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Abstract

Intrusion detection is a key topic in cybersecurity. It aims to protect computer systems and networks
from intruders and malicious attacks. Traditional intrusion detection systems (IDS) follow a signature-
based approach, but in the last two decades, various machine learning (ML) techniques have been strongly
proposed and proven to be effective. However, ML faces several challenges, one of the most interesting
being the emergence of adversarial attacks to fool the classifiers. Addressing this vulnerability is critical to
prevent cybercriminals from exploiting ML flaws to bypass IDS and damage data and systems.

Some research papers have studied the vulnerability of ML based IDS to adversarial attacks, however
most of them focused on deep learning based classifiers. Unlike them, this paper pays more attention to
shallow classifiers that are still widely used in ML-based IDS due to their maturity and simplicity of im-
plementation. In more detail, we evaluate the robustness of 7 shallow ML-based NIDS including Adaboost,
Bagging, Gradient boosting (GB), Logistic Regression (LR), Decision Tree (DT), Random Forest (RF), Sup-
port Vector Classifier (SVC) and also a Deep Learning Network, against several adversarial attacks widely
used in the state of the art (SOA). In addition, we apply a Gaussian data augmentation defence technique and
measure its contribution to improving classifier robustness. We conduct extensive experiments in different
scenarios using the NSL-KDD benchmark dataset [5] and the UNSW-NB 15 dataset [50]. The results show
that attacks do not have the same impact on all classifiers and that the robustness of a classifier depends on
the attack and that a trade-off between performance and robustness must be considered depending on the
network intrusion detection scenario.
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1. Introduction

Protecting computer systems and networks from cyberattacks has been a growing concern in recent
years. Although most systems are built with improved security features, a large number of vulnerabilities
still exist. These include unwanted access to systems and information, destruction or alteration of data, etc.
Intrusion detection systems play a critical role in the network defence process and allow network operators
to accurately identify security attacks. There are mainly two categories of IDS: Network-based IDS and
Host-based IDS, described below:

e Network-based IDSs (NIDS) monitor and analyze network traffic at different layers to detect intruders.

o Host-based IDS (HIDS), monitor the computer infrastructure to detect internal changes by exploiting
host indicators such as sensor log files, disk resources, user account information processes, etc.

This paper focuses on the Network-based IDSs. The continuous increase in the number and types of
contemporary network threats [49] motivates this interest.
Both NIDS and HIDS approaches can be classified into the following categories:

o Misuse-based approaches (also called signature-based) exploit indicators (or signatures) previously
extracted from known attacks. Signatures are manually generated for each new attack. Therefore,
maintaining an up-to-date list of signatures is costly due to the increasing number and diversity of
attacks.

o Anomaly-based approaches model normal network behavior, as opposed to malicious behavior. Al-
though these approaches are capable of detecting new attacks, they suffer from a high false alarm rate
because new normal behavior can be detected as malicious.

Anomaly detection is often considered by the community to be more promising than signature-based detec-
tion, as it is able to detect unknown attacks. Therefore, this paper focuses on anomaly-based NIDS.

In recent years, ML approaches have been widely used for anomaly detection. Existing approaches can
be classified into shallow (or classic) models [14] and deep learning models [23]. Deep learning involves
several levels of representation and several layers of non-linear processing units. On the contrary, all non-
deep learning approaches can be qualified as shallow learning, this includes the majority of conventional
machine learning models proposed prior to 2006 and neural networks with only one hidden layer of nodes
[74]. The most popular shallow approaches include Random Forest (RF), Decision Tree(DT), Support Vector
Machine (SVM), k-Nearest Neighbors (KNN), Hidden Markov Models (HMM) and Ensemble Learning.
Both shallow and deep learning models have been used with promising results.

While most research focuses on designing new ML-based IDSs, this paper highlights the vulnerabilities
of ML systems to adversarial attacks. Adversarial attacks allow a small and carefully designed change in
the input of the ML classifier to completely alter the output of the system. Adversarial Machine Learning
(AdvML) is the research area that studies these vulnerabilities. It has been widely explored in recent years,
particularly in the field of computer vision [73]. The study of AdvML in cybersecurity also deserves a great
deal of attention given the sensitivity of this field and the need to preserve the confidentiality, integrity, and
availability of data and systems. It is essential to evaluate the robustness of ML-based intrusion detection
systems before deploying them in the network. This prevents cyber criminals from exploiting ML vulner-
abilities to bypass IDS and damage data and systems. The robustness of an ML classifier is defined as its
ability to maintain its accuracy against adverse samples. An adverse sample is an input instance with a small
disturbance that is erroneously predicted. Depending on the results of the robustness assessment, appropriate
defence techniques can be applied to improve the robustness of NIDS.



Due to the widespread adoption of deep learning approaches for NIDS, most research work evaluate the
robustness of deep learning based NIDS [62]. However, shallow ML models are still widely used in NIDS
due to their simplicity and implementation maturity [66]. It is therefore interesting to study their robustness
in an adversarial environment. This paper focuses on the evaluation of shallow ML based NIDS against
several adversarial attacks widely used in the state of the art.

In this paper, we evaluate the robustness of 7 shallow classifiers including Adaboost, Bagging, Gradi-
ent boosting, Logistic regression, Decision Tree, random forest, Support Vector Classifier and also a Deep
Learning Network, against a wide range of attacks (an attack is defined as a method of generating adver-
sarial examples). In particular, we consider white-box and gray/black-box attacks. In white-box attacks the
attacker has full access to all information about the ML-based NIDS, whereas in gray/black-box attacks, the
attacker has little or no knowledge of ML-based NIDS. Gray/black-box attacks are interesting because they
represent the most realistic scenario for adversary’s attacks. Examining white-box attacks is useful for IDS
manufacturers who has full access to their system and wish to evaluate its performance against adversarial
attacks.

This document provides the following main contributions:

e A clear and structured survey of most commonly used adversarial attacks and defence techniques, in
addition to an exhaustive review of current work on Adversarial ML NIDS.

o An in-depth study of the impact of adversarial attacks on ML based NIDS. Several types of attacks (9
white-box and gray/black-box attacks) are explored with a particular attention to shallow classifiers.
Indeed, unlike the overwhelming majority of works that study the behavior of NIDS in an adversarial
environment and focus on deep learning approaches, this paper focuses on shallow algorithms, which
are still widely used in ML-based NIDS thanks to their simplicity of implementation and maturity.
The evaluation of their performance in an adversarial environment is therefore also worth exploring.

e An evaluation of the contribution of a Gaussian data augmentation defence technique to improving
the robustness of the classifiers.

e Valuable results and conclusions that can help security researchers improve the robustness of their
NIDS. These results are deduced based on extensive experiments conducted under different scenarios.

e The steps in the study conducted represent a framework detailing the steps to be taken to assess the
sensitivity of NIDS to adversary attacks and improve their robustness.

The paper is structured as follows. Section 2 describes the challenges in the field of network intrusion
detection. Section 3, provides a state of the art of the most commonly used adversarial attacks and defence
techniques, as well as an exhaustive study of AdvML approaches in the field of NIDS. Section 4 describes
our evaluation study, including the evaluation parameters and protocol. Section 5 details the experimental
results. Section 6 provides a discussion and section 7 concludes the paper.

2. The Challenging task of Network Intrusion Detection

Network intrusion detection is a complex task for many reasons. Challenges can be related to the nature
of the network traffic data, or to the inherent NIDS decision model, as described below.



Figure 1: Adversarial attack generation in NIDS
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An adverse sample is generated by adding a small perturbation to the original sample. Thus, malicious perturbed traffic
can be misclassified as benign and thus bypass the intrusion detection system. This can have serious consequences for the
system.

2.1. Challenges related to the nature of the network traffic data:

o Challenges related to data exploitation: in network anomaly detection, the captured packets partially
represent the entire network traffic because the observation points are often widely distributed. Thus,
the captured data is often sparse, huge and contains redundant or uninformative data, which makes it
difficult to exploit.

o Unbalanced data-sets: In most IDS data-sets, the amount of normal data dominates the data. This is
due to the low frequency of attacks compared to normal behavior. This makes the available data-sets
unbalanced. Therefore, classical machine learning algorithms need to be adapted to the context of
unbalanced data-sets.

e Variety of attacks: the attack landscape is frequently changing as attackers are constantly developing
new methods. Attack detection and analysis tools must be updated and evolve continuously.

2.2. Challenges related to the decision model

e Scalability: this is a common challenge for statistical learning algorithms. It is defined by the ability
of the algorithm to function normally even with high dimensional data.

o Real-time IDS: The goal of an IDS is to detect attacks and stop them before they damage the system.
Therefore, the design of a real-time IDS is very important. A real-time IDS must also be efficient and
flexible to run on most commercial computers.

e High false positive rate: This is the reporting of a high number of false alarms that correspond to
legitimate activity that has been misclassified by the IDS. Recognizing true alarms from the huge
volume of alarms is a complicated and time consuming task. Therefore, reducing false alarms is a
serious problem to ensure the effectiveness and use of IDS.

o Vulnerability to Adversarial Attacks: This aspect has been described above and is the focus of this pa-
per. The objective is to examine and reduce the vulnerability of various NIDS classifiers to adversarial
attacks.

3. Adversarial attacks and defence techniques in NIDS: Background and Review

3.1. Preliminaries

Generating an adversarial attack involves adding a small perturbation to the input sample so that the
output label is misclassified. This is illustrated in Figure 1 in the context of NIDS. Formally, let x be the



original input data sample, f be the classifier, and y = f(x) be the label associated with x. A data sample x’
is considered an adverse sample of x when x’ is close to x under a specific distance metric while f(x") # y.
Adversarial attacks in network security can be classified along two dimensions: the attacker’s knowledge
and the attacker’s goal :

1. The attacker’s knowledge : describes the extent of the adversary’s knowledge about the NIDS system.
We can characterize three levels of attack danger [29]:

o White-box attacks: the attacker is in the most favorable position where he has full access to
all information about the ML-based NIDS. This includes training data and the learning model
architecture, decision and parameters (gradient, loss function, etc.). Fortunately, this is generally
not feasible in the majority of real adversarial attacks.

e Black-box attacks: This is the opposite case where the attacker completely ignores the ML-based
NIDS system and its inputs/outputs. It can be argued that a truly black-box attack is impossible
and rarely succeeds.

o Gray-box attacks: this scenario assumes a more realistic approach, where the attacker has some
level of knowledge of the ML-based NIDS, and may have limited access to the training data
. The adversary does not have the exact information but has enough information to be able to
attack the ML system and cause it to fail.

Note that in the literature, by abuse of language, the term "black-box attacks" is also used for "gray-
box attacks" (for example, the ZOO attack is called back-box attack in [18]). In this article, we use
the terms "gray/black-box" to refer to the gray-box attacks described below, to nuance between this
definition and the term "black-box" widely used in the literature.

2. The attacker’s goal : depends on whether he simply wants to deceive the system, or to induce a precise
prediction for certain inputs. Two forms of attack can be listed:

o Targeted attacks: direct the ML algorithm to a specific class, i.e., the adversary tricks the classi-
fier into predicting all adversary examples as a specific target class.

e Non-targeted attack: aims to misclassify the input sample away from its original class, regardless
of the new output class. They are easier to implement because more alternatives are available to
reorient the output. Note that in binary classification problems, targeted and untargeted attacks
are equivalent.

3.2. Survey of adversarial attack generation approaches

As many adversarial attack generation approaches can be applied to both targeted and untargeted scenar-
ios, we will rather rely on the attacker’s knowledge to classify them.

3.2.1. White-box attacks
Fast Gradient Sign Method (FGSM) [26]. creates adversarial examples by adding noise to the original
sample along the gradient directions.

Two iterative extension of FGSM, namely, Basic Iterative Method (BIM) [39] and Projected Gradient
Descent (PGD)[43] have been also used in the recent literature.



Figure 2: Adversarial attack techniques
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The Jacobian-based Saliency Map Attack (JSMA) [55]. generates adversarial examples using forward deriva-
tives (i.e., model Jacobian). JISMA iteratively perturbs features/components of the input one at a time instead
of perturbing the whole input to fool the classifier.

Universal Adversarial Perturbations (UAP) [47]. are a special type of untargeted attacks that consist on
creating a constant perturbation that successfuly misclassifies a specified fraction of the input samples.

DeepFool (DF) [48]. is an untargeted attack based on computing the minimum distance between the original

input and the decision boundary.

Figure 3: defence techniques
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Carlini and Wagner attack (C&W) [15]. The authors formulate the search for an adversarial sample as an
optimization problem with the following objective:

min D(x, x + €) + c.f(x + €) subjectto x+e€ D

where € denotes the adversarial perturbation, D(.,.) denotes the £y, £y or { distance metric, and f(x + €)
define the cost function such that f(x + €) > 0 if and only if the model correctly classifies x + € (i.e., gives it
the same label as x).

3.2.2. Gray/black-box attacks
Score-bases attacks. : the attacker has access to the predicted scores, i.e., the probability of each predicted

label to belong to the classification classes of the model. Examples include the Zeroth-order optimization
(ZOO) attacks [18].

Decision-based attacks. : the attacker only has access to the final decision of the model (binary decision)
without any confidence score. Examples include Boundary attacks [13] and Hop Skip Jump Attack [17].

Transfer-based attacks. : the attacker has access to the hole or part of the training data-set and use it to train
another fully observable model, called "a substitute model" intending to emulate the attacked model called
"target model". Adversarial perturbations that can be synthesized from the "substitute model" are used to
attack the "target model".

We refer the reader to [16, 60, 54, 71] for more additional information on adversarial attacks. Figure 2
summarizes the different Adversarial attack generation techniques described above.

3.3. Defence

A defence technique aims at improving the robustness of the model against adversarial attacks. In [4],
the three following categories of defence techniques are highlighted:

e Modify the input data: These techniques do not deal directly with training models, but rely on modify-
ing the training data during training or modifying the input data during testing. For example Gaussian
data augmentation [76] technique involves augmenting the original data-set with copies of the origi-
nal samples to which Gaussian noise has been added. The underlying idea is that forcing the model to
make the same prediction for a true instance and its slightly perturbed version should increase its gen-
eralization capabilities. This method is widely used because of its simplicity, ease of implementation
and effectiveness against both gray/back-box and white-box attacks.

e Modify the classifier: This involves modifying the original classification model by changing the loss
functions, adding additional layers/sub-networks, etc. For example, the Gradient Masking method
modifies a machine learning model to mask its gradient from an attacker.

e Add an external model: these methods keep the original model intact and add one or more external
models to it during testing. For example, the authors of [42] used Generative Adversarial Networks
(GAN) to train the network along a generator network that attempts to generate a perturbation to that
network.

Figure 3 summarize the different defence techniques described above.



3.4. Defence and attacks in IDS

Table 1 presents and compares recent research on ML based NIDS in adversarial environment. For
each research work, we highlight i) the evaluated ML classifiers ii) the evaluation data-set iii) the adversarial
attack algorithms and iv) the defence techniques, if any. In particular, we classify the evaluated ML classifiers
into two categories: shallow and deep learning. We also divide the adversarial attack generation techniques
into State of the art techniques, i.e. techniques inspired by the field of computer vision, and new techniques
designed by the authors.

The first row of the table, presents a statistic revealing the trends in the literature. It can be seen that the
majority of the literature (95%) evaluate the robustness of deep learning techniques, while a minority (37%)
evaluates shallow learning. The majority of the latter focus on a single type of adversarial attack, proposed
by the authors, and do not address the various adversarial attacks widely used in the literature.

The evaluation of shallow ML based NIDS under adversarial environment requires further study. To fill
this gap, this paper evaluates shallow ML based NIDS against the most used attack generation approaches in
the literature. Only [56] have already addressed this issue, but the authors did not explore defence techniques.

In more detail, we evaluate diverse and widely used ML algorithms [46] in the NIDS domain when ex-
posed to white-box and gray/back-box adversarial attacks generated by well know SOA algorithms. Further-
more, we explore the effect of the Gaussian data augmentation defence technique on different classification
settings.

4. Evaluating IDS robustness against adversarial attacks

The white-box attacks investigated in this paper are: FGSM attack, BIM, PGD attack, JSMA , Deep-
Fool attack, Carlini and Wagner attack. The gray/black-box examined attacks are: Zoo Attack, Boundary
attack and Hop Skip Jump Attack. Moreover, we generate additional adversary attacks in a naive way using
Gaussian noise, with different intensities (o values are 0.01, 0.1 and 0.2).

In order to fairly compare the robustness of diverse classifiers, we have to apply the same attacks, with
the same configuration and the same hyper-parameters to all classifiers. However, white-box attacks are
highly dependent on the type of classifier they attack, e.g., FGSM, BIM, PGD, and JSMA use the gradient
of the classifier to generate the attacks, and thus can only be applied to gradient-based classifiers.

To overcome this problem, we propose to use an external DNN-based surrogate classifier, which we
call "Generator" to which we apply all white-box attacks in order to generate the adversary samples, under
the same conditions. The samples generated by each type of white-box attack are then introduced in the
classifiers in order to measure their robustness against such an attack. This idea is based on the transferable
property of adversarial attacks [21], which shows that the effect of the attack can be transferred to other ML
models, including the "Generator" in our case. We use a DNN composed of 7 completely connected layers
with dimensions ranging from 1024 to 32. From one layer to another, the dimension is divided by 2. The
architecture of the generator is different from the evaluated neural network. It is more complex to make the
generation of the adversarial samples more complex.

To improve the robustness of IDSs, defensive techniques can be applied. To obtain the most robust NIDS
system, the manufacturer must follow an iterative procedure:

1. Build a basic NIDS
2. Evaluate its robustness against a set of adversarial attacks

3. Apply a defence technique to increase its robustness



4. Repeat 2) and 3) until the level of robustness of the model is acceptable.

In this paper, we focus on steps 2) and 3), i.e. we evaluate the robustness of the classifiers against adversarial
attacks, then apply the Gaussian data augmentation defence technique and measure its contribution to
improving its robustness.

In the following, we describe the experimental setup, then present the results.

4.1. Data-sets description

4.1.1. NSL-KDD data-set [5]

The NSL-KDD data-set is derived from the KDDCup 99 data-set and addresses the problems of the
latter, namely irrelevant records and data imbalance between normal and abnormal records. A record is
defined by 41 features, including 9 basic features of individual TCP connections, 13 content features within
a connection, 9 temporal features calculated within a two second time window, and 10 other features. The
data-set contains 24 attack types, grouped into 4 categories of attacks, namely denial of service (DoS),
remote to local (R2L), user to root (U2R) and probing. The data-set is divided into training and test subsets
containing 100.778 and 25.195 samples respectively. This data-set is publicly available '. The original
training NSL-KDD Train* and testing NSL-KDD Test" sets of the NSL-KDD data-set are used in this study.

4.1.2. UNSW-NBI15 [50]

The data-set was created by by the cyber security research group at the Australian Centre of Cyber
Security (ACCS) in 2015. It contains approximately 100 GB of raw data (normal and malicious traffic). 9
different types of attacks were used to generate the malicious traffic: Fuzzers, Analysis, Backdoors, DoS,
Exploits, Generic, Reconnaissance, Shellcode and Worms. Each sample is described by 49 features that
were generated by several feature extraction tools. The data-set is divided into training and test subsets
containing 175.341 and 82.332 samples respectively. The original training UNSW_NB15_training-set and
10 % (randomly selected samples) of the testing UNSW_NB15_testing-set are used in this study.

4.1.3. Data pre-processing

Furthermore, the training set is divided into training and validation sets according to 8:2. In order to
provide more suitable data for the classifier, One Hot Encoding and Data Normalization steps are performed.
One Hot Encoding involves encoding the categorical attributes, such as protocol, service, and state, into one-
hot numeric array. This data is then normalized between 0 and 1 to produce more homogeneous values.

4.2. The evaluated classifiers

We evaluate the performance of various well known ML algorithms: Adaboost, Bagging, Gradient boost-
ing, Logistic regression, Decision Tree, Random Forest, Support Vector Classifier (SVC) and also a Deep
Learning Network. Binary classification is considered. All our models were implemented using the Tensor-
Flow [1], Keras [28] and scikit-learn packages [51]. To generate adversarial samples, we use the open-source
IBM Robustness Toolbox (ART) framework [53]. All the hyper-parameters of the classifiers and algorithms
used to generate the adverse samples have been set to their default values to facilitate the comparison of the
different evaluation scenarios.

Uhttp://www.unb.ca/cic/datasets/nsl.html
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Figure 4: Evaluation protocol

4.3. Robustness indicators

We consider the following two metrics:

e Accuracy: measures the ability of the IDS to correctly classify the malicious and legitimate traffic.
It represents the percentage of the number of correctly classified records out of the total number of

_ ___TP+TN
records. ACC = gpry rprrn

o False Negative Rate: is a more specific indicator that highlights the percentage of malicious traffic

that has successfully passed the IDS. FNR = 7=

Where TP are the True Positives and represent the number of anomalous records that are correctly identified
as anomalies. The TN are the True Negatives and calculate the number of normal records that are correctly
identified as normal. The FP are the False Positives that are the number of normal records that are mis-
classified as anomalous. The TN are the True Negatives and represent the number of anomalous records that
are identified as normal.

A good classifier is a classifier having high accuracy and a low False Negative Rate.

4.4. Evaluation protocol

4.4.0.1. Initial robustness evaluation. This scenario (see Fig. 4a) evaluates the performance of the classi-
fiers against adversarial attacks.

11



To generate adversarial samples using white-box attacks, the samples of test data-sets (NSL-KDD Test*
and UNSW_NBI15_testing-set) are perturbed using gray/black-box attacks applied directly to the classifier
and white-box attacks applied fo the "Generator” model. The generated adversarial samples form new test
data-sets, which we call, ''Adversarial data-sets'' (an adversarial data-set generated from NSL-KDD Test*
and another generated from UNSW_NB15_testing-set). The performance of the classifiers are evaluated in
the following scenarios:

e Scenario 1: measuring performance in baseline scenario

— Train: NSL-KDD Train* / UNSW_NB15_training-set
— Test: NSL-KDD Test" / UNSW_NB15_testing-set

o Scenario 2: measuring performance in adversarial environment

— Train: NSL-KDD Train* / UNSW_NB15_training-set

— Test: Adversarial data-sets

The first sub-tables of Tables 4 and 5 in the appendix shows the results of accuracy, whereas the second
sub-tables shows the results for the False Negative Rate.

For each table, the first row shows the results of the first scenario whereas other rows illustrate the
results of the second scenario. The difference in performance between the baseline and adversarial scenarios
is highlighted in red for increase and yellow for decrease, for each classifier. For example, if a classifier’s
accuracy is 50% in the baseline scenario, if its performance decreases to 47% in the adversarial scenario, 3%
is highlighted in yellow, if its performance increases to 55% in the adversarial scenario, 5% is highlighted
in red.

4.4.0.2. Applying defence techniques. In this scenario (see Fig. 4b), we measure the contribution of Gaus-
sian data augmentation to the robustness improvement of NIDS classifiers. Therefore, two new data-set
called "augmented data-sets" are generated by applying Gaussian data augmentation on KDD Train* and
UNSW_NBI15_training-set. The performance of the classifiers is then evaluated in the following two sce-
narios:

o Scenario 3: measuring performance in non adversarial environment with training in augmented data
Train: Augmented data-sets, Test: NSL-KDD Test* / UNSW_NB15_testing-set

o Scenario 4: measuring the impact of defence techniques in adversarial environment Train: Aug-
mented data-sets, Test: Adversarial data-sets

The obtained results are described in the third and fourth sub-tables of Tables 4 and 5, for accuracy and FNR
respectively. For each sub-table, the first row shows results of scenario 3, and the other rows illustrate the
results of scenario 4.

5. Experimental Results

5.1. Initial robustness evaluation

5.1.1. Scenario 1: measuring the performance in baseline scenario.
Results in the first raws of the first sub-tables show that almost all the classifiers perform well, the
accuracy varies between 74% and 77% on NSL-KDD except for Adaboost that has the worst performance
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(accuracy 55.13% on NSL KDD and 60.6% on UNSW-NB15). DNN is the most efficient with an accuracy of
77.68% on NSL-KDD and 78.56% on UNSW-NB15. On the NSL-KDD data-set, these results are confirmed
by the False Negative Rates (first raw of the second sub-table). Indeed, Adaboost wrongly classifies 71.35%
of the malicious traffic as benign, while the other classifiers have a FNR varying between 29.68% and
39.32%. However, all classifiers have extremely low false negative rates (below 6%) on the UNSW-NB15
database.

5.1.2. Scenario 2: measuring the performance in adversarial environment.

Two analysis are of interest in this scenario: i) measuring the impact of each adversarial attack on
different classifiers and ii) measuring the performance of each classifier against different types of attacks.
The first analysis identifies the most/least vulnerable classifier to a given adversarial attack while the second
finds the most/least powerful adversarial attack for each classifier.

5.1.2.1. Accuracy. Gaussian noise attack:

o There are two different behaviors; some classifiers (DT, GB and bagging on UNSW-NB15 ) are very
vulnerable to the attack of Gaussian noise, even at low intensity (o = 0.01), while the other classifiers
are more robust. In particular, for o = 0.01, the performance of SVC (resp. Logistic regression)
remains stable on NSL-KDD, (resp. UNSW-NB15).

e For a high-intensity attack (oo = 0.2), the behavior is similar, where, on the NSL-KDD dataset, DT
loses almost half of its performance and GB drops to a third of its efficiency. However, the accuracy
decrease for the other algorithms ranges from 4.7 % for LR to 11.5% for Bagging. The results are
similar on the UNSW-NB15 database.

o Surprisingly, Adaboost, which has the worst baseline performance, is the least vulnerable to Gaussian
noise attacks on the NSL-KDD dataset, beating DT and GB when they all face this type of attack.
More surprisingly, a small Gaussian noise perturbation even increases Adaboost’s performance by
5.6%.

Gray/black-box attacks:

e Compared to the Gaussian noise attack, all classifiers are rather robust to the ZOO attack, with the
performance loss ranging from 0.3% for Adaboost to 5% for DNN on NSL-KDD. Thus, the DNN
with the best baseline performance is the most vulnerable to the ZOO attack.

o HopSkipJump and Boundary attacks have almost the same impact on all classifiers (whose perfor-
mance drops drastically). This can be explained by the fact that both attacks are of the same family,
i.e. HopSkipJump is an extension of the Boundary attack.

e With the exception of Adaboost, whose accuracy decreases by only 21% on NSL-KDD for both at-
tacks, the other classifiers are much more vulnerable. In fact, on NSL-KDD, DNN and RF lose 71%
and 68% of their performance respectively when dealing with the Boundary attack. As for the Hop-
SkipJUmp attack, both Bagging and DT lose almost 68% of their performance.

e The behavior of the majority of classifiers against these attacks is similar in both databases.

White-box attacks :

e FGSM, PGD and BIM which are attacks of the same family have almost the same impact on the
classifiers.
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e JSMA is the most powerful attack; on NSL-KDD, the decrease in accuracy reaches 36% for GB.
C&W is slightly more powerful than the trio of FGSM, PGD, BIM, but these are all weak attacks that
result in a drop in accuracy of no more than 4.7%.

e Adaboost and Random Forest are the only classifiers that are robust to all white-box attacks. The
decrease in accuracy is limited to 1.4% and 3.7% for Adaboost and RF respectively on NSL-KDD.

e The classifiers are more vulnerable to these attacks on the UNSW-NB15 database than on the NSL-
KDD database.

5.1.2.2. False Negative Rate. The results are shown in the second sub-tables of Tables 4 and 5 . The
objective of this evaluation is to measure the ability of classifiers to block malicious traffic. Recall that the
FNR measures the percentage of malicious traffic classified as legitimate, so the lower the FNR, the better
the performance of the classifier.

Gaussian noise attack:

e The results show that FNR can decrease after data perturbation, i.e., malicious data initially classi-
fied as illegitimate are misclassified as legitimate after Gaussian noise perturbation. This reflects an
improvement in classifier performance, as is the case for Adaboost, GB, LR, and SVC on NSL-KDD
data-set. As for the Bagging, DT, DNN, and RF classifiers, the FNR increases by 23%, 13.2%, 22%,
and 11% for a o = 0.02, reflecting the general decrease in accuracy described in the first sub-table of
Table.4.

o The GB result on NSL-KDD data-set is particularly interesting because the Gaussian noise has a
contradictory impact on the accuracy and the FNR. Indeed, the overall performance of the classifier
degraded (accuracy decreased by up to 21.68% for sigma =0.2), while the FNR also decreased (by
25.6% for sigma =0.2) which means that more malicious traffic was blocked. Thus, the degradation
in overall classifier performance may be due to mis-classifying benign traffic as illegitimate, which
causes False Alarms.

e We note that in the UNSW-NB15 database, where all classifiers had low false-negative rates in the
absence of adversarial attacks, the false-negative rates increase significantly, showing their sensitivity
to these attacks, especially for the Bagging and RF classifiers.

Gray/black-box attacks:

o Adaboost is robust to all three gray/back-box attacks on NSL-KDD data-set. Its FNR increase does not
exceed 3.1% (in the case of the HopSkipJump attack). However, on UNSW-NB15, the FNR increases
exponentially against Boundary and HopSkipJum and reaches 98.23%.

o HopSkipJump and Boundary attacks have the same impact on the other classifiers. Indeed, the FNR
reaches 100%, which means that the adverse noise manages to mis-classify all malicious samples into
benign ones.

e HopSkipJump and Boundary are more powerful than ZooAttack in most cases.

e Unlike NSL-KDD, some algorithms (DNN, LR,RF, SVC) are very robust to these attacks on the
UNSW-NBI15 from the point of view of FNR, which does not increase.

White-box attacks:
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e on NSL-KDD data-set, ISMA has the greatest influence on the deviation of FNR, whether it is positive
or negative. It is mainly noticed that the FNR of DT increases by 41% for DT and by 41% and 10%
for Adaboost and LG respectively.

o While the results are not significantly different from the baseline results for FGSM, PDG and BIM on
NSL-KDD data-set, we note that DNN is the most impacted classifier (an increase in FNR up to 8.7%),
while the FNR of Adaboost and Gradient Boosting decrease slightly, reflecting better classification of
malicious traffic.

o The impact of these attacks on the FNR of the classifiers is much more remarkable on the UNSW-
NB15 data-set, which increases exponentially for most of the classifiers except for Adabooost which
keeps a low FNR.

5.2. Applying defence techniques
5.2.1. Scenario 3: measuring the performance in non adversarial environment with training in augmented
data.

Comparing the performance of the classifiers trained on the augmented database in non adversarial envi-
ronment (first rows of Tables 4 and 5) with their performance when trained on initial training data-sets (first
row of the sub-tables 3), we notice that the performance of most of them (Bagging, DT, DNN, RF) has re-
mained stable on NSL-KDD data-set. The performance of Adaboost increased from 55.13% to 66.33%, but
the performance of LR and SVC deceased from 75% to 67.27% and from 74.29% to 65.36% respectively.
The FNR results (first row of Table 4) reflect the same conclusions. The performance degradation is more
noticeable in the UNSW-NBI1S5 base.

5.2.2. Scenario 4: measuring the impact of defence techniques.
5.2.2.1. Accuracy. The results are shown in the third sub-tables and will be compared to the results of the
first sub-tables, where the accuracy was measured without applying defence techniques.

e Gaussian noise attack: The defence technique has improved the robustness of most classifiers. The
improvement is even more remarkable for a Gaussian perturbation of high intensity (o = 0.2). The
improvement is almost perfect for SVC and LR that have become more robust but at the cost of
a degradation in performance, even in non adversarial conditions. More interesting, the DNN has
become more robust while keeping almost the same original performance on NSL-KDD data-set, it
is the classifier that has the best accuracy under normal and adversarial conditions on NSL-KDD
data-set.

o Gray/black-box attacks: The defence technique has different effects depending on the classifier. For
example on the NSL-KDD data-set: i) it contributes to the improvement of the robustness for some
classifiers as for LR and SVC whose accuracy decreased, compared to the baseline performance,
by only 55.3% and 53.8% (resp.) when confronted to a Boundary attack, versus 67% and 66.8%
(resp.) of decrease before having applied the defence technique. ii) it degrades the robustness of some
algorithms as it is the case for Adaboost whose accuracy decreases by 53% for a Boundary attack
instead of 22% without defence. iii) the defence technique has very little effect on the other classifiers
who have kept almost the same level of robustness as before. The behavior of the classifiers is similar
in both databases.

o White-box attacks: The defence technique is effective for almost all the classifiers against the FGSM,PGD
and BIM. As for JISMA, the robustness is also improved for all classifiers, and Gradient Boosting has
the best performance. The behavior of the classifiers is similar in both databases.

15



5.2.2.2. False Negative Rate. The results are shown in the fourth sub-table, and will be compared with the
second sub-tables, where the FNR is measured without defence technique.

o Gaussian Noise attack: The increase of the FNR is less important with the defence technique for most
of the algorithms thus their robustness has improved. However, the ability of these classifiers to block
malicious traffic has decreased overall, for example for SVC, the FNR is 50% while it did not exceed
37.52% without defence on NSL-KDD. Moreover, the defence technique did not improve the perfor-
mance Gradient Boosting and RF on NSL-KDD since their FNR increases from 10.2% to 48.51% and
from 45.07% to 55.51% respectively, thus more malicious traffic was blocked without defence. DNN
has the lowest FNR (the decrease in FNR does not exceed 2.8%) and a very good robustness. The de-
fence technique has improved its robustness.Curiously, the defence method decreased the robustness
of some algorithms to Gaussian noise attacks on UNSW-NB15 (FNR increases more) as is the case
for DT, Gradient Boost and Adaboost.

o Gray/black-box attacks: on NSL-KDD data-set, the defence has degraded the robustness of Adaboost
against Boundary and HopSkipJump (FNR increases by 49% while the increase was limited to 3.1%
before defence). It slightly improved the robustness of Bagging, DNN,RF). The improvement is more
significant for LR and SVC. FNR increased by only 52% and 49% for LR and SVC respectively,
compared to an increase by 62% for both without defence. On the UNSW-NB15 data-set, the defense
method proved to be effective and significantly improved the robustness of the classifiers in terms of
FNR.

e White-box attacks: After defence, the robustness of the classifiers for FGSM, PGD, BIM and C&W is
stable on NSL-KDD, as the classifiers are already quite robust. But the improvement of the robustness
is more visible for JSMA, although the global performance has degraded for most of the classifiers
(higher FNR, compared to Table 2). The defense method was not effective on UNSW-NB15 and even
degraded the performance of some classifiers (e.g. Gradient Boost, DT).

5.3. Analysis and Discussion
In this section we summarize and discuss our findings.

5.3.1. Global conclusions
e An attack does not impact all classifiers in the same way. Similarly, the robustness of a classifier
depends on the attacks. In the same sense, a defence technique is not effective against all attacks
and does not have the same effect on different classifiers (it can improve or decrease the classifier’s
robustness or be ineffective). Similarly, the behavior of a classifier when faced with an attack or a
defense method depends on the database.

o The robustness and overall performance of classifiers can be contradictory. As seen in the results on the
NSL-KDD data-set, Adaboost is a very robust classifier, but does not have high accuracy Conversely,
DNN is very efficient but is the most vulnerable to ZOO attack. Therefore, depending on the situation
and need of the IDS, robustness or performance can be privileged. Namely, if the IDS operates in
a certain environment, it is natural to favor performance, however, if the environment is uncertain,
robustness becomes important. Similarly, defence techniques can improve the robustness of classifiers
but at the cost of degrading their performance. Thus, a trade-off between these two objectives must
be considered. A good defence technique, improves the robustness of the classifier without degrading
its performance. In addition, the effectiveness of a defense method against a database attack can vary
from database to database.
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5.3.2. Specific remarks
o Attacks of the same family (Boundary and HopSkipJump) have the same impact on each classifier.

e Sometimes, an attack can have an opposite effect: the Gaussian noise attack improved Adaboost’s
performance on NSL-KDD. In addition to mis-classifying more malicious traffic as legitimate, which
is the main objective of an adversarial IDS attack, an adversary attack can also increase the False
Alarms rate, as was the case with Gradient Boosting against Gaussian noise.

o Boundary and HopSkipJump attacks succeed in mis-classifying 100% of the malicious traffic on NSL-
KDD.

e The Gaussian data augmentation defence was especially effective on the Gaussian noise attack proba-
bly because they are of the same family.

o A defense method can even degrade the robustness of a classifier (e.g. DT against white box attacks
on the UNSW-NB15), so it must be chosen appropriately.

It is also interesting to note that in our experiment, gray/back-box attacks are more effective than white-
box attacks, which is counter-intuitive since the latter have access to more information about the classifier.
This can be explained by the fact that gray/back-box attacks were applied directly on the classifiers while
white-box attacks were applied on a Generator network. On the other hand, the performance of the attacks
strongly depends on the setting of the hyper parameters. A better setting of the hyper-parameters would
probably enhance the performance of white-box attacks.

5.4. Comparison with the state of the art

As mentioned in 3.4, the paper [56] is the closest to our work since, like us, the authors evaluate the
robustness of shallow classifiers against state of the art adversarial attacks using the NSL-KDD database.

Since the hyper-parametric information is unavailable in [56], in addition to the difference in the list
of classifiers and attacks considered, we opt for qualitative comparison our evaluation framework with the
approach presented in [56].

The authors of [56] evaluate the robustness of 3 shallow classifiers (LR, RF,SVM) against three adversar-
ial white-box attacks (FGSM, PDG, L-BFGS) and a black-box attack SPSA, and do not propose a defence
method (Cf. Table 1). This paper, however, evaluates a richer and more varied collection of ML classi-
fiers (Adaboost, Bagging, DT, GB, LR, RF, SVC), against more varied and numerous adversarial attacks
(Gaussian noise, White-box attacks: FGSM,PGD,BIM,C&W, JSMA, Gray/black-box attacks: Zoo, Bound-
ary, HopSkipJump). Moreover, we complete our study by evaluating the impact of a defence technique
(Gaussian data augmentation) on the improvement of the robustness of the classifiers. This allowed us to
draw interesting conclusions about the trade-off between robustness and accuracy of classifiers, as discussed
above. Note, however, that the results obtained in [56] confirm our findings regarding the vulnerability of
ML classifiers to different attacks with varying degrees of sensitivity.

6. Discussion

In this work, changes on the input samples are made on the feature vector, however, an attacker does
not have access to the input feature vector of the ML algorithm to be able to modify it, but instead must
generate actual traffic that respects the features described by the feature vector generated by the adversarial
attack (FGSM, PGD, etc.). This traffic must also retain its original functionality (malicious or benign).
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This transition from feature vector to actual instance is referred to in the literature as the "feature space” to
"problem space" transition [57], it is specific to certain data types, where unlike images, this transition is not
trivially reversible, and can be complex.

One way to facilitate this transition is to judiciously perform some modifications on the original traffic
sample, in order to obtain a sample with characteristics close to those of the perturbed sample (generated
adversary sample), without altering the primary function of the traffic. Examples of possible manipulations
include i) filling and fragmenting or duplicating protocol data units (PDUs, e.g. packet, segment, datagram,
etc.) to modify their volumetric characteristics (e.g. flow size, number of packets, etc.), ii) delaying the
transmission of PDUs, to act on their temporal characteristics (e.g. inter-arrival time of packets), iii) modi-
fying the values of some fields, etc. In order not to alter the main function of the traffic, the modifications
must be made only on the fields that do not have an impact on this function. To do this, the PDU manipu-
lation tools need to be explored and improved. Fortunately, there are already promising tools such as Scapy
[61] which is a packet manipulation program. Custom synthetic traffic generators [2] can also be explored.

7. Conclusion and future work

This paper focuses on the research area of adversarial machine learning. We study the robustness of vari-
ous widely used ML classifiers against adversarial examples in the context of network IDS. We consider both
gray/black-box and white-box attacks. A DNN-based external classifier has been used to generate white-box
based adversarial examples. In addition, we studied the impact of a defence technique based on Gaussian
data augmentation to improve the robustness of different NIDS. For the evaluation, we consider both the
accuracy and the false negative rate. The latter measures the percentage of malicious traffic that successfully
bypasses the NIDS. The NSL-KDD benchmark data-set was used for the evaluation. The results show that
attacks do not have the same impact on all classifiers and that the robustness of a classifier depends on the
attack. Similarly, a defence technique is not effective for all classifiers, nor against all attacks. Further-
more, a defence technique may improve the robustness of a classifier but degrade its overall performance,
so a trade-off between performance and robustness must be considered depending on the NIDS application
scenario.

In future work, we intend to generate more realistic adversarial attacks that project more easily into
the problem space. To do so, we will follow some recommendations found in the literature, [70, 65, 44],
namely 1) restrict the space of features to be perturbed, i.e., avoid perturbing non-differentiable features so
that the transformation is reversible, and the features directly related to the functionality of the flow so as
not to impact it, ii) perform small amplitude perturbations and check that the values of the modified features
remain valid (domain constraints), and iii) analyze the consistency of the values taken by the correlated
features.
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Table 1: Summary of research works related to Document Alignment
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Table 2: Summary of results for evaluation scenario 2

Behavior against a Gaussian noise attack

DT and GB are very vulnerable compared to other classifiers
For GB the attacks have caused an increase in False alarms.
Adaboost is the most robust although it has the worst performance in the baseline scenario.

The classifiers classify more malicious traffic as legitimate on UNSW-NB15 than on NSL-KDD (high false negative rates),
especially for Bagging and Random Forest.

Behavior against Gray/black-box attacks
The performance of the classifiers drops drastically when faced to HopSkipJump and Boundary attacks
Classifiers are rather robust to ZOO attack.
DNN with the best baseline performance, is the most vulnerable to the ZOO attack.

Adaboost is robust to three gray/back-box attacks on the NSL-KDD but extremely sensitive to Boundary and HopSkipJum
attacks on the UNSW-NBI15.

From the point of view of accuracy, the classifiers have the same behavior against attacks in both databases. However, the
behavior of FNR is different from one database to the other: it increases for most of the classifiers on the NSL-KDD database,
but remains very low for some classifiers (DNN, LR, RF SVC) on the UNSW-NB15 database.

Behavior against white-box attacks

Classifiers are rather robust to FGSM, PGD, BIM and C&W attack also has a very similar effect.
JSMA is the most powerful attack.
Adaboost and RF are the only classifiers that are robust to all white box attacks.

The classifiers were more vulnerable to these attacks on the UNSW-NB 15 database than on the NSL-KDD database, for bothe
the accuracy and False Negative Rate.
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Table 3: Summary of results for evaluation scenario 4

Behavior against a Gaussian noise attack

The defence technique has improved the robustness of most classifiers.
The robustness of SVC and LR has improved but at the cost of performance degradation.

The robustness of the DNN has been improved on NSL-KDD dataset while maintaining its good performance, thus DNN has
the best accuracy under normal and adversarial conditions.

The defence method decreased the robustness of some algorithms on the UNSW-NB15 (FNR increases more) as is the case
for DT, Gradient Boost and Adaboost.

Behavior against Gray/black-box attacks
The robustness of Bagging, DT, LR,SVC has improved on NSL-KDD dataset
The robustness of Adaboost has decreased on NSL-KDD dataset

The defence technique has almost no effect on other classifiers. In terms of FNR, the defense method was more effective on
the UNSW-NB15 basis, than NSL KDD (FNR rates are lower).

Behavior against white-box attacks

The robustness of classifiers against FGSM, PGD, BIM attacks is almost the same since they are already quite robust.

Robustness against JSMA has improved for most classifiers but at the cost of performance degradation for most of them. In
terms of FNR, the defense method was not effective on UNSW-NB15 and even degraded the performance of some classifiers
(e.g. Gradient Boost, DT).
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Table 4: Evaluation Results NSL-KDD

| Attack | Adaboost | Bagging | DTree | DNN | Grad. Boos. | Logistic Regression | Random Forest | SvC
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Table 3  Accuracy (Train: Augmented data-set, Test: NSL-KDD Testt) Vs (Train: Augmented data-set, Test: Adversarial data-set)
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Table 5: Evaluation Results UNSW-NB15

‘ Attack ‘ Adaboost ‘ Bagging ‘ DTree ‘ DNN ‘ Grad. Boos. ‘ Logistic Regression ‘ Random Forest ‘ SvC
Table 1 Accuracy (Train: NSL-KDD Train™, Test: NSL-KDD Test™) Vs (Train: NSL-KDD Train™, Test: Adversarial data-set)
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