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ABSTRACT

With its last observing run, the LIGO, Virgo, and KAGRA collaboration has detected almost one hundred gravitational waves
from compact binary coalescences. A common approach to studying the population properties of the observed binaries is to use
phenomenological models to describe the spin, mass, and redshift distributions. More recently, with the aim of providing a clearer
link to astrophysical processes forming the observed compact binaries coalescences, several authors have proposed to employ
synthetic catalogues for population studies. In this paper, we review how to employ and interpret synthetic binary catalogues for
gravitational-wave progenitors studies. We describe how to build multichannel merger rates and describe their associated prob-
abilities focusing on stellar progenitor properties. We introduce a method to quantify the match between the phenomenological
reconstruction of merger rates with synthetic catalogues. We detail the implementation of synthetic catalogues for multichannel
hierarchical Bayesian inference, highlighting computational aspects and issues related to hyper-prior choice. We find that when
inferring stellar progenitors’ properties from gravitational-wave observations, the relative efficiency in compact objects produc-
tion should be taken into account. Finally, by simulating binary black hole detections with LIGO and Virgo sensitivity expected
for the O4 observing run, we present two case studies related to the inference of the common envelope efficiency and progenitor
metallicity of the binary black holes. We finally discuss how progenitors’ properties can be linked to binary black hole properties.

Key words: gravitation — gravitational waves.

1 INTRODUCTION

Since their first detection in 2015 (Abbott et al. 2016), gravitational
waves (GWs) have opened a new channel to study our Universe.
Besides representing another confirmation of Einstein’s General
Relativity, GWs also provide us with a new tool for studying stellar
evolution, cosmology, and the origin of compact objects. In just
6 yr from their first direct detection, and during just three observing
runs, there has been meteoric progress in GW astrophysics. In 2017,
the first Binary Neutron Star (BNS) detection with electromagnetic
counterpart allowed us to measure the Hubble constant H, (Abbott
et al. 2017a,b), constrain the speed of gravity, confidently link
kilonovae and short y -ray bursts and observe the formation of heavy
elements via r-process (Abbott et al. 2017¢). The LIGO and Virgo
interferometers observed GW190521, a Binary Black Hole (BBH)
merger (Abbott et al. 2020a, c) with masses falling in the Pair
Instability Supernova (PISN) gap. Another interesting example is
GW190814 (Abbott et al. 2020b), a compact binary merger that
includes a BH of ~20Mg and a secondary object falling in the
expected mass gap between neutron stars and the black holes.
Interesting scientific results have also been achieved by studying
the population of Compact Binaries Coalescences (CBCs). Using the
GW events from the last Gravitational-Wave Transient catalogues
(GWTC) (Abbott et al. 2021d, b), the LIGO/Virgo/KAGRA collab-
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oration (LVK) has been able to show that there is a smooth transition
between neutron stars and black holes masses, that the preliminary
BBH merger rate evolves in redshift and that the BBH mass spectrum
presents several features (Fishbach & Holz 2017; Abbott et al. 2021f,
c¢; Tiwari & Fairhurst 2021). The LVK has been able to constrain H,
using BBHs provided with galaxy catalogues (Abbott et al. 2021e)
and astrophysical source mass distributions (Abbott et al. 2021a).
All of this has been achieved with a catalogue of 90 GW candidates.

As the number of GW detections rapidly increases, population
studies with GW sources are becoming a suitable tool to study the
astrophysical formation channels of compact objects. Studying the
population of CBCs practically consists in reconstructing the astro-
physical merger rate from the observed merger rate (Mandel, Farr &
Gair 2019; Vitale et al. 2022) or vice-versa. The astrophysical merger
rate is linked to astrophysical processes driving the production of
the CBC population. For instance, for BBHs, the presence of a
PISN process (Farmer et al. 2019; van Son et al. 2020) prevents
the formation of black holes (BHs) in the range S0My — 120Mg.
See Mapelli (2021) for an extensive review of the different formation
channels for compact binaries. Population studies are also important
to understand the nature of any particular ‘exceptional’ event. In
Mandel (2010), Galaudage, Talbot & Thrane (2020), Fishbach,
Farr & Holz (2020), Moore & Gerosa (2021) the authors present a
methodology to recompute the estimation of GW parameters in light
of population analyses, while works such as Fishbach & Holz (2020),
Farah et al. (2022) try to reconcile GW190814 and GW 190521 with
the observed population of BBHs.

Currently, two methodologies are employed to reconstruct the
astrophysical merger rates. The first one, which was also adopted
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by the LVK (Abbott et al. 2020c, 2021c) reconstructs merger rates
in masses, spins, and redshift using inferential statistics and flexible
phenomenological models. This approach is widely used in current
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literature (Fishbach & Holz 2017; Vitale et al. 2019; Callister et al.
2021; Farah et al. 2022) and reconstructs the binary merger rate based
on astrophysical assumptions for the phenomenological models. For
instance, the BBHs merger rate as a function of redshift is usually
approximated at low redshift with (1 + z)”, in analogy to the
evolution of the star formation rate at low redshift. On one hand,
this approach has the advantage of being flexible enough to fit an
unknown population. On the other hand, the disadvantage of this
approach is that it is not directly connected to the astrophysical
processes producing BHs from their progenitors.

In order to provide a more direct astrophysical interpretation of the
observed population, a parallel methodology has been employed (e.g.
Stevenson, Berry & Mandel 2017; Zevin et al. 2017; Wysocki et al.
2018; Bouffanais et al. 2019; Bouffanais et al. 2021; Delfavero et al.
2021; Mapelli et al. 2022; Ng et al. 2021; Zevin et al. 2021; Delfavero
et al., in preparation). This methodology consists in directly recon-
structing the merger rate from astrophysical synthesis simulations of
binary mergers. The central paradigm of this type of approach is to
construct multichannel distributions, where the overall population is
the sum of all the astrophysical channels simulated. As an example,
one can simulate BBHs formed in isolated stellar binaries and in
globular clusters and then define an overall population from them.
This type of approach has the advantage of being directly connected
to the astrophysical processes forming the binary mergers but has the
disadvantage of being less flexible in fitting the observed population.

In this methodological paper, we focus on several aspects related
to the interpretation and exploitation of synthetic populations of
binaries for studying progenitors of GW sources. The paper is orga-
nized as follows. In Section 2 we provide an easy statistical method to
quantify the match between phenomenological reconstructed merger
rates and binary mergers catalogues. In Section 3 we introduce key
concepts for reconstructing and interpreting progenitors of mergers
with multichannel analysis. In Section 4 we review and discuss
critical issues of using several synthetic catalogues, that either change
the astrophysical prescriptions or initial conditions, to fit observed
GW events. We refer to this type of analysis as ‘multichannel
reconstruction’. Differently from previous literature, we will focus
on the reconstruction of stellar progenitors properties from GWs ob-
servations, showing how the relative efficiency in producing compact
objects can be taken into account. In Section 5, using synthetic BBHs
populations, we present two case studies in which the methodologies
discussed could be employed: the estimation of the common envelope
efficiency and the estimation of the progenitor’s metallicity. We
also show how stellar progenitors’ multichannel inference can be
related to the multichannel inference of BBHs population present in
literature. Finally, in Section 6 we provide our final remarks.

All results presented in this paper are generated with GWPARENTS, !
a code for the multichannel inference released with this work.

2 MATCHING SYNTHETIC MERGER RATES
WITH PHENOMENOLOGICAL
RECONSTRUCTIONS

We first discuss in this section a quick method to quantify the
agreement between synthetic binary catalogues and binary merger
rates reconstructed with phenomenological models. In practice,

Thttps://github.com/simone-mastrogiovanni/gwparents
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Figure 1. Bayesian graph for comparing synthetic binaries with phenomeno-
logical reconstructions of populations from real data. Each node represent an
random variable, the shaded node indicates observed data. Each connection
between a node and its parents indicates a conditional probability of that node
given its parents.

this is the case in which we want to compare a synthetic binary
catalogue with a previous analysis reconstructed merger rate using
phenomenological models (see Fishbach & Holz 2017; Vitale et al.
2019; Wysocki, Lange & O’Shaughnessy 2019; Abbott et al. 2020c,
2021c; Callister et al. 2021; Farah et al. 2022, as an example) from
real GW events. One qualitative avenue that was followed to perform
this comparison is to ‘check by eye’ the overlap of the merger rates in
terms of masses and redshift of the phenomenological reconstructed
rates and the synthetic catalogues.

On one hand, this method offers a quick tool to evaluate the
suitability of synthetic binaries from the phenomenological recon-
struction. On the other hand, this method does not offer any statistical
(or quality factor) indicator and it is hard to visualize in the case that
the binary parameters are more than two.

In this section, we introduce for the first time, a more quantitative
method to assign a ‘match’ value to each synthetic binary model given
the phenomenological reconstruction of astrophysical rates. Let us
assume that we have detected {x} GW events from which a previous
analysis estimated a posterior p(A|{x}) on some population-level
parameters A that describe the phenomenological rate. For instance,
a population-level parameter could be the maximum mass of the
BBHSs mass spectrum or parameters related to the BBHs merger rate
as a function of redshift. The population-level parameters, and the
phenomenological models, can be used to construct a population
distribution ppe,(0|A), where 6 represents GW source parameters
such as the two masses, and a number of expected detections Neyp.
In order to assess the suitability of a synthetic population ¢;, we
should compare the expected number of detections predicted by ¢;
with the one predicted from the phenomenological model. From this
comparison, we would like to assign a probability to each model ¢;
to fit the observed data, namely p(¢;|{x}).

The statistical model to compute p(¢;|{x}) is depicted in Fig. 1.
The graph provides a quick tool for evaluating

p(ojlix}) =

/ P (AHxY) Ppop O1A) p (Nexpl A) p (95160, Nexp) dAdNeypdd

= /P(Al{x})Ppop O1A) p (916, Nexp (A)) dAdS. ()]

In the above equation, we have have performed the integral on Ney,
by using the relation p(Neyp| A) = 8(Nexp(A) — Nexp), that is basically
representing the fact that for each phenomenological model we can
predict an expected number of GW detections. In equation (1),
p(A|{x}) is the posterior distribution on the phenomenological
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population-level parameters inferred from data and ppop(6]A) the
binary parameters distributions that can be reconstructed from them.
The term p(¢;]0, Nexp(A)) is a probability representing our degree of
belief on the astrophysical model ¢;, given a set of binary parameters
60 and expected detections Neyp. This term can be rewritten using the
Bayes Theorem as

p(Nexp(A)lgoj)ppop(e|(pj)p((pj)
Zk p(Nexp(A)lﬁak)ppop(g |(/Jk)p(§0k)’

where p(¢;) is a prior belief for the jth formation channel, p,op (0]¢;) is
the population prior defined in equation (5) and p(Nexp(A)|¢;) match-
ing the number of expected detections from the phenomenological
model with the number of expected detections from the astrophysical
model. When calculating equation (2), one should include also
the ‘complementary’ channel ¢ that covers the parameter space 6
not covered by any of the other channels, i.e. p(@|0, Nexp(A)) =
1-> ; P(@;jl0, Nexp(A)). Note that equation (2) reduces to the ratio
of the population priors in the limit that all the models predict the
same number of expected detections. Note also that in this analysis
we do not need to include selection biases as they have already been
deconvolved by the analysis that fit the phenomenological model. In
other words, we are comparing astrophysical rates and not observed
rates.

Equation (1) can be computed using the following procedure: if
we are provided with a set of N, posterior samples for the population
phenomenological parameters A;, for each A; one can compute the
expected number of events N, (A;), then draw Ny binaries from
the population distribution pyo,(0|A;) and evaluate the integral in
equation (1) as

P(¢]|9, Nexp(A)) = (2)

NA Ny

1
Plpilir) = Z ; P(@16k, Nexp(A)). 3)

Let us give an example. We simulate two populations of BBHs
that we refer to ‘isolated’ (gis,) and ‘globular clusters’ (@) in
analogy with the current BBHs formation channels reviewed in
Mapelli (2021). The ¢;s, population produces a total of 10° BBHs
with primary mass m, distributed according to a truncated power
law p(m;) ml_2 between 5 Mg, and 50 M, while m, is distributed
between SM¢ and m; with a power law p(ma|m;) o< my. The @g
produces a total of 5 x 10> BBHs with primary mass uniform in
20M and 90M, and secondary mass uniform in 5Mq and m,. The
overall population of BBHs is defined as the sum of the two channels,
iL.e. Yot = Piso + Pgei- We also assume that a previous analysis using
BBHs from the ¢ population has been able to fit the mass spectrum
with a broken power and obtained a 10 per cent error on the mass
spectrum parameters and overall merger rate. The three populations
Qiso> Pacl> Prot>» and the phenomenological reconstruction of ¢ are
represented in Fig. 2. The figure shows how ¢, overlaps with the
phenomenological reconstruction. While @i, @4 fit only the total
population in the low and high mass regions with an overlap between
20M, and 50M . We now want to assess the three models @i, Qgcl»
@0 With the reconstructed population and find which one is preferred.

The first ingredient that we need, is the evaluation of equation (2)
as a function of the BBH masses. In Fig. 3 we show p(g;|m,
my) computed for all the formation channels. The figure shows
the interpretation of p(¢;|m;, my): when we have mass values in
the range m; » < 20M,, the most probable formation channel is
@iso, While when we are looking at binaries with m; , > 50 the
most probable formation channel is ¢,. It is also interesting to note
that the complementary formation channel is 100 per cent probable
where none of the models considered produces masses, e.g. for the
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Figure 2. Primary mass distribution for the three synthetic catalogues @iso,
®gels Prot> and the reconstructed distribution with phenomenological model.
The y-axis represent the number of binaries produced per mass bin. The
figure shows qualitatively how much the synthetic merger rates overlap with
the phenomenological reconstruction of the merger rate.

region my > m; which is excluded by our simulation. With an
evaluation of p(g;|m;, my), we can now calculate equation (3) by
using samples from the phenomenological reconstructed rate. For
didactic purposes, let us consider two cases. In the first, we will
assume that each formation channel predicts the same amount of
BBHs; the preference is solely given by comparing the different
mass distributions. In the second, we will include information on
how many BBHs each formation channel predicts.

In the first case we obtain p(gis|{x}) = 34 per cent, p(@gl{x}) =
25 per cent, p(¢wt|{x}) = 34 per cent, p(@|{x}) = 7 per cent. These
probabilities can be used to evaluate how much the population
probabilities p(6|¢;) overlap with the population probability of the
phenomenological rates p(6| A). For instance, ¢ fits 1.36 times bet-
ter the distribution of masses with respect to @,. If we now include
the fact that each formation channel predicts a different amount of
BBHs produced, we obtain p(¢is|{x}) = 0.5 per cent, p(¢qal{x}) =
0.5 per cent, p(¢i|{x}) = 91 per cent, p(¢|{x}) = 8 per cent. The
clear preference for the ¢ channel is now given by the fact
that the number of BBHs produced by ¢is, and ¢4 alone is not
enough to match the total number of BBHs reconstructed by the
phenomenological model.

So far, we have discussed a quantitative method to compare
synthetic binary catalogues with phenomenological merger rate
reconstructions. This method evaluates the overlap of each model
by considering it independent from the others. In the next sections,
we will focus on analyses that aim at reconstructing the binary merger
rates as a combination of the progenitors’ simulation at our disposal.

3 BUILDING MULTICHANNEL MERGER
RATES FROM THE BLACK HOLES
PROGENITORS

In this section, we follow a top-to-bottom derivation to show how
it is possible to build binary merger rates from synthetic binary
catalogues. In the rest of this work, we will focus mostly on BBHs.

Let us assume that we have generated a population of BBHs
progenitors NY7 that we evolve through an astrophysical channel
¢; to obtain a certain number of BBH mergers Ny, The merger
rate of BBHs for each astrophysical channel can be written as

dNgi , dNy
:T«)! 910*7 s Zas b L) ————,
dodzdr 0.0 202 1 1)

“
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Figure 3. Plots of p(¢;|6, Nexp(A)) given in equation (2) for the three synthetic catalogues as a function of the masses. The fourth model is the complementary
model and represent the complementary model in the masses space to all the other models. The figures have been generated assuming that all the models predicts
the same number of BBHs. This choice was made as in this limit equation (2) reduces to the ratio of the population probabilities of each model. The figures have
been generated by dividing the mass space in 6400 bins equally sized. The colourbars indicate the values of models probability given a mass value.

where z, is the redshift at which the BBH progenitor is formed,
0, a set of the progenitor parameters such as metallicity and dr,
indicates the time interval at the progenitor redshift. The function 7
can be understood as an operator that tells us if a progenitor with
parameters 6, at redshift z, would produce a BBH with parameters 6
at redshift z. For instance, this quantity could be integral over all the
various astrophysical properties of the progenitor. A central quantity
for many population analyses is the population probability that is
built from the binary merger rate as

1 dNghy
NiL, dodzde’

p[)()p(07 Zytlﬁoj) = ©)

where the term Ny, is the total number of BBHs predicted by the
formation channel g;.

The idea behind multichannel analysis (Stevenson et al. 2017;
Zevin et al. 2017; Wysocki et al. 2018) is to construct (and compare
with observed events) an overall BBH merger rate, built as a linear

combination of various formation channels, namely

Ngyn

dN ANy
BBH _ Z A BBH (6)
J

dodzdr 1 d0dzde”

The A; coefficients are a set of mixture coefficients, that are usually
fit in the analysis. The rationale behind this idea is that one single
formation channel could not be sufficient to describe the population
of observed BBHs (e.g. in the case that BBHs are formed from
isolated binary evolution or in globular clusters).

Let us now comment on the physical interpretation for the {A}
coefficients and their relation to the construction of synthetic binary
catalogues. These terms can be understood in terms of progenitors’
population. Using equations (4)—(6), the overall BBHs merger rate
can be written as

dNggH
dOdzdsg

dNY
= g 959*1 s Zar by Ls Aj———. 7
ZfT 0 20 2 1 8DX) G0 @

If we assume that the BBHs progenitors distribution is common
across all the formation channels considered, then the set of {1}
should respect the condition »_;A; = 1. Namely, the {1} represents
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the fraction of progenitors that produce BBHs through the formation
channels {¢}. In this case we refer to the {A} as fractional mixture
coefficients.

A completely different case can be found when we want to fit the
observed BBHs using synthetic catalogues generated from indepen-
dent populations of progenitors. Therefore, the overall population
of BBHs will be given by the sum of all the independent sub-
populations. In this case, the set {1} represents the abundance of
each sub-population of BBHs in the observed data. If the observed
data are correctly described by the modelled BBHs sub-populations,
we would expect each A; = 1. Values of A; > 1 will either indicate that
the sub-populations are more numerous or that the transfer function
is twice more effective in producing BBHs from the progenitors. The
opposite is true for values of A; < 1.

From equation (6) it is possible to define a population probability
given as

1 dNgpu
Ngpy ddzdr ’

Poop(0. 2, t[{Aep}) = ®)
where with {1¢} we indicate a collection of formation channels
multiplied by their mixture coefficients. By using equation (6) and
the fact that Ngpy = > I jN§i’3H, one can show that the overall
population probability is
N

Prop®. 2. 11{h@}) = D <20 Ppop(0. 2. 11)).- ©)

pop ; A NG e j
The equation above has a direct astrophysical interpretation: if we
are provided with a formation channel ¢; that predicts significantly
more BBHs than the others, then the overall population probability
must be dominated by this channel. The term

AN

J BBEI( (10)

>k M Ny
can be also understood as a probability of the model ¢; given the
scalar coefficients {A } and the other models {¢ }. With this definition,
equation (9) can be written as

Prop(0, 2, 100} =Y ple; 1) ppop(0, 2, £19;). (1)
J

pejl{re}) =

Note that there is a fundamental difference between the con-
struction of the above population probability and the one used in
several recent works such as Stevenson et al. (2017), Zevin et al.
(2017), Bouftanais et al. (2019), Mapelli et al. (2022), Bouffanais
et al. (2021), Wong et al. (2021). In these works, the multichannel
population probability is built as

Prop(©, 2, LAY = > A ppop(0, 2, 1]9;), (12)
J

where > A; = 1. The parameters A; effectively represent the
fraction of the BBH distribution given by a particular formation
channel. Instead, the A; defined in this paper represent the fraction
of progenitors producing BBHs in a given formation channel. In
order to define a progenitor-induced BBH population probability, it
is important to take into account the term p(¢;|{A¢}). In Section 5.3.1
we provide an example to discuss how these two quantities are related
and can be converted to each other. For now let us give a simple
example illustrated in Fig. 4 to better understand the meaning of the
Aj and A; coefficients.

Let us assume to be provided with a set of progenitors producing
BBHs via two formation channels ¢ and ¢,, with the first formation
channel predicting two times more BBHs than the other. Let us

MNRAS 517, 3432-3444 (2022)
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Figure 4. The illustration shows the relation between the coefficients A; and
Aj by following the BBHs from the stellar progenitors. The figure starts from
a common population of stellar progenitors, half of which enter a formation
channel ¢; (yellow) and the other half ¢, (blue). The first formation channel
is two times more efficient than the second in producing BBHs. At the end
2/3 of the observable population of BBHs has been produced in ¢ and 1/3
m @s.

also assume that 1/2 of progenitors enter the first formation channel
and 1/2 of the second. In other words A; = A, = 1/2. When we
look at the population distribution of BBHs, we would find that
2/3 of the BBHs are produced in the formation channel ¢; and
1/3 by ¢5. In other words A; = 2/3, A, = 1/3. Therefore, if we
perform our inference using equation (12), we cannot directly use
the A; to draw conclusions about the BBHs progenitors. We can only
draw conclusions about the fraction of BBHs produced in a given
formation mechanism.

On the one hand, one of the advantages of this method is that
the mixture coefficients A;/A; are directly linked to the population
of BHs and their progenitors. On the other hand, this type of
methodology is less flexible than phenomenological models and can
only fit population features (e.g. PISN) that are already present in
the synthetic catalogues considered. In principle, one could also
consider adding a phenomenological model to this approach by
defining an additional mixture coefficient A phenom/Aphenom associated
with the phenomenological model. In this scenario, we could fit a
set of mixture coefficients associated with the synthetic catalogues
and one mixture coefficient associated with the phenomenological
model. However, this approach could have two drawbacks. First, the
phenomenological model needs to be fitted with a set of continuous
variables thus increasing the dimensionality and computational cost
of the analysis. Secondly, phenomenological models are very flexible
and thus we expect the inference on the phenomenological models to
be less informative. Therefore, we suggest performing two separate
analyses. One uses synthetic catalogues and mixing coefficients, and
the other uses phenomenological models and then compares Bayes
factors.

4 PROGENITORS MULTICHANNEL BAYESIAN
ANALYSES

We now discuss the case in which we would like to reconstruct
the merger rate for multiple formation channels starting from the
observed BBHs. Differently from what we discussed in the previous
section, in this case, we will not use phenomenological models
and we will rely solely on synthetic binary catalogues. We will
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use the mixture model approach presented in Section 3 and write
the overall BBHs merger rate as in equation (6). We will discuss
in Section 4.1 the statistical background for multichannel analyses
based on synthetic catalogues, in Section 4.2 how priors on the
mixture coefficients can be chosen and in Section 4.3 computational
difficulties related to this kind of analysis.

4.1 Statistical method

The hierarchical likelihood of having Ny,s GW events from data {x}
conditioned on the set of models ¢; and the mixture coefficients A; is
(see Vitale et al. 2022 for a bottom-to-top derivation)

Nobs

~ p(x;|10) dNggu
N Neww TT T dodz, 13
pUx}l{he)) e H b/ 1 +z dodzdr ° (1

where p(x;|6) is the GW likelihood and N, is the number of
expected events observable in a given observing time Tops. The
GW likelihood quantifies the uncertainties with which the source
astrophysical parameters, such as luminosity distance and detector-
frame masses, are determined. Equation (13) can be rewritten in the
alternative form (Vitale et al. 2022)

T [ p(xi10) ppop(61{20})d6

gD oc e oon sy ] | Bllre]) oW

where ppop(@{A¢}) is the population probability defined as in
equation (11), and B({A¢}) is the selection effect (see later).

Our aim is to quickly evaluate equation (14) as a function of the
mixture coefficients A;. We will factorize equation (14) in several
terms that can be computed once for each formation channel ¢; and
rescaled with A; to quickly evaluate the hierarchical likelihood. The
numerator factor in the product of equation (14) can be rewritten as,

/P(inQ)ppop(Gl{W})dG =" plo;leDLs ;. 15)
j

where we have expanded ppo,(0|{A¢}) using equation (11) and we
have defined

‘Ci«.f :/P(Xz|9)l7pop(9|g0,)d0 (16)

The £; ; can be evaluated numerically once for each ith GW event
and jth formation channel. We also recall that p(¢;|{A¢}) can be
constructed using equation (10) and using only the number of BBHs
predicted by each model and the mixture coefficients A;. The selection
effect B({Ag}) can be quickly computed by knowing the total number
of BBHs predicted by each formation channel and the fraction of
BBHs detectable by each channel B(¢;), namely

Z,‘ )‘jNBwéHﬁ(<pj)
—_ 0
Zj }‘jNBi]%H

Finally, the Poissonian term

B{rp}) = (17)

*Nexp Nobs
e Nexp

in equation (14) can be easily computed by recognizing that N, =
5, 4 N5sub (o).

This term is usually marginalized out in multichannel analyses
focusing on BBHs population as performed in Zevin et al. (2017),
Stevenson et al. (2017), Mapelli et al. (2022), Bouffanais et al. (2019,
2021), Zevin et al. (2021). To do so, we need to introduce a ‘nuisance
scaling parameter’ A in common to all the population models such
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that Nppy = AZ/. A_ngéH. If we take a prior on A uniformly
distributed in logarithmic space, it is possible to marginalize out
the Poissonian term and equation (14) reduces to

Nops

i10) Pron (0| {1 })dO
p({xn{w}m]‘[f PG 10) Ppop 1 {0))

B{ e}

(18)

Note that, in comparison to population analyses based on phe-
nomenological models (Fishbach & Holz 2017; Vitale et al. 2019;
Abbott et al. 2020c, 2021c; Callister et al. 2021; Farah et al.
2022), the parameter A effectively act as a common rescaling for
the BBH merger rate density Ry(¢;) identified by each model. In
other words, equation (18) reconstructs the BBHs astrophysical
distributions in terms of masses and redshift without accounting for
the absolute merger rate. While this choice is mathematically correct
and reconstructs the correct distribution in masses and redshift of
BBHs, one should be careful about the astrophysical interpretation.
For instance, the synthetic simulations might predict many more
events than the observed ones, while still being able to fit the redshift
and mass distribution. This choice is usually done when the rates
of the different formation channels are highly uncertain and not
correlated with the astrophysical processes that characterize the mass
and redshift distributions of BBHs.

To summarize, in order to quickly perform a multichannel analysis
using several formation channels ¢;, we need to: (i) Estimate the
total number of BBHs produced by each formation channel NgéH
and their detectable fraction B(¢;), (ii) for each formation channel
and GW event estimate the term £; ; in equation (16) and (iii) for
some values of the set {1} use equations (15) and (17) to effectively
build the hierarchical likelihood.

4.2 Priors on the mixture coefficients

We now discuss how priors on the mixture coefficients {1} can be
chosen according to the astrophysical case considered. In Section 3
we considered two cases: the case in which each formation channel
has an independent sub-population of progenitors and the case for
which the population of BBHs progenitors is in common to each
formation channel. In the former, the A; are independent of each
other and a value of A; = 1 indicates that the BBH formation channel
is observed in data as the model predicts. In this case, each prior on A;
can be chosen independently and from an astrophysical point of view,
this case corresponds to changing the initial astrophysical conditions
(e.g star formation rate) of the simulation. In the latter, the set of {1}
must satisfy the constraint Y _;A; = 1, and these parameters effectively
represent the relative fraction of BBHs observed produced by each
channel. In terms of astrophysics, this represents the case for which
the initial conditions of the simulation are set but the astrophysical
evolution prescriptions are changed.

When the {1} must be normalized (common BBHs progenitors),
a non-trivial bound is introduced in the joint prior of the mixture
coefficients. One possibility is to build a joint prior that satisfies the
normalization constraint by drawing sequentially the values of ;
from a cascade of conditional probabilities. Namely, we write the
joint prior as

p0h =[] Ol (19)
Jj

where {1};; indicates a set of A; with index lower than j. By
choosing uniform conditional priors, the above equation can be
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Figure 5. Representation on a 2-simplex of the logarithm of the prior probability distribution on the fractional mixture coefficients {1} of three models. From
left to right: Conditional uniform prior with ordering preference, ‘Flat’ Dirichlet prior with concentration parameters 1, Dirichlet prior favouring single models
with concentration parameters 0.5 and Dirichlet prior favoring mixture models with concentration parameters 3.0.
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Figure 6. Marginal priors on five mixture models. The different panels
correspond to the marginal priors for different choices as described in Fig. 5
and Section 4.1. The conditional uniform prior is given in equation (19).

written as
p(1) = p(h1)
) N PjlAYicy) if0<a;<1-— Zi<j)“i
POIMi<)) = {o i > 1= 3, 2

PONIMian) = 8 (1 - ZA,«) .

i<N
‘We note that this prior choice is not optimal for multichannel studies
as it introduces an ordering preference. In Fig. 5 (left-hand panel),
we show the logarithm of a joint prior to built in this way for the case
that we are provided with three astrophysical formation channels. As
it can be seen from the figure, this prior naturally prefers the first
ordered model. In the case that multiple models are provided, this
type of prior will strongly disfavour models that are ordered in the
last. We display this effect in Fig. 6 by showing the marginal prior
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distributions in the case that we are provided with five astrophysical
channels.

A more natural choice that removes the problem of model ordering
is to use a Dirichlet distribution on the {1} as done in Stevenson et al.
(2017), Zevin et al. (2017), Wysocki et al. (2018). The Dirichlet
distribution ensures the normalization of the {1} and also provides
a set of concentration parameters {¢ } governing how the probability
is distributed on the plane identified by > A; = 1. Fig. 5 shows
the logarithm of the Dirichlet prior to different choices of the {¢}
parameters. If ¢; = 1, the prior probability is uniform across the
combination of all the formation channels. If ; < 1, the prior will
prefer to build the overall BBH rate using a single formation model.
Finally, if ¢; > 1, the prior will prefer to build the BBH rate as
a superposition of all the models. In general, as we will show in
Section 5.3, the {¢ } parameters can also be treated as free parameters
to infer. The marginal priors on the A; in the cases presented for a
Dirichlet distribution are shown in Fig. 6. One can observe that the
marginal priors are equal for all the models.

We therefore argue that Dirichlet priors should be used when
performing this type of analyses.

4.3 Evaluating Monte Carlo integrals

The calculation of the hierarchical likelihood in equation (13)
requires the evaluation of several numerical integrals. A first implicit
integral is given by the calculation of the fraction of BBHs that
we expect to detect. This integral is given by the product of the
detection probability as a function of the BBHs parameters with
the BBHs population distribution and merger rate. The integral is
not evaluated analytically and a common technique to estimate it
is by using injection studies. The idea is simply to generate GW
injections in noise from the desired BBH population and estimate
what is the detectable fraction. Farr (2019) showed that the number
of detectable injections should be at least four times higher than the
GW events considered in the analysis. Otherwise, the evaluation of
the hierarchical likelihood is not numerically stable.

The other term that requires an integral over the BBH population
is equation (16). This integral is usually evaluated as a Monte
Carlo integral by using N, samples from the posterior of each BBH
detected. This approach consists in approximating the integral as

N,
1 « on(0]@;
Li,j ~ Pp p( |(Pj), (20)

N & pol®)
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where py(0) is a prior applied to calculate the BBH posteriors on the
binary parameters and pyo(6|¢;) is the population prior associated
to the formation channel. Alternatively, one can decide to perform
the Monte Carlo integral by summing over simulated BBHs from the
formation channel pyo,(6¢;) and write

PR RS CIE
o Nv | PO(Q) .

ey

In principle, we would expect equations (20) and (21) to return the
same result. Both approaches have in common one necessity, either
the BBH population of the formation channel or the GW posterior
of observed events should be known as a function of the parameters
0. These analytic functions are not usually known, in fact, we are
usually provided with either a list of posterior samples from p(6|x;) or
a list of BBHs simulated from pp,,p(@]¢;). One possibility to compute
analytically this probability from a set of samples, is by using kernel
density estimates, histograms, or non-parametric fitting such as the
ones proposed in Wysocki et al. (2018), Golomb & Talbot (2022),
Del Pozzo et al. (2018), Tiwari, Fairhurst & Hannam (2018), Sadiq,
Dent & Wysocki (2022), Delfavero et al. (2021), Rinaldi & Del
Pozzo (2022), Delfavero et al. (in preparation). If equation (20) is
used, the sum is performed over GW posterior samples and the fit is
on the BBH population of the formation channel. If equation (21) is
used, the sum is over the BBHs predicted by the formation channel
and the GW posterior is evaluated by the fit. In both cases, a possible
Gaussian kernel fitting should always be validated against the original
distribution.

A rule of thumb to decide what is best suited to evaluate the
Monte Carlo Integral is the following. Equation (20) can be used if
the formation channel has a phenomenological (or semi-analytical)
model and no fitting is needed. Equation (20) can also be used when
the BBH parameters from GW data are measured with a precision
significantly lower than the typical ranges covered by the BBH
formation channels. Equation (21) can be used in this case that
the range spanned by the BBH formation channels is comparable
or significantly lower than the precision with which we are able to
measure BBH parameters from data.

Current population studies are based on BBHs, for which we
expect formation channels to cover a wider range in masses and
redshift to the typical error budgets estimated from GW data. That
is why so far Monte Carlo Integrals are mostly evaluated with
equation (20).

5 CASE STUDIES: THE COMMON ENVELOPE
EFFICIENCY AND PROGENITORS
METALLICITY

In this section, we present case studies to show how synthetic
catalogues of BBH mergers can be used with GW population studies.
For all the test cases (unless specified), we consider the BBH rates
with the hierarchical likelihood in equation (14). We use the model
by Srinivasan et al. (in preparation) for our binary population. In
this simple model, the binary population is based on the code
CoSMIC (Breivik et al. 2020) to simulate BBH mergers. The star
formation rate is parametrized in terms of star metallicity, galaxy
mass, and redshift of formation of the binary following Lamberts
et al. (2016). For every value of metallicity, a population of BBH
merger progenitors is generated by using COSMIC to evolve zero-age
main-sequence stars, selecting those that form BBH mergers. The
overall population of BBH mergers is obtained by re-weighting the
cosmic BBHs progenitors by the star formation rate.
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5.1 COSMIC simulations

COSMIC simulates binary evolution based on prescriptions that model
physical processes such as stellar winds, mass transfers between the
binary, and supernovae kicks. One of the prescriptions of interest is
the unstable mass transfer during the binary evolution that results in
a common envelope (CE) phase parametrized by an efficiency ocg.
Depending on the value of the CE efficiency, stellar binaries can be
more or less efficient in producing BBH mergers (Barrett et al. 2018).
We explore the effect of CE efficiencies. Specifically, we consider CE
efficiency values of acg = {0.3, 0.5, 1.0}. The other prescriptions
of the COSMIC simulations are set to their default values reported
on COSMIC 3.4.0.2 As this study focuses on statistical inference, we
choose not to optimize the model to fit observed distributions and
rates. For each simulation, COSMIC provides us with the distribution
of time delays between the progenitor formation and the BBH merger.
The procedure of building the population depends on the type of
multichannel analysis we consider (see later).

5.2 Generation of the GW mock catalogue

To build a mock catalogue of observed GW events, we use an
approach similar to Fishbach, Holz & Farr (2018), Farr et al. (2019)
to simulate the detection of GW events and the estimation of source
masses and redshift for each detected binary. For each binary, we
calculate the matched filter SNR p as

pog( M Ny, 22)
26 Mg 1500 Mpc

where M., is the binary redshifted chirp mass and d; is the binary
luminosity distance (calculated using a Planck cosmology; Planck
Collaboration XIII 2016). The scaling factors for the chirp mass and
the luminosity distance are chosen to assume a network composed
by LIGO Hanford, Livingston, and Virgo with typical detection
ranges for O4 (Abbott et al. 2018). The luminosity distance scaling
is calculated with the single-detector reach distances reported in
Abbott et al. (2018). The parameter w is a scaling factor that takes
into account the fact that not all the detectors in the network are
optimally oriented with respect to the source position (Dominik et al.
2015). The cumulative distribution of w for a three-detector network
is publicly available.?

Once the optimal SNR is calculated for each binary, we draw
a ‘observed’” SNR pps from a non-central Xz—square distribution
(with non-centrality parameter o) and with a 6 degrees of freedom
since we have three detectors in the network. Binaries are detected
if they exceed an observed SNR of 12. For each detected binary,
we then draw an ‘observed’ chirp mass M, o and symmetric
mass ratio 7yps using the same likelihoods in Appendix B of Farr
et al. (2019). Once we are provided with a set of ‘observed’ chirp
masses, symmetric mass ratio, and SNR, we generate mock posterior
samples on their original ‘true’ values using the likelihood models
from which they were generated. These mock posterior samples are
then converted to posterior samples in source frame masses and
in redshift using equation (22) (and correcting for the change of
variable {p, M., n} — {dr, m, m,}) that we then use to generate
mock posterior samples on redshift and source-frame masses for each
detected signal.

We study the reconstruction of the BBH formation channels by
extracting 64, 128, 256, 512, 1024, and 2048 binaries from the set

Zhttps://cosmic-popsynth.github.io/docs/stable/
3https://pages.jh.edu/eberti2/research/
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Figure 7. Left-hand panel: BBH merger rate redshift evolution for the three common envelope models we consider. Centre: Distribution of the primary source
mass for the models we consider. Right-hand panel: Distribution of the secondary source mass for the models we consider. In all the panels, the simulated
mixture population generated with fractions A = {0.4, 0.3, 0.3} is indicated with a black dashed line. The bottom panels show the observed distributions of

BBHs in redshift and masses once an SNR cut of 12 is applied.

of detected signals. We use the statistical approach described in
Section 4 and the likelihood function in equation (13) to find posterior
distributions on the mixture coefficients. This study makes use of the
BILBY code (Ashton et al. 2019; Romero-Shaw et al. 2020) and its
nested sampling DYNESTY implementation (Higson et al. 2019) to
sample from the posterior distribution of the mixture coefficients.

5.3 Measuring the progenitors common envelope efficiency
from BBHs (3 _;A; = 1)

In our first case study, we would like to infer CE efficiency from
the observed GW events. In this case, the formation channels from
which we build our BBH catalogues are the COSMIC simulations with
acg = {0.3, 0.5, 1.0}. As described in Section 3, this is the case for
which the progenitor population of BBHs is in common between
the formation channels. The {A} represent the fraction of BBHs
produced from progenitors with a given CE. For our case study, we
assume that 40 per cent of the BBH population is produced with
acg = 0.3, 30 per cent with acg = 0.5, and 30 per cent with acg =
1.0. Note that this is a toy model to show how the method can work, as
massive binaries might not display different CE efficiencies (Wong
et al. 2022).

By using equation (6) and the chosen mixture coefficients, we
build the overall BBHs merger rate. In Fig. 7 we show the BBHs rate
evolution in terms of redshift and masses for the three models and for
the overall population that we simulate. While the three simulations
predict similar mass distributions in shape, they significantly differ
in terms of absolute merger rates (Hurley, Tout & Pols 2002; Ricker
et al. 2018; Mandel & Broekgaarden 2022). We run the multichannel
analysis using two sets of priors for the fractional mixture coefficients
and we consider also the BBHs merge rates in the hierarchical
likelihood. In the first analysis, we use a Dirichlet prior with
concentration parameters fixed to {¢} = {0.5, 0.5, 0.5} favouring
single models, while in the second analysis we also allow the
concentration parameters to vary in a uniform distribution between
[0.01,100]. Fig. 8 shows the reconstructed marginal posteriors of the
mixture fractions between the three CE models. From the plot, we can
see that when we are provided with few GW events, the constraints
on the fractional mixture coefficients are weak. As more and more
GW events are detected, the constraints on the mixture coefficients
improve. With 2048 events a precision of ~ 4 — 5 per cent is reached
on the determination of the mixture fractions. In Appendix A we also
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Figure 8. Posterior distributions on the fractional mixture coefficients for the
three CE efficiency models as a function of the number of detected events. The
horizontal black dashed line indicates the true value used for the simulation
(that is always included in the 90 per cent credible intervals). The grey dashed
lines in the posterior indicate the posteriors median and symmetric quartiles
(50 per cent credible intervals). The yellow posteriors are generated by fixing
a Dirichlet prior to distribution. The pink posteriors are generated allowing
the Dirichlet parameter to change.

provide a more detailed discussion about the correlations among
the various fractional coefficients and the Dirichlet concentration
parameters.

5.3.1 Reconstructing progenitors fractions from BBH fractions

As we argue in Section 3, there is a fundamental difference be-
tween constructing the population probability using equation (11) or
equation (12). In the former case, we are inferring the fraction of
progenitors entering a formation channel (;), while in the latter we
are inferring the fraction of BBHs produced in a formation channel
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Figure 9. Joint posterior distribution on the progenitors A; ratios for the CE
simulations using 2048 GW detections. The figure compares the direct infer-
ence of the progenitor fractions (red contour) with the indirect reconstruction
from BBHs population fractions (blue contour). The solid lines mark the 1o
and 20 contours. The yellow solid lines mark the simulated population.

(A)). These two quantities can be related a posteriori comparing
equations (11) and (12) and noting that

)‘j N gﬁH
—— = A (23)
Zk AN gﬁl—l !
From the above relation, it follows that
)“j _ ﬁ N, giéH

Ai a A Ng‘];H’

(24)

i.e. theratio of the progenitors fraction entering the formation channel
j and i can be calculated by scaling the ratio of BBH fractions
produced in the formation channel j and i (and vice versa). Indeed it
is interesting to note that the two ratios coincide when the formation
channels have the same efficiency in producing BBHs.

For instance, in our previous example, we constructed a BBH
population that was composed by 40 percent, 30 percent, and
30 percent of progenitors with CE efficiency of 0.3, 0.5, and 1.0,
respectively. We perform again the multichannel analysis but this
time using equations (11)—(12) implemented in the hierarchical
likelihood in equation (18) (marginalizing out the rates). In Fig. 9,
we compare the distribution of the progenitor ratios A;/A; obtained
in Section 5.3 and the ones reconstructed using equation (24) and
the BBHs ratios Aj/A;. We can see that the progenitors ratios can be
effectively reconstructed from the BBHs ratios.

5.4 Measuring the BBHs progenitors metallicity (3_A; # 1)

In the second case study, we use the simulation with CE efficiency
1.0 and we divide the population of BBHs progenitors according to
their metallicity, uniformly divided in base 10 logarithm between
Z =5.0 x 1073Z5 and Z = 1.6Z,. We are therefore in presence
of independent sub-populations of BBHs progenitors, as described
in Section 3. Each sub-population of progenitors provides us with a
sub-population of BBHs. The total BBH merger rate is the sum of
the rates of these ten sub-populations. For this case study, we assume
that the sub-populations are not present as predicted by the COSMIC
simulation. Instead, we assume that each sub-population contributes
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to the overall BBHs merger rate with multiplicity coefficients A =
{0.5, 0.6, 0.7, 0.8, 0.9, 1.0, 1.1, 1.2, 1.3, 1.4} (ordered in terms
of increasing metallicity bins). As an example, the BBHs produced
from a progenitor with metallicity Zo = 2Z., produce 40 per cent
more BBHs with respect to the initial model predictions.

Fig. 10 shows the BBH merger rate and mass distributions for
these sub-populations and the true population created from their
sum. We observe that in this simple model the progenitor metallicity
introduces many different features in the mass spectrum and merger
rate. We perform the reconstruction of the mixture coefficients for the
sub-populations using priors on A; independent from each other and
uniform between 0.5 and 1.5. Fig. 11 shows the marginal posterior
distribution among all the mixture coefficients. We can see that not all
of the fractional parameters can be constrained in the proposed prior
range. However, we can observe that in general, models which predict
more BBHs are better constrained than models that predict less. This
is expected as progenitors entering channels predicting more BBHs
are easier to constrain. This case study shows that synthetic binary
catalogues can be used with GW events to probe the BHs progenitor
metallicity but also the evolution of the star formation rate.

6 CONCLUSIONS

In this paper, we have described in detail how to employ and
statistically interpret synthetic compact binaries in light of GW
detections. In particular, we have focused on analyses trying to infer
and constrain the presence of BBHs progenitors in multiple channels.

In Section 2, we have presented for the first time an efficient
method to evaluate the ‘match’ between synthetic catalogues of
binaries and phenomenological reconstructed astrophysical rates.
Given the phenomenological rate reconstruction, the method is able
to assign a probability to each of the synthetic catalogues to be
representative of the estimated rate. The probabilities can be used to
quickly evaluate how much a model fits the phenomenological rates
with respect to the other.

In Section 3, we have formalized how different progenitor pop-
ulations can be used to build multichannel population models. We
have discussed how an overall BBHs merger rate should be built
and interpreted in terms of progenitors mixture coefficients {1}.
We have argued that in the case that the progenitor population is
common across the different BBHs formation channels, then one
can use fractional mixture coefficients to infer the percentage of
progenitors undergoing through each formation channel (3_jA; =
1). We have also discussed the case for which we are in presence
of multiple and independent sub-populations, showing that in this
case the {1} can be assumed to be independent of each other. From
an astrophysical perspective, normalized mixture coefficients can
be used when building multichannel progenitors models for which
only the stellar evolution is modified. While independent mixture
coefficients can be used when stellar evolution models are fixed, but
the original progenitor rates (initial conditions) are varied.

In Section 4, we have reviewed the hierarchical statistical method
used to employ synthetic populations with observed GW events,
describing the method in light of the multichannel analyses presented
in Section 3. In Section 4, we have also described technical aspects
related to the computational implementation of this methodology and
the prior choice that should be made on the mixture coefficients in
order to not introduce an ‘ordering preference’.

In Section 5, we have presented two case studies for BBH progeni-
tors’ multichannel analyses. In the first case, we discussed a possible
measure of the CE efficiency parameter. Based on an astrophysical
model for BBH formation, we show that binary evolution criteria,
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Figure 10. Left-hand panel: BBH merger rate redshift evolution for the metallicity sub-populations models considered. Centre: Distribution of the primary
source mass for the models considered. Right-hand panel: Distribution of the secondary source mass for the models considered. The ‘simulated’ curve shows
the injected population and is obtained summing all the 10 metallicity bins sub-populations. The bottom panels show the observed distributions of BBHs in
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Inferring binary black holes stellar progenitors

such as the CE efficiency, could be constrained to good precision
with a few thousand of detection (or in the coming years). The second
case that we discussed, made use of BBH sub-populations divided
into progenitor metallicity bins. We have shown that, provided the
astrophysical model and star formation rate, some of the BBHs
progenitors’ metallicity can be constrained with thousands of GW
detections.

With the next two observing runs O4 and OS5, the LIGO, Virgo,
and KAGRA detectors will reveal thousands of BBHs and possibly
hundreds of BNSs (Abbott et al. 2018). Using this observed popula-
tion it will be possible to probe the progenitor properties of the GW
sources and unveil the astrophysical processes bringing to compact
object formation.
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APPENDIX A: COMMON ENVELOPE
EFFICIENCY WITH DIRICHLET
CONCENTRATION PARAMETERS

In this appendix, we run the same inference on the progenitor
fractions as in Section 5.3 but using also priors on the Dirichlet
concentration parameters. It is interesting to see what are the
correlations in the determination of the mixture fractions and the
concentration parameters o . In Fig. A1, we show their joint posterior
distribution for 2048 GW detections. We note that the fractional
mixture parameters of the CE efficiency 0.5, 1.0 show a non-
negligible anticorrelation. This is due to the fact that these two
formation channels predict similar values (and higher with respect
to acg = 0.3) of the BBH merger rate, see Fig. 7. These two models
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Figure Al. Corner plots of the posterior on the fractional mixture coefficients and concentration parameters of the Dirichlet distribution obtained for the CE
efficiency run and 2048 GW detections. The blue solid lines indicate the injected values for the fractional mixture coefficients.

are anticorrelated as they cannot both be present with high fractions,
otherwise, they would overestimate the overall merger rate. On the
other hand, one can see that the coefficient corresponding to acg =
0.3 does not show any significant correlation with the others. This is
due to the fact that the CE population has a negligible BBH merger
rate if compared to the other two. The concentration parameter {¢ }
acts as a ‘nuisance’ parameter for determining the prior weights on
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the mixture coefficients. It is interesting to note however that all the
concentration parameters are correlated. This is due to the fact that,
given a Dirichlet distribution on A; parameters with concentration
parameters ;, the expected values of E[A;] = ¢;/d i lx.
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