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Université de la Côte d’Azur, CNRS, InPhyNi, FRANCE

October 18, 2023

Abstract

In a recent paper, the author introduced an operational description of physical theories

where probabilities are replaced by counterfactual statements belonging to a three-valued

(i.e. possibilistic) semantic domain. The complete axiomatic of these Generalized possi-

bilistic Theories is generalized and clarified in the present paper. The problem of bipartite

experiments is then addressed as the main skill of this paper. An axiomatic for the tensor

product of our spaces of states is given and different solutions are explicitly constructed.

This description of tensor products of Inf semi-lattices is partly independent from the usual

mathematical description of this problem. The nature of the tensor product of orthocomple-

mented Inf semi-lattices is then also explored. This subject is indeed fundamental for the

development of a reconstruction program for quantum theory within our framework. Our

analysis constitutes a first step towards this achievement.
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1 Introduction

General Probabilistic Theory (GPT) is a framework developed within the foundations of physics

(see [21] for a recent review of the abundant literature and an axiomatic construction of GPTs).

Promoters of GPT intent to answer the question: what is a physical theory? This study appeared

initially in the context of axiomatizations of quantum theory, as many researchers were attempt-

ing to derive quantum theory from a set of reasonably motivated axioms.

In the current days, research on GPT is oriented towards operational properties of GPTs, the

main skill being to identify what structure is needed to realize certain protocols or constructions

known from quantum information theory or classical information theory. One uses GPTs to get

better understanding of what makes different things in quantum information theory work.

Despite the indeterministic character of quantum theory, it is an empirical fact that the distinct

outcomes of measurements, operated on a large collection of samples of a quantum object, pre-

pared according to the same experimental procedure, have reproducible relative frequencies.

This fundamental fact has led physicists to consider large collections of statistically indepen-

dent experimental sequences as the basic objects of physical description, rather than a single

experiment on a singular realization of the object under study. According to GPT, a physical

state (corresponding to a class of operationally equivalent preparation procedures) is then de-

fined by a vector of probabilities associated with the outcomes of a maximal and irredundant

set of fiducial tests that can be effectuated on collections of samples produced by any of these

preparation procedures. In other words, two distinct collections of prepared samples will be

considered as operationally equivalent if they lead to the same probabilities for the outcomes

of any test on them. The physical description consists, therefore, in a set of prescriptions that

allows sophisticated constructs to be defined from elementary ones. In particular, combination

rules are defined for the concrete mixtures of states and for the allowed operations/tests.

It is a basic fact in GPT that this approach is the same as starting with an abstract state space,

but instead of using vectors we would describe states in terms of all of the probabilities they

can produce. In GPTs, ensembles of objects, conditional probabilities and conditional states

can be represented by their respective state spaces and so we can treat them as any other state

space and we can use known results, instead of having to prove them ab initio. Representing

all transformations by ”channels” allows us to use the constructions from frameworks based on

category theory, since one can interpret state spaces as objects and channels as morphisms.

Although this probabilistic approach is now accepted as a standard conceptual framework

for the reconstruction of quantum theory, the adopted perspective appears puzzling for different

reasons.

First of all, the observer contributes fundamentally to give an intuitive meaning to the notions of

preparation, operation and measurement on physical systems. However, the concrete process of

’acquisition of information’ (by the observer / on the system) has no real place in this descrip-

tion. Secondly, the definition of the state has definitively lost its meaning for a singular prepared

sample, and the physical state is now intrinsically attached to large collections of similarly pre-

pared samples. The GPT approach adopts the probabilistic description of quantum phenomena

without any discussion or attempt to explain why it is necessary. Thirdly, in order to clarify

the requirements of the basic set of fiducial tests necessary and sufficient to define the space of

states, this approach must proceed along a technical analysis which fundamentally limits this

description to ’finite dimensional’ systems (finite dimensional Hilbert spaces of states). Lastly,

the axioms chosen to characterize quantum theory, among other theories encompassed by the

GPT formalism, must exhibit a ’naturality’ that - from our point of view - is still missing in the
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existing proposals.

Alternative research programs have tried to overcome some of these conceptual problems.

Adopting another perspective, the operational quantum logic approach tries to avoid the intro-

duction of probabilities and explores the relevant categorical structures underlying the space of

states and the set of properties of a quantum system. In this description, probabilities appear

only as a derived concept. Following G. Birkhoff and J. Von Neumann [8] and G. W. Mackey

[18], this approach focuses on the structured space of ’testable properties’ of a physical sys-

tem. The mathematical structure associated with the set of quantum propositions defined by the

closed subspaces of a Hilbert space is not a Boolean algebra (contrary to the case encountered

in classical mechanics). By shifting the attention to the set of closed subspaces instead of the

Hilbert space itself, the possibility is open to build an operational approach to quantum me-

chanics, because the basic elements of this description are yes/no tests. G.W. Mackey identified

axioms on the set of yes/no tests sufficient to relate this set to the set of closed subspaces of

a complex Hilbert space. Later, C. Piron [19, 20] proposed a set of axioms that (almost) lead

back to the general framework of quantum mechanics (see [10] for a historical perspective on

the abundant literature). Piron’s framework has been developed into a full operational approach

and the categories underlying this approach were analyzed. It must be noted that these con-

structions are established in reference to some general results of projective geometry and are

not restricted to a finite-dimensional perspective.

Despite some beautiful results (in particular the restriction of the division ring associated to the

Hilbert space from Piron’s propositional lattices [16]) and the attractiveness of a completely

categorical approach (see [25] for an analysis of the main results on propositional systems), this

approach has encountered several problems. Among these problems, we may cite the difficulty

of building a consistent description of compound systems due to no-go results related to the

existence of a tensor product of Piron’s propositional systems [23][5, 6]. These problems have

cast doubts on the adequacy of Piron’s choice of an ”orthomodular complete lattice” structure

for the set of properties of the system.

Other categorical formalisms, adapted to the axiomatic study of quantum theory, have been

developed more recently [3] and their relation with the ’operational approach’ has been partly

explored [1, 2, 4]. In [1, Theorem 3.15], S. Abramsky makes explicit the fact that the Projec-

tive quantum symmetry groupoid PSymmH⌊1⌋ is fully and faithfully represented by the category

bmChu[0,1], i.e., by the sub-category of the category of bi-extensional Chu spaces associated

with the evaluation set [0,1] obtained by restricting it to Chu morphisms ( f∗, f ∗) for which f∗ is

injective. This result suggests that Chu categories could have a central role in the construction of

axiomatic quantum mechanics as they provide a natural characterization of the automorphisms

of the theory. More surprisingly, and interestingly for us, S. Abramsky shows that the afore-

mentioned representation of PSymmH is ’already’ full and faithfull if we replace the evaluation

space of the Chu category by a three-element set, where the three values represent ”definitely

yes”, ”definitely no” and ”maybe” [1, Theorem 4.4]. S. Abramsky did not affirm that a three

valued semantic is sufficient to found a complete axiomatic quantum theory, close to Piron’s

program or alternative to it, and allowing a complete reconstruction of the usual Hilbert for-

malism, although its result was clearly leading to this prospect. It was the purpose of our last

1The objects of this category are the natural space of states in quantum mechanics, i.e., the Hilbert spaces of

dimension greater than two, and the morphisms are the orbits on semi-unitary maps (i.e. unitary or anti-unitary)

under the U(1) group action, which are the relevant symmetries of Hilbert spaces from the point of view of quantum

mechanics.
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paper [9] to explore this question for the first time. This paper was devoted to present the basic

elements of this ’possibilistic’⌊2⌋ semantic formalism.

In the present paper, we continue to develop an analog of GPT based on this three-valued

Chu space operational description of physical systems (as a sort of word game, we will des-

ignate this attempt as Generalized possibilistic Theory (GpT)). To allow for the same degree

of generality as GPT, we present in Section 2 a set of axioms for the spaces of states and the

spaces of effects of single systems which appears more general than in [9]. In Section 3, we in-

tentionally focus our study on the problem of bipartite experiments (this question had been led

untouched in [9]). To complete this description, we exhibit a construction of the tensor prod-

uct of complete semi-lattices which necessarily differs from the traditional construction of this

tensor product, present in the mathematical literature. This can be considered as a significant

byproduct of the present paper, which deserves further investigations. We finally address the

problem of the orthocomplementation of the tensor product of orthocomplemented Inf semi-

lattices. This problem appears fundamental for a reconstruction program of quantum theory, as

mentioned in [9].

2 Generalized possibilistic Theories (GpT)

Adopting the operational perspective on quantum experiments, we will introduce the following

definitions.

A preparation process is an objectively defined, and thus ’repeatable’, experimental sequence

that allows singular samples of a certain physical system to be produced, in such a way that we

are able to submit them to tests. We will denote by P the set of preparation processes (each

element of P can be equivalently considered as the collection of samples produced through this

preparation procedure). ⌊3⌋

For each property, that the observer aims to test macroscopically on any particular sample of

the considered micro-system, it will be assumed that the observer is able to define (i) some

detailed ’procedure’, in reference to the modes of use of some experimental apparatuses chosen

to perform the operation/test, and (ii) a ’rule’ allowing the answer ’yes’ to be extracted if the

macroscopic outcome of the experiment conforms with the expectation of the observer, when

the test is performed on any input sample (as soon as this experimental procedure can be op-

portunely applied to this particular sample). These operations/tests, designed to determine the

occurrence of a given property for a given sample, will be called yes/no tests associated with

this property. The set of ’yes/no tests’ at the disposal of the observer will be denoted by T. ⌊4⌋

A yes/no test t ∈ T will be said to be positive with certainty (resp. negative with certainty)

relatively to a preparation process p ∈P iff the observer is led to affirm that the result of this

test, realized on any of the particular samples that could be prepared according to this prepa-

ration process, would be ’positive with certainty’ (resp. would be ’negative with certainty’),

2In the rest of this paper we refer to this construction, based on a three-valued Chu space, as a ’possibilistic’

approach to distinguish it from the ’probabilistic’ one.
3The information corresponding to macroscopic events/operations describing the procedure depend on an ob-

server O. If this dependence has to be made explicit, we will adopt the notationP
(O)

to denote the set of preparation

processes defined by the observer O. This mention of the observer will be also attached to the different quotients

associated to the space of preparations.
4If the dependence with respect to the observer O has to be made explicit, we will adopt the notation T

(O)
to

denote the set of tests defined by the observer O. This mention of the observer will be also attached to the different

quotients associated to the space of yes/no tests.
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’should’ this test be effectuated. If the yes/no test can not be stated as ’certain’, this yes/no test

will be said to be indeterminate. Concretely, the observer can establish the ’certainty’ of the

result of a given yes/no test on any given sample issued from a given preparation procedure,

by running the same test on a sufficiently large (but finite) collection of samples issued from

this same preparation process: if the outcome is always the same, the observer will be led to

claim that similarly prepared ’new’ samples would also produce the same result, if the exper-

iment was effectuated. To summarize, for any preparation process p and any yes/no test t, the

element e(p, t) ∈B := {⊥,Y,N} will be defined to be ⊥ (alternatively, Y or N) if the outcome

of the yes/no test t on any sample prepared according to the preparation procedure p is judged

as ’indeterminate’ (’positive with certainty’ or ’negative with certainty’, respectively) by the

observer.

e : P×T −→ B := {⊥,Y,N}
(p, t) 7→ e(p, t).

(1)

When the determinacy of a yes/no test is established for an observer, we can consider that

this observer possesses some elementary ’information’ about the state of the system, whereas,

in the ’indeterminate case’, the observer has none (relatively to the occurrence of the considered

property).

The set B will then be equipped with the following poset structure, characterizing the ’infor-

mation’ gathered by the observer:

∀u,v ∈B, (u ≤ v) :⇔ (u =⊥ or u = v). (2)

(B,≤) is also an Inf semi-lattice which infima will be denoted
∧

. We have

∀x,y ∈B, x∧ y =

ß
x if x = y

⊥ if x 6= y
(3)

We will also introduce a commutative monoid law denoted • and defined by

∀x ∈B, x•Y = x, x•N = N, ⊥•⊥=⊥. (4)

x• y will be called the product of the determinations x and y.

This law verifies the following properties

∀x ∈B,∀B ⊆B x•
∧

B =
∧

b∈B(x•b), (5)

∀x ∈B,∀C ⊆Chain B x•
∨

B =
∨

b∈B(x•b). (6)

(B,≤) will be also equipped with the following involution map :

⊥ :=⊥ Y := N N := Y. (7)

2.1 The space of states

A pre-order relation can be defined on the set P of preparation processes. A preparation process

p2 ∈P is said to be sharper than another preparation process p1 ∈P (this fact will be denoted

p1 ⊑
P
p2) iff any yes/no test t ∈ T that is ’determinate’ for the samples prepared through p1

is also necessarily ’determinate’ with the same determination for the samples prepared through

p2, i.e.,

∀p1,p2 ∈P, ( p1 ⊑P
p2 ) :⇔ ( ∀t ∈ T, e(p1, t)≤ e(p2, t) ), (8)
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If p1 ⊑P
p2 (i.e., p2 is ’sharper’ than p1), p1 is said to be ’coarser’ than p2.

An equivalence relation, denoted ∼
P

, is defined on the set of preparations P from this

pre-order relation. Two preparation processes are identified iff the statements established by

the observer about the corresponding prepared samples are identical. A state of the physical

system is an equivalence class of preparation processes corresponding to the same informational

content. The set of equivalence classes, modulo ∼
P

, will be called space of states and denoted

S. In other words,

∀p1,p2 ∈P, (p1 ∼P
p2) :⇔ ( ∀t ∈ T, e(p1, t) = e(p2, t) )⇔ (p1 ⊑P

p2 and p1 ⊒P
p2 ), (9)

⌈p⌉ := {p′ ∈P | p′ ∼
P
p}, (10)

S := {⌈p⌉ | p ∈P}. (11)

The space of states S is partially ordered. Explicitly

∀σ1,σ2 ∈S,(σ1 ⊑S
σ2 ) :⇔ (∀p1,p2 ∈P, (σ1 = ⌈p1⌉,σ2 = ⌈p2⌉) ⇒ (p1 ⊑P

p2 )).(12)

We will derive a map ε according to the following definition :

ε : T → BS

t 7→ εt | εt(⌈p⌉) := e(p, t), ∀p ∈P.
(13)

For any t ∈ T, εt is an order-preserving map on S

∀σ1,σ2 ∈S, ( σ1 ⊑S
σ2 ) :⇔ ( ∀t ∈ T, εt(σ1)≤ εt(σ2) ), (14)

If we consider a collection of preparation processes P ⊆ P, we can define a new prepa-

ration procedure, called mixture and denoted
dP

P, as follows. The samples produced from

the preparation procedure
dP

P are obtained by a random mixing of the samples issued from

the preparation processes of the collection P indiscriminately. As a consequence, the statements

that the observer can establish after a sequence of tests t∈T on these samples produced through

the procedure
dP

P is given as the infimum of the statements that the observer can establish for

the elements of P separately. In other words,

∀P ⊆P, ∃
lP

P ∈P | (∀t ∈ T, e(
lP

P, t) =
∧

p∈P
e(p, t)). (15)

The space of states inherits a notion of mixed states by defining

∀P ⊆P,
lS

p∈P
⌈p⌉ := ⌈

lP

P⌉. (16)

As a result, the space of states inherits a structure of down-complete Inf semi-lattice. In other

words,

(A1) ∀S ⊆S, (
lS

S) exists in S, and ∀t ∈ T, εt(
lS

S) =
∧

σ∈S
εt(σ). (17)

As a direct consequence, the space of states is then also bounded-complete, i.e.

∀S ⊆S | “S S

, (
⊔S

S) exists in S. (18)

where

∀S′ ⊆S,∀S ⊆S′, “S S′

:⇔∃σ ′ ∈S′ | σ ⊑
S

σ ′,∀σ ∈ S. (19)
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We will adopt the shortened notation ∀σ ,σ ′ ∈S,‘σσ ′S :=◊�{σ ,σ ′}
S

.

We will also assume that there exists a preparation process, unique from the point of view

of the statements that can be produced about it, that can be interpreted as a ’randomly-selected’

collection of ’un-prepared samples’. This element leads to complete indeterminacy for any

yes/no test realized on it.

∃ p⊥ ∈P | (∀t ∈ T, e(p⊥, t) =⊥). (20)

Hence, the partial order (S,⊑
S
) admits a bottom element, denoted ⊥

S
:= ⌈p⊥⌉. In other words,

(A2) ∃ ⊥
S
∈S | ∀σ ∈S, ⊥

S
⊑

S
σ , (21)

It must be noted that this assumption is not at all restrictive as soon as any GpT corresponding

to a given GPT contains such a ”complete mixture state”.

2.2 The space of effects

We can introduce a pre-order relation on the space of yes/no tests T as well :

∀t1, t2 ∈ T, ( t1 ⊑T
t2 ) :⇔ ( ∀σ ∈S, εt1(σ)≤ εt2(σ) ), (22)

and an equivalence relation, denoted ∼
T

, can be derived from this pre-order on the set of yes/no

tests T, i.e. t1 ∼T
t2 is equivalent to (t1 ⊑T

t2 and t1 ⊒T
t2). An effect of the physical system is

an equivalence class of yes/no tests, i.e., a class of yes/no tests that are not distinguished from

the point of view of the statements that the observer can produce by using these yes/no tests on

finite collections of samples. The set of equivalence classes of yes/no tests, modulo the relation

∼
T

, will be denoted E. In other words,

∀t1, t2 ∈ T, ( t1 ∼T
t2 ) :⇔ ( ∀σ ∈S, εt1(σ) = εt2(σ) ), (23)

⌊t⌋ := { t′ ∈ T | t′ ∼
T
t}, (24)

E := {⌊t⌋ | t ∈ T}. (25)

The set of effects E is then equipped naturally with a partial order denoted ⊑
E

.

We will adopt the following abuse of notation ε⌊t⌋ := εt, ∀t ∈ T.

We have by construction

(Extensionality) ∀l, l′ ∈ E, (∀σ ∈S, εl(σ) = εl′(σ))⇔ ( l= l′ ), (26)

(Separation) ∀σ ,σ ′ ∈S, (∀l ∈ E, εl(σ) = εl(σ
′))⇔ (σ = σ ′ ). (27)

We note that (S,E,ε) forms a bi-extensional Chu space [22].

If we consider a collection of tests T ⊆ T, we can define a new test, called mixture and

denoted
dT

T , as follows. The result obtained for the test
dT

T is obtained by a random mixing

of the results issued from the tests of the collection T indiscriminately. As a consequence, the

statements that the observer can establish after a sequence of tests is given as the infimum of

the statements that the observer can establish for each test separately. In other words,

∀T ⊆ T, ∃
l

T

T ∈ T | (∀σ ∈S, εdT
T
(σ) =

∧
t∈T

εt(σ)). (28)
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The space of effects inherits a notion of mixed effects by defining

∀T ⊆ T,
lE

t∈T
⌈t⌉ := ⌈

lT

T⌉. (29)

As a result, the space of effects inherits a structure of down-complete Inf semi-lattice. In other

words,

(A3) ∀E ⊆ E, (
lE

E) exists in E, and ∀σ ∈S, εdE
E
(σ) =

∧
l∈E

εl(σ). (30)

The conjugate of a yes/no test t ∈ T is the yes/no test denoted t and defined from t by

exchanging the roles of Y and N in every result obtained by applying t to any given input

sample. In other words,

∀t ∈ T,∀σ ∈S, εt(σ) := εt(σ). (31)

We note the following definition of the conjugate of an effect

∀l ∈ E, l= { t | l= ⌊t⌋}. (32)

We will sometimes use a particular effect called ”partial trace”, denoted YE and defined by

∀σ ∈S, ε YE
(σ) := Y. (33)

An effect l ∈ E will be said to be testable iff it can be revealed as ’certain’ at least for some

collections of prepared samples. In other words, ’l is testable’ means ε −1
l (Y) 6=∅.

Lemma 1. For any testable effect l, there exists an element Σl :=
dS

ε −1
l (Y) ∈S , called

effect-state, such that εl
−1(Y) is the principal filter (↑

S
Σl) := {σ ∈S | σ ⊒

S
Σl }. �

We will allow for a generalized definition of effects. Let us consider Σ,Σ′ ∈ S such that

¬”ΣΣ′S . We denote l
(Σ,Σ′)

the effect defined by

ε −1
l
(Σ,Σ′)

(Y) :=↑
S

Σ and ε −1
l
(Σ,Σ′)

(N) :=↑
S

Σ′. (34)

By extension, we denote l
(Σ,·)

the effect defined by

ε −1
l
(Σ,·)

(Y) :=↑
S

Σ and ε −1
l
(Σ,·)

(N) :=∅ (35)

and by l
(·,Σ′)

the effect defined by

l
(·,Σ′)

:= l
(Σ′,·)

(36)

We note that the order on these effects is ”inversed” with respect to the order on states. More

precisely,





(l
(Σ1,Σ

′
1
)
⊑

E
l
(Σ2,Σ

′
2
)
) ⇔ (Σ1 ⊒S

Σ2 and Σ′
1 ⊒S

Σ′
2)

(l
(Σ1,·)

⊑
E
l
(Σ2,Σ

′
2
)
) ⇔ (Σ1 ⊒S

Σ2)

(l
(·,Σ′

1
)
⊑

E
l
(Σ2,Σ

′
2
)
) ⇔ (Σ′

1 ⊒S
Σ′

2)

(37)
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Theorem 1. Let us consider a map (A : S−→B,σ 7→ aσ ) satisfying

∀σ ,σ ′ ∈S, (σ ⊑
S

σ ′)⇒ (aσ ≤ aσ ′), (38)

∀{σi | i ∈ I} ⊆S, adS

i∈i
σi
=
∧

i∈I aσi
, (39)

Then, we have

∃! l ∈ E | ∀σ ∈S, εl(σ) = aσ . (40)

�

Proof. Straightforward. If {σ | aσ = Y} and {σ | aσ = N} are not empty, it suffices to define

ΣA :=
dS

{σ | aσ = Y}, Σ′
A :=

dS

{σ | aσ = N} and l := l(ΣA,Σ
′
A)

(the case where some or all

of these subsets are empty is treated immediately).

Corollary 1. For any f : S−→S′ satisfying ∀{σi | i ∈ I} ⊆S, f (
dS

i∈i
σi) =

dS′

i∈I f (σi),

there exists a map f ∗ : E′ −→ E such that ∀l ∈ E, εS
f ∗(l)(σ) = εS

′

l ( f (σ)). �

Theorem 2. Let us consider a map (B : E−→B, l 7→ bl) satisfying

∀l, l′ ∈ E, (l⊑
E
l′)⇒ (bl ≤ bl′), (41)

∀{li | i ∈ I} ⊆ E, bdE

i∈i
li
=
∧

i∈I bli , (42)

∀l ∈ E, bl = bl, (43)

bYE
= Y. (44)

Then, we have

∃! σ ∈S | ∀l ∈ E, εl(σ) = bl. (45)

�

Proof. Let us consider lB :=
dE

{ l ∈ E | bl = Y}. Note that lB exists because E is a down-

complete Inf semi-lattice. Moreover, blB = Y because of the relation (42). Note also that

l⊒
E
lB implies bl = Y because of the relation (41), and conversely bl = Y implies l⊒

E
lB due

to the definition of lB. Let us now introduce Σ
lB
=

dS
ε −1
lB

(Y). For any l such that l⊒
E
lB, we

have εl(ΣlB
) ≥ εlB(ΣlB

) = Y, i.e. εl(ΣlB
) = Y. We could suppose that lB = l(ΣB,Σ

′
B)

for a certain

Σ′
B ∈ S. However, we note that, because of (42) and (44), we have bl(ΣB,·)

= bl(ΣB,Σ′
B
)⊓E

YE
=

bl(ΣB,Σ′
B
)
∧bYE

= Y. Hence, we have to accept that lB = l(ΣB,·). Thus, we note that, for any l(Σ,Σ′),

l(Σ,Σ′) 6⊒E
lB is then equivalent to Σ 6⊒

S
ΣB. Then, if l(Σ,Σ′) 6⊒E

lB we cannot have εl(Σ,Σ′)(ΣlB
) =Y.

We then conclude that εl(ΣlB
) = Y is equivalent to l ⊒

E
lB, or in other words εl(ΣlB

) = Y is

equivalent to bl = Y. Using (43) and (31), we deduce that (εl(ΣlB
) = N) ⇔ (εl(ΣlB

) = Y) ⇔

(bl = Y) ⇔ (bl = N). As a final conclusion, we have for any l ∈ E the equality εl(ΣB) = bl.

This concludes the proof.
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Corollary 2.

∀{σi | i ∈ I} ⊆Chain S, ∃σ ∈S | ∀l ∈ E, εl(σ) =
∨

i∈I εl(σi), (46)

σ =
⊔S

i∈I σi. (47)

We precise that the notation {σi | i ∈ I} ⊆Chain S means that {σi | i ∈ I} is a chain in S,

i.e. for any i, i′ ∈ I, σi ⊑S
σi′ or σi′ ⊑S

σi. �

Proof. First of all, we note that {σi | i ∈ I} ⊆Chain S and property (22) implies that {εl(σi) | i ∈
I}⊆Chain B for any l∈E and then

∨
i∈I εl(σi) exists for any l∈E due to the chain-completeness

of B.

Using the properties (22)(28)(31)(33) of the map ε and the complete-distributivity properties

satisfied by B, we can check easily that the map l 7→
∨

i∈I εl(σi) satisfies properties (41) (42)

(43) (44). As a consequence, the property (55) is a direct consequence of Theorem 2.

By definition of the poset structure (14), we deduce, from the property (∀l ∈ E, εl(σ) =∨
i∈I εl(σi)), that σ ⊒

S
σi, ∀i ∈ I and (σ ′ ⊒

S
σi, ∀i ∈ I) ⇒ (σ ⊒

S
σ ′). In other words,

σ =
⊔S

i∈I
σi.

2.3 Pure states

A state is said to be a pure state iff it cannot be built as a mixture of other states (the set of pure

states will be denoted S
pure

). More explicitly,

σ ∈S
pure

:⇔ (∀S ⊆S, S 6=∅, (σ =
lS

S ) ⇒ (σ ∈ S )). (48)

In other words, pure states are associated with completely meet-irreducible elements in S. ⌊5⌋

We will moreover assume that every state can be written as a mixture of pure states. In other

words,

(A4) ∀σ ∈S, σ =
lS

σ
S
, where σ

S
= (S

pure

∩ (↑
S

σ)). (50)

Remark 1. If S is a bounded-complete algebraic domain (here, S is already assumed to be

a bounded-complete and chain-complete Inf semi-lattice), previous property is a direct conse-

quence of [14, Theorem I-4.26 p.126].

Remark 2. We note that S
pure

= ⊓− Irr(S) is the unique smallest subset of S satisfying prop-

erty (50). This point is mentioned in [14, Remark I-4.22 p.125].

A simple characterization of completely meet-irreducible elements within posets is given in

[14, Definition I-4.21] :

σ ∈S
pure

⇔

®
σ ∈ Max(S) (Type 1)

(↑
S
σ)r{σ} admits a minimum element (Type 2)

(51)

This characterization is equivalent to the basic definition (48) for a bounded-complete Inf semi-

lattice like S.

5We note that complete meet-irreducibility implies meet-irreducibility. In other words,

σ ∈Spure ⇒ (∀σ1,σ2 ∈S, (σ = σ1 ⊓S
σ2 ) ⇒ (σ = σ1 or σ = σ2 )). (49)

10



From Corollary 2, using Zorn’s Lemma, we deduce that

∀σ ∈S, ∃σ ′ ∈ Max(S) | σ ⊑
S

σ ′. (52)

From that remark, we can decide to eliminate Type 2 pure states. Indeed, it is clear that ’Type 2’

pure states have no physical meaning. Indeed, for any ’Type 2’ pure states, it exists some ’Type

1’ pure states sharper than it (and, then, containing more information than it). The existence of

’Type 2’ pure states in the space of states leads then to a redundant description of the system.

We will then require that S
pure

, i.e. the set of completely meet-irreducible elements ⊓− Irr(S),
be constituted exclusively of maximal elements of S. In other words, we require the space of

states to be such that

(A5) ⊓− Irr(S) = Max(S). (53)

From now on, Chu spaces (S,E,ε) which elements satisfy the axioms (A1) − (A5) will be

called States/Effects Chu spaces.

2.4 The space of effects as a space of states

From axiom (A3), analog to the axiom (A1), we know that the space of effects looks like a

space of states. E is indeed a down-complete Inf semi-lattice (and then a bounded-complete Inf

semi-lattice).

We need to complete this information to be able to consider spaces of effects plainly as spaces

of states.

First of all, we have the following result analog to the axiom (A2).

Lemma 2. The space of effects has a bottom element denoted ⊥
E

and defined by

∀σ ∈S, ε⊥
E
(σ) =⊥. (54)

�

Proof. Obvious.

Secondly, E appears to satisfy the following chain-completeness property

Lemma 3.

∀{li | i ∈ I} ⊆Chain E, ∃l ∈ E | ∀σ ∈S, εl(σ) =
∨

i∈I εli(σ), (55)

l =
⊔E

i∈I li. (56)

�

Proof. Immediate consequence of axiom (A1) using the general expression of effects intro-

duced in (34) and subsequents, because of the properties (37).

Moreover, the domain E appears to be algebraic.
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Lemma 4. The poset E is atomic.

∃AE ⊆ E |

ß
∀l ∈ AE, ⊥

E

⊒

E
l

∀l ∈ Er{⊥
E
}, ∃l′ ∈ AE | l′ ⊑

E
l

(57)

AE = {l
(Σ,·)

|Σ ∈S
pure

}∪{l
(·,Σ)

|Σ ∈S
pure

} (58)

(we have used the notation ∀l ∈ E,⊥
E

⊒

E
l ⇔ (⊥

E
⊏

E
l and ∀l′ ∈ E,⊥

E
⊑

E
l′ ⊑

E
l ⇒

(⊥
E
= l′ or l′ = l))).

The poset E is atomistic, i.e.

∀l ∈ E, l=
⊔E

{ l′ ∈ AE | l′ ⊑
E
l}. (59)

and then algebraic (i.e. compactly generated). �

Proof. The properties (52) implies directly the second condition of (57). The first condition of

(57) is easy to check using the expression of the order (37).

The property (59) is a direct consequence of axiom (A4).

The atoms being trivially compact, the algebraicity follows.

Thirdly, we have the following result analog to the axiom (A4). As before, we define the

”pure effects” as follows:

l ∈ E
pure

:⇔ (∀E ⊆6=∅ E, ( l=
lE

E ) ⇒ ( l ∈ E )). (60)

In other words, pure states are associated with completely meet-irreducible elements in E.

In order to complete our comparison, we have to check that every effect can be written as a

mixture of pure effects.

Theorem 3. The space of effects satisfies

∀l ∈ E, l=
lE

l
E
, where l

E
= (E

pure

∩ (↑
E

l)). (61)

�

Proof. From previous Lemmas E is a bounded-complete algebraic domain, The property (61)

is then a direct consequence of [14, Theorem I-4.26 p.126].

As before, we have the following characterization of elements of E
pure

[14, Definition I-4.21] :

σ ∈ E
pure

⇔

®
σ ∈ Max(E) (Type 1)

(↑
E
l)r{l} admits a minimum element (Type 2)

(62)

This characterization is equivalent to the basic definition (60) for a bounded-complete Inf semi-

lattice like E.

We observe it is natural to eliminate Type 2 pure effects.Indeed, for any ’Type 2’ pure effects, it

exists some ’Type 1’ pure effects extracting more information than it. The existence of ’Type 2’

pure states in the space of states leads then to a redundant description of the system. Happily,

this condition is already a simple consequence of Axiom (A5).
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Lemma 5.

⊓− Irr(E) = Max(E). (63)

�

Proof. This result is obtained directly from the previous characterization of pure effects. In-

deed, a Type 2 pure effect is of the form l
(Σ,Σ′)

with either Σ or Σ′ being a Type 2 pure state. The

absence of Type 2 pure state closes the proof.

As a final conclusion of previous results and axioms, we obtain the complete characteriza-

tion of spaces of effects.

Theorem 4. A space of effects is nothing else than a space of states. �

We can go further by characterizing explicitly the elements of Max(E). According to [9,

Section 3.5], we introduce the following binary relation, denoted q⊲⊳
S

and defined on S by

∀(σ ,σ ′) ∈S×2, σ q⊲⊳
S

σ ′ :⇔ (∀σ ′′
⊏

S
σ ′,‘σσ ′′

S

and ∀σ ′′
⊏

S
σ ,’σ ′σ ′′

S

and not‘σσ ′
S

). (64)

(here we have used the notation introduced in (19)).

Lemma 6.

E
pure

= Max(E) = { l
(Σ,Σ′)

| Σ q⊲⊳
S

Σ′}∪{Y
E
}∪{Y

E
} (65)

�

Proof. Obvious.

2.5 Particular types of spaces of states

According to [15, definition p.117 and Section 11 Lemma 1 p.118], we introduce the following

notion.

Definition 1. An Inf semi-lattice S is said to be distributive iff

∀σ ,σ1,σ2 ∈S | σ 6= σ1,σ2, (σ1 ⊓S
σ2)⊑S

σ ⇒

∃σ ′
1,σ

′
2 ∈S | (σ1 ⊑S

σ ′
1, σ2 ⊑S

σ ′
2 and σ = σ ′

1 ⊓S
σ ′

2 ). (66)

When S is distributive, we have the following standard properties satisfied, as soon as the

implied suprema are well defined

σ1 ⊓S
(σ2 ⊔S

σ3) = (σ1 ⊓S
σ2)⊔S

(σ1 ⊓S
σ3) (67)

σ1 ⊔S
(σ2 ⊓S

σ3) = (σ1 ⊔S
σ2)⊓S

(σ1 ⊔S
σ3). (68)

Definition 2. The space of states S is said to be equipped with a star iff there exists a
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map ⋆ : Sr{⊥
S
}→Sr{⊥

S
} such that

∀σ ∈S, σ⋆⋆ = σ (69)

∀σ1,σ2 ∈S, σ1 ⊑S
σ2 ⇒ σ⋆

2 ⊑
S

σ⋆
1 (70)

∀σ ∈S, ¬‘σσ⋆
S

(71)

∀σ ∈S
pure

, σ⋆ ∈ At(S). (72)

If we have moreover

∀σ ∈S, σ q⊲⊳
S

σ⋆, (73)

then the space of states S is said to be orthocomplemented.

We say that an Inf semi-lattice S is orthogonal iff S is equipped with a star map such

that

∀σ ∈S, S
pure

= σ
S
∪σ⋆

S
. (74)

If S is orthogonal, it is tautologically orthocomplemented.

Definition 3. As long as the space S is equipped with a star map, we can build a map

〈·, ·〉 from S×S to B defined as follows

∀σ ,σ ′ ∈S, 〈σ ,σ ′〉 :=





Y iff σ ∈S
pure

and σ = σ ′

N iff σ 6=⊥
S

and σ ′ ⊒
S

σ⋆

⊥ otherwise

(75)

Note first of all that to have a consistent definition we use explicitly the property (71).

We note secondly the following fundamental property :

〈σ ,σ ′〉= 〈σ ′,σ〉 (76)

To check this symmetry, we have to use the properties (69) and (70) of the star operation

on S.

We note endly that the map 〈·, ·〉 from S×S to B is bimorphic, i.e.

∀{σi | i ∈ I } ⊆S, 〈σ ′,
lS

i∈I σi〉=
∧

i∈I 〈σ
′,σi〉. (77)

Definition 4. We can define as usual an orthogonality relation on S

∀σ ,σ ′ ∈S, σ⊥σ ′ :⇔ σ ′ ⊒
S

σ⋆ (78)

⇔ 〈σ ,σ ′〉= N. (79)

The binary relation ⊥ is symmetric and irreflexive.

We note that the star map can be recovered from the relation ⊥ or from the bracket by

∀σ ∈S, σ⋆ =
lS

{σ ′ | σ ′⊥σ}=
lS

{σ ′ | 〈σ ′,σ〉= N}. (80)
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Lemma 7. The orthocomplementation condition (73) is equivalent to the following con-

dition

∀σ ∈S,∀σ ′ ∈Sr (↑
S

σ), σ⊥ ∩ ↑
S

(σ ⊓
S

σ ′) 6=∅. (81)

�

Definition 5. We say that a family {αi | i ∈ I } ⊆S
pure

is an orthonormal basis of S iff

∀i ∈ I, 〈αi,αi〉= Y (82)

∀i, j ∈ I, i 6= j ⇒ 〈αi,α j〉= N (83)

∀σ ∈S, ∃{α j | j ∈ J } ⊆ {αi | i ∈ I } | σ ⊒
S

lS

j∈Jα j. (84)

Lemma 8. If A := {αi | i ∈ I } ⊆ S
pure

is an orthonormal basis of S, then the sub Inf

semi-lattice generated by the family {αi | i ∈ I } in S, denoted SA , is orthogonal. More

precisely, the star map ⋆ defined by

∀σ :=
lS

j∈Jα j ∈SA , σ⋆ :=
lS

k∈IrJαk ∈SA (85)

satisfies

∀σ ∈SA , {α ∈ A | α ⊒
S

σ}∪{α ∈ A | α ⊒
S

σ⋆}= A . (86)

Moreover, SA is distributive. �

Lemma 9. If S is orthocomplemented and finite, an orthonormal basis of S necessarily

exists. �

Proof. We begin with a random pure state α0. We have 〈α0,α0〉 = Y by definition. Let us

consider any σ ∈ S
pure

with α0 6= σ . We know from Lemma 7 that α0 ⊓S
σ and α⋆

0 admit a

common upper bound. In other words, ∃α1 ∈S
pure

such that (α0 ⊓S
σ) ⊑

S
α1 and α⋆

0 ⊑
S

α1

(i.e. 〈α0,α1〉= N and then obviously α0 6= α1). We have 〈α1,α1〉= Y by definition.

We proceed now to the second step. Let us suppose that (α0 ⊓S
α1) 6= ⊥

S
or, in other words,

that there exists σ ∈ S
pure

such that (α0 ⊓S
α1) 6⊑S

σ . We know from Lemma 7 that (α0 ⊓S

α1)⊓S
σ and (α0⊓S

α1)
⋆ admit a common upper bound. In other words, ∃α2 ∈S

pure
such that

((α0⊓S
α1)⊓S

σ)⊑
S

α2 and (α0⊓S
α1)

⋆⊑
S

α2 (i.e. 〈(α0⊓S
α1),α2〉=N and then obviously

α2 6⊒S
(α0 ⊓S

α1)). We have 〈α2,α2〉= Y by definition.

This algorithm stops at a moment because S
pure

is finite.

The three conditions are then satisfied by construction.

2.6 GpT and Quantum theory

Let H be a finite-dimensional complex Hilbert space. We will denote H ∗ := H r{
−→
0 }. We

will adopt the bra–ket notation to denote the vectors as |ψ〉 and the inner product of |ψ〉, |φ〉 ∈H

as 〈φ|ψ〉. |ψ〉
ray

will denote the ray associated to |ψ〉 ∈ H ∗, i.e. the set {λ . |ψ〉 | λ ∈ C∗ }.

B(H ) will denote the real vector space of self-adjoint operators. And for any U ∈ B(H ),
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Tr(U) will denote the trace of U . B+(H ) will be the set of positive semi-definite operators, i.e.

the set of operators U satisfying 0 ≤ 〈ψ|U |ψ〉 for any |ψ〉 ∈ H ∗.

For any T ∈ B(H ), we will adopt the following notation

spec(T,H ;λ ) := {|ψ〉 ∈ H | T |ψ〉= λ .|ψ〉}. (87)

Definition 6. According to Von Neumann’s formalism of Quantum mechanics, we will

adopt the following choice for the space of preparations P :

P := D(H ) = {P ∈ B+(H ) | Tr(P) = 1}. (88)

D(H ) is the set of density operators on H .

Lemma 10. P is a convex set. The set of extremal elements (i.e. the pure states of

quantum mechanics), denoted P
pure

, is given by

P
pure

= {L
|ψ〉

| |ψ〉 ∈ H
∗} ∼= {|ψ〉

ray

| |ψ〉 ∈ H
∗ }, (89)

where L
|ψ〉

denotes the rank-one projector
|ψ〉〈ψ|
〈ψ|ψ〉 . �

Definition 7. According to Von Neumann’s formalism of Quantum mechanics, the space

of tests T will be chosen as follows

T := {T ∈ B(H ) | ∀P ∈P, 0 ≤ Tr(PT )≤ 1} (90)

= {T ∈ B(H ) | ∀ |ψ〉 ∈ H
∗, 0 ≤ Tr(L

|ψ〉
T )≤ 1} (91)

Lemma 11. T is a convex set. The set of extremal elements, denoted T
pure

, is given by

T
pure

= {L
G
| G closed subspace of H }, (92)

where, for any closed subspace G of the Hilbert space H , we denote by L
G

the self-

adjoint projector whose spectral decomposition is G ⊕G ⊥∼=H (more precisely, spec(L
G
,H ;1)=

G and spec(L
G
,H ;0) = G⊥). �

Definition 8. The evaluation map e will be defined as follows

∀P ∈P,∀T ∈ T, e(P,T ) :=





Y iff Tr(PT ) = 1

N iff Tr(PT ) = 0

⊥ otherwise

(93)

Lemma 12. We have already

∀L,L′ ∈ T
pure

, (∀U ∈P
pure

,e(U,L) = e(U,L′))) ⇔ (L = L′ ) (94)

∀U,U ′ ∈P
pure

, (∀L ∈ T
pure

,e(U,L) = e(U ′,L))) ⇔ (U =U ′ ). (95)
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Theorem 5. Following our construction, the set of states is given by

S := { closed subspaces of H } (96)

S is a down-complete Inf semi-lattice with

∀G1,G2 ∈S, G1 ⊓S
G2 := G1 ⊕G2. (97)

The evaluation map ε is then defined as a map from T to BS by

∀T ∈ T, ∀G ∈S, εST (G ) :=





Y iff G ⊆ spec(T,H ;1)
N iff G ⊆ spec(T,H ;0)
⊥ otherwise

(98)

S
pure

= {one-dimensional closed subspaces of H } (99)

⊥
S

= H . (100)

�

Remark 3. S is ortho-complemented with G ⋆ := G⊥ (here, ⊥ denotes the orthogonality of

vector spaces) for any G in S.

The involutive and order-reversing properties of ⋆ are trivial to check. The property (73) is in

fact a direct consequence of the property

∀G ∈S,∀x ∈ H rG , ({x}⊕G )∩G
⊥ 6=∅ (101)

satisfied by any Hilbert space H .

Theorem 6. The set of effects is then defined by

E := {(G1,G2) ∈S×2 | G1⊥G2} (102)

with the following down-complete Inf semi-lattice structure

∀(G1,G2),(G
′
1,G

′
2) ∈ E, (G1,G2)⊓L

(G ′
1,G

′
2) := (G1 ∩G

′
1,G2 ∩G

′
2). (103)

And the evaluation map is given by

∀(G1,G2) ∈ E, ∀G ∈S, εS(G1,G2)
(G ) :=





Y iff G ⊆ G1

N iff G ⊆ G2

⊥ otherwise

(104)

E
pure

:= {(G ,G⊥) | G ⊕G
⊥ = H }. (105)

�
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2.7 Symmetries

Observer O1 has prepared a state σ1 ∈S
(O1) and intends to describe it to observer O2. Observer

O2 is able to interpret the macroscopic data defining σ1 in terms of the elements of S
(O2) using

a map f
(12)

: S
(O1) → S

(O2) (i.e., O2 knows how to identify a state f
(12)

(σ1) corresponding to

any σ1). Observer O2 has selected an effect l2 ∈ E
(O2) and intends to address the corresponding

question to O1. Observer O1 is able to interpret the macroscopic data defining l2 in terms of

the elements of E
(O1) using a map f

(21)
: E

(O2) → E
(O1) (i.e., O1 knows how to fix an effect

f
(21)

(l2) corresponding to any l2). The pair of maps ( f
(12)

, f
(21)

) where f
(12)

: S
(O1) →S

(O2) and

f
(21)

: E
(O2) → E

(O1) defines a dictionary formalizing the transaction from O1 to O2. The main

task these observers want to accomplish is to confront their knowledge, i.e., to compare their

’statements’ about the system. As soon as the transaction is formalized using a dictionary, the

two observers can formulate their statements and each confront them with the statements of

the other. First, observer O1 can interpret the macroscopic data defining l2 using the map f
(21)

.

Then, he produces the statement ε
(O1)

f
(21)

(l2)
(σ1) concerning the results associated to this effect on

the chosen state. Secondly, observer O2 can interpret the macroscopic data defining σ1 using the

map f
(12)

. Then, observer O2 pronounces her statement ε
(O2)

l2
( f

(12)
(σ1)) concerning the results

associated to the effect l2 on the correspondingly prepared state. The two observers, O1 and O2,

are said to agree about all their statements iff

∀σ1 ∈S
(O1) ,∀l2 ∈ E

(O2), ε
(O2)

l2
( f

(12)
(σ1)) = ε

(O1)

f
(21)

(l2)
(σ1). (106)

To summarize, we will define symmetries of the system as follows.

Definition 9. The symmetries of the system are defined as Chu morphisms [22] from

a States/Effects Chu space (S
(O1),E

(O1) ,ε
(O1)) defining the space of states and effects

associated to the observer O1, to another States/Effects Chu space (S
(O2) ,E

(O2) ,ε
(O2))

associated to the observer O2, i.e. as pairs of bijective maps f
(12)

: S
(O1) → S

(O2) and

f
(21)

: E
(O2) → E

(O1) satisfying property (106).

Definition 10. The composition of a symmetry ( f
(12)

, f
(21)

) from (S
(O1) ,E

(O1) ,ε
(O1)) to

(S
(O2) ,E

(O2),ε
(O2)) by another symmetry (g

(23)
,g

(32)
) defined from (S

(O2) ,E
(O2) ,ε

(O2)) to

(S
(O3) ,E

(O3),ε
(O3)) is given by the pair of bijective maps (g

(23)
◦ f

(12)
, f

(21)
◦g

(32)
) defining

a valid symmetry from (S
(O1) ,E

(O1) ,ε
(O1)) to (S

(O3) ,E
(O3),ε

(O3)).

As noted in [9], the duality property (106) suffices to deduce the following properties.

Theorem 7. f
(12)

and f
(21)

are maps satisfying

∀S1 ⊆S(O1), f
(12)

(
lS(O1)

S1) =
lS(O2)

σ1∈S1
f
(12)

(σ1) (107)

∀C1 ⊆Chain S
(O1), f

(12)
(
⊔S(O1)

C1) =
⊔S(O2)

σ1∈C1
f
(12)

(σ1) (108)

As a consequence of (108), it is in particular order-preserving.
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We have moreover

∀E2 ⊆ E(O2), f
(21)

(
l

E(O2)

E2) =
l

E(O1)

l2∈E2
f
(21)

(l2) (109)

∀C2 ⊆Chain E
(O2), f

(21)
(
⊔E(O2)

C2) =
⊔E(O1)

l2∈C2
f
(21)

(l2) (110)

∀l2 ∈ E(O2), f
(21)

( l2 ) = f
(21)

(l2) (111)

f
(21)

(Y
(O2)
E ) =Y

(O1)
E . (112)

Note that, due to properties (107) (109), as long as S(O1) satisfies axioms (A1) (A2) (A3),

S(O2) satisfies axioms (A1) (A2) (A3) as well. �

Proof. All proofs follow the same trick. For example, for any S1 ⊆ S(O1) and any l2 ∈ E
(O2) ,

we have, using (106) and (30) :

ε
(O2)

l2
( f

(12)
(
l

S(O1)

S1)) = ε
(O1)

f
(21)

(l2)
(
l

S(O1)

S1)

=
∧

σ1∈S1
ε
(O1)

f
(21)

(l2)
(σ1)

=
∧

σ1∈S1
ε
(O2)

l2
( f

(12)
(σ1))

= ε
(O2)

l2
(
lS(O2)

σ1∈S1
f
(12)

(σ1)) (113)

We now use the property (27) to conclude on (107).

Theorem 8. Due to the Corollary 1, as soon as a map f
(12)

which is monotonic and satisfies

(107) is given, we can define unambiguously the map f
(21)

satisfying with f
(12)

the duality

relation (106). �

The couple of maps ( f
(12)

, f
(21)

) defining a channel from (S
(O1) ,E

(O1) ,ε
(O1)) to (S

(O2) ,E
(O2),ε

(O2))
can then be reduced to the single data f

(12)
. We will then speak shortly of ”the symmetry f

(12)

from the space of states S
(O1) to the space of states S

(O2)”.

Definition 11. The space of channels from the space of states S
(O1) to the space of states

S
(O2) will be denoted C(S

(O1),S
(O2)). It is the space of maps from S

(O1) to S
(O2) that is

order-preserving and satisfies (107).

Definition 12. We define the infimum of two maps f
(12)

and g
(12)

satisfying (107) (resp.

two maps f
(12)

and g
(12)

satisfying (109)) by ∀σ ∈S
(O1) ,( f

(12)
⊓g

(12)
)(σ) := f

(12)
(σ)⊓

S
(O2)

g
(12)

(σ) (resp. ∀l ∈ E
(O2) ,( f

(12)
⊓g

(12)
)(l) := f

(12)
(l)⊓

E
(O1)

g
(12)

(l)).

Theorem 9. The infimum of a channel ( f
(12)

, f
(21)

) from (S
(O1) ,E

(O1) ,ε
(O1)) to (S

(O2) ,E
(O2) ,ε

(O2))

with another channel (g
(12)

,g
(21)

) defined from (S
(O1) ,E

(O1),ε
(O1)) to (S

(O2) ,E
(O2) ,ε

(O2)) is

given by the pair of maps ( f
(12)

⊓ g
(12)

, f
(21)

⊓ g
(21)

) defining a valid channel (i.e. a Chu
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morphism) from (S
(O1) ,E

(O1) ,ε
(O1)) to (S

(O2) ,E
(O2),ε

(O2)). �

Proof. Using two times the duality property and the homomorphic property of ε , we obtain

ε
(O2)

l2
(( f ⊓g)(σ1)) = ε

(O2)

l2
( f (σ1))∧ ε

(O2)

l2
(g(σ1)) = ε

(O1)

f
(21)

(l2)
(σ1)∧ ε

(O1)

g
(21)

(l2)
(σ1) = ε

(O1)

( f
(21)

⊓g
(21)

)(l2)
(σ1). (114)

Theorem 10. Pure states in S(O2) are exactly the direct images by the symmetry f
(12)

of pure states in S(O1). Moreover, as long as S(O1) satisfies axiom (A4), S(O2) satisfies

axiom (A4) as well. �

Proof. Let us consider a state σ2 in S(O2) such that f−1
(12)

(σ2) is a pure state in S(O1). For any

S2 ⊆ S(O2) satisfying σ2 =
dS(O2)

S2, we have f−1
(12)

(σ2) = f−1
(12)

(
dS(O2)

S2) =
dS(O1)

σ ′
2∈S2

f−1
(12)

(σ ′
2)

using (107), and then f−1
(12)

(σ2) ∈ f−1
(12)

(S2) (due to complete irreducibility of f−1
(12)

(σ2)), and then

σ2 ∈ S2. As a conclusion, σ2 is completely meet-irreducible in S(O2), i.e. it is a pure state of

S(O2).

Conversely, let us consider σ2 a pure state in S(O2) and let us consider S1 ⊆ S(O1) such that

f−1
(12)

(σ2) =
dS(O1)

S1, we have σ2 = f
(12)

(
dS(O1)

S1) =
dS(O1)

σ ′
1∈S1

f
(12)

(σ ′
1) using (107). Now, using

complete irreducibility of σ2, we deduce that there exists σ1 ∈ S1 such that σ2 = f
(12)

(σ1), i.e.

f−1
(12)

(σ2) ∈ S1. Hence, f−1
(12)

(σ2) is a pure state in S(O1).

Secondly, let us consider that S(O1) satisfies axiom (A4). We note that, due to the property

f
(12)

(S(O1)
pure

) =S(O2)
pure

and the monotonic character of the map f
(12)

, we have f
(12)

(σ) = f
(12)

(σ).

Using this result, axiom (A4) and property (107), we obtain for any σ1 ∈ S(O1), f
(12)

(σ1) =

f
(12)

(
dS(O1)

σ1) =
dS(O1)

f
(12)

(σ1) =
dS(O1)

f
(12)

(σ1). In other words, S(O2) = f
(12)

(S(O1)) sat-

isfies axiom (A4).

Theorem 11. As long as S(O1) satisfies axiom (A5), S(O2) satisfies axiom (A5) as well

and f
(12)

(Max(S(O1))) = Max(S(O2)). �

Proof. For any σ2 completely meet-irreducible element in S(O2), f−1
(12)

(σ2) is a completely

meet-irreducible element in S(O1) and then f−1
(12)

(σ2) ∈ Max(S(O1)) because S(O1) satisfies ax-

iom (A5). Let us imagine that there exists σ ′
2 ⊒

S(O2)
σ2, we have necessarily f−1

(12)
(σ ′

2) ⊒
S(O2)

f−1
(12)

(σ2) because f
(12)

is bijective and order-preserving, and then f−1
(12)

(σ2) = f−1
(12)

(σ ′
2) because

f−1
(12)

(σ2) ∈ Max(S(O1)). As a result, σ2 ∈ Max(S(O2)). We conclude that S(O2) satisfies axiom

(A5).

Let us consider σ1 ∈ Max(S(O1)) and let us consider that there exists σ2 ⊒
S(O2)

f
(12)

(σ1). We

have necessarily f−1
(12)

(σ2) ⊒
S(O2)

σ1 because f
(12)

is bijective and order-preserving, and then

f−1
(12)

(σ2) = σ1 because σ1 ∈ Max(S(O1)). As a result, f
(12)

(σ1) ∈ Max(S(O2)). We conclude

that f
(12)

(Max(S(O1))) ⊆ Max(S(O2)). On another part, for any σ2 ∈ Max(S(O2)), f−1
(12)

(σ2) is

a completely meet-irreducible element of S(O1), i.e. an element of Max(S(O1)), and then σ2 =
f
(12)

( f−1
(12)

(σ2)) ∈ f
(12)

(Max(S(O1))). As a final conclusion, f
(12)

(Max(S(O1))) = Max(S(O2)).
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As a conclusion of all results of this subsection, the defined symmetries relate fully and

faithfully the States/Effects Chu spaces.

Remark 4. We note that the identity map (id
S
, id

E
) is a symmetry from the States/Effects Chu

space (S,E,ε) to itself.

From now on, we will consider this category of States/Effects Chu spaces equipped with

Chu morphisms and denote it Chu
S/E

B .

We will also have to consider the category S which objects are spaces of states (Axioms A1-

A5) and which morphisms are bijective order-preserving maps satisfying (107)(108).

3 Multipartite experiments

3.1 An axiomatic proposal

We now intent to describe an experiment on compound systems, implying two parties : Alice

and Bob. The bipartite state space will be formed from two given spaces of states SA and SB.

It will be clear later on that this notion of bipartite space of states is ambiguous and different

constructions can be proposed.

We now begin with a basic axiomatic proposal for the description of bipartite experiments

(see [21, Section 5] for an analogue proposal in GPT’s perspective). We will denote by SAB =
SA ⊠SB the corresponding space of states.⌊6⌋ We will also denote by EAB = EA ⊠EB the bi-

partite effect space formed from two given effect spaces EA and EB. We will denote ε AB the

corresponding bipartite evaluation map from EAB to BSAB . We will assume the following re-

quirements about these elements.

First of all, we have to build (SAB,EAB,ε
AB) as a valid Spaces/Effects Chu space.

In particular, we will assume that SAB admits mixed bipartite states. In other words,

(B1)
∀{σi,AB | i ∈ I } ⊆SAB,

dSAB

i∈I σi,AB exists in SAB,

∀{σi,AB | i ∈ I } ⊆SAB,∀lAB ∈ EAB, ε AB
lAB

(
dSAB

i∈I σi,AB) =
∧

i∈I ε AB
lAB

(σi,AB).
(115)

In the same logic, we will assume that EAB admits mixed bipartite effects. In other words,

(B2)
∀{ li,AB | i ∈ I } ⊆ EAB,

dEAB

i∈I li,AB exists in EAB,
∀{ li,AB | i ∈ I } ⊆ EAB,∀σAB ∈SAB, ε AB

dEAB
i∈I li,AB

(σAB) =
∧

i∈I ε AB
li,AB

(σAB).
(116)

Secondly, for every effects lA and lB realized independently by Alice and Bob respectively,

we will assume that there must exist a unique associated bipartite effect in EAB. As a conse-

quence, we will assume that there are maps ιEAB : EA×EB −→ EAB which describe the inclusion

of ’pure tensors’ in EAB (for readability, we shall write lA ⊠ lB rather than ιEAB(lA, lB)). This

axiom will be denoted (B3). Moreover, if Alice (or Bob) chooses a mixture of effects, then this

6Throughout this short axiomatic introduction, we adopt the inadequate notation ⊠ for the tensor product in

order to allow for different candidates for this tensor product. These different candidates will be denoted ⊗, ⊗̃,...
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results in a mixture of the respective bipartite effects.

(B3’) (
lEA

i∈I li,A)⊠ lB =
lEAB

i∈I (li,A⊠ lB), (117)

(B3”) lA ⊠ (
lEB

i∈I li,B) =
lEAB

i∈I (lA ⊠ li,B). (118)

In the same logic, for every states σA ∈ SA and σB ∈ SB, prepared independently by Alice

and Bob, we will assume that there must exist a unique associated bipartite state in SAB. As a

consequence, we will assume that there are maps ιSAB :SA×SB −→SAB which describe the in-

clusion of ’pure tensors’ in SAB (for readability, we shall write σA⊠σB rather than ιSAB(σA,σB)).
This axiom will be denoted (B4). Moreover, if Alice (or Bob) prepares a mixture of states, then

this results in a mixture of the respective bipartite states.

(B4’) (
lSA

i∈I σi,A)⊠σB =
lSAB

i∈I (σi,A ⊠σB), (119)

(B4”) σA ⊠ (
l

SB

i∈I σi,B) =
l

SAB

i∈I (σA ⊠σi,B). (120)

Endly, for every σAB,σ
′
AB ∈SAB such that σAB 6= σ ′

AB, we will assume that there must exist

effects lA ∈ EA and lB ∈ EB such that when Alice and Bob prepare σAB and apply lA and lB
respectively, the resulting determination is different from the experiment where Alice and Bob

prepare σ ′
AB and apply lA and lB respectively. As a summary, applying effects locally is sufficient

to distinguish all of the states in SAB (this principle is called ”tomographic locality”), i.e.

(B5) ∀σAB,σ
′
AB ∈SAB, (∀lA ∈ EA, lB ∈ EB, ε AB

lA⊠lB
(σAB) = ε AB

lA⊠lB
(σ ′

AB)) ⇔ (σAB = σ ′
AB ). (121)

We will eventually adopt a complementary axiom. Let us consider that Alice and Bob

realize their experiments on a pure tensor state. In the simplest scenario, Alice applies lA ∈ EA

and Bob applies lB ∈ EB independently. Since these two experiments are independent, the

resulting determination has to be the ’product’ of the respective determinations, i.e.

(C) ∀σA ∈SA,∀σB ∈SB,∀lA ∈ EA,∀lB ∈ EB, ε AB
lA⊠lB

(σA ⊠σB) = ε A
lA
(σA)• ε B

lB
(σB).(122)

This axiom appears to be partly redundant with previous axioms. Indeed, using properties (122)

(17) (5) (115), we deduce that, for any lA ∈ EA, lB ∈ EB, {σi,A | i ∈ I } ⊆SA and σB ∈SB

ε AB
lA⊠lB

((
lSA

i∈Iσi,A)⊠σB) = ε A
lA
(
lSA

i∈Iσi,A)• ε B
lB
(σB)

= (
∧

i∈I ε A
lA
(σi,A))• ε B

lB
(σB)

=
∧

i∈I (ε A
lA
(σi,A)• ε B

lB
(σB))

=
∧

i∈I ε AB
lA⊠lB

(σi,A⊠σB)

= ε AB
lA⊠lB

(
lSAB

i∈I (σi,A ⊠σB)), (123)

and then, using property (121), we obtain the property (119). We obtain the property (120)

along the same lines of proof.

In the following, we intent to identify potential candidates for this bipartite space of states

SAB and space of effects EAB and posit it with respect to the standard construction of tensor

products of Inf semi-lattices. But before that, we complete the previous axiomatic by a discus-

sion of the symmetries of the multipartite experiments.
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3.2 Symmetries of the bipartite experiments

Definition 13. Let us consider a symmetry ( f
(12)

, f
(21)

) from a States/Effects Chu space

(SA1
,EA1

,εA1) associated a first observer, to another States/Effects Chu space (SA2
,EA2

,εA2)

associated to another observer. Let us also consider a symmetry (g
(12)

,g
(21)

) from the Chu

space (SB1
,EB1

,εB1) to the Chu space (SB2
,EB2

,εB2). We define the pair of maps (( f ⊠

g)
(12)

,( f ⊠g)
(21)

) from the Chu space (SA1B1
,EA1B1

,εA1B1) to the Chu space (SA2B2
,EA2B2

,εA2B2)
by

( f ⊠g)
(12)

(
lSA1B1

i∈I σi,A1
⊠σi,B1

) :=
lSA2B2

i∈I f
(12)

(σi,A1
)⊠g

(12)
(σi,B1

) (124)

( f ⊠g)
(21)

(
lEA2B2

j∈J l j,A2
⊠ l j,B2

) :=
lEA1B1

j∈J f
(21)

(l j,A1
)⊠g

(21)
(l j,B1

) (125)

Theorem 12. The pair of maps (( f ⊠g)
(12)

,( f ⊠g)
(21)

) is a well defined symmetry, i.e. a

Chu morphism from the Chu space (SA1B1
,EA1B1

,εA1B1) to the Chu space (SA2B2
,EA2B2

,εA2B2).
�

Proof.

εA2B2

dEA2B2
j∈J

l j,A2
⊠l j,B2

Å
( f ⊠g)

(12)
(
lSA1B1

i∈I σi,A1
⊠σi,B1

)

ã
= εA2B2

dEA2B2
j∈J

l j,A2
⊠l j,B2

ÅlSA2B2

i∈I f
(12)

(σi,A1
)⊠g

(12)
(σi,B1

)

ã

=
∧

j∈J

∧
i∈I εA2

l j,A2

( f
(12)

(σi,A1
))• εB2

l j,B2

(g
(12)

(σi,B1
))

=
∧

j∈J

∧
i∈I εA1

f
(21)

(l j,A2
)

(σi,A1
)• εB1

g
(21)

(l j,B2
)

(σi,B1
)

= εA1B1

dEA1B1
j∈J

f
(21)

(l j,A2
)⊠g

(21)
(l j,B2

)

ÅlSA2B2

i∈I σi,A1
⊠σi,B1

)

ã

= εA1B1

( f⊠g)
(21)

(
dEA2B2

j∈J
l j,A2

⊠l j,B2

)

ÅlSA2B2

i∈I σi,A1
⊠σi,B1

)

ã
. (126)

From this result, we deduce that the categories Chu
S/E

B and S are equipped with a tensor

product.

3.3 The canonical tensor product construction

We begin to introduce the classical construction of G.A. Fraser for the tensor product of semi-

lattices [12, 13]. As it will be clarified in the next subsection new proposals for the tensor

product of semi-lattices have to be made in order to complete our work.

Definition 14. Let A,B and C be semilattices. A function f : A × B −→ C is a bi-

homomorphism if the functions ga : B −→C defined by ga(b) = f (a,b) and hb : A −→C

defined by hb(a) = f (a,b) are homomorphisms for all a ∈ A and b ∈ B.
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Theorem 13. [12, Definition 2.2 and Theorem 2.3]

The tensor product SAB :=SA⊗SB of the two Inf semi-lattices SA and SB is obtained as

a solution of the following universal problem : there exists a bi-homomorphism, denoted

ι from SA ×SB to SAB, such that, for any Inf semi-lattice S and any bi-homomorphism

f from SA ×SB to S, there is a unique homomorphism g from SAB to S with f = g◦ ι .

We denote ι(σ ,σ ′) = σ ⊗σ ′ for any σ ∈SA and σ ′ ∈SB.

The tensor product SAB exists and is unique up to isomorphism, it is built as the ho-

momorphic image of the free ⊓ semi-lattice generated by the set SA ×SB under the

congruence relation determined by identifying (σ1⊓SA
σ2,σ

′) with (σ1,σ
′)⊓ (σ2,σ

′) for

all σ1,σ2 ∈ SA,σ
′ ∈ SB and identifying (σ ,σ ′

1 ⊓SB
σ ′

2) with (σ ,σ ′
1)⊓ (σ ,σ ′

2) for all

σ ∈SA,σ
′
1,σ

′
2 ∈SB.

In other words, SAB is the Inf semi-lattice (the infimum of S ⊆ SAB will be denoted
d SAB S)

generated by the elements σA ⊗σB with σA ∈SA,σB ∈SB and subject to the conditions

(σA ⊓SA
σ ′

A)⊗σB = (σA ⊗σB)⊓SAB
(σ ′

A ⊗σB), σA ⊗ (σB ⊓SB
σ ′

B) = (σA ⊗σB)⊓SAB
(σA ⊗σ ′

B). (127)

The elements of SAB can be written (
d SAB

i∈I σi,A ⊗σi,B) with I finite and σi,A ∈SA,σi,B ∈
SB, for any i ∈ I. �

Definition 15. The space SAB = SA ⊗SB is turned into a partially ordered set with the

following binary relation

∀σAB,σ
′
AB ∈ SAB, (σAB ⊑

SAB
σ ′

AB ) :⇔ (σAB ⊓SAB
σ ′

AB = σAB ). (128)

Definition 16. A non-empty subset R of SA ×SB is called a bi-filter of SA ×SB iff

∀σA,σ1,A,σ2,A ∈SA,∀σB,σ1,B,σ2,B ∈SB,

((σ1,A,σ1,B)≤ (σ2,A,σ2,B) and (σ1,A,σ1,B) ∈R) ⇒ (σ2,A,σ2,B) ∈R, (129)

(σ1,A,σB),(σ2,A,σB) ∈R ⇒ (σ1,A ⊓SA
σ2,A,σB) ∈R, (130)

(σA,σ1,B),(σA,σ2,B) ∈R ⇒ (σA,σ1,B ⊓SB
σ2,B) ∈R. (131)

Definition 17. If {(σ1,A,σ1,B), · · · ,(σn,A,σn,B)} is a non-empty finite subset of SA ×
SB, then the intersection of the collection of all bi-filters of SA ×SB which contain

(σ1,A,σ1,B), · · · ,(σn,A,σn,B) is a bi-filter, which we denote byF{(σ1,A,σ1,B), · · · ,(σn,A,σn,B)}.

Lemma 13. If F is a filter of SAB = SA ⊗SB then the set α(F) := {(σA,σB) ∈ SA ×
SB | σA ⊗σB ∈ F } is a bi-filter of SA ×SB. �

Lemma 14. [13, Lemma 1] Let us choose σA,σ1,A, · · · ,σn,A ∈SA and σB,σ1,B, · · · ,σn,B ∈
SB. Then,

(σA,σB) ∈ F{(σ1,A,σ1,B), · · · ,(σn,A,σn,B)} ⇔
Äl

SAB

1≤i≤n σi,A ⊗σi,B

ä
⊑

SAB
σA ⊗σB. (132)
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�

Proof. Let us suppose that (σA,σB) ∈ F{(σ1,A,σ1,B), · · · ,(σn,A,σn,B)}. Let F be the principal

filter in SA⊗SB generated by
Äd SAB

1≤i≤n σi,A ⊗σi,B

ä
. Then σi,A⊗σi,B ∈F for any 1≤ i≤ n, and

then (σi,A,σi,B) ∈ α(F) for any 1 ≤ i ≤ n. Hence, F{(σ1,A,σ1,B), · · · ,(σn,A,σn,B)} ⊆ α(F), and

then (σA,σB) ∈ α(F). As a result, σA ⊗σB ∈ F and then
Äd SAB

1≤i≤n σi,A ⊗σi,B

ä
⊑

SAB
σA ⊗σB.

Let us now suppose that
Äd SAB

1≤i≤n σi,A ⊗σi,B

ä
⊑

SAB
σA⊗σB. Let u : SA×SB →{0,1} be such

that

u(σA,σB) = 1 ⇔ (σA,σB) ∈ F{(σ1,A,σ1,B), · · · ,(σn,A,σn,B)} (133)

u is a bi-homomorphism. Then, there exists a homomorphism v : SA ⊗SB → {0,1} such that

u(σA,σB) = v(σA⊗σB) for any σA ∈SA and σB ∈SB. We have then u(σA,σB) = v(σA⊗σB)≥

v(
d SAB

1≤i≤n σi,A⊗σi,B) =
∧

1≤i≤n v(σi,A⊗σi,B) =
∧

1≤i≤n u(σi,A,σi,B). Since u(σi,A,σi,B) = 1 for

any 1≤ i≤ n, we deduce that u(σA,σB)= 1 and then (σA,σB)∈F{(σ1,A,σ1,B), · · · ,(σn,A,σn,B)}.

Lemma 15. [13, Theorem 1]

Let us choose σA,σ1,A, · · · ,σn,A ∈SA and σB,σ1,B, · · · ,σn,B ∈SB. Then,

Äl
SAB

1≤i≤n σi,A ⊗σi,B

ä
⊑

SAB
σA ⊗σB ⇔ there exists a n−ary lattice polynomial p | σA ⊒

SA
p(σ1,A, · · · ,σn,A)

and σB ⊒
SB

p∗(σ1,B, · · · ,σn,B). (134)

where p∗ denotes the lattice polynomial obtained from p by dualizing the lattice opera-

tions. �

Proof. Let us fix σ1,A, · · · ,σn,A ∈SA and σ1,B, · · · ,σn,B ∈SB and let us consider

F := {(σA,σB) | σA ⊒
SA

p(σ1,A, · · · ,σn,A) and σB ⊒
SB

p∗(σ1,B, · · · ,σn,B) for some n−ary polynomial p}. (135)

It is obvious that F contains (σ1,A,σ1,B), · · · ,(σn,A,σn,B).
It is also easy to check that F is a bi-filter.

Endly, we can check that every bi-filter which contains (σ1,A,σ1,B), · · · , (σn,A,σn,B) contains

also F . This point can be checked by induction on the complexity of the polynomial p by using

the following elementary result, consequence of the bi-filter character of F ,

∀σA,σ
′
A ∈SA,σB,σ

′
B ∈SB,

(
(σA,σB),(σ

′
A,σ

′
B) ∈ F

)
⇒

®
(σA ⊔SA

σ ′
A,σB ⊓SB

σ ′
B) ∈ F

(σA ⊓SA
σ ′

A,σB ⊔SB
σ ′

B) ∈ F

Theorem 14. For any lA ∈ EA, lB ∈ EB the map

f AB
lA,lB

: SA ×SB → B

(σA,σB) 7→ ε A
lA
(σA)• ε B

lB
(σB)

(136)

is a bi-homomorphism. Then, there exists a unique homomorphism from SAB =SA⊗SB

to B, denoted ν AB
lA,lB

, and satisfying f AB
lA,lB

= ν AB
tA,tB

◦ ι . Explicitly, we have

ν AB
lA,lB

(
l

SAB

i∈I σi,A ⊗σi,B) =
∧

i∈I ε A
lA
(σi,A)• ε B

lB
(σi,B). (137)
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Anticipating the construction of the bipartite effect state, we may denote ν AB
lA,lB

by ε AB
lA⊗lB

.

�

Proof. The bi-homomorphic property is a direct consequence of (15) and (5). The existence of

ν AB
lA,lB

satisfying f AB
lA,lB

= ν AB
lA,lB

◦ ι is then obtained as a consequence of Theorem 13.

Theorem 15.

∀σAB,σ
′
AB ∈ SAB, (σAB ⊑

SAB
σ ′

AB ) ⇒ (∀lA ∈ EA,∀lB ∈ EB, ν AB
lA,lB

(σAB)≤ ν AB
lA,lB

(σ ′
AB)), (138)

∀{σi,AB | i ∈ I } ⊆ f in SAB,∀lA ∈ EA,∀lB ∈ EB, ν AB
lA,lB

(
l

SAB

i∈I σi,AB) =
∧

i∈I ν AB
lA,lB

(σi,AB). (139)

�

3.4 The maximal tensor product

We now intent to introduce a general construction of a tensor product that will play the role of

the ”largest” tensor product satisfying the axiomatic presented in subsection 3.1. This point will

appear clear in subsection 3.5.

Definition 18. Let us denote by qSAB the set of bimorphisms from ESA
×ESB

to E⊥
∼=B,

i.e. the set of maps φ satisfying

∀{li,A | i ∈ I} ⊆ ESA
,∀lB ∈ ESB

, φ(
lESA

i∈I li,A, lB) =
∧

i∈I φ(li,A, lB) (140)

∀{l j,B | j ∈ J} ⊆ ESB
,∀lA ∈ ESA

, φ(lA,
lESB

j∈J l j,B) =
∧

j∈J φ(lA, l j,B). (141)

qSAB is called maximal tensor product of SA and SB.

Lemma 16. qSAB is equipped with the pointwise partial order.
qSAB is a down complete Inf semi-lattice with

∀{φi | i ∈ I} ⊆ qSAB, ∀lA ∈ ESA
,∀lB ∈ ESB

, (
l qSAB

i∈I φi)(lA, lB) :=
∧

i∈I φi(lA, lB). (142)

It is naturally equipped with the following family of Inf semi-lattice homomorphisms

defined for any lA ∈ EA and lB ∈ EB by

ν AB
lA,lB

: qSAB −→ B

φ 7→ ν AB
lA,lB

(φ) := φ(lA, lB).
(143)

We note that, for any φ and φ ′ in qSAB, we have

(∀lA ∈ EA,∀lB ∈ EB,ν
AB
lA,lB

(φ) = ν AB
lA,lB

(φ ′)) ⇔ (φ = φ ′ ). (144)

�
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Lemma 17. qSAB has a bottom element denoted ⊥
qSAB

with

∀lA ∈ ESA
,∀lB ∈ ESB

, (⊥
qSAB

)(lA, lB) :=⊥. (145)

In other words, qSAB satisfies Axiom (A2). �

Definition 19. P(ESA
×ESB

) is equipped with the congruence relation ∼ defined as

follows

({(li,A, li,B) | i ∈ I } ∼ {(l′j,A, l
′
j,B) | j ∈ J }) ⇔ (∀φ ∈ qSAB,

∧
i∈I φ(li,A, li,B) =

∧
j∈J φ(l′j,A, l

′
j,B)). (146)

Definition 20. The space qEAB is defined as the quotient of P(ESA
×ESB

) by the congru-

ence relation ∼.

∀λAB ∈ P(EA ×EB), qλAB := {xAB ∈ P(EA ×EB) | λAB ∼ xAB }. (147)

Definition 21. The evaluation map will be defined as a map from qEAB to B
qSAB by

∀λAB = {(li,A, li,B) | i ∈ I } ∈ P(EA ×EB),∀φ ∈ qSAB, ε
qSAB

qλAB

(φ) :=
∧

i∈I φ(li,A, li,B). (148)

Lemma 18. The evaluation map satisfies trivially

∀λAB ∈ P(EA ×EB),∀{φi | i ∈ I} ⊆ qSAB, ε
qSAB

qλAB

(
l qSAB

i∈I φi) =
∧

i∈I ε
qSAB

qλAB

(φi). (149)

In other words, qSAB satisfies Axiom (A1). �

Definition 22. qEAB is equipped with a partial order defined according to

∀qλAB,qλ
′
AB ∈ qEAB, (qλAB ⊑

qSAB

qλ ′
AB ) :⇔ (∀φ ∈ qSAB, ε

qSAB

qλAB

(φ)≤ ε
qSAB

qλ′
AB

(φ)). (150)

Definition 23. We will adopt the following definition

∀qλ ∈ qEAB, 〈qλ 〉 := Max{x ∈ P(EA ×EB) | qx ⊒
qEAB

qλ }

= {(lA, lB) ∈ EA ×EB | ­(lA, lB)⊒qEAB

qλ }, (151)

Lemma 19. We have the following Galois relation

∀qλ ∈ qEAB,∀x ∈ P(EA ×EB), 〈qλ〉 ⊇ x ⇔ qλ ⊑
qEAB

qx. (152)

�
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Proof. Let us fix x := {(li,A, li,B) | i ∈ I }. We derive straightforwardly the following equiva-

lences

〈qλ 〉 ⊇ x ⇔ ∀i ∈ I, ­(li,A, li,B)⊒qEAB

qλ

⇔ ∀i ∈ I,∀φ ∈ qSAB, ε
qSAB

qλ
(φ)≤ ν AB

li,A,li,B
(φ)

⇔ ∀φ ∈ qSAB, ε
qSAB

qλ
(φ)≤

∧
i∈I ν AB

li,A,li,B
(φ) = ε

qSAB
x (φ)

⇔ qλ ⊑
qEAB

qx. (153)

Theorem 16. qEAB is a down-complete Inf semi-lattice with

∀{xi | i ∈ I } ⊆ P(EA ×EB),
l qEAB

i∈I qxi =
­⋃

i∈I xi. (154)

Moreover, we have

∀{qλi | i ∈ I } ⊆ qEAB,∀φ ∈ qSAB, ε
qSAB

d qEAB
i∈I

qλi

(φ) =
∧

i∈I ε
qSAB

qλi

(φ) (155)

In other words, qEAB satisfies Axiom (A3). �

Proof. The property (154) is a direct consequence of the Galois relation established in previous

lemma.

Definition 24. The element qlAB ∈ qEAB associated to the element lAB := {(li,A, li,B) | i ∈

I } ∈ P(EA ×EB) will be denoted
d qEAB

i∈I li,A q⊗li,B.

From previous lemmas, we deduce that the Axioms (B1) and (B2) are satisfied.

The Axiom (B3) is trivial by construction. Axioms (B3’) and (B3”) are direct consequences of

properties (140) and (141).

Let us now consider the axioms (B4) (B4’) and (B4”). Inclusion of pure tensors is realized

as follows.

ιSAB : SA ×SB −→ qSAB

(σA,σB) 7→ ιSAB(σA,σB) | ∀(lA, lB) ∈ ESA
×ESB

, ιSAB(σA,σB)(lA, lB) := εSA

lA
(σA)• εSB

lB
(σB) ∈B.

(156)

As a consequence, Axiom (B4) is satisfied. Axioms (B4’) and (B4”) are then derived as in

proof (123) using the relation (B5) that is checked directly in (144).

Remark 5. According to the following analysis, the maximal tensor product seems to be too big

and we have to look for a nice subspace of it. Let us first recall the following result :

We have the following isomorphism

ρ : S −→ { f ∈ C(ES,E⊥) | ∀l ∈ ES, f ( l ) = f (l) and f (YES
) = Y}

σ 7→ ρ(σ) | ρ(σ)(l) := εSl (σ), ∀l ∈ ES.
(157)

28



Note that we have E⊥
∼= B. To prove this result we note that, for any σ ∈ S, we can define

a map φ from ES to E⊥
∼=B by φ(l) := εSl (σ). Using the properties (30)(31)(33) of εS, we

deduce that φ ∈ { f ∈ C(ES,E⊥) | ∀l ∈ ES, f ( l ) = f (l) and f (YES
) = Y}.

Reciprocally, using Theorem 2, we know that

∀φ ∈ { f ∈ C(ES,E⊥) | ∀l ∈ ES, f ( l ) = f (l) and f (YES
) = Y},

∃! σ ∈S | ∀l ∈ E, εSl (σ) = φ(l). (158)

The bijective character of the map ρ is then established. We have also trivially, for any {σi | i ∈
I} ⊆S :

ρ(
l

S

i∈Iσi) =
l

i∈Iρ(σi). (159)

According to this result, we may suggest to analyze a subspace qSr
AB of qSAB defined by the

following relations :

∀φ ∈ qSr
AB,∀lA ∈ EA, φ(lA,YESB

) = φ(lA,YESB
), (160)

∀φ ∈ qSr
AB,∀lB ∈ EB, φ(YESA

, lB) = φ(YESA
, lB), (161)

∀φ ∈ qSr
AB, φ(YESA

,YESB
) = Y, (162)

∀φ ∈ qSr
AB, φ(YESA

,YESB
) = N. (163)

This subspace will be analyzed in a forthcoming paper.

3.5 Candidates for a tensor product

Let us consider a candidate for the tensor product of the spaces of states SA and SB denoted

SAB. In other words, let us suppose that (SAB,ESAB
,εAB) satisfies axioms (B1) to (B5).

Theorem 17. We have by construction S̃AB →֒SAB as Inf semi-lattices. �

Proof. This is a direct consequence of axioms (B1) (B4) and (C).

Theorem 18. We have the following injective Inf semi-lattice homomorphism

µ : SAB →֒ qSAB

sAB 7→ µsAB
| ∀(lA, lB) ∈ ESA

×ESB
, µsAB

(lA, lB) := εSAB

lA⊠lB
(sAB).

(164)

Note that lA ⊠ lB is an element of SAB (due to axiom (B3)) once (lA, lB) is fixed in ESA
×

ESB
. �

Proof. We can prove that φsAB
satisfies properties (140)(141) using axioms (B2) and (B3’)(B3”).

The map associating φsAB
to sAB is injective because of axiom (B5). This map is an Inf semi-

lattice homomorphism because of the axiom (B1).
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3.6 The basic tensor product

It is now possible to give a definition of the tensor product of SA and SB that will be defined

in reference to the axiomatic relations (B1) − (B5) and (C). This tensor product will be called

basic tensor product and denoted S̃AB.

Definition 25. The set P(SA×SB) is equipped with the Inf semi-lattice structure ∪ and

with the following Inf semi-lattice morphisms defined for any lA ∈ EA and lB ∈ EB,

ν AB
lA,lB

: P(SA ×SB) −→ B

{(σi,A,σi,B) | i ∈ I } 7→ ν AB
lA,lB

({(σi,A,σi,B) | i ∈ I }) :=
∧

i∈I ε SA

lA
(σi,A)• ε SB

lB
(σi,B).

(165)

Definition 26. P(SA×SB) is equipped with a congruence relation defined between any

two elements uAB and u′AB of P(SA×SB) by

(uAB ≈ u′AB ) :⇔ (∀lA ∈ EA,∀lB ∈ EB, ν AB
lA,lB

(uAB) = ν AB
lA,lB

(u′AB)). (166)

Definition 27. The space S̃AB =SA⊗̃SB is built as the quotient of P(SA ×SB) under

the congruence relation ≈.

∀σAB ∈ P(SA ×SB), σ̃AB := {uAB | σAB ≈ uAB}. (167)

The map ν AB
lA,lB

will be abusively defined as a map from S̃AB to B by ν AB
lA,lB

(σ̃AB) :=

ν AB
lA,lB

(σAB) for any σAB in P(SA×SB).

Definition 28. S̃AB is equipped with a partial order defined according to

∀σ̃AB, σ̃
′
AB ∈ S̃AB, ( σ̃AB ⊑

S̃AB

σ̃ ′
AB ) :⇔ (∀lA ∈ EA,∀lB ∈ EB, ν AB

lA,lB
(σ̃AB)≤ ν AB

lA,lB
(σ̃ ′

AB)). (168)

This poset structure can be ”explicited” according to following lemma addressing the word

problem in S̃AB.

Lemma 20. Let us consider uAB := {(σi,A,σi,B) | i ∈ I } an element of P(SA×SB). We

have explicitly, for any σA ∈SA and σB ∈SB, the following equivalence

(
ũAB ⊑

S̃AB

·�(σA,σB)
)

⇔
Ä
(
l

SA

k∈I σk,A) ⊑
SA

σA and (
l

SB

m∈I σm,B) ⊑
SB

σB andÄ
∀∅ K  I, (

l
SA

k∈K σk,A) ⊑
SA

σA or (
l

SB
m∈I−K σm,B) ⊑

SB
σB

ää
. (169)

It is recalled that SA and SB are down-complete Inf semi-lattice and then the infima in

this formula are well-defined. �

Proof. We intent to expand the inequality ũAB ⊑
S̃AB

·�(σA,σB). It is equivalent to

∀lA ∈ EA,∀lB ∈ EB,
Ä∧

i∈I ε SA

lA
(σi,A)• ε SB

lB
(σi,B)

ä
≤ ε SA

lA
(σA)• ε SB

lB
(σB). (170)
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We intent to choose a pertinent set of effects lA ∈ EA and lB ∈ EB to reformulate this inequality.

Let us firstly choose lB =Y
EB

. Using (4), we obtain

ε SA

lA
(
l

SA

i∈I σi,A)≤ ε SA

lA
(σA),∀lA ∈ EA, (171)

whcih leads immediately

l
SA

i∈I σi,A ⊑
SA

σA. (172)

Choosing lA =Y
EA

, we obtain along the same line

lSB

i∈I σi,B ⊑
SB

σB. (173)

Let us now consider ∅ K  I and let us choose lA and lB according to

ε SA

lA
(σ) := N,∀σ ⊒

SA

lSA

k∈K σk,A and ε SA

lA
(σ) :=⊥, elsewhere, (174)

ε SB

lB
(σ) := N,∀σ ⊒

SB

l
SB

m∈I−K σm,B and ε SB

lB
(σ) :=⊥, elsewhere. (175)

We deduce, from the assumption (170), that, for this ∅ K  I, we have

(
l

SA

k∈K σk,A ⊑
SA

σA) or (
l

SB

m∈I−K σm,B ⊑
SB

σB). (176)

We let the reader check that we have obtained the whole set of independent inequalities refor-

mulating the property (170).

Definition 29. We will adopt the following definition

∀σ̃ ∈ S̃AB, 〈σ̃〉 := Max{u ∈ P(SA×SB) | ũ ⊒
S̃AB

σ̃ }

= {(σA,σB) | ·�(σA,σB)⊒
S̃AB

σ̃ }, (177)

Lemma 21. We have the following Galois relation

∀σ̃ ∈ S̃AB,∀u ∈ P(SA ×SB), 〈σ̃〉 ⊇ u ⇔ σ̃ ⊑
S̃AB

ũ. (178)

�

Proof. Let us fix u := {(σi,A,σi,B) | i ∈ I }. We derive straightforwardly the following equiva-

lences

〈σ̃〉 ⊇ u ⇔ ∀i ∈ I,„�(σi,A,σi,B)⊒
S̃AB

σ̃

⇔ ∀i ∈ I,∀lA ∈ EA,∀lB ∈ EB,ν
AB
lA,lB

(σ̃)≤ ε SA

lA
(σi,A)• ε SB

lB
(σi,B)

⇔ ∀lA ∈ EA,∀lB ∈ EB,ν
AB
lA,lB

(σ̃)≤
∧

i∈I ε SA

lA
(σi,A)• ε SB

lB
(σi,B)

⇔ σ̃ ⊑
S̃AB

ũ. (179)
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Theorem 19. S̃AB is a down-complete Inf semi-lattice with

∀{ui | i ∈ I } ⊆ P(SA ×SB),
l

S̃AB

i∈I ũi =
·�⋃

i∈I ui. (180)

Moreover, for any lA ∈ EA and lB ∈ EB, we have

∀{ ũi | i ∈ I } ⊆ S̃AB, ν AB
lA,lB

(
l

S̃AB

i∈I ũi) =
∧

i∈I ν AB
lA,lB

(ũi) (181)

�

Proof. The property (180) is a direct consequence of the Galois relation established in previous

lemma.

For any lA ∈ EA and lB ∈ EB, using (180) and the homomorphic property for ν AB
lA,lB

, we have

∀{ui | i ∈ I } ⊆ P(SA×SB), ν AB
lA,lB

(
l

S̃AB

i∈I ũi) = ν AB
lA,lB

(
·�⋃

i∈I ui)

= ν AB
lA,lB

(
⋃

i∈I ui)

=
∧

i∈I ν AB
lA,lB

(ui)

=
∧

i∈I ν AB
lA,lB

(ũi) (182)

Definition 30. The element ũ ∈ S̃AB associated to the element u := {(σi,A,σi,B) | i ∈ I } ∈

P(SA ×SB) will be denoted
d S̃AB

i∈I σi,A⊗̃σi,B.

Theorem 20.

∀{σi,A | i ∈ I } ⊆SA,∀σB ∈SB, (
lSA

i∈I σi,A)⊗̃σB =
l

S̃AB

i∈I (σi,A⊗̃σB), (183)

∀{σi,B | i ∈ I } ⊆SB,∀σA ∈SA, σA⊗̃(
l

SB

i∈I σi,B) =
l

S̃AB

i∈I (σA⊗̃σi,B). (184)

�

Proof. Indeed, using successively properties (137) (15) (5) and (137) again, we deduce that, for

any lA ∈ EA, lB ∈ EB,

ν AB
lA,lB

((
lSA

i∈Iσi,A,σB)) = ε SA

lA
(
lSA

i∈Iσi,A)• ε SB

lB
(σB)

= (
∧

i∈I ε SA

lA
(σi,A))• ε SB

lB
(σB)

=
∧

i∈I (ε SA

lA
(σi,A)• ε SB

lB
(σB))

= ν AB
lA,lB

({(σi,A,σB) | i ∈ I }), (185)

and then, by definition, we obtain the property

(
lSA

i∈Iσi,A,σB) ≈ {(σi,A,σB) | i ∈ I } (186)
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and then

(
lSA

i∈I σi,A)⊗̃σB =
l

S̃AB

i∈I (σi,A⊗̃σB). (187)

We obtain the second property along the same lines of proof.

In this subsection, we will assume that (SA,EA,ε
A) and (SB,EB,ε

B) are valid States/Effects

Chu spaces. In other words, they satisfy Axioms (A1)−(A5).

Definition 31. The evaluation map will be defined as a map

ε : P(EA ×EB) −→ BS̃AB

{(li,A, li,B) | i ∈ I} 7→ ε S̃AB

{(li,A,li,B) | i∈I}
| ∀σ̃AB ∈ S̃AB, ε S̃AB

{(li,A,li,B) | i∈I}
(σ̃AB) =

∧
i∈I νAB

li,A,li,B
(σ̃AB).

(188)

Definition 32. P(EA ×EB) is equipped with a congruence relation defined between any

two elements xAB and x′AB of P(EA ×EB) by

(xAB ≃ x′AB ) :⇔ (∀σ̃AB ∈ S̃AB, ε S̃AB
xAB

(σ̃AB) = ε S̃AB

x′AB
(σ̃AB)). (189)

Definition 33. The space ẼAB is built as the quotient of P(EA×EB) under the congruence

relation ≃.

∀λAB ∈ P(EA ×EB), λ̃AB := {xAB ∈ P(EA ×EB) | λAB ≃ xAB }. (190)

The evaluation map will be defined as a map from ẼAB to BS̃AB by ε S̃AB

λ̃AB

:= ε S̃AB

λAB
for any

λAB ∈ P(EA ×EB).

Definition 34. ẼAB is equipped with a partial order defined according to

∀λ̃AB, λ̃
′
AB ∈ ẼAB, ( λ̃AB ⊑

ẼAB
λ̃ ′

AB ) :⇔ (∀σ̃AB ∈ S̃AB, ε S̃AB

λ̃AB

(σ̃AB)≤ ε S̃AB

λ̃′
AB

(σ̃AB)). (191)

Definition 35. We will adopt the following definition

∀λ̃ ∈ ẼAB, 〈λ̃〉 := Max{x ∈ P(EA ×EB) | x̃ ⊒
ẼAB

λ̃ }

= {(lA, lB) |‡(lA, lB)⊒
ẼAB

λ̃ }, (192)

Lemma 22. We have the following Galois relation

∀λ̃ ∈ ẼAB,∀x ∈ P(EA ×EB), 〈λ̃〉 ⊇ x ⇔ λ̃ ⊑
ẼAB

x̃. (193)

�
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Proof. Let us fix x := {(li,A, li,B) | i ∈ I }. We derive straightforwardly the following equiva-

lences

〈λ̃ 〉 ⊇ x ⇔ ∀i ∈ I,‚�(li,A, li,B)⊒
ẼAB

λ̃

⇔ ∀i ∈ I,∀σ̃AB ∈ S̃AB, ε S̃AB

λ̃
(σ̃AB)≤ ν AB

li,A,li,B
(σ̃AB)

⇔ ∀σ̃AB ∈ S̃AB, ε S̃AB

λ̃
(σ̃AB)≤

∧
i∈I ν AB

li,A,li,B
(σ̃AB) = ε S̃AB

x (σ̃AB)

⇔ λ̃ ⊑
ẼAB

x̃. (194)

Theorem 21. ẼAB is a down-complete Inf semi-lattice with

∀{xi | i ∈ I } ⊆ P(EA ×EB),
l

ẼAB

i∈I x̃i =
·�⋃

i∈I xi. (195)

Moreover, we have

∀{ λ̃i | i ∈ I } ⊆ ẼAB,∀σ̃AB ∈ S̃AB, ε S̃AB

d ẼAB
i∈I λ̃i

(σ̃AB) =
∧

i∈I ε S̃AB

λ̃i

(σ̃AB) (196)

In other words, ẼAB satisfies Axiom (A3). �

Proof. The property (195) is a direct consequence of the Galois relation established in previous

lemma.

For any σ̃AB ∈ S̃AB we have

∀{xi | i ∈ I } ⊆ P(EA ×EB), ε S̃AB

d S̃AB
i∈I x̃i

(σ̃AB) = ε S̃AB‡⋃
i∈I xi

(σ̃AB)

= ε S̃AB⋃
i∈I xi

(σ̃AB)

=
∧

i∈I ε S̃AB
xi

(σ̃AB)

=
∧

i∈I ε S̃AB

x̃i
(σ̃AB) (197)

Definition 36. The element ›lAB ∈ ẼAB associated to the element lAB := {(li,A, li,B) | i ∈

I } ∈ P(EA ×EB) will be denoted
d ẼAB

i∈I li,A⊗̃li,B.

Theorem 22. S̃AB satisfies Axiom (A1). Explicitly, S̃AB is a down-complete Inf semi-

lattice. Moreover, we have

∀{ σ̃i,AB | i ∈ I } ⊆ S̃AB,∀λ̃AB ∈ ẼAB, ε S̃AB

λ̃AB

(
l

S̃AB

i∈I σ̃i,AB) =
∧

i∈I ε S̃AB

λ̃AB

(σ̃i,AB) (198)

�

Proof. Direct consequence of Theorem 19 with property (196).
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Theorem 23. If SA and SB satisfy the axiom (A2), then S̃AB satisfies the axiom (A2) as

well : the bottom element of S̃AB is explicitly given by ⊥
SA

⊗̃⊥
SB

. �

Proof. Trivial using the expansion (169).

Theorem 24.

S̃
pure

AB = {σA⊗̃σB | σA ∈S
pure

A ,σB ∈S
pure

B } (199)

Moreover, S̃AB =SA⊗̃SB satisfies the axiom (A5), i.e. S̃
pure

AB = Max(S̃AB). �

Proof. First of all, it is a trivial fact that the completely meet-irreducible elements of S̃AB are

necessarily pure tensors of S̃AB, i.e. elements of the form σA⊗̃σB.

Let us then consider σA⊗̃σB a completely meet-irreducible element of S̃AB and let us assume

that σA =
dSA

i∈Iσi,A for σi,A ∈SA for any i ∈ I. We have then (σA⊗̃σB) = ((
dSA

i∈Iσi,A)⊗̃σB) =d S̃AB

i∈I (σi,A⊗̃σB). On another part, σA⊗̃σB being completely meet-irreducible in S̃AB, there exists

k ∈ I such that σA⊗̃σB = σk,A⊗̃σB, i.e, σA = σk,A. As a conclusion, σA is completely meet-

irreducible. In the same way, σB is completely meet-irreducible. As a first result, pure states of

S̃AB are necessarily of the form σA⊗̃σB with σA ∈S
pure

A ,σB ∈S
pure

B .

Conversely, let us consider σA a pure state of SA and σB a pure state of SB, and let us suppose

that (
d S̃AB

i∈I σi,A⊗̃σi,B) = (σA⊗̃σB) with σi,A ∈SA and σi,B ∈SB for any i ∈ I. We now exploit

the two conditions (
dSA

k∈I σk,A) = σA and (
dSB

m∈I σm,B) = σB derived from the expansion (169).

From σA ∈ Max(SA) and σB ∈ Max(SB), we deduce that σi,A = σA and σ j,B = σB for any

i, j ∈ I. As a second result, we have then obtained that the state (σA⊗̃σB), with σA a pure state

of SA and σB a pure state of SB, is completely meet-irreducible.

From the expansion (169), we deduce also immediately that (σA⊗̃σB) ∈ Max(S̃AB) as long as

σA ∈ Max(SA) and σB ∈ Max(SB).

Theorem 25. S̃AB =SA⊗̃SB satisfies the axiom (A4). Explicitly,

∀σ ∈ S̃AB, σ =
l

S̃AB σ
S̃AB

, where σ
S̃AB

= (S̃
pure

AB ∩ (↑
S̃ABσ)). (200)

�

Proof. Let us fix σ ∈ S̃AB.

We note that σ ⊑
S̃AB

σ ′ for any σ ′ ∈ (S̃
pure

AB ∩ (↑
S̃ABσ)) and then σ ⊑

S̃AB

d S̃AB σ
S̃AB

.

Secondly, denoting σ := (
d S̃AB

i∈I σi,A⊗̃σi,B), we note immediately that, for any σA ∈S
pure
A and

σB ∈S
pure
B , if σA ⊒

SA
σi,A and σB ⊒

SB
σi,B, then (σA⊗̃σB) ⊒SAB

σ , i.e. (σA⊗̃σB) ∈ σ
S̃AB

. As

a consequence, we have

(
l

S̃AB

i∈I

l
S̃AB

σA∈S
pure
A

| σA⊒SA
σi,A

l
S̃AB

σB∈S
pure
B | σB⊒SB

σi,B
σA⊗̃σB)⊒

S̃AB

l
S̃AB

σ
S̃AB

. (201)

Endly, using Theorem 20,we have

σ =
l

S̃AB

i∈I σi,A⊗̃σi,B =
l

S̃AB

i∈I (
l

S̃AB

σA∈S
pure
A | σA⊒SA

σi,A
σA)⊗̃(

l
S̃AB

σB∈S
pure
B | σB⊒SB

σi,B
σB)

=
l

S̃AB

i∈I

l
S̃AB

σA∈S
pure
A

| σA⊒SA
σi,A

l
S̃AB

σB∈S
pure
B | σB⊒SB

σi,B
σA⊗̃σB. (202)
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As a final conclusion, we obtain

σ = (
l

S̃AB

i∈I

l
S̃AB

σA∈S
pure
A | σA⊒SA

σi,A

l
S̃AB

σB∈S
pure
B | σB⊒SB

σi,B
σA⊗̃σB) =

l
S̃AB σ

S̃AB

. (203)

As a conclusion of previous theorems, we have also obtained that S̃AB is a valid space of

states and ẼAB is a valid space of effects satisfying axioms (A1) − (A5) and extensionality+separation.

As a consequence, they satisfy axioms (B1) and (B2).

Axioms (B3) and (B4) are also trivial by construction.

By construction of the basic tensor product, it will also satisfy the axiom (B5), i.e.

∀σ̃AB, σ̃
′
AB ∈ S̃AB, (∀lA ∈ EA,∀lB ∈ EB, ε S̃AB

lA⊗̃lB
(σ̃AB) = ε S̃AB

lA⊗̃lB
(σ̃ ′

AB)) ⇔ ( σ̃AB = σ̃ ′
AB ). (204)

Endly, Definition 25 has been chosen in such a way that we obtain trivially the axiom (C),

i.e.

∀σA ∈SA,∀σB ∈SB,∀lA ∈ EA,∀lB ∈ EB, ε S̃AB

lA⊗̃lB
(σA⊗̃σB) = ε SA

lA
(σA)• ε SB

lB
(σB). (205)

3.7 Multipartite experiments defined by the basic tensor product

Let SA,SB,SC be three spaces of states. We intent to define the tripartite state space SABC ?

Clearly one option is to first form the bipartite state space SA⊗̃SB and then tensor the result

with SC, so that we get (SA⊗̃SB)⊗̃SC. Another way to build these tripartite experiments is

to first form SB⊗̃SC and then tensor with SA to obtain SA⊗̃(SB⊗̃SC). It is natural to require

that both of these constructions yield the same result.

Theorem 26. The basic tensor product of state spaces is associative, i.e., we must have

(SA⊗̃SB)⊗̃SC = SA⊗̃(SB⊗̃SC). (206)

�

Proof. (SA⊗̃SB)⊗̃SC is defined as the quotient of P(SA ×SB ×SC) by the congruence

relation defined for any uABC,u
′
ABC ∈ P(SA ×SB ×SC)

(uABC ≈
(AB)C

u′ABC) :⇔ (∀lAB ∈ ẼAB, lC ∈ EC, νlAB,lC(uABC) = νlAB,lC(u
′
ABC)) (207)

⇔ (∀lA ∈ EA, lB ∈ EB, lC ∈ EC, νlA,lB,lC(uABC) = νlA,lB,lC(u
′
ABC)) (208)

where

νlA,lB,lC({(σi,A,σi,B,σi,C) | i ∈ I}) :=
∧

i∈I

εSA

lA
(σi,A)• εSB

lB
(σi,B)• εSC

lC
(σi,C) (209)

In the same way we have that SA⊗̃(SB⊗̃SC) is defined as the quotient of P(SA×SB ×SC)
by the congruence relation defined for any uABC,u

′
ABC ∈ P(SA ×SB ×SC)

(uABC ≈
A(BC)

u′ABC) :⇔ (∀lBC ∈ ẼBC, lA ∈ EA, νlA,lBC
(uABC) = νlA,lBC

(u′ABC)) (210)

⇔ (∀lA ∈ EA, lB ∈ EB, lC ∈ EC, νlA,lB,lC(uABC) = νlA,lB,lC(u
′
ABC)).(211)

The announced equality is then proved.

We can then define a multiple tensor product of spaces of states.
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Definition 37. The set P(∏ j∈J S
( j)) is equipped with the Inf semi-lattice structure ∪ and

with the following Inf semi-lattice morphisms defined for any (l( j))i∈J with l( j) ∈ E( j) :

ν(l( j)) j∈J
: P(∏ j∈J S

( j)) −→ B

{(σ
( j)
i ) j∈J | i ∈ I } 7→

∧
i∈I

⊙
j∈J

εl( j)(σ
( j)
i )

(212)

where we have used the symbol
⊙

to denote the multiple • product.

Definition 38. P(∏ j∈J S
( j)) is equipped with a congruence relation defined between

any two elements u,u′ ∈ P(∏ j∈J S
( j)) by

u ≈ u′ :⇔ ∀(l( j)) j∈J ∈ ∏ j∈JE
( j), ν(l( j)) j∈J

(u) = ν(l( j)) j∈J
(u′). (213)

Definition 39. The multiple tensor product ‹⊗ j∈JS
( j) is defined as the quotient of the set

P(∏ j∈J S
( j)) under the congruence relation ≈.

∀σ ∈ P(∏
j∈J

S( j)), σ̃ := {u | σ ≈ u}. (214)

The element ‹u ∈ S̃ := ‹⊗ j∈JS
( j) associated to the element u := {(σ

( j)
i ) j∈J | i ∈ I } ∈

P(∏ j∈J S
( j)) will be denoted

d
S̃
i∈I
‹⊗

j∈Jσ
( j)
i .

Theorem 27. Let us introduce the following notation

K
(J)

I := {(K( j)) j∈J | (K
( j) ⊆ I, ∀ j ∈ J) and (K( j)∩K( j′) =∅, ∀ j, j′ ∈ J) and (

⋃
j∈JK( j) = I)}. (215)

The poset structure on S̃ := ‹⊗ j∈JS
( j) is defined according to

(
l

S̃

i∈I

›⊗
j∈J

σ
( j)
i )⊑

S̃

›⊗
j∈J

σ ( j)

⇔ (∀(K( j)) j∈J ∈ K
(J)

I , ∃ j ∈ J | (K( j) 6=∅ and σ ( j) ⊒
S( j)

l
S( j)

k∈K( j)
σ
( j)
k )) (216)

�

Proof. The proof follows the same line as in Lemma 20.

3.8 Canonical vs basic tensor product
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Lemma 23. For any σ̃ in S̃AB, 〈σ̃〉 is a bi-filter of SA ×SB and we have explicitly

〈
l

S̃AB

i∈I (σi,A⊗̃σi,B) 〉 = {(σA,σB) | (
l

SA

k∈I σk,A) ⊑
SA

σA and (
l

SB

m∈I σm,B) ⊑
SB

σB andÄ
∀∅ K  I, (

l
SA

k∈K σk,A) ⊑
SA

σA or (
l

SB

m∈I−K σm,B) ⊑
SB

σB

ä
}. (217)

=
{
(σA,σB) | ∃K ,K ′ ⊆ 2I with K ∪K

′ = 2I,K ∩K
′ =∅,{∅} ∈ K

′, I ∈ K ,

(
⊔

SA

K∈K

l
SA

k∈K
σk,A) ⊑

SA
σA and (

⊔
SA

K′∈K ′

l
SB

m∈I−K′ σm,B) ⊑
SB

σB

©
. (218)

We will also use the following notation F̃{(σi,A,σi,B) | i ∈ I} := 〈
d S̃AB

i∈I (σi,A⊗̃σi,B) 〉. �

Proof. From Definition 29 and Lemma 20 we deduce immediately the expression (217).

Let us now check the bi-filter properties.

The property (129) is trivially obtained from the expression (217).

Let us now consider that (σ ′
1,A,σ

′
B),(σ

′
2,A,σ

′
B) ∈ 〈

d S̃AB

i∈I (σi,A⊗̃σi,B) 〉. In other words, we have

for any lA ∈EA and lB ∈EB : ν AB
lA,lB

((σ ′
1,A,σ

′
B))≥ ν AB

lA,lB
({(σi,A,σi,B) | i∈ I}) and ν AB

lA,lB
((σ ′

2,A,σ
′
B))≥

ν AB
lA,lB

({(σi,A,σi,B) | i∈ I}). Moreover, we have proved in (123) that ν AB
lA,lB

((σ ′
1,A,σ

′
B))∧ν AB

lA,lB
((σ ′

2,A,σ
′
B))=

ν AB
lA,lB

((σ ′
1,A⊓SA

σ ′
2,A,σ

′
B)). As a consequence, we obtain ν AB

lA,lB
((σ ′

1,A⊓SA
σ ′

2,A,σ
′
B))≥ ν AB

lA,lB
({(σi,A,σi,B) | i∈

I }) for any lA ∈EA and lB ∈EB. As a result, we obtain that (σ ′
1,A⊓SA

σ ′
2,A,σ

′
B)∈ 〈

d S̃AB

i∈I (σi,A⊗̃σi,B) 〉.
We have then proved property (130).

The property (131) is proved along the same lines.

The expression (218) is a trivial reformulation of (217).

Definition 40. We denote S̃
f in
AB the sub-poset of S̃AB defined as follows :

S̃
f in
AB := {ũ | u ⊆ f in SA ×SB }. (219)

It is also a sub- Inf semi-lattice of S̃AB.

Theorem 28. We have the following obvious property relating the partial orders of S̃
f in
AB

and SAB. For any {(σi,A,σi,B) | i ∈ I} ⊆ f in SA ×SB,

(
l

SAB

i∈I σi,A ⊗σi,B)⊑SAB
σ ′

A ⊗σ ′
B ⇒ (

l
S̃AB

i∈I σi,A⊗̃σi,B)⊑
S̃AB

σ ′
A⊗̃σ ′

B. (220)

�

Proof. We intent to prove F{(σi,A,σi,B) | i ∈ I} ⊆ F̃{(σi,A,σi,B) | i ∈ I} for any {(σi,A,σi,B) | i ∈

I}⊆ f in SA×SB (we recall that we have adopted the notation F̃{(σi,A,σi,B) | i∈ I} := 〈
d S̃AB

i∈I (σi,A⊗̃σi,B) 〉).

First of all, it is recalled from Lemma 23 that F̃{(σi,A,σi,B) | i ∈ I} is a bi-filter.

Secondly, it is easy to check that (σk,A,σk,B) ∈ F̃{(σi,A,σi,B) | i ∈ I} for any k ∈ I using the

expression (217). Indeed, for any K ⊆ I, if k ∈ K we have (
dSA

l∈K σl,A) ⊑
SA

σk,A and if k /∈ K

we have (
dSB

m∈I−K σm,B) ⊑
SB

σk,B.

As a conclusion, and by definition of F{(σi,A,σi,B) | i ∈ I} as the intersection of all bi-filters

containing (σi,A,σi,B) for any i ∈ I, we have then F̃{(σi,A,σi,B) | i ∈ I} ⊇ F{(σi,A,σi,B) | i ∈ I}.

We now use Lemma 14 and Definition 29 to obtain the announced result.

38



Theorem 29. If SA or SB are distributive, then S̃
f in
AB and SAB are in fact isomorphic posets.

As shown in Remark 6, the distributivity of SA or SB is a key condition for this isomor-

phism to be valid. �

Proof. We now suppose that SA or SB is distributive and we intent to prove that F{(σi,A,σi,B) | i∈

I}= F̃{(σi,A,σi,B) | i ∈ I} for any {(σi,A,σi,B) | i ∈ I} ⊆ f in SA ×SB.

Let us prove the following fact : every bi-filter F which contains (σk,A,σk,B) for any k ∈ I

contains also F̃{(σi,A,σi,B) | i ∈ I}. In fact, we can show that, for any bi-filter F we have

(∀k ∈ I, (σk,A,σk,B) ∈ F) ⇒ (
⊔

SA

K∈K

l
SA

k∈K σk,A,
⊔

SA

K′∈K ′

l
SB

m∈I−K′ σm,B) ∈ F,

∀K ,K ′ ⊆ 2I,K ∪K
′ = 2I,K ∩K

′ =∅,{∅} ∈ K
′, I ∈ K . (221)

The first step towards (221) is obtained by checking that ∀K ,K ′ ⊆ 2I,K ∪K ′ = 2I,K ∩
K ′ =∅,{∅} ∈ K ′, I ∈ K ,

(
⊔S

K′∈K ′

lS

m∈I−K′ σm)⊒S
(
lS

K∈K

⊔S

k∈K σk) (222)

for any distributive S and any collection of elements of S denoted σk for k ∈ I for which these

two sides of inequality exist. To check this fact, we have to note that, using [7, Lemma 8 p. 50],

we have first of all

(
lS

K∈K

⊔S

k∈K σk) =
⊔S

®lS

K∈K πK(A) | A ∈ ∏
K∈K

K

´
, (223)

where πK denotes the projection of the component indexed by K in the cardinal product ∏K∈K K.

Moreover, for any A ∈ ∏K∈K K, there exists L ∈ K ′ such that
⋃
{πK(A) | K ∈ K } ⊇ (IrL)

and then (
dS

K∈K
πK(A)) ⊑S

(
dS

m∈I−L σm) ⊑S
(
⊔S

K′∈K ′

dS

m∈I−K′ σm). As a result, we obtain

the property (222).

The second step towards (221) consists in showing that

(∀k ∈ I, (σk,A,σk,B) ∈ F) ⇒ (
⊔

SA

K∈K

l
SA

k∈K σk,A,
l

SB

K∈K

⊔
SB

k∈K σk,B) ∈ F (224)

for any K ⊆ 2I. This intermediary result is obtained by induction on the complexity of the

polynomial (
⊔SA

K∈K

dSA

k∈K
σk,A) by using the following elementary result

∀σA,σ
′
A ∈SA,σB,σ

′
B ∈SB,

(
(σA,σB),(σ

′
A,σ

′
B) ∈ F

)
⇒

®
(σA ⊔SA

σ ′
A,σB ⊓SB

σ ′
B) ∈ F

(σA ⊓SA
σ ′

A,σB ⊔SB
σ ′

B) ∈ F

trivially deduced using the bi-filter character of F , i.e. properties (129)(130)(131).

As a final conclusion, using the explicit definition of F{(σi,A,σi,B) | i ∈ I} as the intersec-

tion of all bi-ideals containing (σk,A,σk,B) for any k ∈ I, we obtain F̃{(σi,A,σi,B) | i ∈ I} =
F{(σi,A,σi,B) | i ∈ I}.

S̃
f in
AB and SAB are then isomorphic posets.

Remark 6. We note that the distributivity property is a key condition to obtain previous isomor-

phism between S̃
f in
AB and SAB. Indeed, let us consider that SA and SB are both defined as the

lattice associated to the following Hasse diagram:
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⊥

σ1 σ2 σ3

According to (169), we have (⊥
SA

,⊥
SB

) ∈ F̃{(σ1,σ1),(σ2,σ2),(σ3,σ3)}. However, we have

obviously (⊥
SA

,⊥
SB

) /∈ F{(σ1,σ1),(σ2,σ2),(σ3,σ3)}.

3.9 Properties of the basic tensor product

Theorem 30. Let σ̃AB and σ̃ ′
AB be two elements of S̃AB having a common upper-bound.

Then the supremum of {σ̃AB, σ̃
′
AB} exists in S̃AB and its expression is given by

σ̃AB ⊔
S̃AB

σ̃ ′
AB =

l
S̃AB

σ̃∈(σ̃AB
S̃AB

∩ σ̃ ′
AB

S̃AB

) σ̃ (225)

�

Theorem 31. If SA and SB are distributive (cf. Definition 1), then S̃AB is also distributive.

Note, using Theorem 29, that, in this situation, we have also S̃
f in
AB = SAB.

In that case, the explicit expression for the supremum of two elements in S̃
f in
AB is given by

(
l

S̃AB

i∈I σi,A⊗̃σi,B)⊔
S̃AB

(
l

S̃AB

j∈Jσ ′
j,A⊗̃σ ′

j,B) =
l

S̃AB

i∈I, j∈J (σi,A ⊔SA
σ ′

j,A)⊗̃(σi,B ⊔SB
σ ′

j,B). (226)

�

Proof. First of all, using Theorem 29, we note that, as soon as SA or SB is distributive, we

have S̃AB = SAB as Inf semi-lattices. We are then reduced to prove the distributivity of SAB.

In reference to the definition of distributivity of an Inf semi-lattice given in Definition 1, we have

then to prove that if
d SAB

1≤i≤nσi,A⊗σi,B ⊑
SAB

σA⊗σB, then there exists σ ′
i,A⊗σ ′

i,B ⊒
SAB

σi,A⊗σi,B

for any 1 ≤ i ≤ n such that
d SAB

1≤i≤nσ ′
i,A⊗σ ′

i,B = σA⊗σB. From Lemma 15, we conclude that

it is sufficient to prove that, for any n−ary polynomial p, if σA ⊒
SA

p(σ1,A, · · · ,σn,A) and

σB ⊒
SB

p∗(σ1,B, · · · ,σn,B), then there exist σ ′
i,A ⊒

SA
σi,A and σ ′

i,B ⊒
SB

σi,B for 1 ≤ i ≤ n such

that σA ⊒
SA

p(σ ′
1,A, · · · ,σ

′
n,A) and σB ⊒

SB
p∗(σ ′

1,B, · · · ,σ
′
n,B), and σ ′

i,A ⊒
SA

σA and σ ′
i,B ⊒

SB
σB

for 1 ≤ i ≤ n.

The proof of this fact is sketched in [13, Theorem 3], and we give here a developed version of it.

Let us prove the following statement for any n−ary polynomial p :

σA ⊒
SA

p(σ1,A, · · · ,σn,A)⇒

∃σ ′
i,A ⊒

SA
σi,A,∀1 ≤ i ≤ n |

Ä
σA ⊒

SA
p(σ ′

1,A, · · · ,σ
′
n,A) and σ ′

i,A ⊒
SA

σA,∀1 ≤ i ≤ n
ä
. (227)

This statement is obviously true for p(σ1,A, · · · ,σn,A) := σk,A, it suffices to chose σk,A = σA.

Let us assume that the induction statement is true for two n−ary polynomials p and q, and

let us prove the statement is also true for (p⊓q).
We will assume σA ⊒

SA
p(σ1,A, · · · ,σn,A)⊓SA

q(σ1,A, · · · ,σn,A). Then, there exist γA,δA ∈SA
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such that σA ⊒
SA

(γA ⊓SA
δA) and γA ⊒

SA
p(σ1,A, · · · ,σn,A) and δA ⊒

SA
q(σ1,A, · · · ,σn,A).

From distributivity of SA, we deduce that there exist γ ′A and δ ′
A such that σA = (γ ′A ⊓

SA
δ ′

A)

and γ ′A ⊒
SA

γA and δ ′
A ⊒

SA
δA. As a result, we have γ ′A ⊒

SA
p(σ1,A, · · · ,σn,A) and δ ′

A ⊒
SA

q(σ1,A, · · · ,σn,A).
By assumption, there exist σ ′

i,A ⊒SA
σi,A and σ ′′

i,A ⊒SA
σi,A for 1≤ i≤ n with γ ′A ⊒SA

p(σ ′
1,A, · · · ,σ

′
n,A)

and δ ′
A ⊒

SA
q(σ ′′

1,A, · · · ,σ
′′
n,A), and with σ ′

i,A ⊒
SA

γ ′A and σ ′′
i,A ⊒

SA
δ ′

A for 1 ≤ i ≤ n.

Let us denote σ i,A := σ ′
i,A ⊓SA

σ ′′
i,A.

We first note that σ i,A ⊒
SA

σi,A for 1 ≤ i ≤ n.

From σ i,A ⊑
SA

σ ′
i,A and σ i,A ⊑

SA
σ ′′

i,A for any 1 ≤ i ≤ n, and γ ′A ⊒
SA

p(σ ′
1,A, · · · ,σ

′
n,A) and

δ ′
A ⊒

SA
q(σ ′′

1,A, · · · ,σ
′′
n,A), we deduce γ ′A ⊒

SA
p(σ 1,A, · · · ,σn,A) and δ ′

A ⊒
SA

q(σ1,A, · · · ,σn,A).

As a consequence, σA = (γ ′A ⊓SA
δ ′

A)⊒SA
p(σ1,A, · · · ,σ n,A)⊓SA

q(σ1,A, · · · ,σ n,A).

From σ ′
i,A ⊒

SA
γ ′A and σ ′′

i,A ⊒
SA

δ ′
A for 1 ≤ i ≤ n, we deduce also σ i,A ⊒

SA
γ ′A ⊓SA

δ ′
A = σA for

1 ≤ i ≤ n.

As a summary, there exist σ i,A ⊒
SA

σi,A for 1 ≤ i ≤ n, such that σA ⊒
SA

p(σ 1,A, · · · ,σn,A)⊓SA

q(σ1,A, · · · ,σn,A), and σ i,A ⊒
SA

σA for 1 ≤ i ≤ n. In other words, the n−ary polynomial (p⊓q)
satisfies also the induction assumption.

Let us assume that the induction statement is true for two n−ary polynomials p and q, and

let us now prove the statement is also true for (p⊔q).
We will assume σA ⊒

SA
p(σ1,A, · · · ,σn,A)⊔SA

q(σ1,A, · · · ,σn,A). Then, we have σA ⊒
SA

p(σ1,A, · · · ,σn,A)

and σA ⊒
SA

q(σ1,A, · · · ,σn,A).

By assumption, there exist σ ′
i,A ⊒SA

σi,A and σ ′′
i,A ⊒SA

σi,A for 1≤ i≤ n with σA ⊒SA
p(σ ′

1,A, · · · ,σ
′
n,A)

and σA ⊒
SA

q(σ ′′
1,A, · · · ,σ

′′
n,A), and with σ ′

i,A ⊒
SA

σA and σ ′′
i,A ⊒

SA
σA for 1 ≤ i ≤ n.

Let us denote σ i,A := σ ′
i,A ⊓SA

σ ′′
i,A.

We first note that σ i,A ⊒
SA

σi,A for 1 ≤ i ≤ n.

From σ i,A ⊑
SA

σ ′
i,A and σ i,A ⊑

SA
σ ′′

i,A for any 1 ≤ i ≤ n, and σA ⊒
SA

p(σ ′
1,A, · · · ,σ

′
n,A) and

σA ⊒
SA

q(σ ′′
1,A, · · · ,σ

′′
n,A), we deduce σA ⊒

SA
p(σ 1,A, · · · ,σn,A) and σA ⊒

SA
q(σ1,A, · · · ,σn,A).

As a consequence, σA ⊒
SA

p(σ 1,A, · · · ,σn,A)⊔SA
q(σ 1,A, · · · ,σ n,A).

From σ ′
i,A ⊒

SA
σA and σ ′′

i,A ⊒
SA

σA for 1 ≤ i ≤ n, we deduce also σ i,A ⊒
SA

σA for 1 ≤ i ≤ n.

As a summary, there exist σ i,A ⊒
SA

σi,A for 1 ≤ i ≤ n, such that σA ⊒
SA

p(σ 1,A, · · · ,σn,A)⊔SA

q(σ1,A, · · · ,σn,A), and σ i,A ⊒
SA

σA for 1 ≤ i ≤ n. In other words, the n−ary polynomial (p⊔q)
satisfies also the induction assumption.

By induction on the complexity of the n−ary polynomial p we have then proved the state-

ment. As a final consequence, SAB and then also S̃AB is a distributive Inf semi-lattice.

As a consequence of this distributivity property, we obtain the following simplification

(
l

S̃AB

i∈I σi,A⊗̃σi,B)⊔
S̃AB

(
l

S̃AB

j∈Jσ ′
j,A⊗̃σ ′

j,B) =
l

S̃AB

i∈I

l
S̃AB

j∈J

(
(σi,A⊗̃σi,B)⊔

S̃AB

(σ ′
j,A⊗̃σ ′

j,B)
)
. (228)

Using the expansion (169), we know that

(σi,A⊗̃σi,B)⊔
S̃AB

(σ ′
j,A⊗̃σ ′

j,B) = (σi,A ⊔SA
σ ′

j,A)⊗̃(σi,B ⊔SB
σ ′

j,B) (229)

This concludes the proof of the formula (226).
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Theorem 32. If SA and SB are atomic, then S̃AB is also atomic, i.e.

∃A
S̃AB

⊆ S̃AB | ∀αAB ∈ A
S̃AB

, (⊥
SA

⊗̃⊥
SB

)

⊒

S̃AB
αAB, (230)

∀σAB ∈ S̃AB, ∃αAB ∈ A
S̃AB
r{⊥

SA
⊗̃⊥

SB
} | αAB ⊑

S̃AB
σAB. (231)

Here, we denote σ

⊒

σ ′ iff (σ ⊏ σ ′ and(σ ⊑ σ ′′ ⊑ σ ′ ⇔ (σ = σ ′′ or σ ′′ = σ ′))).

The set of atoms of S̃AB is indeed defined by

A
S̃AB

:= {(αA⊗̃⊥
SB

)⊓
S̃AB

(⊥
SA

⊗̃αB) | αA ∈ ASA
, αB ∈ ASB

}. (232)

�

Proof. Using the expansion (169), we deduce immediately

∀αA ∈ ASA
,∀αB ∈ ASB

, (αA⊗̃⊥
SB

)⊓
S̃AB

(⊥
SA

⊗̃αB) 6⊑
S̃AB

⊥
SA

⊗̃⊥
SB

. (233)

In other words, ⊥
SA

⊗̃⊥
SB

⊏
S̃AB

(αA⊗̃⊥
SB

)⊓
S̃AB

(⊥
SA

⊗̃αB).

Secondly, let us show that, for any σAB := (
d S̃AB

i∈I σi,A⊗̃σi,B) distinct from ⊥
SA

⊗̃⊥
SB

, there

exist αA ∈ ASA
and αB ∈ ASB

such that ((αA⊗̃⊥
SB

)⊓
S̃AB

(⊥
SA

⊗̃αB)) ⊑
S̃AB

σAB. Using once

again the expansion (169), we know that σAB ⊐
S̃AB

⊥
SA

⊗̃⊥
SB

(or, in other words, σAB 6⊑
S̃AB

⊥
SA

⊗̃⊥
SB

) implies that there exists∅⊆K ⊆ I such that (
dSA

k∈K σk,A) ⊐SA
⊥

SA
and (

dSB
m∈I−K σm,B) ⊐SB

⊥
SB

. Let us fix such a K and let us choose αA ∈ASA
and αB ∈ASB

such that (
dSA

k∈K σk,A) ⊒
SA

αA and (
dSB

m∈I−K σm,B) ⊒SB
αB. We obtain (

d S̃AB

i∈Kσi,A⊗̃σi,B) ⊒
S̃AB

(αA⊗̃⊥
SB

) and (
d S̃AB

i∈I−Kσi,A⊗̃σi,B) ⊒
S̃AB

(⊥
SA

⊗̃αB). As a first conclusion, we obtain ((αA⊗̃⊥
SB

)⊓
S̃AB

(⊥
SA

⊗̃αB))⊑
S̃AB

σAB.

Thirdly, let us consider σAB :=(
d S̃AB

i∈I σi,A⊗̃σi,B) such that σAB ⊑
S̃AB

(αA⊗̃⊥
SB

)⊓
S̃AB

(⊥
SA

⊗̃αB).

As a first case, we may have obviously σAB = ⊥
SA

⊗̃⊥
SB

. If however σAB 6= ⊥
SA

⊗̃⊥
SB

, the

previous result implies that there exist α ′
A ∈ ASA

and α ′
B ∈ ASB

such that ((α ′
A⊗̃⊥

SB
)⊓

S̃AB

(⊥
SA

⊗̃α ′
B)) ⊑S̃AB

σAB. Using once again the expansion (169), we deduce immediately that

αA = α ′
A and αB = α ′

B. As a result, we obtain

σAB ⊑
S̃AB

(αA⊗̃⊥
SB

)⊓
S̃AB

(⊥
SA

⊗̃αB) ⇒
(

σAB =⊥
SA

⊗̃⊥
SB

or σAB = (αA⊗̃⊥
SB

)⊓
S̃AB

(⊥
SA

⊗̃αB)
)
. (234)

As a second conclusion, we then obtain ⊥
S̃AB

⊒

S̃AB

(αA⊗̃⊥
SB

)⊓
S̃AB

(⊥
SA

⊗̃αB).

Remark 7. Let us consider the following orthocomplemented space of states

S4 := ⊥

α1 α2 α⋆
1 α⋆

2

(235)

It is easy to check that S̃′ := S4⊗̃S4 is NOT orthocomplemented. Indeed, from the result above,

the single candidate for (α1⊗̃α1)
⋆ is obviously α⋆

1 ⊗̃⊥⊓
S̃′
⊥⊗̃α⋆

1 . However, we check immedi-

ately, using the expansion (169), that the two elements α⋆
1 ⊗̃⊥⊓

S̃′
⊥⊗̃α⋆

1 and α1⊗̃α1⊓
S̃′

α2⊗̃α2
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have no common upper-bound : this point contradicts the condition (73) for the definition of ⋆
on S̃′.

Remark 8. According to [9, Axiom 9 and Lemma 40], we can introduce the following notion :

the space of states S is said to be irreducible iff

∀σ1,σ2 ∈S
pure

, {σ1,σ2} σ1 ⊓S
σ2

S

. (236)

Then, it is important to remark that, even if SA and SB are both irreducible, the tensor product

S̃AB =SA⊗̃SB appears to be NEVER irreducible. Indeed, from the expansion (169), we deduce

∀σ1,σ
′
1 ∈S

pure

A ,∀σ2,σ
′
2 ∈S

pure

B |σ1 6= σ ′
1,σ2 6= σ ′

2, σ1⊗̃σ2 ⊓
S̃AB

σ ′
1⊗̃σ ′

2

S̃AB

= {σ1⊗̃σ2,σ
′
1⊗̃σ ′

2}. (237)

3.10 The star tensor product

In the present subsection, we will assume the space of states S (this remark concerns SA and

SB in the following) to be atomistic and equipped with a star map denoted ⋆ (i.e. a map from

S,r{⊥
S
} to itself satisfying (69)(70)(71)(72)). We will try to build a tensor product of SA

and SB denoted SA⊗SB by exploiting this extra-structure.

Definition 41. We define ŜAB to be the set of bimorphisms from SA×SB to B. Equipped

with the pointwise poset structure, this is an Inf semi-lattice.

Definition 42. Using the maps 〈·, ·〉A and 〈·, ·〉B, respectively associated to the star maps

on SA and SB by (75), we can define the following bimorphisms denoted αA⊗βB for any

(αA,βB) ∈S
pure

A ×S
pure

B :

αA⊗βB : SA ×SB −→ B

(σA,σB) 7→ 〈αA,σA〉A • 〈βB,σB〉B.
(238)

The tensor product SA⊗SB is defined as a sub Inf semi-lattice of ŜAB : this is the Inf semi-

lattice generated by the bimorphisms αA⊗βB associated to any (αA,βB) ∈S
pure

A ×S
pure

B .

We have obviously, for any {(αi,A,βi,B) | i ∈ I } ⊆S
pure

A ×S
pure

B

∀(σA,σB) ∈SA ×SB, (
l

SAB

i∈I αi,A⊗βi,B)(σA,σB) :=
∧

i∈I 〈αi,A,σA〉A • 〈βi,B,σB〉B.(239)

SAB :=SA⊗SB is chosen as our space of states.

For any (σA,σB) ∈SA ×SB, we will denote

σA⊗σB :=
l

SAB

α∈σA,β∈σB
α⊗β . (240)

Definition 43. We define a bimorphism from SAB ×SAB to B, denoted 〈〈·, ·〉〉, by

〈〈·, ·〉〉 : SAB ×SAB −→ B

(
d SAB

i∈I αi,A⊗βi,B,
d SAB

j∈Jα ′
j,A⊗β ′

j,B) 7→
∧

i∈I

∧
j∈J 〈αi,A,α

′
j,A〉A • 〈βi,B,β

′
j,B〉B.

(241)
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As a consequence of the symmetry of 〈·, ·〉A and 〈·, ·〉B mentioned in (76), we note the

following property

∀(σAB,σ
′
AB) ∈ SAB ×SAB, 〈〈σAB,σ

′
AB〉〉= 〈〈σ ′

AB,σAB〉〉 (242)

Definition 44. The space of effects EAB is chosen to be given by SA⊗SB as well. The

evaluation map εSAB is defined by

∀σAB ∈ SAB,∀lAB ∈ EAB, εSAB

lAB
(σAB) := 〈〈lAB,σAB〉〉. (243)

Lemma 24. The axiom of bi-extensionality is satisfied. �

Proof. By symmetry, it is the same to check extensionality and/or separation. Now, for any lAB

and l′AB in SAB, we have

(∀σAB ∈ SAB, εSAB

lAB
(σAB) = εSAB

l′
AB

(σAB)) ⇒ (∀(σA,σB) ∈SA ×SB, εSAB

lAB
(σA⊗σB) = εSAB

l′
AB

(σA⊗σB))

⇒ (∀(σA,σB) ∈SA ×SB, lAB(σA,σB) = l′AB(σA,σB))

⇒ ( lAB = l′AB ). (244)

Lemma 25. Axioms (A1) and (A3) are satisfied by construction. (B1) and (B2) are then

satisfied as well. �

Lemma 26. Axiom (A2) is satisfied. �

Proof. The map associating to any (σA,σB) ∈SA ×SB the element ⊥ is an element of SAB. It

is indeed given by ⊥A⊗⊥B.

Lemma 27. Axioms (A4) and (A5) are satisfied by construction. We have

SAB

pure

= {α⊗β | α ∈S
pure

A ,β ∈S
pure

B }. (245)

�

Lemma 28. Axioms (B3)(B3’)(B3”) and (B4)(B4’)(B4”) are satisfied. �

Proof. Axioms (B3) and (B4) are checked according to the mapping (240). Axioms (B3’)(B3”)

and (B4’)(B4”) are checked directly from the expressions (240) and (239) using the properties

of 〈·, ·〉.

Lemma 29. Axiom (B5) is satisfied. �

Proof. For any σAB and σ ′
AB in SAB, we have

(∀lAB ∈ EAB, εSAB

lA⊗lB
(σAB) = εSAB

lA⊗lB
(σ ′

AB)) ⇔ (∀(lA, lB) ∈SA ×SB, σAB(lA, lB) = σAB(lA, lB))

⇔ (σAB = σ ′
AB ). (246)
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3.11 Properties of the star tensor product

Our first task is to check the following result on the atomicity of SAB :

Theorem 33. SAB is atomic, the set of atoms of SAB denoted At(SAB) satisfies

At(SAB) = {(σA⊗⊥
SB

⊓
SAB

⊥
SA

⊗σB) | σA ∈ At(SA),σB ∈ At(SB)}. (247)

�

Proof. First of all, we note that (σA⊗⊥
SB

⊓
SAB

⊥
SA

⊗σB)⊐SAB
⊥

SAB
for any σA ∈ At(SA),σB ∈

At(SB). Indeed, it suffices to choose αA = σ⋆
A ∈S

pure

A and αB = σ⋆
B ∈S

pure

B to observe that

(σA⊗⊥
SB

⊓
SAB

⊥
SA

⊗σB)(αA,αB) = N•⊥∧⊥•N = N > ⊥=⊥
SAB

(αA,αB). (248)

Here we have used the expression (239) with (75).

Secondly, we note easily that

∀σAB ∈ SAB,∃σA ∈ At(SA),σB ∈ At(SB) | σAB ⊒
SAB

(σA⊗⊥
SB

⊓
SAB

⊥
SA

⊗σB). (249)

It suffices to choose σA and σB such that σAB(σ
⋆
A,σ

⋆
B) = N.

Endly, let us consider (σA⊗⊥
SB

⊓
SAB

⊥
SA

⊗σB)⊑SAB
(σ ′

A⊗⊥
SB

⊓
SAB

⊥
SA

⊗σ ′
B) and let us apply

this relation on the couple (σ⋆
A,σ

⋆
B), we deduce that σ ′

A = σA and σ ′
B = σB.

As a final conclusion, we deduce that SAB is atomic and that the elements (σA⊗⊥
SB

⊓
SAB

⊥
SA

⊗σB) (where σA ∈ At(SA) and σB ∈ At(SB)) are the atoms.

Our second task is to define a star map on SAB.

Definition 45. We can define a binary relation denoted ⊥ on SAB as follows :

∀σAB,σ
′
AB ∈ SAB, σAB ⊥ σ ′

AB :⇔ 〈〈σAB,σ
′
AB〉〉= N. (250)

Lemma 30. The binary relation ⊥ is an orthogonality relation. In other words, it is

symmetric and irreflexive. �

Proof. The symmetry of ⊥ is due to the symmetry of 〈〈·, ·〉〉 mentioned in (242).

The irreflexivity is checked directly on the expression (241).

Definition 46. We define as usual a star operation associated to the orthogonality relation

:

∀σAB ∈ SAB, σ⋆
AB :=

l
SAB{σ ′

AB | σ ′
AB ⊥ σAB}. (251)

It is involutive and order-reversing.

Lemma 31. We have explicitly

∀α ∈S
pure

A ,∀β ∈S
pure

B , (α⊗β )⋆ = α⋆⊗⊥
SB

⊓
SAB

⊥
SA

⊗β ⋆. (252)
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Proof. We note the following facts.

First,

(α⋆⊗⊥
SB

⊓
SAB

⊥
SA

⊗β ⋆) ∈ (α⊗β )⊥. (253)

Indeed, 〈〈(α⋆⊗⊥
SB

⊓
SAB

⊥
SA

⊗β ⋆) , α⊗β 〉〉= 〈α,α⋆〉A•⊥∧⊥•〈β ,β ⋆〉B =N•⊥∧⊥•N =N.

Second, we have obviously

⊥
SAB

/∈ (α⊗β )⊥. (254)

Third, (α⋆⊗⊥
SB

⊓
SAB

⊥
SA

⊗β ⋆) is an atom.

Fourth, (α⊗β )⊥ is a filter.

This concludes the proof.

Lemma 32. If the space of states SB is orthocomplemented and the space of states SA is

orthogonal, then the spaces of states SB⊗SA and SA⊗SB are orthocomplemented.

The star map defined on SAB := SA⊗SB will be denoted ⋆ as well. This map is built

according to

(α⊗̃β )⋆ := α⋆⊗̃⊥
SB

⊓
S
⊥

SA
⊗β ⋆, ∀α⊗β ∈ S

pure

AB , (255)

(
l

S

U)⋆ :=
l

S

α∈
⋂

σ∈U σ⋆
S

α, ∀U ⊆ S
pure

AB . (256)

We have the same formulas for SB⊗SA. �

Proof. The main point to check is the property (73) for the star map on SAB.

To begin, we have to check that (α⊗β ) 6⊒
SAB

(α⋆⊗⊥
SB
⊓

SAB
⊥

SA
⊗β ⋆) and that u := α⊗β ⊓

SAB

α⊗β ′, v := α⊗β ⊓
SAB

α ′⊗β ′′ and w := α⋆⊗⊥
SB
⊓

SAB
⊥

SA
⊗β ⋆ satisfy ûw

SAB and v̂w
SAB for any

α,z′A ∈SA and β ,β ′,β ′′ ∈SB with β 6= β ′ and α 6= α ′.

We check the first property by recalling that the map σAB 7→ 〈〈σAB , α⊗β 〉〉 is order-preserving

and by observing simply that 〈〈α⊗β , α⊗β 〉〉=Y�N= 〈〈(α⊗β ) , (α⋆⊗⊥
SB
⊓

SAB
⊥

SA
⊗β ⋆)〉〉.

Secondly, ûw
SAB is obtained quite easily as follows. We have (i) α⊗β⊓

SAB
α⊗β ′ =α⊗(β ⊓

S
β ′)

and (ii) (β ⊓
S

β ′) and β ⋆ have a common upper-bound denoted z (because of the property (73)

applied to SB). From (i) and (ii) we deduce that u and w have α⊗z as common upper-bound.

v̂w
SAB is obtained because α ′⊗β ′′ is a common upper-bound of v and w (this point is guarantied

by the orthogonality of SA and the fact that α ′ 6= α).

The rest of the proof follows the same analysis.

Lemma 33. If SA and SB are orthocomplemented, but neither SA nor SB are orthogonal,

then SAB is NOT orthocomplemented. �

Proof. In order to check the orthocomplemented character of SAB, we should check the validity

of the relation

(α⋆⊗⊥
SB
⊓

SAB
⊥

SA
⊗β ⋆) q⊲⊳ (α⊗β ) (257)

46



For any α ′ ∈S
pure

A r{α} and β ′ ∈S
pure

B r{β}, we observe that (α⋆⊗⊥
SB

⊓
SAB

⊥
SA

⊗β ⋆) and

(α⊗β ⊓
SAB

α ′⊗β ′) have no common upper-bound in SAB, which invalidates the relation (257).

To check this last point, we just note that

(α⊗β ⊓
SAB

α ′⊗β ′)
SAB

= {α⊗β , α ′⊗β ′ }. (258)

The property (258) is easily proved using the expression of (α⊗β ⊓
SAB

α ′⊗β ′)(σA,σB) inherited

from (239). Indeed, it suffices to choose (σA,σB) := (α⋆,β ′⋆) and (σA,σB) := (α ′⋆,β ⋆) in the

inequality (α⊗β ⊓
SAB

α ′⊗β ′)(σA,σB) ≤ (α ′′⊗β ′′)(σA,σB) to conclude that (α ′′,β ′′) = (α,β )

or (α ′′,β ′′) = (α ′,β ′).
Endly, we note that α ′⊗β ′ satisfies necessarily (α ′⊗β ′) ⊒

SAB
(α⋆⊗⊥

SB
⊓

SAB
⊥

SA
⊗β ⋆) for any

α ′ ∈S
pure

A r{α} and β ′ ∈S
pure

B r{β} if and only if SA is orthogonal or SB is orthogonal.

Remark 9. Previous results strongly suggest to study the existence of a suitable completion of

SAB in ŜAB (we recall that ŜAB is the Inf semi-lattice constituted by bimorphisms from SA×SB

to B) : a completion in which the orthocomplementation property (257) would be restored.

To sketch what we have in mind, let us consider any α,α ′ ∈S
pure

A and β ,β ′ ∈S
pure

B with α ′ 6∈
{α}∪α⋆

SA
and β ′ 6∈ {β}∪β ⋆

SB

(during this remark we will suppose that we are able to choose

α and α ′ such that α ⊓
SA

α ′ 6= ⊥
SA

; the trivial case where SA is a flat domain can be treated

separately). We have noted that (α⊗β ⊓
SAB

α ′⊗β ′) and (α⊗β )⋆ = (α⋆⊗⊥
SB

⊓
SAB
⊥

SA
⊗β ⋆)

have no common upper-bound in SAB. This is in fact the precise point where the orthocomple-

mentation property (257) appears to be ”broken”. We could however hope to define the supre-

mum ∆ := (α⊗β ⊓
SAB

α ′⊗β ′)⊔
ŜAB

(α⊗β )⋆ as an element of ŜAB. Indeed, we can observe that

the two properties (α⋆⊗⊥
SB

⊓
SAB
⊥

SA
⊗β ⋆)(σA,σB) ∈ {N,⊥} and (α⊗β ⊓

SAB
α ′⊗β ′)(σA,σB) ∈

{N,⊥} for any (σA,σB) ∈SA ×SB allow us to define ∆(σA,σB) as an element of B for any

(σA,σB) ∈ SA ×SB. Sadly, we can easily invalidate the bimorphic property. Indeed, we re-

mark that (α⋆⊗⊥
SB

⊓
SAB
⊥

SA
⊗β ⋆)(α,β ) = N and (α⊗β ⊓

SAB
α ′⊗β ′)(α⋆⊔

SA
α ′⋆,β ) = N, but

(1) (α⋆⊗⊥
SB

⊓
SAB
⊥

SA
⊗β ⋆)(α ⊓

SA
(α⋆ ⊔

SA
α ′⋆),β ) = ⊥ because (α ⊓

SA
(α⋆⊔

SA
α ′⋆)) ⊏

SA
α ,

and (2) (α⊗β ⊓
SAB

α ′⊗β ′)(α⊓
SA
(α⋆⊔

SA
α ′⋆),β ) =⊥ because (α⊓

SA
(α⋆⊔

SA
α ′⋆)) 6⊒

SA
α ′⋆ and

β ′ 6⊒
SB

β ⋆. As a result, we have

∆(α ⊓
SA
(α⋆⊔

SA
α ′⋆),β ) =⊥ 6= ∆(α,β )∧∆(α⋆⊔

SA
α ′⋆,β ) = N∧N = N (259)

which invalidates the bimorphic property.

As a conclusion, the attempt to build an interesting completion of SAB in ŜAB, allowing to restore

the orthocompletion property for the star tensor product of generic orthocomplemented spaces

of states, seems to be a dead end. Another construction must then be adopted to find the tensor

product adapted to orthocomplementation, and then to quantum systems.
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4 Conclusion

Inspired by the operational quantum logic program, we suspect that probabilities can be viewed

as a derived concept, even in a reconstruction program of Quantum Mechanics. The already

cited remark of S. Abramsky [1, Theorem 4.4] can be viewed as another justification of this

perspective on quantum mechanics. These two perspectives have stimulated our desire to build

an operational description based on a possibilistic semantic (in a sense, the ’probabilities’ are

replaced by statements associated to a semantic domain made of three values ’indeterminate’,

’definitely YES’, ’definitely NO’). The present paper intents to develop such an operational for-

malism. It will be called Generalized possibilistic Theory (GpT) as it is partly inspired by the

formalism of Generalized Probabilistic Theory (GPT). We note that we are also indebted to the

work of Abramsky [1] for our choice to give to Chu duality a central role in our construction,

in replacement of traditional duality between states and effects.

The section 2 is devoted to a brief summary of the axiomatic relative to the space of states

(subsection 2.1), the space of effects (subsection 2.2), the set of pure states (subsection 2.3),

and the notion of ”channels” or symmetries for our theory (subsection 2.7). The section 2 col-

lects and completes some elements already developed in our previous work [9]. The convexity

requirements imposed traditionally in GPT on the space of states and space of effects are natu-

rally replaced by Inf semi-lattice structures on these spaces in GpT, the set of pure states being

naturally associated to completely meet-irreductible elements of the space of states. Our central

point is the Chu duality imposed between the space of states and the space of effects, with an

evaluation space given by the three elements domain associated to possibilistic statements of

the observer. This Chu duality is sufficient to deduce the whole set of properties of the channels

which are viewed as Chu morphisms.

The section 3 represents a first attempt to the construction of bipartite experiments on compound

systems. This point is central because it has been the main obstacle on the pathway towards a

complete reconstruction of quantum mechanics along the operational quantum logic program.

The central problem in our perspective is the construction of a tensor product for our space of

states and space of effects. It is well known that this tensor product notion is ambiguous in GPT

program [21, Section 5] although this choice of tensor product is the key point for the choice

of theory we want to describe within GPT. The traditional construction of tensor product of

Inf semi-lattices should have been of some help for our work [12], it is succinctly recalled in

subsection 3.3 and called canonical tensor product. The tensor product, naturally build from

the Chu construction [22], may also have played a role here. Surprisingly, the natural axiomatic

for bipartite experiments, proposed in subsection 3.1, leads to alternative constructions for the

tensor product of Inf semi-lattices (the construction of the symmetries associated to the bipar-

tite space of states is completed in subsection 3.2). To begin, the different tensor products are

placed with respect to the largest one, which is called maximal tensor product and described in

subsection 3.4. The more simple construction is presented in subsection 3.6 and called basic

tensor product. The comparison between basic tensor product and canonical tensor product is

made in subsection 3.8 and some remarks concerning the specific properties of the basic tensor

product are made in subsection 3.9. The subsection 3.9 comes however to a sad conclusion

: the basic tensor product of orthocomplemented spaces of states is eventually not orthocom-

plemented. This point is crucial in order to use GpT for a reconstruction program of quantum

theory, as it appears clear in our previous work [9]. The basic tensor product appears then to

correspond to a theory which is not quantum. Another construction is detailed in subsection

3.10. The new tensor product called star tensor product is defined in intimate connection with

the star structures defined on the spaces of states which are tensored. As shown at the end of
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subsection 3.11, this proposal is also not adequate to obtain an orthocomplementation property

on the tensor product of orthocomplemented spaces of states. We recognize here, even if we

have adopted a rather different perspective, the recurrent problem in defining a tensor product

for quantum logic; this essential problem has already been noticed a long time ago by D. Foulis

and C. Randall in [23]. We intent to come back to this subject in a forthcoming paper.
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