For each binary, we

alculate the matched filter SNR ρ as 

= 8 

( M c 

26 M �

)5 / 6 (
d L 

1500 Mpc 

)
w, (22) 

here M c is the binary redshifted chirp mass and d L is the binary
uminosity distance (calculated using a Planck cosmology; Planck 
ollaboration XIII 2016 ). The scaling factors for the chirp mass and

he luminosity distance are chosen to assume a network composed 
y LIGO Hanford, Livingston, and Virgo with typical detection 
anges for O4 (Abbott et al. 2018 ). The luminosity distance scaling
s calculated with the single-detector reach distances reported in 
bbott et al. ( 2018 ). The parameter w is a scaling factor that takes

nto account the fact that not all the detectors in the network are
ptimally oriented with respect to the source position (Dominik et al.
015 ). The cumulative distribution of w for a three-detector network
s publicly available. 3 

Once the optimal SNR is calculated for each binary, we draw
 ‘observed’ SNR ρobs from a non-central χ2 -square distribution 
with non-centrality parameter ρ) and with a 6 degrees of freedom
ince we have three detectors in the network. Binaries are detected
f they exceed an observed SNR of 12. For each detected binary,
e then draw an ‘observed’ chirp mass M c, obs and symmetric 
ass ratio ηobs using the same likelihoods in Appendix B of Farr

t al. ( 2019 ). Once we are pro vided with a set of ‘observ ed’ chirp
asses, symmetric mass ratio, and SNR, we generate mock posterior 

amples on their original ‘true’ values using the likelihood models 
rom which they were generated. These mock posterior samples are 
hen converted to posterior samples in source frame masses and 
n redshift using equation ( 22 ) (and correcting for the change of
ariable { ρ, M c , η} −→ { d L , m 1 , m 2 } ) that we then use to generate
ock posterior samples on redshift and source-frame masses for each 

etected signal. 
We study the reconstruction of the BBH formation channels by 

xtracting 64, 128, 256, 512, 1024, and 2048 binaries from the set
MNRAS 517, 3432–3444 (2022) 
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Figur e 7. Left-hand panel: BBH mer ger rate redshift evolution for the three common envelope models we consider. Centre: Distribution of the primary source 
mass for the models we consider. Right-hand panel: Distribution of the secondary source mass for the models we consider. In all the panels, the simulated 
mixture population generated with fractions λ = { 0.4, 0.3, 0.3 } is indicated with a black dashed line. The bottom panels show the observed distributions of 
BBHs in redshift and masses once an SNR cut of 12 is applied. 
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Figure 8. Posterior distributions on the fractional mixture coefficients for the 
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f detected signals. We use the statistical approach described in
ection 4 and the likelihood function in equation ( 13 ) to find posterior
istributions on the mixture coefficients. This study makes use of the
ILBY code (Ashton et al. 2019 ; Romero-Shaw et al. 2020 ) and its
ested sampling DYNESTY implementation (Higson et al. 2019 ) to
ample from the posterior distribution of the mixture coefficients. 

.3 Measuring the progenitors common envelope efficiency 
rom BBHs ( 

∑ 

j λj = 1) 

n our first case study, we would like to infer CE efficiency from
he observ ed GW ev ents. In this case, the formation channels from
hich we build our BBH catalogues are the COSMIC simulations with
CE = { 0.3, 0.5, 1.0 } . As described in Section 3 , this is the case for
hich the progenitor population of BBHs is in common between

he formation channels. The { λ} represent the fraction of BBHs
roduced from progenitors with a given CE. For our case study, we
ssume that 40 per cent of the BBH population is produced with
CE = 0.3, 30 per cent with αCE = 0.5, and 30 per cent with αCE =
.0. Note that this is a toy model to show how the method can work, as
assive binaries might not display different CE efficiencies (Wong

t al. 2022 ). 
By using equation ( 6 ) and the chosen mixture coefficients, we

uild the o v erall BBHs merger rate. In Fig. 7 we show the BBHs rate
volution in terms of redshift and masses for the three models and for
he o v erall population that we simulate. While the three simulations
redict similar mass distributions in shape, they significantly differ
n terms of absolute merger rates (Hurley, Tout & Pols 2002 ; Ricker
t al. 2018 ; Mandel & Broekgaarden 2022 ). We run the multichannel
nalysis using two sets of priors for the fractional mixture coefficients
nd we consider also the BBHs merge rates in the hierarchical
ikelihood. In the first analysis, we use a Dirichlet prior with
oncentration parameters fixed to { ζ} = { 0.5, 0.5, 0.5 } fa v ouring
ingle models, while in the second analysis we also allow the
oncentration parameters to vary in a uniform distribution between
0.01,100]. Fig. 8 shows the reconstructed marginal posteriors of the
ixture fractions between the three CE models. From the plot, we can

ee that when we are provided with few GW events, the constraints
n the fractional mixture coefficients are weak. As more and more
W events are detected, the constraints on the mixture coefficients

mpro v e. With 2048 ev ents a precision of ∼ 4 − 5 per cent is reached
n the determination of the mixture fractions. In Appendix A we also
NRAS 517, 3432–3444 (2022) 
rovide a more detailed discussion about the correlations among
he various fractional coefficients and the Dirichlet concentration
arameters. 

.3.1 Reconstructing pro g enitor s fr actions from BBH fr actions 

s we argue in Section 3 , there is a fundamental difference be-
ween constructing the population probability using equation ( 11 ) or
quation ( 12 ). In the former case, we are inferring the fraction of
ro g enitor s entering a formation channel ( λj ), while in the latter we
re inferring the fraction of BBHs produced in a formation channel

art/stac2850_f7.eps
art/stac2850_f8.eps


Inferring binary black holes stellar pro g enitor s 3441 

Figure 9. Joint posterior distribution on the progenitors λj ratios for the CE 

simulations using 2048 GW detections. The figure compares the direct infer- 
ence of the progenitor fractions (red contour) with the indirect reconstruction 
from BBHs population fractions (blue contour). The solid lines mark the 1 σ
and 2 σ contours. The yellow solid lines mark the simulated population. 
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 � j ). These two quantities can be related a posteriori comparing
quations ( 11 ) and ( 12 ) and noting that 

λj N 

ϕ j 
BBH ∑ 

k λk N 

ϕ k 
BBH 

= � j . (23) 

rom the abo v e relation, it follows that 

λj 

λi 

= 

� j 

� i 

N 

ϕ i 
BBH 

N 

ϕ j 
BBH 

, (24) 

.e. the ratio of the progenitors fraction entering the formation channel 
 and i can be calculated by scaling the ratio of BBH fractions
roduced in the formation channel j and i (and vice versa). Indeed it
s interesting to note that the two ratios coincide when the formation
hannels have the same efficiency in producing BBHs. 

For instance, in our previous example, we constructed a BBH 

opulation that was composed by 40 per cent, 30 per cent, and
0 per cent of progenitors with CE efficiency of 0.3, 0.5, and 1.0,
espectively. We perform again the multichannel analysis but this 
ime using equations ( 11 )–( 12 ) implemented in the hierarchical
ikelihood in equation ( 18 ) (marginalizing out the rates). In Fig. 9 ,
e compare the distribution of the progenitor ratios λj / λi obtained 

n Section 5.3 and the ones reconstructed using equation ( 24 ) and
he BBHs ratios � j / � i . We can see that the progenitors ratios can be
f fecti vely reconstructed from the BBHs ratios. 

.4 Measuring the BBHs progenitors metallicity ( 
∑ 

λj �= 1) 

n the second case study, we use the simulation with CE efficiency
.0 and we divide the population of BBHs progenitors according to 
heir metallicity, uniformly divided in base 10 logarithm between 
 = 5.0 × 10 −3 Z � and Z = 1.6Z �. We are therefore in presence
f independent sub-populations of BBHs progenitors, as described 
n Section 3 . Each sub-population of progenitors provides us with a
ub-population of BBHs. The total BBH merger rate is the sum of
he rates of these ten sub-populations. For this case study, we assume
hat the sub-populations are not present as predicted by the COSMIC

imulation. Instead, we assume that each sub-population contributes 
o the o v erall BBHs merger rate with multiplicity coefficients λ =
 0.5, 0.6, 0.7, 0.8, 0.9, 1.0, 1.1, 1.2, 1.3, 1.4 } (ordered in terms
f increasing metallicity bins). As an example, the BBHs produced 
rom a progenitor with metallicity Z � = 2Z � produce 40 per cent
ore BBHs with respect to the initial model predictions. 
Fig. 10 shows the BBH merger rate and mass distributions for

hese sub-populations and the true population created from their 
um. We observe that in this simple model the progenitor metallicity
ntroduces many different features in the mass spectrum and merger 
ate. We perform the reconstruction of the mixture coefficients for the
ub-populations using priors on λj independent from each other and 
niform between 0.5 and 1.5. Fig. 11 shows the marginal posterior
istribution among all the mixture coefficients. We can see that not all
f the fractional parameters can be constrained in the proposed prior
ange. Ho we v er, we can observ e that in general, models which predict
ore BBHs are better constrained than models that predict less. This

s expected as progenitors entering channels predicting more BBHs 
re easier to constrain. This case study shows that synthetic binary
atalogues can be used with GW events to probe the BHs progenitor
etallicity but also the evolution of the star formation rate. 

 C O N C L U S I O N S  

n this paper, we have described in detail how to employ and
tatistically interpret synthetic compact binaries in light of GW 

etections. In particular, we have focused on analyses trying to infer
nd constrain the presence of BBHs progenitors in multiple channels. 

In Section 2 , we have presented for the first time an efficient
ethod to e v aluate the ‘match’ between synthetic catalogues of

inaries and phenomenological reconstructed astrophysical rates. 
iven the phenomenological rate reconstruction, the method is able 

o assign a probability to each of the synthetic catalogues to be
epresentative of the estimated rate. The probabilities can be used to
uickly e v aluate ho w much a model fits the phenomenological rates
ith respect to the other. 
In Section 3 , we have formalized how different progenitor pop-

lations can be used to build multichannel population models. We 
ave discussed how an o v erall BBHs merger rate should be built
nd interpreted in terms of progenitors mixture coefficients { λ} .
e have argued that in the case that the progenitor population is

ommon across the different BBHs formation channels, then one 
an use fractional mixture coefficients to infer the percentage of 
rogenitors undergoing through each formation channel ( 

∑ 

j λj = 

). We have also discussed the case for which we are in presence
f multiple and independent sub-populations, showing that in this 
ase the { λ} can be assumed to be independent of each other. From
n astrophysical perspective, normalized mixture coefficients can 
e used when building multichannel progenitors models for which 
nly the stellar evolution is modified. While independent mixture 
oefficients can be used when stellar evolution models are fixed, but
he original progenitor rates (initial conditions) are varied. 

In Section 4, we have re vie wed the hierarchical statistical method
sed to employ synthetic populations with observed GW events, 
escribing the method in light of the multichannel analyses presented 
n Section 3 . In Section 4 , we have also described technical aspects
elated to the computational implementation of this methodology and 
he prior choice that should be made on the mixture coefficients in
rder to not introduce an ‘ordering preference’. 
In Section 5 , we have presented two case studies for BBH progeni-

ors’ multichannel analyses. In the first case, we discussed a possible
easure of the CE efficiency parameter. Based on an astrophysical 
odel for BBH formation, we show that binary evolution criteria, 
MNRAS 517, 3432–3444 (2022) 
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M

Figur e 10. Left-hand panel: BBH mer ger rate redshift evolution for the metallicity sub-populations models considered. Centre: Distribution of the primary 
source mass for the models considered. Right-hand panel: Distribution of the secondary source mass for the models considered. The ‘simulated’ curve shows 
the injected population and is obtained summing all the 10 metallicity bins sub-populations. The bottom panels show the observed distributions of BBHs in 
redshift and masses once an SNR cut of 12 is applied. 

Figure 11. Posteriors of the mixture coefficients associated with the metallicity-dependent sub-populations as a function of the number of detected events. The 
horizontal black dashed line indicates the true value used for the simulation (that is al w ays included in the 90 per cent CI). The grey dashed lines in the posterior 
indicate the posteriors’ median and symmetric quartiles (50 per cent CI). 
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uch as the CE efficiency, could be constrained to good precision 
ith a few thousand of detection (or in the coming years). The second

ase that we discussed, made use of BBH sub-populations divided 
nto progenitor metallicity bins. We have shown that, provided the 
strophysical model and star formation rate, some of the BBHs 
rogenitors’ metallicity can be constrained with thousands of GW 

etections. 
With the next two observing runs O4 and O5, the LIGO, Virgo,

nd KAGRA detectors will reveal thousands of BBHs and possibly 
undreds of BNSs (Abbott et al. 2018 ). Using this observed popula-
ion it will be possible to probe the progenitor properties of the GW
ources and unveil the astrophysical processes bringing to compact 
bject formation. 
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PPENDI X  A :  C O M M O N  ENVELOPE  

FFI CI ENCY  WI TH  D I R I C H L E T  

O N C E N T R AT I O N  PA R A M E T E R S  

n this appendix, we run the same inference on the progenitor
ractions as in Section 5.3 but using also priors on the Dirichlet
oncentration parameters. It is interesting to see what are the 
orrelations in the determination of the mixture fractions and the 
oncentration parameters α. In Fig. A1 , we show their joint posterior
istribution for 2048 GW detections. We note that the fractional 
ixture parameters of the CE efficiency 0.5, 1.0 show a non-

egligible anticorrelation. This is due to the fact that these two
ormation channels predict similar values (and higher with respect 
o αCE = 0.3) of the BBH merger rate, see Fig. 7 . These two models
MNRAS 517, 3432–3444 (2022) 
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Figure A1. Corner plots of the posterior on the fractional mixture coefficients and concentration parameters of the Dirichlet distribution obtained for the CE 

efficiency run and 2048 GW detections. The blue solid lines indicate the injected values for the fractional mixture coefficients. 
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re anticorrelated as they cannot both be present with high fractions,
therwise, they would overestimate the overall merger rate. On the
ther hand, one can see that the coefficient corresponding to αCE =
.3 does not show any significant correlation with the others. This is
ue to the fact that the CE population has a negligible BBH merger
ate if compared to the other two. The concentration parameter { ζ}
cts as a ‘nuisance’ parameter for determining the prior weights on
NRAS 517, 3432–3444 (2022) 
he mixture coefficients. It is interesting to note ho we ver that all the
oncentration parameters are correlated. This is due to the fact that,
iven a Dirichlet distribution on λj parameters with concentration
arameters ζ j , the expected values of E [ λj ] = ζ j / 

∑ 

k ζ k . 
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