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Abstract: This article deals with a general description of Angular Quasi-Phase-Matching (AQPM)
in uniaxial and biaxial crystals for second-order nonlinear optical interactions. Such an exhaustive
and generalized angular-dependent approach of AQPM reveals new directions of propagation with
efficient parametric frequency conversion. These AQPM solutions are studied by depicting the
corresponding topologies and associated symmetries. The theoretical overview is fully validated and
illustrated by measurements. We clearly demonstrate the benefits of such a generalized approach,
both in the case of two emblematic periodically poled (PP) crystals: 5%MgO-doped PPLiNbO3

(5%MgO:PPLN) and Rb-doped PPKTiOPO4 (PPRKTP). These developments should stimulate new
potential applications in nonlinear frequency conversion.

Keywords: nonlinear optics; frequency conversion; quasi-phase-matching; periodically poled crys-
tals; second-harmonic generation; optical parametric oscillators

1. Introduction

Efficient parametric nonlinear optical interactions are usually achieved thanks to
birefringence phase-matching (BPM) in anisotropic monolithic crystals [1–5] or quasi-
phase-matching (QPM) in crystals where the sign of the coefficients of the second-order
electric susceptibility tensor can be periodically reversed [2,6–10].

As the first periodically poled KTiOPO4 (PPKTP) and LiNbO3 (PPLN) crystals had
very limited aperture sizes of about 500 µm, interacting beams could only propagate along
a unique direction that is orthogonal to the inverted domains planes, providing QPM
along the grating period only. Advances in the poling process have led to longer and
larger samples, allowing us to shape these periodically poled crystals as cylinders with
centimetric diameters but still with sub-millimetric depth [11,12]. Such a cylindrical shape
provides the possibility of a continuous variation of the angle between the direction normal
to the inverted domains planes and the input laser beams propagation axis, leading to
a remarkable improvement in the continuity of the spectral tunability and the output
beam quality [11,12]. Further progress led to a thickness perpendicularly to the grating
vector reaching more than 5 mm both in 5%MgO-doped PPLiNbO3 (5%MgO:PPLN) and
Rb-doped PPKTiOPO4 (PPRKTP) [13,14]. It provided access to any direction of propagation
of the input beams in the crystal with respect to the grating vector by keeping a sufficiently
long interaction length. We called such a configuration angular quasi-phase-matching
(AQPM), which led to a first step in the generalization of the QPM concept [15]. We
showed that AQPM is well described by a collinear configuration between the wave
vectors of the three interacting waves [11,15]. We also performed calculations in the case of
5%MgO:PPLN, which belongs to the uniaxial optical class. These studies have shown that
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AQPM can provide larger spectral tunability and acceptances than those of BPM or QPM
along the grating vector [15]; exhaustive calculations of spectral and angular tolerances
have enlightened the diversity of AQPM potentials [16]. Moreover, we performed the first
experimental demonstrations of the existence of AQPM directions, which were carried
out by studying a millimetric 5%MgO:PPLN crystal cut as a sphere [17]: these results
confirmed the theoretical AQPM description proposed by references [11,15,16], and also led
to the refinement of the Sellmeier equations of the crystal. We also proposed an exhaustive
determination and classification of the AQPM directions in uniaxial periodically poled
crystals, reporting up to 74 classes of solutions and thus illustrating the impressive richness
of AQPM interactions [18]. AQPM Second-Harmonic Generation (SHG) in a 25◦-rotated,
x-cut PPLiTaO3 has also been achieved [19]. More recently, we verified the AQPM theory
in the case of the biaxial optical class by performing SHG measurements in a PPRKTP
crystal cut as a sphere [20]. We used the same sample to introduce a negative order AQPM
SHG [21].

In this paper, we provide a unified theoretical description of positive and negative
orders AQPM using group theory. The spaces of AQPM directions are then described and
analyzed, including polarization dependence, topology and associated symmetry aspects.
Moreover, such a generalized AQPM approach is applied to 5%MgO:PPLN and PPRKTP,
with accessible poling periodicities, in order to provide their potential interest.

2. Generalized AQPM

We consider three interacting waves at wavelengths λ1, λ2 and λ3 with collinear wave

vectors
→
k1,
→
k2 and

→
k3, respectively. As described in ref. [15], a periodically poled medium

with a periodicity Λ is characterized by an effective periodicity Λ(α) along the direction of
propagation of the interaction, where α is the angle between the propagation direction of
the three interacting wave vectors and the normal direction to the poled domains, as shown

in Figure 1a. Such an effective periodicity implies an effective grating vector
→

kΛ(α) along
the corresponding direction of propagation. We proposed the following generalized AQPM
vector relation, which asserts a double criterion to perform momentum conservation during
the considered nonlinear frequency conversion processes, i.e.,

→
k3 −

→
k1 −

→
k2 ∓

→
kΛ(α) = 0. (1)

We call these two AQPM conditions scheme-A AQPM for equation
→
k3 −

→
k1 −

→
k2 −

→
kΛ(α) = 0, i.e., positive order AQPM, and scheme-B AQPM for

→
k3 −

→
k1 −

→
k2 +

→
kΛ(α) = 0,

i.e., negative order AQPM: these two relations are depicted in Figure 1b,c, respectively.
scheme-A AQPM has already been introduced in ref. [15] and scheme-B AQPM in ref. [21].

Equation (1) can be reduced to a scalar relation along the direction of propagation of
unit vector

→
s (θ, φ), where the phase-mismatch between the nonlinear polarization and the

incident interacting waves is ∆k(θ, φ) = k3 − k1 − k2. The corresponding coherence length
of the interaction is lc(θ, φ) = π

|∆k(θ,φ)| ; it is a positive quantity, as the effective periodicity
Λ(θ, φ). Then, AQPM interactions may occur with ∆k(θ, φ). lc(θ, φ) = +π when ∆k(θ, φ) > 0,
or ∆k(θ, φ). lc(θ, φ) = −π when ∆k(θ, φ) < 0, knowing that Λ(θ, φ) = 2lc(θ, φ) = 2π

|∆k(θ,φ)| .
The latter equation is thus a double condition that corresponds to scheme-A AQPM when
Λ(θ, φ) = + 2π

∆k(θ,φ) with ∆k(θ, φ) > 0, and to scheme-B AQPM when Λ(θ, φ) = − 2π
∆k(θ,φ) with

∆k(θ, φ) < 0. As already defined in ref. [15,21], the domains are set orthogonal to the x-axis
so that the effective periodicity is Λ(θ, φ) = Λ

|sinθcosφ| , leading to the effective grating vector
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→
k Λ(θ,φ) =

2π
Λ(θ,φ)

→
s (θ, φ). In such a context, Equation (1) reduces to ∆k(θ, φ) = ± 2π

Λ(θ,φ) in the
→
s (θ, φ) direction, i.e., to the following double scalar equation:

n3(θ, φ)

λ3
− n1(θ, φ)

λ1
− n2(θ, φ)

λ2
∓ 1

Λ(θ, φ)
= 0, (2)

where ni(θ, φ) is the refractive index in the
→
s (θ, φ) direction associated with the interacting

wavelength λi, with i = 1, 2, 3. In this scalar description, scheme-A and scheme-B AQPM
conditions are described by n3(θ,φ)

λ3
− n1(θ,φ)

λ1
− n2(θ,φ)

λ2
− 1

Λ(θ,φ) = 0 and n3(θ,φ)
λ3
− n1(θ,φ)

λ1
−

n2(θ,φ)
λ2

+ 1
Λ(θ,φ) = 0, respectively. It is important to notice that AQPM processes may be

understood as a continuous evolution of the phase-mismatch from 0 to +π or to −π when
the distance of propagation continuously evolves from 0 to lc(θ, φ). The phase-mismatch
is then followed by a sudden phase shift of ±π at the crossing propagation through a
given poled domain to the next inverted one: this phase shift resets in phase the nonlinear
polarization and the radiated field at the entrance of each inverted domain, for both APQM
schemes A and B, as illustrated in Figure 2a,b, respectively.
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Figure 1. Collinear APQM configuration. (a) Scheme of the periodically poled medium with an
inverting periodicity Λ and poled domain set to be orthogonal to the x-axis of the (x, y, z) dielectric
frame of the medium.

→
s is the unit vector of the propagation direction of the three interacting waves;

θ and φ are the angles of spherical coordinates of the propagation direction; α is the angle between

the unit vector of the propagation direction
→
s and the x-axis direction.

→
kΛ(α) is the effective grating

vector along the propagation direction;
→
k1,
→
k2 and

→
k3 are wave vectors of the interacting waves:

(b) scheme-A APQM relation; (c) scheme-B APQM relation.
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Figure 2. Phase mismatch evolution during a single sequence of AQPM with continuous evolution
during continuous propagation along a single coherence length lc, followed by a discontinuous phase
reset at the immediate propagation from one domain to the next inverted one: (a) scheme-A AQPM;
(b) scheme-B AQPM.

Note that BPM is included in both scheme-A and scheme-B AQPM conditions. Gen-
eralized AQPM conditions correspond to BPM when Λ(θ, φ)→ ∞ in the yz-plane of the
dielectric frame when the grating period is along the x-axis. Moreover, scheme-A and
scheme-B AQPM tend to have the same single degenerated equation ∆k(θ, φ) = ±0 when
Λ(θ, φ)→ ∞ .

Equation (2) reveals the potential richness of generalized AQPM as it shows the
combination of the angular tunability of the involved refractive indices and the effective
periodicity with both θ and φ spherical angles.

From the corpuscular point of view, the AQPM condition
→
∆kAQPM =

→
∆k − m

→
kΛ =

→
k3 −

→
k1 −

→
k2 −m

→
kΛ =

→
0 , with m = ± 1, corresponds to momentum conservation between

three photons and a quasi-particle depicting the periodically poled crystal through its

grating vector
→
kΛ, the latter bringing no energy. In the case m = 1 (scheme-A), three

particles with
→
k1,

→
k2 and

→
kΛ are “consumed” to produce the new particle with the wave

vector
→
k3 =

→
k1 +

→
k2 +

→
kΛ; this is somehow equivalent to what occurs while considering

Third-Harmonic Generation (THG) governed by the third-order electric susceptibility. Case

m = −1 (scheme-B) deals with two particles
→
k1 and

→
k2 that are “consumed” to produce

a new pair of particles, one being the new photon associated with
→
k3 and the other one

being the energy-less quasi-particle bearing the momentum quantum
→
kΛ transferred to
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the grating, with
→
k3 +

→
kΛ =

→
k1 +

→
k2; this is similar to another four-particle interaction

corresponding to Four-Wave Mixing (FWM) [21].

3. Polarization Configurations and Effective Coefficient

Due to the usual normal dispersion of the refractive indices with wavelength, i.e., ∂ni
∂λi

< 0 [22],

the phase-mismatch in the propagation direction
→
s (θ, φ) is positive, i.e., ∆k(θ, φ) = +2π

Λ (θ, φ) > 0,
in the case of scheme-A AQPM, as seen above. However, the angular dependence of the grating
term 1

Λ(θ, φ) can afford AQPM solutions for Equation (2) for any of the 23 possible polarization
configurations of the three interacting waves: indeed, for each propagating wavelength λi, there
are two possible refractive indices n+i (θ, φ) and n−i (θ, φ), with n+i (θ, φ) > n−i (θ, φ). Then, the
eight types are: I {n−3 ; n+1 , n+2 }, II {n−3 ; n−1 , n+2 }, III {n−3 ; n+1 , n−2 }, IV {n−3 ; n−1 , n−2 }, V {n+3 ; n+1 , n+2 }, VI
{n+3 ; n−1 , n+2 }, VII {n+3 ; n+1 , n−2 } and VIII {n+3 ; n−1 , n−2 } [15]. Note that types II and III are equivalent in
the case of SHG, which is the same for types VI and VII. In the BPM case, the solutions are limited
to types I, II and III [3]. In the case of scheme-B AQPM, the phase-mismatch along

→
s (θ, φ) is

negative, i.e., ∆k(θ, φ) = −2π
Λ (θ, φ) < 0. Due to a continuous spectral dispersion of the refractive

indices n±i , and the continuous angular dependence of both the refractive indices and the effective
grating periodicity, the phase-mismatch ∆k(θ, φ) necessarily presents a continuous spectral and
angular dependence. Therefore, the existence of BPM solutions implies the existence of negative
values for ∆k(θ, φ), which is a necessary and sufficient condition to have access to scheme-B
AQPM solutions of Equation (2). This implies that scheme-B AQPM is restricted to the three types
that are also accessible under BPM conditions, i.e., types I, II and III. It appears here that scheme-B
AQPM does not increase the number of possible types, nor does it enlarge the spectral tunability
of solutions with respect to BPM solutions. However, the interest of scheme-B AQPM is that such
a scheme provides new AQPM directions, which can enlarge the angular tunability of AQPM.

The efficiency of the eight types of generalized AQPM interactions presents angu-
lar and spectral dependences, but it also depends on the involved effective coefficient
χAQPM

e f f = χ(2)•
(→

e3 ⊗
→
e1 ⊗

→
e2

)
[23]. Here,

→
e1,
→
e2 and

→
e3 are the unit field vectors of the three

interacting waves; χ(2) is the second-order electric susceptibility tensor described by a ma-
trix with 27 elements; (•) and (⊗) stand for contracted and tensorial products, respectively.
The general expressions of the effective coefficient of SHG corresponding to the different
types are provided in Table 1 for the crystal class 3m and the negative uniaxial optical class,
which corresponds to the case of 5%MgO:PPLN: the extraordinary (e) and ordinary (o)
principal refractive indices verify ne < no. Tables 2–4 concern the crystal class mm2 and the
positive biaxial optical class, which is the case of PPRKTP: the principal refractive indices
verify nx < ny < nz. In both cases, we applied symmetry due to the equality between two
frequencies in SHG, i.e., χijk(2ω = ω + ω) = χikj(2ω = ω + ω) [23].

Note that type IV is extensively used for propagation along the x-axis, i.e., along
the grating vector, for both 5%MgO:PPLN and PPRKTP since, in that case, the effective
coefficient depends on χzzz only which magnitude is the highest [6,10–12,15]. However,
as shown in the following, the effective coefficient is not the only parameter to consider.
Actually, spectral acceptance can be of prime importance, especially in the case of the
picosecond or femtosecond regimes. This point is discussed in more detail in Section 5.
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Table 1. Effective coefficients of AQPM SHG corresponding to all possible configurations of po-
larization for AQPM SHG for the crystal class 3m and the negative uniaxial optical class, which is
the case of 5%MgO:PPLN. The χijk ’s stand for the independent coefficients of the second-order
electric susceptibility tensor at 2ω. ρω and ρ2ω are the double refraction angles of the fundamental
and second-harmonic waves, respectively. (o) and (e) stand for the ordinary and extraordinary
polarizations, respectively.

Type
(2ωωω) χ(2)

eff

I
(e o o)

2
π

{
χyyycos(θ + ρ2ω)sin(φ)

[
1− 4cos2(φ)

]
+ χzxxsin(θ + ρ2ω)

}
II = III
(e e o)

2
π χyyycos(θ + ρ2ω)cos(θ + ρω)cos(φ)

[
4sin2(φ)− 1

]
IV

(e e e)
2
π


−χyyycos(θ + ρ2ω)cos2(θ + ρω)sin(φ)

[
1− 4cos2(φ)

]
+2χxxzcos(θ + ρ2ω)sin(θ + ρω)cos(θ + ρω)

+sin(θ + ρ2ω)
[
χzxxcos2(θ + ρω) + χzzzsin2(θ + ρω)

]


V
(o o o)

2
π χyyycos(φ)

[
1− 4sin2(φ)

]
VI = VII
(o e o)

2
π

{
χyyycos(θ + ρω)sin(φ)

[
1− 4cos2(φ)

]
+ χxzxsin(θ + ρω)

}
VIII

(o e e)
2
π χyyycos2(θ + ρω)cos(φ)

[
4sin2(φ)− 1

]

Table 2. Effective coefficient of AQPM SHG corresponding to all possible configurations of polariza-
tion for AQPM SHG in the yz-plane of the crystal class mm2 and the positive biaxial optical class,
which is the case of PPRKTP. The χijk ’s stand for the independent coefficients of the second-order
electric susceptibility tensor at 2ω. ρω and ρ2ω are the double refraction angles of the fundamental
and second-harmonic waves, respectively. (o) and (e) stand for the ordinary and extraordinary
polarizations, respectively.

yz-Plane

Type
(2ωωω) χ(2)

eff

I
(o e e) 0

II = III
(o o e)

2
π χxxzsin(θ − ρω)

IV
(o o o) 0

V
(e e e)

2
π

[
2χyyzcos(θ − ρ2ω)cos(θ − ρω)sin(θ − ρω)

+sin(θ − ρ2ω)
(

χzyycos2(θ − ρω) + χzzzsin2(θ − ρω)
) ]

VI = VII
(e o e) 0

VIII
(e o o)

2
π χzxxsin(θ − ρ2ω)
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Table 3. Effective coefficient of AQPM SHG corresponding to all possible configurations of polariza-
tion for AQPM SHG in the xy-plane of the crystal class mm2 and the positive biaxial optical class,
which is the case of PPRKTP. The χijk ’s stand for the independent coefficients of the second-order
electric susceptibility tensor at 2ω. ρω and ρ2ω are the double refraction angles of the fundamental
and second-harmonic waves, respectively. (o) and (e) stand for the ordinary and extraordinary
polarizations, respectively.

xy-Plane

Type
(2ωωω) χ(2)

eff

I
(o e e) 0

II = III
(o o e)

2
π

[
χxxzsin(φ− ρ2ω)sin(φ− ρω) + χyyzcos(φ− ρ2ω)cos(φ− ρω)

]
IV

(o o o) 0

V
(e e e)

2
π χzzz

VI = VII
(e o e) 0

VIII
(e o o)

2
π

[
χzxxsin2(φ− ρω) + χzyycos2(φ− ρω)

]

Table 4. Effective coefficient of AQPM SHG corresponding to all possible configurations of polariza-
tion for AQPM SHG in the xz-plane of the crystal class mm2 and the positive biaxial optical class,
which is the case of PPRKTP. The χijk ’s stand for the independent coefficients of the second-order
electric susceptibility tensor at 2ω. ρω and ρ2ω are the double refraction angles of the fundamental
and second-harmonic waves, respectively. (o) and (e) stand for the ordinary and extraordinary
polarizations, respectively. Vz(ω) and Vz(2ω) are the optical axes at ω and 2ω, respectively, with
Vz(ω) < Vz(2ω) in the case of PPRKTP.

xz-Plane

Type
(2ωωω) χ(2)

eff

I
(e o o)
(o e e)

0 < θ < Vz(ω)
Vz(2ω) < θ < 90◦

2
π χzyysin(θ − ρ2ω)

0

II = III
(e e o)
(o o e)

0 < θ < Vz
Vz(2ω) < θ < 90◦

0
2
π χyyzsin(θ − ρω)

IV
(e e e)
(o o o)

0 < θ < Vz(ω)
Vz(2ω) < θ < 90◦

2
π

 2χxxzcos(θ − ρ2ω)cos(θ − ρω)sin(θ − ρω)

+sin(θ − ρ2ω)

(
χzxxcos2(θ − ρω)+
χzzzsin2(θ − ρω)

) 
0

V
(o o o)
(e e e)

0 < θ < Vz(ω)
Vz(2ω) < θ < 90◦

0

2
π

 2χxxzcos(θ − ρ2ω)cos(θ − ρω)sin(θ − ρω)
+sin(θ − ρ2ω)(

χzxxcos2(θ − ρω) + χzzzsin2(θ − ρω)
)


VI = VII
(o e o)
(e o e)

0 < θ < Vz(ω) 2
π χyzysin(θ − ρω)

Vz(2ω) < θ < 90◦ 0

VIII
(o e e)
(e o o)

0 < θ < Vz(ω) 0

Vz(2ω) < θ < 90◦
2
π χyyysin(θ − ρ2ω)
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4. Symmetry and Topology Analyses
4.1. Symmetry Group Approach

We are interested in the symmetry groups GAQPM of the space of solutions of scheme-
A and scheme-B AQPM, i.e.,

→
s A(θ, φ) and

→
s B(θ, φ). These groups can be built on the basis

of the symmetry groups G3, G1, G2 and GΛ of the four surfaces associated with the four
parts of Equation (2): n3(θ,φ)

λ3
, n1(θ,φ)

λ1
, n2(θ,φ)

λ2
and 1

Λ(θ,φ) . Then, comes [15]:

GAQPM = G3 ∩ G1 ∩ G2 ∩ GΛ. (3)

Group GΛ corresponds to a finite closed surface that belongs to the infinite group of
orientation symmetry of the cylinder with the axis of revolution along the x-axis [15,23],
i.e., GΛ = Gcylinder//x. The angular distributions of the terms ni(θ,φ)

λi
, with i = 1, 2 and 3, are

related to the index surface at the proper wavelength and the proper polarization, which
thus requires to specify the optical class as described below.

In the case of periodically poled uniaxial crystals such as 5%MgO:PPLN [15], the
index surface is composed of one ordinary layer and one extraordinary layer of principle
refractive indices no and ne, respectively [23]. Note that (ne, no) correspond to (n−, n+)
because 5%MgO:PPLN is a negative uniaxial crystal. The ordinary layer is a sphere of
radius no(θ, φ) = no, which group of symmetry is Gsphere; the extraordinary layer is an

ellipsoid of revolution around the z-axis of equation n−2
e (θ, φ) =

(
cosθ
no

)2
+
(

sinθ
ne

)2
that

belongs to the group of the cylinder, as for the grating, but with the revolution axis along
the z-axis, i.e., Gcylinder//z [15,24]. Two situations can occur depending on the involved
refractive index layers and associated type of interaction.

• The first case is that of type V, where the three interacting waves solicit the ordi-
nary index layer so that the AQPM symmetry group restricts to GAQPM = Gsphere ∩
Gcylinder//x = Gcylinder//x.

• The second case deals with the seven other types that involve at least one polarization
mode related to the extraordinary index layer, i.e., types I, II, II, IV, VI, VII and
VIII. Here, the symmetry group GAQPM is provided by GAQPM = Gcylinder//x ∩
Gcylinder//z = mmm, where mmm is the finite group of orientation symmetry of the
orthorhombic system: it corresponds to the three mirrors m with respect to the three
principal planes of the dielectric frame.

Finally, biaxial periodically poled media, such as PPRKTP, exhibit the mmm symmetry
group for each refractive index layer of the index surface so that the associated symmetry
group are always mmm. Thus, the resulting symmetry group associated with Equation (3)
is always GAQPM = mmm∩ Gcylinder//x = mmm, whatever the considered type among the
23 = 8 possible polarization combinations of the considered scheme A or B.

Note that for both uniaxial and biaxial periodically poled media, scheme-A AQPM
applies for the eight possible types of interaction, with spaces of solutions

→
s A(θ, φ) asso-

ciated with the detailed groups of symmetry. As scheme-B AQPM is restricted to types
I, II and III, spaces of solutions

→
s B(θ, φ) are thus always restricted to the mmm symmetry

group. Thus, when used simultaneously for a given type, both scheme-A and scheme-B
AQPM spaces of solutions share the same symmetry group, as these two schemes share the
same polarization configuration.

4.2. Topologies of Generalized AQPM

As already defined, spaces of AQPM solutions
→
s (θ, φ) correspond to the spherical

angles (θ, φ) being solutions of Equation (1). These angular solutions can be depicted
in Cartesian representation, such as curves θ(φ) (or φ(θ) equally). Alternatively, there
is another suited representation known as the Wulff diagram, which corresponds to a
stereographic projection of one octant of a sphere in a plane, as shown in Figure 3.
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Figure 3. Wulff diagram (right) providing a useful planar representation of one octant (left) where
boundaries correspond to the three principal planes of the dielectric frame. (O,x,y,z) is the dielectric
frame and (θo, φ0) are spherical angles of unit vector

→
s 0 standing for any direction of propagation.

For a given set of wavelengths (λ1, λ2, λ3), the AQPM directions
→
s AQPM(θ, φ) form

cones of circular or non-circular contours that wrap around specific axes. Their topologies
and orientations depend on the relations of order, regarding the wavelength dispersion
and configuration of polarization, between the three quantities that constitute Equation (2),
i.e., n3(θ,φ)

λ3
,
(

n1(θ,φ)
λ1

+ n2(θ,φ)
λ2

)
and ∓ 1

Λ(θ,φ) as explained in [14,17] in the case of scheme-A
for the uniaxial optical class.

There is no question here of repeating these explanations for scheme-A in uniaxial
crystals. In summary, there are three possible winding directions as depicted in Figure 4:
along the x-axis (topology TA

x ), a given direction of the xz-plane (topology TA
x ) and the

z-axis (topology TA
z ). The contours of the cone are generally not circular, except in the case

where the three interacting waves are ordinary polarized, i.e., either for type IV in the case
of positive uniaxial media or for type V according to Table 1 in the case of negative uniaxial
media. In the latter negative uniaxial case, the cones belong to the group Gcylinder//x, while
the symmetry is mmm for all the other cases since there is at least one extraordinary wave.
Note that for BPM in uniaxial media, there is only one possible topology that corresponds
to a circular cone oriented along the z-axis [3], as shown in Figure 4; the symmetry group is
then Gcylinder//z.

The topology concerning scheme-B AQPM can be easily found without any calculation.
It is indeed sufficient to consider the topological continuity between AQPM and BPM. Both
scheme-A and scheme-B AQPM tend to BPM when the propagation occurs in the yz-
plane of the periodically poled crystal since it corresponds to an infinite poling period
Λ(θ, φ = π/2)→ ∞ : then 1/ Λ→ 0 in Equation (1), which corresponds to the BPM
equation. Following this approach of continuity, it is clear that the types of the AQPM
topologies TA

z and TB
z are those of BPM, i.e., types I, II and III. On the other hand, the two

other AQPM topologies
(
TA

x , TA
xz
)

can be relative to types IV, V, VI, VII or VIII, knowing that
type IV, for positive uniaxial crystals, and type V, for the negative ones, are only associated
with TA

x as mentioned above.
In the case of periodically poled biaxial crystals such as PPRKTP, the concept of

continuity shall further be invocated, from the uniaxial class to the biaxial class, on the one
hand, and from BPM ( Λ→ ∞ ) to AQPM (finite period Λ) solutions, on the other hand. It
is then obvious that the AQPM topologies of the biaxial class contain the five possible ones
of BPM that are reminded in Figure 5 [3], which contain themselves the AQPM topologies
of the uniaxial class depicted in Figure 4.
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Figure 4. Topologies of scheme-A (∆k(θ, φ) > 0) AQPM solutions
(
TA

x , TA
xz, TA

z
)

and scheme-B

(∆k(θ, φ) < 0) AQPM solutions
(

TB
y , TB

z

)
in uniaxial periodically poled crystals. (a–d) Paths of

continuous evolution with spectral dispersion of the AQPM solutions and associated topologies. The
blue lines depict the circular cones of BPM (∆k(θ, φ) = 0) solutions, which corresponds to boundaries
between angular domains (∆k(θ, φ) > 0) that are compatible with scheme-A AQPM and angular
domains (∆k(θ, φ) < 0) that are compatible with scheme-B AQPM.
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Figure 5. BPM Topologies of biaxial media, which are also possible topologies for AQPM. The three
lines crossing the xz-plane stand for the optical axes at the wavelengths of the three interacting waves.

In the case of biaxial media, all these topologies are a priori compatible with both
schemes-A AQPM and scheme-B AQPM. In fact, BPM (∆k(θ, φ) = 0) solutions corre-
spond to boundaries between angular domains that are compatible with scheme-A AQPM
(∆k(θ, φ) > 0) and angular domains compatible with scheme-B AQPM (∆k(θ, φ) < 0).
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5. Experimental Validation of the AQPM
5.1. Setups and Methods

The measurement of BPM, as well as AQPM directions, requires direct access to any
direction of propagation in the dielectric frame of the considered material under study.
The optimal methodology is to consider materials shaped as a sphere with its surface
polished to optical quality [25,26]. Such a spherical sample needs to be oriented both from
crystallographic and optical points of view by means of correlative X-ray diffraction and
double refraction observation, respectively. Then, the full angular distribution of both
linear and nonlinear optical properties can be addressed using only one sample of the
studied sample by rotating the sphere within a high precision goniometric setup, which can
be an Euler circle as well as a Kappa circle. In this way, it is possible to obtain direct access
to the directions of propagation that correspond to solutions of BPM or AQPM interactions,
whatever the considered type of polarization scheme or the involved set of wavelengths.
Doing so allows us to propagate light along a diameter of the sphere by keeping normal
incidence which is not possible while considering slab samples [25,26]. Figure 6a illustrate
the scheme of an oriented periodically poled crystal. Figure 6b,c show the remarkable
realization of millimetric-scale oriented periodically poled spherically shaped crystals of
the uniaxial 5%MgO:PPLN [16–18] and of the biaxial PPRKTP [20,21], respectively.
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Figure 6. (a) Scheme of a periodically poled crystal oriented in the dielectric frame (x, y, z) where
(θ, φ) are the spherical angle coordinates of the direction

→
s ; (b) 5%MgO:PPLN sphere with a grating

period Λ = 32 µm and a diameter of 3.9 mm; (c) PPRKTP sphere with a grating period Λ = 38.52 µm
and a diameter of 4.76 mm.

The diameter of the sphere is determined by the volume of the initial parallelepipedal
sample, knowing that we try to obtain the biggest diameter as possible in order to access a
minimal asphericity, typically better than 1% [26]. A spherically shaped sample provides
the full metrological potentiality for the complete characterization of nonlinear materials.
Indeed, such geometry allows for direct three-directional access out of the dielectric planes
so that it is possible to determine cones of BPM as well as both scheme-A AQPM and
scheme-B AQPM solutions with an angle accuracy of ±0.5◦. This also leads to a direct
determination of the relative signs and absolute magnitude of the nonlinear coefficients,
with a typical relative accuracy of ±10%, by measuring the evolution of the effective
coefficient along the cone [27]. It is also possible to access the spectral and angle acceptances
of any BPM or AQPM direction. All these aspects will be specifically detailed hereafter in
Section 5.2 in the case of Second-Harmonic Generation (SHG). Note that for applicative
aspects, it is generally sufficient to access directions in only one single dielectric plane
that gives access to the best effective coefficient or to the optimal acceptances. Then, the
periodically poled crystal can be shaped as oriented cylinders, which is of great interest
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because this geometry provides an infinite angle tunability than usual parallelepiped-
shaped samples. The cylindrical geometry has major importance for Optical Parametric
Oscillators (OPO), as further detailed in Section 5.3.

5.2. Experimental Demonstrations of AQPM SHG

The simplest demonstration of AQPM theory and associated solutions from Equa-
tion (2) comes from SHG experiments. AQPM SHG directions were investigated in a
negative uniaxial 5% MgO:PPLN shaped as a sphere with a diameter of 3.9 mm. The
nonlinear grating was oriented with domains perpendicular to the x-axis, similarly to
the configuration described in Section 4, with a nonlinear period Λ = 32.2 µm and a 50%
duty cycle ratio defined as the proportion of inverted domains with the same dimension.
As shown in Figure 7a, type I SHG AQPM tuning curves were recorded with respect to
the fundamental wavelength, either in the xz-plane (φ = 0◦) or in the yz-plane (φ = 90◦),
the latter corresponding also to BPM solutions, as the effective period 1

Λ(θ,φ=90◦) → 0 in
the yz-plane.
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wavelength λω . Dots stand for experimental data; the dotted curve is a guide for the eyes, and
the solid curve corresponds to calculations from Sellmeier equations given in [17]. The maximum
denoted A, corresponds to the vertical tangent of the curve of (a).

The demonstration is instructive in various aspects. From a fundamental point of
view, AQPM solutions extend the spectral range for SHG solutions as new fundamental
wavelengths can be frequency-doubled such as those in the range between dots C and C′,
but also between points D′ and D. Figure 7a also show the ability to continuously tune
the spectral position of noncritical angle acceptances in the mid-IR, by sweeping planes at
iso-φ angles, from the BPM solution (point D’ corresponding to the y-axis, i.e., θ = 90◦ and
φ = 90◦) to the AQPM solution (point D corresponding to the x-axis, i.e., θ = 90◦, φ = 0◦).
The fundamental wavelength ranging between D and D’ can also be addressed in the
xz-plane by adjusting the φ angle. Moreover, the spectral acceptance can also reach a
maximal amplitude, up to almost 78 nm.cm, at a wavelength for which the AQPM curve
exhibits a vertical tangent, i.e., points A and B in Figure 7a.

The nonlinear effective coefficient is of importance for AQPM, as is the case for BPM. Of
course, the largest accessible nonlinear coefficient remains χ

(2)
zzz, such as usually addressed

in most of the literature while disregarding any angular dependence. Still, as illustrated
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in Figure 7b, where giant spectral acceptances appear, a tread-off between the effective
coefficient and the spectral acceptance can be relevant in specific cases. Indeed, the effective
coefficient has an angular distribution that is associated with each type of polarization set,
whatever the considered scheme: BPM, scheme-A and scheme-B AQPM. This is illustrated
in Figure 8, corresponding to calculations relative to SHG at a fundamental wavelength λω

of 1550 nm in 5%MgO:PPLN with a grating period Λ = 32 µm, which is interesting in
the context of telecommunications or for eye-safe security issues. Both BPM, scheme-A
and scheme-B cones exhibit the same topology, from the xz-plane to the yz-plane, with a
degenerated solution in the yz-plane, as shown in Figure 8a.
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As a consequence, the different solutions of directions, (θA, φA) for scheme-A AQPM and
(θB, φB) for scheme-B AQPM, may lead to different values of the effective coefficients χA

ef f (θA, ϕA)

and χB
ef f (θB, φB), thus to different figures of merit,

[
χA

ef f (θ, φ)
]2

/
[
n−3 (θA, φA)n+1 (θA, φA)n+2 (θA, φA)

]
and

[
χB

ef f (θ, φ)
]2

/
[
n−3 (θB, φB)n+1 (θB, φB)n+2 (θB, φB)

]
as depicted in Figure 8b. We can note that the

figure of merit of scheme-B AQPM appears, in this case, to be larger than that of scheme-A AQPM.
These aspects strengthen the potential interest of scheme-B AQPM solutions with respect to scheme-A
AQPM, which should be considered to optimally design devices for nonlinear parametric frequency
conversion. Note that the AQPM figure of merit is, of course, attenuated by the Fourier 4/π2

parameter compared to that of BPM [6].
Figure 9 provide the description of accessible types of SHG interactions in a 7%MgO:PPLN

with a grating period Λ = 15 µm, showing the associated spectral ranges of solutions for BPM
and for AQPM (left and right parts of Figure 9, respectively). Figure 9 clearly illustrate the
enlargement of the spectral range that can undergo SHG while considering AQPM with respect
to BPM, both for smaller and larger fundamental wavelengths, respectively, from 905 to 1050 nm
and from 3400 to 5400 nm, compared to the 1050–3400 nm spectral range of BPM. Note that
the SHG spectral range of scheme-B AQPM is the same as that of BPM but shows different
directions of solutions and thus exhibits different effective coefficients. More specifically, the
topology of the scheme-B type I SHG cone for a nonlinear period Λ = 15 µm corresponds to
the TB

y topology, while the TB
z topology is observed for a nonlinear period Λ = 32.2 µm for the

same scheme-B type I SHG cone, as seen in Figure 7a.
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Figure 9. Comparison between the spectral ranges of BPM and AQPM topologies in 7%MgO:PPLN
with a grating period of Λ =15 µm. The black cones correspond to scheme-A and the red one to
scheme-B. (o) and (e) denote the ordinary and extraordinary polarizations, respectively. λω and
λ2ω are the fundamental and second-harmonic wavelengths, respectively. X means that there are
no BPM or AQPM solutions using the wavelength dispersion equations of the refractive indices of
7%MgO:PPLN in Ref. [28]. The symbol ∅ means that BPM types are not allowed.

As already discussed in Figures 8 and 9, the grating period has a major influence on
both the spectral ranges and the directions of AQPM solutions for each type. Figure 10
highlight this influence: it depicts the fundamental wavelength tuning ranges and maximal
acceptance domains of types I, II = III, and IV scheme-A AQPM SHG calculated in the
xz-plane as a function of the grating periodicity Λ.
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Figure 10. Fundamental wavelength tuning ranges (solid curves) and maximal acceptance domains
(hatched zones) of types I, II, and IV AQPM SHG calculated in the xz-plane as a function of the
grating periodicity Λ. Points A, B, C, and D refer to the points appearing on the tuning curves of
Figure 7a.
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AQPM in biaxial periodically poled crystals has been demonstrated in a PPRKTP
sample shaped as a sphere with a diameter of 4.76 mm and a grating period of 38.52 µm.
SHG was investigated at a fundamental wavelength of 2.15 µm by angularly following the
cones of the accessible types, as shown in Figure 10.

BPM was characterized for both types I and II = III. Scheme-A showed experimental
and numerical solutions for both types I, II = III, IV and V. Scheme-B solutions have
also been determined, especially with the pioneer experimental demonstration for type
II, as highlighted by the red stars in Figure 11 [20,21]. Both scheme-A and scheme-B
AQPM solutions have shown the expected continuity with BPM solutions in the yz-plane
(phi = 90◦) for types I and II = III. In the same manner, as evocated in Section 5.2, it is
noticeable here that the topology of the scheme-B AQPM cone, i.e., connecting the xy-
plane and yz-plane, differs from both the BPM and scheme-A AQPM cones connecting
the xz-plane and yz-plane. Such results strengthen the importance of having a deep
knowledge of the possible spaces of solutions, similarly to what was described in Section 4,
in order to prevent missing some allowed interactions in some planes, both numerically
or experimentally.
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Figure 11. SHG at a fundamental wavelength λω = 2.15 µm in a spherical PPRKTP crystal with a
grating period Λ = 38.52 µm: calculated Types I and II BPM angles (black lines), calculated Types I, II,
IV and V AQPM-A angles (blue lines), Types I and II AQPM-B angles (red lines) and red stars for the
measurements described in [21]). Black and blue squares are experimental data obtained in [20]. θ

and φ are the angles of spherical coordinate in the dielectric frame (x, y, z).

To go further with the demonstration of AQPM potentialities in biaxial crystals, nu-
merical investigations have been conducted in PPRKTP with a grating period of 38.52 µm
for an SHG interaction in the xy-plane, using the Sellmeier equations given in [20]. As
shown in Figure 12(top), the angular range as a function of the fundamental wavelength is
reported for Type II solutions, both for BPM, scheme-A and scheme-B AQPM, as well as
for Type V scheme-A AQPM solutions [21].
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Figure 12. (Top) AQPM angle φ versus fundamental wavelength λω for SHG in the xy-plane of
the PPRKTP with the poling period Λ = 38.52 µm: Type II BPM (full blackline); Type II AQPM-
A and Type II AQPM-B (blue and red lines, respectively); Type V AQPM-A (grey dashed line).
(Bottom) Spectral dependence of the sinc2 (∆kL/2) interference function for a crystal length L = 1 cm
under the Undepleted Pump Approximation (UPA) and at the spectral noncritical wavelengths
λω = 1.657 µm for Type II AQPM-B SHG (blue line) and λω = 2.503 µm for Type V AQPM-A (red line).

Beyond the fact that the spectral range in the xy-plane differs from one type to another
and from one scheme to another, it is worth noting that scheme-B type II and scheme-A type
V present horizontal tangents at distinct fundamental wavelengths, thus exhibiting giant
spectral tolerances at 1.567 µm and 2.503 µm, respectively. Scheme-B type II interaction
thus opens broadband solutions of interest in the remarkable range of telecom wavelengths.
The associated spectral acceptances (full width at 0.405 of the maximum) are estimated to
be 76 nm for Scheme-B type II and even up to 161 nm for type V scheme-A. These extremely
large values are, in many cases, more than two orders of magnitude larger than usual
values, as shown in Figure 12(bottom) [21]. These results offer a clear illustration of the
complementarity of the complete AQPM solutions with respect to the usual configuration
that solicits the largest nonlinear coefficient χ

(2)
zzz.

5.3. Experimental Demonstrations of AQPM OPO

AQPM can also be implemented in the configuration of OPO, which had been carried
out in the case of PPKTP with a grating period Λ = 35 µm [29] and 5%MgO:PPLN with a
grating period Λ = 28 µm [30].

In both cases, the configuration of polarization enabling the excitation of the largest
nonlinear coefficient has been chosen, i.e., χ

(2)
zzz corresponding to 2.d33 in the contracted

notation: they refer to type V in the case of PPKTP according to Tables 2–4 and type IV
for 5%MgO:PPLN according to Table 1. A cylindrical shape had been chosen for the two
crystals, with a diameter of 10 mm for PPKTP and 38 mm for 5%MgO:PPLN, since only one
dielectric plane allows us to access the full angular tunability, i.e., the xy-plane. Figure 13
depict the scheme of the corresponding experimental setup.
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the crystal was pumped at 5 mJ, which was about five times above the threshold [30]. 
These energetical performances are similar to those of a classical OPO based on translated 
multi-grating periodically poled crystals [6]. However, in the case of AQPM implemented 
in cylinders, the tunability is continuous and does not require additional thermal tuning, 
which is a true advantage. 
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engineering the nonlinear grating period. We have also extended the AQPM approach in 
terms of scheme-A and scheme-B solutions, namely corresponding to positive and nega-

Figure 13. Experimental scheme of a cylindrical OPO. HWP is a half-wave plate. M1 and M2 are the
two plane mirrors of the cavity. (λp, λs, λi) are the pump, signal and idler wavelengths, respectively,
verifying 1/λp = 1/λs + 1/λi.

In both cases, it was a Singly Resonant OPO (SROPO) on the signal wavelength λs. The
pump laser is a Q-switched Nd:YAG laser at λp = 1.064 µm with a repetition rate of 10 Hz
and a pulse duration of 5.1 ns at 1/e2 for PPKTP and 10 ns (FWHM) for 5%MgO:PPLN.
The pump beam is properly focused in order to obtain parallel beam propagation inside
the cylinder. The corresponding tuning curves are shown in Figure 14.
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Figure 14. Tuning curves of AQPM OPO pumped at λp = 1.064 µm, giving the signal (λs) and idler
(λi) wavelengths as a function of the rotation angle α of the cylinders of 5%MgO:PPLN (left) and
PPKTP (right).

In the case of PPKTP, the wavelength was tuned from 1.52 µm to 3.56 µm; the max-
imum value of energy conversion efficiency was 17.3%, which corresponded to pump
energy of 0.43 mJ, i.e., 3.5 times above the threshold [29]. For 5%MgO:PPLN, the tunability
ranged between 1.41 µm and 4.30 µm, with an energy conversion efficiency of 27% when
the crystal was pumped at 5 mJ, which was about five times above the threshold [30].
These energetical performances are similar to those of a classical OPO based on translated
multi-grating periodically poled crystals [6]. However, in the case of AQPM implemented
in cylinders, the tunability is continuous and does not require additional thermal tuning,
which is a true advantage.

6. Conclusions

In conclusion, we provided a comprehensive description of both AQPM theory and
experimental demonstrations over the two last decades in the cases of uniaxial and biaxial
crystals. Benefits of AQPM are highlighted, which include: the extension of spectral ranges
of solutions, the full consideration of all the possible polarization types; the full access
to new directions of propagation that allow efficient nonlinear frequency conversion; the
access to remarkable directions associated with giant spectral acceptances possibly more
than two orders of magnitude larger than that in usual configuration soliciting the nonlinear
coefficient χ

(2)
zzz of ferroelectric crystals; the ability to tailor interactions by engineering the

nonlinear grating period. We have also extended the AQPM approach in terms of scheme-A
and scheme-B solutions, namely corresponding to positive and negative first-order AQPM
solutions, respectively, which we presented here in a unified description. Therefore, AQPM
provides a very rich space of solutions that encompasses that of BPM solutions, as detailed
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by means of symmetry and topology of the associated cones. Such diversity results from
the full investigation of the concomitant angular dependence of birefringence and of the
effective periodical poling.

From a metrological and applicative point of view, this work provides a new vision
that should help for the full characterization of high-interest periodically poled materials,
especially PPLN and PPKTP and both isotypes [31]: new configurations that are associated
with good nonlinear efficiencies and large spectral tolerances for the chosen material can
then be identified. Such a determination is of prime importance while considering para-
metric processes achieved in the femtosecond regime, i.e., for efficient optical parametric
chirped pulse amplification, for which some large spectral ranges need to be simultaneously
frequency-converted so as to keep the ultrashort temporal pulse behavior for the generated
beams [31,32].

Finally, the AQPM approach should be further extended in the future to other known
uniaxial periodically poled crystals, such as PPLT [32] or periodically twinned Quartz [33].
Moreover, AQPM can also be applied to crystals belonging to the isotropic optical class,
i.e., the cubic crystals such as orientation-patterned GaAs (OP-GaAs) [32–35] and or OP-
ZnSe [36]. AQPM may also be relevant for photonic crystals [37–39], thermally poled
micro-structured thin films [40], laser-structured glassy [41] or crystalline [42–45] materials
to address nonlinear gratings bearing 3D periodicities. Therefore, AQPM should further
stimulate the current effort on crystal growth, nonlinear material micro-structuring by
electric or laser poling, as well as on developments in nonlinear nanophotonics [46].
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