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ABSTRACT
We consider the problem of classifying Ground Penetrating
Radar (GPR) signals by using covariance matrices descrip-
tors computed on convolutional features obtained from Mo-
bileNetV2 Convolutional Neural Network (CNN) first layers.
This approach allows to leverage the rich data representation
obtained from CNNs and the low-dimensionality of second-
order statistics. Then the Riemannian geometry of covariance
matrices is leveraged to improve classification rate. The pro-
posed approach allows then to perform automatic classifica-
tion of buried objects with few labeled data available. We also
consider the scenario of an airbone radar and provide results
at different elevations.

Index Terms— GPR, classification, Convolutional Neu-
ral Networks, Covariance matrix

1. INTRODUCTION

Ground Penetrating Radars (GPR) are imaging systems al-
lowing to view the underground of a field in order to study
the layer composition of the soil or the presence of buried ob-
jects. Such images are usually characterized by a very low
Signal to Noise Ratio (SNR) due to the electromagnetic prop-
erties of the ground. Moreover, by design, buried objects are
observed as hyperbolas for which the shape may be linked to
the object type (cavity or pipe for example). In this context,
classification of buried objects is of importance in civil ap-
plications such as recovering the position of buried gas pipes
[1] or military applications such as land mine detection [2].
To perform this recognition, some works have considered the
improvement of SNR by using signal inversion techniques [3]
for manual interpretation by geophysicists. When confronted
with many images to handle, this solution can be impractical
since it requires dedicated human resources. Thus automatic
recognition methodologies have become needed and are con-
sidered by the community.

Automatic classification of GPR signals are performed in
two steps. Firstly, Regions Of Interest (ROI) corresponding to
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isolated hyperbolas are obtained. This can be done thanks to
inversion approaches [3]. Then the image of a single hyper-
bola is assigned to a class thanks to a learning algorithm. We
consider presently the second step of classification. This task
has been investigated in previous works where it is performed
by using Support Vector Machine (SVM) algorithm in [4, 5],
dictionary learning techniques in [2] and convolutional neu-
ral networks (CNN) in [6]. The SVM based approaches rely
on either the use of the polarimetry information or Fourier
coefficients estimation as features for the classification. On
one hand, polarimetry is not always available since it requires
specific GPR systems which makes this approach impractical.
On the other hand, spectral information can provide less rich
information than convolutional filters of CNN which have
been the norm in computer vision for a decade. Dictionary
learning is an interesting approach but suffers from a heavy
computational cost and requires extensive dataset since it has
to learn all dictionary elements with regards to very different
objects. Finally neural networks have been increasingly at-
tractive to profit from the rich representation of convolutional
features and provide a computationally lightweight (once the
network is trained) methodology. In that regard, the use of
deep learning in GPR data is still a very emergent issue with
very few works due to the lack of large datasets for training
which are needed to obtain good performances.

In order to handle the lack of labeled data while still ben-
efiting from convolutional filters features representation we
propose in this work to consider the approach of covariance
pooling of CNN features which has been shown to be very
effective in this situation for computer vision [7] and earth
observations classification tasks [8]. After estimating the sec-
ond order statistics we propose then to consider a Rieman-
nian framework to handle the classification task on those fea-
tures in order to take into account the natural geometry of
covariance matrices. This approach has been shown to pro-
vide improvement in accuracy in applications where covari-
ance matrices are used [9]. The combination of both aspects
is expected to provide a lightweight approach that can pro-
vide good accuracy of classification with few labeled sam-
ples. Moreover, we propose to use pre-trained convolutional



Nx

Ny

Ny/2 covariance

n×p
d

d

d

d=n×p

input

kernel

layer p

R G B

Nx/2

filter nfilter 1

...

...

...

...

MobileNetV2

...

...

......

layer 1

Fig. 1. Diagram of the proposed approach. p is the number of
convolutional layers, n is the number of filters per layer.

layers which allows to reduce the number of parameters to be
learned. We test this approach on a labeled dataset obtained
from experimental measurement campaign done by Geolithe.
The dataset provided has been obtained with different eleva-
tions of the GPR sensor from the ground that we take into
account in the experiments.

2. COVARIANCE FEATURES EXTRACTION

The process of obtaining the covariance matrices is schema-
tized in Figure 1.
Convolutional filters: From images of dimension Nx × Ny

we extract new features thanks to a trained CNN with Ima-
geNet learning weights. This solution allows to have a large
variety of filters adapted to the classification of images, thanks
to a training on a large database, which are richer than a sim-
ple extraction by spectral content.

In the present work, we selected the MobileNetV2 net-
work which had the advantage of keeping the same filter size
on its first 9 layers. We first adapt the input size and the num-
ber of channels of the CNN to match our GPR data as shown
in the input layer on Figure 1. Once this input adaptation is
done, we select the outputs of the first 9 layers as shown in
blue in Figure 1. All these filters are stacked to form a single
tensor of size (Nx/2×Ny/2×d) with d = n×p = 320. Then
ROI is performed thanks to the labeled data in order to obtain
a single tensor for each hyperbola. Finally the covariance ma-
trix is calculated along the convolutional features dimension
d.
Second order statistics: In order to obtain a low-dimensional
feature to classify we perform the so-called covariance
pooling. Covariance matrices are low dimensional fea-
tures which capture the correlation between all the CNN
features. As demonstrated in [7], this approach is effec-
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Fig. 2. Illustration of the three approaches

tive for visual recognition tasks. To obtain the covariance
matrices of the convolutional features, a simple approach
is to use the Sample Covariance Matrix (SCM) given by
Σ = N−1

∑N
k=1(xk − x)(xk − x)T , where xk ∈ Rd are the

pixels data of single hyperbola after ROI estimation, N is the
number of pixels in the region and x is the mean of the pixels
on the region. This gives us a matrix of dimension d × d. In
our case, we prefer to use a Ledoit-Wolf shrinkage covari-
ance estimator [10] which has the advantage of outputting
full-rank matrices. We indeed observed that CNN features
tend to be linearly dependent, i.e the yielded covariance can
be low-rank which is impractical from a numerical stability
standpoint. At this point, we have a single covariance matrix
for each hyperbola to be used in classification.

3. RIEMANNIAN CLASSIFICATION FRAMEWORK

As explained earlier, covariance matrices are interesting fea-
tures as they allow to retain precious information of the con-
volutional layers while being low-dimensional. In order to
fully exploit these features, it has been shown that it is of im-
portance to consider the fact that those matrices belong not
to a euclidean feature space but a curved Riemannian man-
ifold: the manifold of Symmetric Positive Definite Matrices
(SPD) [8, 9]. Indeed, introducing Riemannian geometry in
problems dealing with classification of second-order statistics
has brought improvement in terms of accuracy especially in
applications where the number of labeled samples is low.

The main idea behind classification on Riemannian man-
ifolds is to consider distances which are able to take into
account the curvature of the feature space. Once a distance
is obtained, Euclidean based classification algorithms can be
adapted to depend on this distance. To handle classification
of covariance matrices, three approaches illustrated in Figure
2, can be leveraged:

• Vectorize the matrices and consider solely a Euclidean
framework. In this case, the distances do not respect
the properties of the feature space.

• Map the matrices to the tangent space located at the
mean value of data in order to approximate the dis-



tances between data points to a Euclidean space where
a Euclidean distance used. This approach has the merit
of allowing a variety of algorithms to be adapted into a
Riemannian framework.

• Consider a geodesic distance which follows the curva-
ture of the SPD feature space. While being the optimal
one in terms of keeping the natural distances between
data points, it has a higher computational cost and not
all classification algorithms can be adapted to handle it.

In the present work, we consider the use of three algo-
rithms to showcase the usefulness of the Riemannian frame-
work: the SVM classifier used in previous works related to
GPR classification, the Minimum Distance to Mean (MDM)
classification which is often used associated with a Rieman-
nian distance [9] and a Multilayer Perceptron (MLP) which is
usually used as a classifier in the last layers of a deep learning
approach. For both SVM and MLP, the adaptation to Rie-
mannian framework is obtained from mapping data to tan-
gent space while MDM which relies solely on distances can
be used associated with a Riemannian distance.

4. RESULTS

category object, lattice, discontinuity, empty
soil sand, wet sand, gravel, dry gravel
frequency 250MHz, 300MHz
elevation 0cm, 25cm, 50cm, 75cm, 100cm, 150cm

Table 1. Characteristics of the dataset

Dataset description: The full dataset provided is com-
posed of 1000 radargrams of a medium size of (Nx, Ny) =
(4000, 800) pixels associated with a mask labels for labels.
An example is given in Figure 3. Each of these radargrams
are obtained thanks to a GSSI GPR, used on a test area of
about 46 m long and 7 m deep. For each radargram, between
3 and 7 targets of interest on average are labelled. Many
other characteristics are given for each image as shown in
Table 1. We first adapt the input of the CNN network for each
individuals radargrams and extract the first 9 layers. So by
concatenating all these outputs we get d = 320 filters. Then
we extract windows centered on the mask of each labelled
hyperbola by using DBSCAN (Density-Based Spatial Clus-
tering of Applications with Noise) algorithm for clustering
and erosion technique to separate overlapping masks. The
windows have variable size to cover the area detected by
erosion. Once these thumbnails extracted we gathered the 3
categories object, lattice, discontinuity into one: hyperbola.
We added an empty class by selecting randomly areas of the
average size of the hyperbola windows in order to realize a
binary classification. We have thus created 3 sets of data:
one with with the antenna on the ground (elevation = 0 cm)
and the two others with an elevation of 100 cm and 150 cm
respectively. All the other parameters given by table Tab.1

Fig. 3. Extract of a full radargram and its mask. The bounding
boxes represent the ROI used.

are selected and the final numbers of covariances matrix of
dimension d× d for the datasets are precised in Table 2.

elevation empty hyperbola
0cm 550 555
75cm 330 335
150cm 250 250

Table 2. Number of images per class for the 3 sub-datasets

Experiment setup: The development was done under
Python 3.6.13 with the package pyRiemann1 to handle tan-
gent space mappings and Riemannian distance computation.
In order to select the best performances for each classifier,
we first performed a search for the optimal parameters on a
training set by K-folds cross-validation with K = 4. Then
evaluation is performed on a separate set using those optimal
parameters and with a 4-Fold cross validation.
Results obtained: The results are presented in Figures 4 and
5 as a box-plot with the four values of the K-fold validation.
In the framework of the MDM we have displayed only the re-
sults obtained with the rieammnian metric because they were
strictly equivalent to those obtained on the tangent plane.
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Fig. 4. Classication results at elevation 0 cm

Use of Riemannian geometry : In Figure 4 we reported
the results of the 3 algorithms at elevation 0 cm. This first
showcases the usefulness of the Riemannian framework for
classification. Indeed in all the reported results a gain, of av-
erage 6%, is observed compared to the Euclidean approach.

1https://github.com/pyRiemann/pyRiemann
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Fig. 5. Classification results for MLP classifier in tangent
space at different elevations

Elevation effect : In Figure 5, we have reported the re-
sults of classification for the MLP algorithm in tangent space,
which has the overall best performance, for different eleva-
tions of the radar. We notice that naturally the performance
drops when the elevation increases, which can be understood
by the increase of the signal attenuation. However the clear
improvement of the performances observed when the eleva-
tion is of 150 cm, is to be relativized. Indeed the number of
images is divided by 2 compared to the 0 cm dataset. More-
over one can imagine that the labeling is made only on ob-
jects which have a significant radar response, which comes
out better on this very strongly attenuated radargram than on
a radargram with the antenna clamped where the attenuation
gives way to more noise. Thus we cannot conclude about the
effects of elevation in this experiment.

5. CONCLUSIONS

In this paper we showed that CNN feature pooling and Rie-
mannian geometry can be leveraged to classify GPR data
when few samples are available. The proposed solution is
lightweight since very few parameters are to be learned com-
pared to CNN architectures. The reported results have shown
that the Riemannian framework is more suitable than the
Euclidean one when classifying covariance matrices in this
GPR data context as expected from previous results in other
applications. This study will be extended in future studies to
other convolutional layers than MobileNetV2. Comparison
to other neural networks approaches will also be done.
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