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Abstract—Current rapid changes in climate increase the ur-
gency to change energy production and consumption manage-
ment, in order to reduce carbon and other greenhouse gas
production. In this context, the French electricity network man-
agement company RTE (Réseau de Transport d’Électricité) has
recently published the results of an extensive study outlining var-
ious scenarios for tomorrow’s French power management [10].
We propose a challenge that will test the viability of such
scenarios [1]. The goal is to control electricity transportation
in power networks while pursuing multiple objectives: balanc-
ing production and consumption, minimizing energetic losses,
keeping people and equipment safe, and particularly avoiding
catastrophic failures. While the importance of the application
provides a goal in itself, this challenge also aims to push the
state-of-the-art in a branch of Artificial Intelligence (AI) called
Reinforcement Learning (RL), which offers new possibilities to
tackle control problems. In particular, various aspects of the
combination of Deep Learning and RL called Deep Reinforce-
ment Learning remain to be harnessed in this application domain.
This challenge belongs to a series started in 2019 under the name
”Learning to run a power network” (L2RPN). In this new edition,
we introduce new more realistic scenarios proposed by RTE to
reach carbon neutrality by 2050, retiring fossil fuel electricity
production, increasing proportions of renewable and nuclear
energy and introducing batteries. Furthermore, we provide a
baseline using a state-of-the-art reinforcement learning algorithm
to stimulate future participants.

Index Terms—power network, carbon neutrality, global warming,
renewable energy, reinforcement learning

I. INTRODUCTION

Power Systems enable energy transportation from places
where it is produced (nuclear or fossil power plants, hydro-
electric generators, wind turbines, solar panels, etc.) to places
of consumption (e.g. houses, factories, public lighting, etc.). It
is a vital component of our society; it has become so common
that it is often taken for granted, although it constantly relies
on thousands of kilometers of transmission lines and the
work of thousands of people. Power systems are currently
facing systemic changes, which bring current technology to
its edge. Recent successes achieved in AI by Deep Learning
techniques [18], including Deep Reinforcement Learning [14],
have drawn the attention of the Power Systems community for
several reasons: their capacity to learn representations, and

their parallelizable architectures.
For the fourth edition of the Learning to Run a Power Network
challenge (L2RPN’2022), we look ahead to 2050, in a context
of carbon neutrality, by drastically reducing the share of
electricity produced by fossil fuels and increasing the share
of renewable energies in the power system’s energy mix. In
this section we briefly review the current context motivating
the creation of such a challenge and the problems posed to the
AI community, particularly those resulting from the massive
use of renewable energy.

A. Energy shift

a) Global warming: In the late 2010s, around 85% of
the energy produced came from the combustion of fossil fuels
that emit greenhouse gas such as (but not limited to) CO2.
Those emissions have been consistently growing since the start
of the industrial era. It is nowadays commonly admitted that
the negative impact of modern societies on the environment
has become non-negligible since the 1950s. To prevent the
irreversible destruction of an ecosystem, which we need for
our survival, it has become urgent to drastically reduce, among
other things, the emission of greenhouse gas [21].

b) Increasingly uncertain power injection patterns: Po-
litical leaders have been pushing toward the development of
alternative energy conversion devices that exploit renewable
and low-carbon forms of energy, such as solar radiation and
wind. Devices that harness those sources of energy have
drastically improved over the past two decades, which has
enabled their large-scale deployment. A growing amount of
research is dedicated to investigating the feasibility of a 100%
renewable energy system in the medium term and advocating
for massive use of the latter two technologies.

Unfortunately, solar and wind power come with some draw-
backs with regard to their integration in power networks [7]:

• Their production highly depends on the weather. This
may cause imbalances in the power network.

• Our energy storage capacity is low, which promotes con-
trollable generators, as opposed to intermittent generators
such as solar and wind power. It is therefore mandatory
to have controllable generators in reserve.
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B. Complexity of power network operations

The electric power network can be broken down into main
functions: production (power generation), transport (power
lines), and consumption (end users). The transport part is
usually split into the ”transmission system” (long distances,
e.g. from a power plant to a city) and the ”distribution system”
(local scale, e.g. within a city).
RTE is in charge of managing the French transmission system
in real-time and ensures that the production equates to the
consumption. It anticipates the impacts of potential outages,
whether these are planned or accidental. Dispatchers (highly
trained engineers) ensure the system’s security by performing
several actions, including [6]:
• managing power overflows (which can endanger trees,

roads, infrastructures or passers-by) and preventing cas-
cading failures (leading to blackouts of the whole sys-
tem), by changing interconnection patterns of transmis-
sion lines, to redirect power flows);

• asking producers or consumers to change what they
inject into the power network (for example, remunerating
a producer at a specific localization to avoid a local
overload);

• in the future, maybe modifying the amount of power
produced or absorbed by storage units, such as batteries;

• when required, limiting the amount of energy injected by
renewable generators (such as wind or solar) in case of
overproduction or local issues for example.

In all cases, dispatchers have to rely on their thorough under-
standing of the system. Current optimization-based methods
are struggling with the complexity of both problems, and
some satisfying heuristics exist or are in the process of being
experimented. The hope is that AI could assist dispatchers
in making better decisions to efficiently control the power
network and keep all equipment in security.

II. PREVIOUS CHALLENGES

The ”Learning to run a power network” (L2RPN) challenge
[16], [17] is a series of competitions that model the sequential
decision-making environments of real-time power network
operations, as illustrated in Fig. 1. The participants’ algorithms
must control a simulated power network, in a reinforcement
learning framework.

a) Power networks and data: The physical simulation is
based on Python’s module Grid2Op which we detail in section
IV-A. Power networks of various sizes and topologies are used
across competition rounds.

b) Results and main outcomes: In the 2019 edition, the
provided power network, a slightly adapted version of the
IEEE 14-bus network, was composed of 20 power lines, 11
loads and 5 generators. The winner team of this edition [12]
used the Double Deep Q-Learning algorithm [27] along with
imitation learning to initialize the policy. In 2020, the power
network was much more complex. It was composed of 59
power lines, 37 loads and 22 generators. There were two
competitions that year. The winner team of the first one [28]

was a team of experienced researchers in reinforcement learn-
ing, that have won similar competitions in NeurIPS 2018
and 2019: ”Learning to Run” and ”Learning to Move” [31].
First, they perform an action space reduction to 1000 ele-
ments using simple expert systems and initializes a policy
parameterized by a feed-forward neural network with millions
of parameters. Then, they train a policy using evolutionary
black-box optimization [13]. This functioning, using evolution
strategies, can be opposed to most standard RL strategies, such
as Deep Q Network (DQN) [19], [20], which rely on gradient
descent. The winner team of the second one [30] used a policy
neural network to select the Top-K actions and applied an
optimization algorithm to choose the best one.

Overall, this latest competition has shown encouraging re-
sults about how artificial intelligence methods can be success-
fully applied to the problem of operating power networks. The
Grid2Op platform, as a simulator lowering the barriers to entry
in the specific domain of electricity network management,
permitted a research team with no knowledge in this domain
to produce a satisfying model. Solutions could be extended
to more complex cases, especially as the power systems are
evolving to meet decarbonization, which leads to increasingly
difficult decision problems for operators.

III. WHY A NEW COMPETITION

The French electricity network management company RTE
has recently published the results of an extensive study out-
lining various scenarios for tomorrow’s French power man-
agement [10]. Due to the ecological concerns, all scenarios
mostly rely on nuclear and renewable energies. The Paris
region, Ile-de-France, being particularly concerned, proposed
two milestones [9]:
• By 2030: Reduce by half the dependence on fossil fuels

and nuclear power in the Ile-de-France region. This would
be achieved by both reducing the energy consumption by
20% and by multiplying by 2 the energy production from
renewable sources.

• By 2050: Moving towards a 100% renewable energy
and zero carbon region. This would be achieved by
both reducing the energy consumption by 40% and by
multiplying by 4 the energy production from renewable
sources.

In this context, it is necessary to re-factor the problem tack-
led by past L2RPN challenges [16], mainly by updating the
simulator and the data to represent zero carbon scenarios [10].
As explained in section I-A, such scenarios are even harder
to control, therefore advancing Artificial Intelligence methods
could be particularly useful.

IV. COMPETITION DESIGN

In order to organize the 2022 edition of Learning to Run
a Power Network, we need an environment that will simulate
the behavior of a power system during a defined time (e.g.
one week) that we will call scenario. To simulate such a
scenario, the environment needs data and more specifically
time series describing the electricity injections in the power
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Fig. 1. Power system operation: The task of dispatchers is to monitor the power network and make eventual changes to ensure safe network operation with
no line overflow. If in the environment at time t (left) a line is overflowing (indicated in red), a corrective action may be taken (center), such as a ”node
splitting”, resulting in restored ”power network safety” in the environment at time t+1 (right). Borrowed from [16].

network (referred to as chronics). In this section, we describe
the specificities of the simulation environment used as well as
the chronics. In addition, we also look at the details of the
organization of the competition on an online platform and the
metric used to rank the participants.

A. Simulation environment and chronics

a) Grid2Op: To run a L2RPN competition, we need
a library capable of simulating a power system in a re-
inforcement learning framework. RTE has therefore devel-
oped Grid2Op [5], a Python module that casts the oper-
ational decision process into a Markov Decision Process
(S,A, Pa, Ra) [2]. Grid2Op will therefore discretize the time
of a scenario into a list of states corresponding to a time step of
5 minutes. For example, a one day scenario will be discretized
in 24∗60/5 = 288 time steps. Then, for a state st ∈ S and an
action at ∈ A, Grid2Op will calculate st+1 i.e. the power flow
(the amount of electricity flowing on each power line) at time
t + 1. For this, it will need the chronics at time t. We detail
the generation of these data in the next paragraph. In addition,
Grid2Op uses the Gym interface developed by OpenAI [4]
to interact with an agent. Also, a set of startup notebooks is
available to facilitate its handling. Thanks to these two points
and as previous editions have confirmed, future participants
don’t need to have strong knowledge in the field of power
systems to create efficient agents. This corresponds perfectly
to our desire to create a competition open to all and oriented
towards reinforcement learning.

b) Chronics: As described in the previous paragraph,
to make Grid2Op work, we need to generate time series
describing the electricity injections into the power network.
These time series are referred to as chronics. An injection
is the amount of electricity that is injected into the power
network by generators, loads and batteries. The generators
inject a positive amount of electricity while the loads inject
a negative amount. Batteries can inject either a negative or
positive amount of electricity depending on whether they are
storing or delivering electricity. The sums of the injections
must be equal to 0 at all times for the power network to work
(taking into account the loss of electricity in heat). To generate
these chronics, we need data concerning the architecture of
the power network, the weather, the consumptions and the
generators (e.g. their types and maximum production). These

data, especially about the consumptions and the weather, come
from RTE studies. Concerning the power network, we are
using an even more complex power network than in previous
years. It is composed of 186 power lines, 91 loads and 62
generators. In addition, we have added 7 batteries that can be
used by agents to store and deliver electricity. Then, a library
created by RTE named Chronix2Grid [15], uses these data to
generate chronics. Fig 3 is a example of such chronics. From
the chronics, we deduce the energy mix of our power system:

emgt =

∑
g∈Ggt

∑T
t=0 εg,t∑

g∈G
∑T
t=0 εg,t

, (1)

where gt is a generator type that belongs to the set
{nuclear, solar, wind, thermal, hydro}, emgt is the percent-
age of electricity produced by generators of type gt, Ggt is
the set of the generators of type gt, G is the set of all the
generators, T is the maximum time step of the scenario, and
εg,t is the injection of generator g at time step t.
To generate this edition’s chronics, we privileged renewable
generators and penalized the use of fossil fuel generators
(referred to as thermal) in Chronix2Grid. In addition, we
have given it the possibility to curtail the excess of renewable
energy, if needed, when creating the chronics. This has allowed
us to significantly increase the power of renewable generators.
As a result, we were able to generate chronics with an almost
carbon-free energy mix as shown in Fig. 2. With less than
3% of electricity generated by fossil fuels, this energy mix is
very satisfactory for our competition, so we have generated
32 years of scenarios that are available to participants to train
their agents. Moreover, they can generate more scenarios with
the same specifications through Grid2Op.

Nuclear
35.6%

Wind

23.5%

Hydro20.8%

Solar
17.7%

Thermal

2.4%

Final 2022 energy mix

Fig. 2. L2RPN 2022 energy mix over a year.



Fig. 3. Example of time series representing the energy produced by each solar power plant at each time step.

B. Hosting on Codalab

To facilitate participation, we implemented the
L2RPN’2022 competition on Codalab as follows:
• Competition with code submission: RL agents capable

of controlling the power network will be blind tested
on the platform with new scenarios not known to the
participants. These scenarios were carefully chosen to be
representative of the different problems encountered by
power network operators.

• Starting kit: We provide a set of tools and tutorials to
help participants getting started, including power network
visualization and diagnosis tools (Grid2Viz), and a white
paper describing the problem and baseline methods. A
sample submission with the code of a baseline agent,
following a designated API, is provided. Sample scenar-
ios are supplied. They are chosen with the same criteria
as those used to test the agents on Codalab, but they
are not the same. The starting kit is available here. The
execution of a task consists in repeating the following
RL-style steps, until time is out or a blackout occurs:

- suggestion = agent.act(observation)
- observation = environment.step(suggestion)

• Protocol: Participants will need to train their agent on
their own machine or cloud server, and submit trained
agents. We will use a three-phase competition protocol:
(0) warm-up phase: participants try the starting kit, can
ask for modifications of the computational resources and
the available packages; (1) development phase: packages
and computational resources are frozen; participants get
feedback on their submissions on a leaderboard, and (2)
final phase: a single final submission is evaluated on new
unseen scenarios. This evaluation is the only one counting
for the final ranking.

• Timeline: The project was accepted as an official
IJCNN/WCCI’22 in January 2022. We opened the warm-
up phase on June 15, and the development phase July
5. The final test phase will start September 15, and the
results will be revealed September 30.

C. Metric

To rank the participants, we need a score function which
assigns a real number to each agent evaluating its performance.
To that end, we created a score function that is the average of
these three cost functions over the test scenarios:

• Cost of energy losses: Calculated by multiplying the
amount of electricity lost due to the Joule effect by the
current price of the MWh.

• Cost of operation: Sum of the costs of the agent’s
actions. Operations involving changes in the production
of electricity have a cost that depends on the energy
market. The use of batteries has a fixed cost per MWh.

• Cost of blackout: If the agent did not manage the
power network until the end of the scenario, this cost
is calculated by multiplying the amount of electricity left
to supply by the current price of MWh.

Note that, as expected, the cost of a blackout is much higher
than the two other costs, which means that an agent who
succeeds in a scenario will always have a better score than
an agent who has not succeeded, even though its actions are
less costly.
Moreover, our score function is normalized so that it is to be
maximized and is between the bounds [−100, 100]. A score
of 0 corresponds to an agent that does nothing at each time
step. Having a positive score is already pretty good.

D. Setting recap

We summarize the setting of the optimization problem to
be solved, at every step:
• Observation space. Complete state of the power net-

work: all information over power nodes (electricity pro-
duced and consumed), flows of each power lines, and
more.

• Action space. Four types of actions allowed:

1. Line status (line connection/disconnection).
2. Topology changes (node splitting). (2)
3. Power production changes/curtailment (of generators).
4. Storage changes (storage or delivery from batteries).

For the 2022 edition, the action space still con-
tains over 70,000 discrete actions (topology changes)
and 69-dimensional continuous action space (production
changes).

• Reward. The participants are free to design their own
reward function. However, the leaderboard metric is de-
fined in Section IV-C.

• Game over condition. A game over is triggered if total
demand is not met anymore (taken into account in the
metric as ”cost of blackout”).
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V. BASELINE

In addition to providing a more complex power network
with a carbon neutral energy mix, for the 2022 edition of
L2RPN we also provide a baseline using reinforcement learn-
ing (RL). It has a relatively simple architecture but performs
quite well on the validation scenarios. The goal is on one
hand, to give an example of a simple agent using reinforcement
learning and, on the other hand, to stimulate the competition.
Furthermore we also wanted to give a working example to
the participants to leverage the new types of actions at their
disposal: curtailment and action on storage units. This is why
our baseline agent only uses these new actions.

A. Prior art

The efficiency of reinforcement learning (RL) to solve
complex sequential decision problems has been demonstrated
many times. For example, Go [25], Chess [24] and even
complex video games like Dota 2 [3] have recently made
great strides, thanks to RL algorithms. The use of RL in
power system operation has also been illustrated [8], [29], and
the winners of previous Learning to Run a Power Network
competitions [12], [28], [30] have used RL approaches.

B. Architecture

The architecture of our baseline agent is illustrated in Fig. 4.
It takes all data concerning power lines, generators, and storage
units from the power network state as “observation”, and first
checks whether it improves the system state by performing
an “obvious action” with “expert rules” (specifically: line re-
connections or do-nothing). If not fruitful, the agent uses
a “trained policy” to choose another action, involving a
parameterized neural network, trained with an Actor-Critic
algorithm [11]. This architecture is more efficient than just
using a trained policy network because simple expert rules
maintain the power network well in most situations.

C. Proximal Policy Optimization

The RL part of the agent focuses on continuous actions from
Eq.2, which are: 3. curtailment and 4. storage units, described
in more detail Sec. IV-D. We chose the Proximal Policy
Optimization (PPO) algorithm [23], which has had success

Applicable

expert

rule?

Environment

(Grid2Op)

power network observation

Yes: do expert action

Trained NN

policy

No

do NN policy action

Baseline agent

Fig. 4. Overview of our baseline architecture

in previous editions of our competition, and is generally
known to be very efficient in complex environments with a
continuous action space. It is used e.g. in MuJoCo [26] or
Roboschool [23].
PPO is a policy gradient and Actor-Critic algorithm: it uses
an approximate value of the cumulative sum of the rewards
(say Vt) to ”criticize” and update the policy. Generally, this
type of algorithm has two neural networks, one which returns
Vt, called critic network, and one which delivers the policy,
called policy network.

In the vanilla policy gradient algorithm, the Vt value is used
to compute an estimator of the quality of the action chosen
by the policy at time t:

Ât =

T−t∑
k=0

γkrt+k − Vt (3)

where T is the number of time steps of the episode, 0 ≤ γ ≤ 1
is the discount parameter, and rt is the reward obtained at
time t. Ât > 0 means that the critic network predicts that the
action chosen by the policy at time t is good so the algorithm
will update the policy in order to increase the probability of
doing this action and vice-versa if Ât < 0. The critic network
is used only during training and it is trained using the MSE
loss function to approximate the cumulative sum of rewards.
However, at the beginning, because of the random initialization
of the weights of the critic network, the value of Ât is random.
Thus, many times, the algorithm will update the policy in the
wrong direction, which explains the instability and the slow
convergence of the vanilla policy gradient algorithm.

PPO tries to solve this problem by proposing an objective
that optimizes the policy, while penalizing too large updates.
The objective is to find the θ parameters that maximizes:

L = Et
[
min

(
Âtqt(θ), Âtclip (qt(θ), 1− ε, 1 + ε)

)]
(4)

Where ε is a hyperparameter (0.2 in the original PPO paper)
and qt(θ) is the ratio of the probability of doing the action
at at state st between the new policy parameters θ and the
previous θold:

qt(θ) =
πθ(at|st)
πθold(at|st)

(5)

Where πθ(at|st) is the probability of doing the action at
at state st using the distribution parameterized by θ. When
qt(θ) > 1 it means that the probability of doing the action at
at state st became more probable with the new distribution
parameters. In the other hand, qt(θ) < 1 means that the
probability of doing the action at at state st became less
probable.
Thanks to this term and the min and clip functions, PPO limits
the chance of making destructively large policy updates to
prevent the agent from going in a direction that looks good but
turns out to be a bad one. This behavior is very well explained
by Fig. 1 of the original paper [23]. PPO is therefore more
stable and trains faster than vanilla policy gradient algorithm.
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D. Experimental setting

a) Actions: Four types of actions are possible in principle
(Equation2), but our baseline method excludes actions of type
2 (node splitting). The rule-based part of the agent performs
type 1 actions (line reconnections); the RL part of our baseline
agent only performs two types of actions: 3. curtailment
actions and 4. storage actions. The former can modify the
production of renewable generators and the latter can store or
deliver electricity to the batteries. Both actions are continuous.

b) Actor-Critic neural network: Our neural network is a
Multi-Layer-Perceptron. Its architecture is illustrated by Fig. 5.
It is composed of 3 hidden layers of 300 neurons each which
are shared by the Critic network and the Actor network. The
input shape is 1225, the output shape of the Critic network is
1 and the output shape of the policy network is 49, which is
consistent with the possible actions detailed above since there
are 42 renewable generators and 7 batteries. We use the tanh
activation function between the hidden layers.

c) Reward: The reward used to train our PPO agent is
defined as: if the game is over, it returns the ratio between
number of time steps survived by the agent and number of
time steps of the scenario; otherwise, it returns 0.

d) Expert rules and associated hyperparameters (HP):
The expert rules of our baseline agent shown in Fig. 4 are:

- Reconnect all possible power lines. Some lines may
have been disconnected because of a maintenance for
example. We assume that the more lines are connected,
the less likely it is that the power network will be
overloaded.

- Do nothing else (if possible); HP safe max rho. If the
power network is not close to being overloaded by doing
nothing, then perform the do nothing action. Let l be the
most loaded power line and ρl the value of its load (ratio
between amount of electricity passing through l and its
maximum capacity). If ρl < safe max rho, do nothing,
else use the PPO policy.

- Limit action impact; HP limit cs margin. The HP
limit cs margin limits the impact of an action on the
power network. This last rule is motivated by empiri-
cal observations that RL agents have trouble producing
smooth actions and change multiple generator states in
a single action. This often leads to a premature “game
over” by violating some constraints of the environment.

e) Neural Network software and hyperparamaters: To
implement our PPO agent we used the Python Stable Baselines
3 library [22].1 The training hyperparameters are described in
Table I2.

f) Training data: Preliminary experiments that we con-
ducted revealed that training on all scenarios (available from
the public dataset of the competition) resulted in worse results
than “cherry picking” scenarios. To alleviate this problem, we
limited training to scenarios taken from the most difficult week
of the year (one week in February, when power consumption
is high). More systematic experiments to optimize the training
curriculum are under way.

g) Validation & Test data: The results presented in this
paper use the validation set of the “development phase” to
select hyperparameters (of the expert rules and the neural
network) and the test set of the ”test phase” of our competition
on Codalab3 to report results.

E. Results

We trained 14 agents for 10 million iterations. In the
following figures, we compare several agents with the Do
Nothing agent (does nothing at each time step) and the Expert
only agent (uses only our experts rules defined in Sec. V-D).

To improve the score of our agent (Fig. 4), we tuned
(using validation data) the two hyperparameters described in
Sec. V-D: safe max rho and limit cs margin. They limit the
impact of the action of our RL agent on the power network,
using expert rules, to avoid erratic actions triggering early
”game over”.
To find the best combination of these hyperparameters,
we set limit cs margin = 60 (a medium value chosen
empirically) and look for the best corresponding value of
safe max rho. As illustrated in Fig. 6, this value is 0.99.
We then set safe max rho = 0.99 in order to look for the
best corresponding value of limit cs margin. As illustrated in

1version 1.5.0. The code to reproduce these results and Fig. 6, 7 and 8 is
available here.

2oracle: for training, we rely on the environment to limit the impact of the
action in case the action is too heavy. It is not possible at inference time as
the environment cannot be modified by our agent.

3https://codalab.lisn.upsaclay.fr/competitions/5410

TABLE I
BASELINE AGENT TRAINING HYPERPARAMETERS

Model type Multi-Layer-Perceptron
Input shape 1225

Output shape (1, 49)
Shared hidden layers 3 of 300 neurons each

Loss function PPO loss for policy and MSE for critic
Batch size 16

Environment steps 16
Gamma 0.999

Epochs loss optimization 10
Optimizer ADAM

Learning rate 3e−6

safe max rho 0.2
limit cs margin oracle

https://github.com/gaetanserre/L2RPN-2022_PPO-Baseline
https://codalab.lisn.upsaclay.fr/competitions/5410
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Fig. 6. Baseline score (as defined in Sec. IV-C) averaged over all
validation scenarios as a function of safe max rho at evaluation time.
limit cs margin = 60.

Fig. 7, this value is 60. With this method, the best combination
of these hyperparameters is safe max rho = 0.99 and
limit cs margin = 60. A large safe max rho results in
using the “RL part of our agent” only in critical states of
the power network, thus avoids doing potentially destructive
actions, when doing nothing is enough. In addition, 60 is
an intermediate value of limit cs margin, which is a good
compromise between limiting and preserving the action. With
these parameters, our best agent has a score of 22.46 on the
validation scenarios and 26.80 on the scenarios of the test
phase of our competition. This agent is thus much better
than the Do Nothing or Expert only agents (higher scores are
better).

To take advantage of the stochasticity of the score of our
agent, depending on its initialization and evaluation scenarios,
we created a mixture of experts to choose the best action,
taking advantage of the strengths of various RL agents.
Grid2Op allows us to estimate of the reward obtained if we
do the action a at state st. Our mixture of expert algorithm
therefore implements a ”look ahead” policy that simulates the
actions of the available RL agents to choose the action that
brings the best approximation of the reward. To evaluate this
strategy, we have used 14 instances of our baseline trained
previously. Fig. 8 illustrates the performance of our mixture
of experts algorithm on the validation set, compared with
other agents. This algorithm obtains a score of 23.58 on the
validation set and 24.47 on the scenarios of the test phase of
our competition. These scores are quite similar to those of our
baseline agent. However, in some scenarios, our mixture of
agents outperforms any instance of our baseline. This strategy
looks promising and many enhancements are possible.

VI. CONCLUSION

In this paper, we presented the design of the fourth edition
of ”Learning to Run a Power Network challenge”, focus-
ing on ”energies of the future and carbon neutrality”. This
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Fig. 7. Baseline score (as defined in Sec. IV-C) averaged over all
validation scenarios as a function of limit cs margin at evaluation time.
safe max rho = 0.99.

competition targets the real-world problem of ensuring the
safety of power networks, using a lot of renewable energies
and several batteries, with a focus on real-time operations.
We provided a baseline agent to the participants, combining
heuristic rules and a trained RL agent, to lower the barrier
of entry and stimulate participation. This baseline performs
quite well, but could still be improved. Indeed, we show in
this paper a first promising avenue: creating random mixtures
of RL agents. This could be further enhanced by specializing
the RL agents on subsets of scenarios, e.g., around given times
of the year. Other improvements could be made by exploiting
actions of type 2: Node splitting. Finally, more sophisticated
but slower optimization algorithms could be used off-platform
to initialize various specialized policies. On our side, we
are conducting more experiments to understand why agents
benefit from training on well-chosen scenarios, and whether
performing a kind of ”curriculum learning”, with progressively
increasing difficulty in scenarios, may help. However, our role
as organizers is to bootstrap the competition with a reasonably
good agent, but leave room for improvement. Hence, we did
not provide our latest and greatest agent. The final results of
the challenge and post-challenge analyses will be included in
this paper at revision time. The challenge platform will remain
open beyond the termination of the challenge as an ever lasting
benchmark, and we hope to continue organizing challenges in
this series with the feed-back of participants and the power
network community.

Aknowledgements: We are grateful to Alessandro Leite,
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