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Abstract

Inspired by the operational quantum logic program, we have the contention that probabilities
can be viewed as a derived concept, even in a reconstruction program of Quantum Mechanics. We
propose an operational description of physical theories where probabilities are replaced by counter-
factual statements belonging to a three-valued (i.e. possibilistic) semantic domain. The space of
states and the space of effects are then built as posets put in duality through a Chuz space. The
convexity requirements on the spaces of states and effects, addressed basically in Generalized Prob-
abilistic Theories, are then replaced by semi-lattice structures on these spaces. The pure states are
also easily constructed as completely meet-irreducible elements which generate the whole space of
states. The channels (i.e. symmetries) of the theory are then naturally built as Chu morphisms. An
axiomatic can then be summarized for what can be called ”Generalized possibilistic Theory” based
on this States/Effects Chu space’s category. The problem of bipartite experiment is then addressed as
the main skill of this paper. An axiomatic for the tensor product of the space of states is then given
and a solution is explicitly constructed. The relations/differences between this tensor product and
the tensor product of semi-lattices present in the mathematical literature are then analyzed. This new
proposal for the tensor product of semi-lattices can be considered as an interesting byproduct of this
work.
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1 Introduction

General Probabilistic Theory (GPT) is a framework developed within the foundations of physics (see
[22]] for a recent review of the abundant literature and an axiomatic construction of GPTs). Promoters of
GPT intent to answer the question: what is a physical theory? This study appeared initially in the context
of axiomatizations of quantum theory, as many researchers were attempting to derive quantum theory
from a set of reasonably motivated axioms.

In the current days, research on GPT is oriented towards operational properties of GPTs, the main skill
being to identify what structure is needed to realize certain protocols or constructions known from quan-
tum information theory or classical information theory. One uses GPTs to get better understanding of
what makes different things in quantum information theory work.

Despite the indeterministic character of quantum theory, it is an empirical fact that the distinct outcomes
of measurements, operated on a large collection of samples of a quantum object, prepared according to
the same experimental procedure, have reproducible relative frequencies. This fundamental fact has led
physicists to consider large collections of statistically independent experimental sequences as the basic
objects of physical description, rather than a single experiment on a singular realization of the object
under study. According to GPT, a physical state (corresponding to a class of operationally equivalent
preparation procedures) is then defined by a vector of probabilities associated with the outcomes of a
maximal and irredundant set of fiducial tests that can be effectuated on collections of samples produced
by any of these preparation procedures. In other words, two distinct collections of prepared samples will
be considered as operationally equivalent if they lead to the same probabilities for the outcomes of any
test on them. The physical description consists, therefore, in a set of prescriptions that allows sophisti-
cated constructs to be defined from elementary ones. In particular, combination rules are defined for the
concrete mixtures of states and for the allowed operations/tests.

It is a basic fact in GPT that this approach is the same as starting with an abstract state space, but instead
of using vectors we would describe states in terms of all of the probabilities they can produce. In GPTs,
ensembles of objects, conditional probabilities and conditional states can be represented by their respec-
tive state spaces and so we can treat them as any other state space and we can use known results, instead
of having to prove them ab initio. Representing all transformations by “channels” allows us to use the
constructions from frameworks based on category theory, since one can interpret state spaces as objects
and channels as morphisms.

Although this probabilistic approach is now accepted as a standard conceptual framework for the
reconstruction of quantum theory, the adopted perspective appears puzzling for different reasons.
First of all, the observer contributes fundamentally to give an intuitive meaning to the notions of prepa-
ration, operation and measurement on physical systems. However, the concrete process of “acquisition
of information’ (by the observer / on the system) has no real place in this description. Secondly, the
definition of the state has definitively lost its meaning for a singular prepared sample, and the physical
state is now intrinsically attached to large collections of similarly prepared samples. The GPT approach
adopts the probabilistic description of quantum phenomena without any discussion or attempt to explain
why it is necessary. Thirdly, in order to clarify the requirements of the basic set of fiducial tests necessary
and sufficient to define the space of states, this approach must proceed along a technical analysis which
fundamentally limits this description to ’finite dimensional’ systems (finite dimensional Hilbert spaces
of states). Lastly, the axioms chosen to characterize quantum theory, among other theories encompassed
by the GPT formalism, must exhibit a "naturality’ that - from our point of view - is still missing in the
existing proposals.

Alternative research programs have tried to overcome some of these conceptual problems. Adopting
another perspective, the operational quantum logic approach tries to avoid the introduction of probabili-
ties and explores the relevant categorical structures underlying the space of states and the set of properties
of a quantum system. In this description, probabilities appear only as a derived concept. Following G.
Birkhoff and J. Von Neumann [9]] and G. W. Mackey [19], this approach focuses on the structured space



of ’testable properties’ of a physical system. The mathematical structure associated with the set of quan-
tum propositions defined by the closed subspaces of a Hilbert space is not a Boolean algebra (contrary
to the case encountered in classical mechanics). By shifting the attention to the set of closed subspaces
instead of the Hilbert space itself, the possibility is open to build an operational approach to quantum me-
chanics, because the basic elements of this description are yes/no tests. G.W. Mackey identified axioms
on the set of yes/no tests sufficient to relate this set to the set of closed subspaces of a complex Hilbert
space. Later, C. Piron [20, [21] proposed a set of axioms that (almost) lead back to the general framework
of quantum mechanics (see [[11]] for a historical perspective on the abundant literature). Piron’s frame-
work has been developed into a full operational approach and the categories underlying this approach
were analyzed. It must be noted that these constructions are established in reference to some general
results of projective geometry and are not restricted to a finite-dimensional perspective.

Despite some beautiful results (in particular the restriction of the division ring associated to the Hilbert
space from Piron’s propositional lattices [[17]) and the attractiveness of a completely categorical approach
(see [26] for an analysis of the main results on propositional systems), this approach has encountered sev-
eral problems. Among these problems, we may cite the difficulty of building a consistent description of
compound systems due to no-go results related to the existence of a tensor product of Piron’s propo-
sitional systems [24][6} [7]. These problems have cast doubts on the adequacy of Piron’s choice of an
“orthomodular complete lattice™ structure for the set of properties of the system.

Other categorical formalisms, adapted to the axiomatic study of quantum theory, have been developed
more recently [3]] and their relation with the ’operational approach’ has been partly explored [} 2, 4]. In
[1}, Theorem 3.15], S. Abramsky makes explicit the fact that the Projective quantum symmetry groupoid
PSymmH Y is fully and faithfully represented by the category bmChuy 1, i.e., by the sub-category of the
category of bi-extensional Chu spaces associated with the evaluation set [0, 1] obtained by restricting it
to Chu morphisms (f;, f*) for which f is injective. This result suggests that Chu categories could have
a central role in the construction of axiomatic quantum mechanics as they provide a natural characteriza-
tion of the automorphisms of the theory. More surprisingly, and interestingly for us, S. Abramsky shows
that the aforementioned representation of PSymmH is ’already’ full and faithfull if we replace the evalu-
ation space of the Chu category by a three-element set, where the three values represent “definitely yes”,
“definitely no” and "maybe” [[1, Theorem 4.4]. S. Abramsky did not affirm that a three valued semantic
is sufficient to found a complete axiomatic quantum theory, close to Piron’s program or alternative to it,
and allowing a complete reconstruction of the usual Hilbert formalism, although its result was clearly
leading to this prospect. It was the purpose of our last paper [10] to explore this question for the first
time. This paper was devoted to present the basic elements of this "possibilistic’ 2} semantic formalism.

In the present paper, we begin to develop an analog of GPT based on this three-valued Chu space
operational description of physical systems. As a sort of word game, we will designate this attempt as
Generalized possibilistic Theory (GpT). To allow for the same degree of generality as GPT, we present
in Section 2 a set of axioms for the spaces of states and the spaces of effects of single systems which
appear more general than in [10]. In Section 3, we intentionally focus our study on the problem of
bipartite experiments (this question had been led untouched in [[10]). To complete this description, we
exhibit a construction of the tensor product of complete semi-lattices which necessarily differs from the
traditional construction of this tensor product, present in mathematical literature. This can be considered
as a significant byproduct of the present paper, which deserves further investigations.

IThe objects of this category are the natural space of states in quantum mechanics, i.e., the Hilbert spaces of dimension
greater than two, and the morphisms are the orbits on semi-unitary maps (i.e. unitary or anti-unitary) under the U(1) group
action, which are the relevant symmetries of Hilbert spaces from the point of view of quantum mechanics.

2In the rest of this paper we refer to this construction, based on a three-valued Chu space, as a ’possibilistic’ approach to
distinguish it from the *probabilistic’ one.



2 Generalized possibilistic Theories (GpT) for a single system

Adopting the operational perspective on quantum experiments, we will introduce the following defini-
tions.

A preparation process is an objectively defined, and thus ’repeatable’, experimental sequence that allows
singular samples of a certain physical system to be produced, in such a way that we are able to submit
them to tests. We will denote by 3 the set of preparation processes (each element of 3 can be equiva-
lently considered as the collection of samples produced through this preparation procedure). 1/

For each property, that the observer aims to test macroscopically on any particular sample of the con-
sidered micro-system, it will be assumed that the observer is able to define (i) some detailed ’procedure’,
in reference to the modes of use of some experimental apparatuses chosen to perform the operation/test,
and (ii) a ’rule’ allowing the answer ’yes’ to be extracted if the macroscopic outcome of the experi-
ment conforms with the expectation of the observer, when the test is performed on any input sample (as
soon as this experimental procedure can be opportunely applied to this particular sample). These oper-
ations/tests, designed to determine the occurrence of a given property for a given sample, will be called
yes/no tests associated with this property. The set of "yes/no tests’ at the disposal of the observer will be
denoted by . 14!

A yes/no test t € T will be said to be positive with certainty (resp. negative with certainty) relatively to
a preparation process p € B iff the observer is led to affirm that the result of this test, realized on any of
the particular samples that could be prepared according to this preparation process, would be ’positive
with certainty’ (resp. would be ’negative with certainty’), *should’ this test be effectuated. If the yes/no
test can not be stated as ’certain’, this yes/no test will be said to be indeterminate. Concretely, the ob-
server can establish the ’certainty’ of the result of a given yes/no test on any given sample issued from
a given preparation procedure, by running the same test on a sufficiently large (but finite) collection of
samples issued from this same preparation process: if the outcome is always the same, the observer will
be led to claim that similarly prepared 'new’ samples would also produce the same result, if the exper-
iment was effectuated. To summarize, for any preparation process p and any yes/no test t, the element
e(p,t) € B:={L,Y,N} will be defined to be L (alternatively, Y or N) if the outcome of the yes/no test t
on any sample prepared according to the preparation procedure p is judged as ’indeterminate’ (’positive
with certainty’ or 'negative with certainty’, respectively) by the observer.

e : PxT — B:={L YN}
(ht) = e(p,t).

When the determinacy of a yes/no test is established for an observer, we can consider that this ob-
server possesses some elementary ’information’ about the state of the system, whereas, in the ’indeter-
minate case’, the observer has none (relatively to the occurrence of the considered property).

The set B will then be equipped with the following poset structure, characterizing the ’information’
gathered by the observer:

)

VuyveB, (u<v):e (u=Loru=v). (2)

(%8, <) is also an Inf semi-lattice which infima will be denoted A\. We have

_Jx if x=y
Vx,y € ‘B, x/\y—{ Lif xty 3)
We will also introduce a commutative monoid law denoted e and defined by
Vx €8, xeY=x, xeN=N, lel=1. 4

3The information corresponding to macroscopic events/operations describing the procedure depend on an observer O. If this
dependence has to be made explicit, we will adopt the notation ‘,B(U) to denote the set of preparation processes defined by the
observer O. This mention of the observer will be also attached to the different quotients associated to the space of preparations.

4If the dependence with respect to the observer O has to be made explicit, we will adopt the notation T to denote the set
of tests defined by the observer O. This mention of the observer will be also attached to the different quotients associated to the
space of yes/no tests.



x ey will be called the product of the determinations x and y.
This law verifies the following properties

VxeBYBCB  xe AB=/\,cp(xeb), (5)
Vx € BYC Conain B x0\/B=\/pep(xob). (6)
(98, <) will be also equipped with the following involution map :

1: =1 Y: =N N:==Y. (7)

2.1 The space of states

A pre-order relation can be defined on the set *J3 of preparation processes. A preparation process p, € 3
is said to be sharper than another preparation process p; € ‘B (this fact will be denoted p; C,, p2) iff any
yes/no test t € T that is "determinate’ for the samples prepared through p is also necessarily ’determinate’
with the same determination for the samples prepared through p,, i.e.,

VpLp2 €, (M Cyp) & (VEET, e(pr,t) <e(pa,t) ), ()

If p1 E,, p2 (i-e., po is ‘sharper” than py), p; is said to be "coarser’ than p;.

An equivalence relation, denoted ~,;, is defined on the set of preparations 93 from this pre-order
relation. Two preparation processes are identified iff the statements established by the observer about the
corresponding prepared samples are identical. A state of the physical system is an equivalence class of
preparation processes corresponding to the same informational content. The set of equivalence classes,
modulo ~,;, will be called space of states and denoted S. In other words,

VP, p2 €, (p1~y p2) & (VEET, e(pr,t) =e(p2,t) )& (p1 Ey p2 and py Iy p2), (9)
bl = {p' Pl ~pp} (10)
S = {[pllpeP} (11)

The space of states G is partially ordered. Explicitly
V01,00 €6,(01Cg 02) & (Yp1,p €P, (o1 =[pi],oa=[p2]) = (M Cyp2)). (12)
We will derive a map € according to the following definition :

€ : T — WS

13
t = e [ allpl):=ept), peP. (1

For any t € €, & is an order-preserving map on &
Voj,00 € 6, (01Cg 02) & (Ve T, g(or) <&(o)), (14)

If we consider a collection of preparation processes P C 3, we can define a new preparation proce-
dure, called mixture and denoted |—|Q3P, as follows. The samples produced from the preparation proce-
dure [ ] * P are obtained by a random mixing of the samples issued from the preparation processes of the
collection P indiscriminately. As a consequence, the statements that the observer can establish after a
sequence of tests t € T on these samples produced through the procedure |_|qu is given as the infimum
of the statements that the observer can establish for the elements of P separately. In other words,

vPCp, [ PPep | (vteT o[ TR0 = A uem,0). (15)
The space of states inherits a notion of mixed states by defining
s P
vPCP,  [].LIel=1]] Pl (16)



As aresult, the space of states inherits a structure of down-complete Inf semi-lattice. In other words,

AD  VSCE, ([|°S) existsin &, and Vte T, & |°S) = A, &(0). (17)
As a direct consequence, the space of states is then also bounded-complete, i.e.
vSC& ST, (1S exists in &. (18)
where
V&' CGVSCE, S§° iedoed |oC, o Voes. (19)

We will adopt the shortened notation Vo,0’ € 6,00’ %= {o0,0’ }6

We will also assume that there exists a preparation process, unique from the point of view of the
statements that can be produced about it, that can be interpreted as a 'randomly-selected’ collection of
‘un-prepared samples’. This element leads to complete indeterminacy for any yes/no test realized on it.

HPJ_qu ‘ (erz, e(pL,t):J_). (20)
Hence, the partial order (&,C ) admits a bottom element, denoted L := [p |. In other words,

(A2) 31.,€6|¥oe6, L C, o, 1)

2.2 The space of effects

We can introduce a pre-order relation on the space of yes/no tests ¥ as well :
Vit €T, (UC &) & (Voe6, g (o) <eg,(0)), (22)

and an equivalence relation, denoted ~ ., can be derived from this pre-order on the set of yes/no tests %,
ie. ) ~, t is equivalent to (t; C_ t, and ; J_ t). An effect of the physical system is an equivalence
class of yes/no tests, i.e., a class of yes/no tests that are not distinguished from the point of view of the
statements that the observer can produce by using these yes/no tests on finite collections of samples. The
set of equivalence classes of yes/no tests, modulo the relation ~_, will be denoted €. In other words,

Vb €T, (i~ ) & (VOEG, g (0)=¢,(0)), (23)
[t] = {feT|t~ t} (24)
¢ = {|t]|teT). (25)

The set of effects € is then equipped naturally with a partial order denoted C, .
We will adopt the following abuse of notation €| := &, Vt € T.
We have by construction

VLl € €, (Vo € 6, g(o)
Vo,0' €6, (Vi€ ¢, g(o)

(1=1), (26)
(6 =0"). 27)

()

& =
a(o’)) <

We note that (S, €, €) forms a bi-extensional Chu space [23]].

If we consider a collection of tests 7 C ¥, we can define a new test, called mixture and denoted | | TT,
as follows. The result obtained for the test |_|TT is obtained by a random mixing of the results issued
from the tests of the collection 7" indiscriminately. As a consequence, the statements that the observer
can establish after a sequence of tests is given as the infimum of the statements that the observer can
establish for each test separately. In other words,

vrcx, 3['Tes | (Voeo, g7 (0) = N\ ri(0)). (28)



The space of effects inherits a notion of mixed effects by defining

¢ T
vre, [, M=I]71 (29)
As a result, the space of effects inherits a structure of down-complete Inf semi-lattice. In other words,
A3) VECE, ([]°E) existsin €, and Yo € 6, erex(0) = A\e 6(0). (30)

The conjugate of a yes/no test t € T is the yes/no test denoted t and defined from t by exchanging the
roles of Y and N in every result obtained by applying t to any given input sample. In other words,

Vte T Voes, &(o) :=g&(0). (31)
We note the following definition of the conjugate of an effect
viee, I={t|I=[t]}. (32)
We will sometimes use a particular effect called "partial trace”, denoted )¢ and defined by
Vo €6, £9.(0):=Y. (33)

An effect [ € & will be said to be testable iff it can be revealed as ’certain’ at least for some collections
of prepared samples. In other words, ’[ is testable’ means 8[_1 (Y) #£ 2.

Lemma 1. For any testable effect I, there exists an element X; := |—|Gz-:[’1 (Y) € &, called effect-
state, such that the filter &' (Y) is the principal filter (17 X;). [

We will allow for a generalized definition of effects. Let us consider £,X' € & such that 35 We
define [, according to g, ' (Y) :=1"% and gt (N) =1y,
zx) =)

xx)

Theorem 1. Let us consider B := {b( | [ € €} a family of elements of ‘B satisfying

vi,lee, (IS, )= (b < by), (34)
v{li|iel} C¢, bl—liili:/\iel by, (35)
Vie€, b=b. (36)
Then, we have
NoeG | VIEE, g(o)=b. 37)
|
Proof. Straightforward. It suffices to define [ := |—|e{[ |bp=Y}ando:=% = |—|68[;1(Y). O
Corollary 1.
V{ci|ic€l} Conain®, I6€6 | VIEE, &(0)=\fics &(0)), (38)
c = | o (39)
|

Proof. First of all, we note that {0; | i € I'} Ccpain © and property (22) implies that {&(0;) | i € I} Ccnain
B for any [ € € and then V¢, &(0;) exists for any [ € & due to the chain-completeness of 8.

Using the properties @2)@28)(31)) of the map € and the complete-distributivity properties satisfied by 9B,
we can check easily that {\ic; &(0;) | [ € €} satisfies properties (B3) (@36). As a consequence, the
property (38) is a direct consequence of Theorem!/I1

By definition of the poset structure (I4]), we deduce, from the property (VI € &, &(0o) = Vies &(0i)),
that 6 J, o;, Vie I and (¢’ Jg 0;, Vie I) = (0 J, o'). In other words, 0 = |_|i16,-. O



2.3 Pure states

A state is said to be a pure state iff it cannot be built as a mixture of other states (the set of pure states
will be denoted G™"). More explicitly,

pure

(G}
ce@” o (VSC7P6, (o=[]S) = (c€9)). (40)
In other words, pure states are associated with completely meet-irreducible elements in &. L]
We will moreover assume that every state can be written as a mixture of pure states. In other words,

"N (15)). (42)
Remark 1. If G is a bounded-complete algebraic domain (here, G is already assumed to be a bounded-
complete and chain-complete Inf semi-lattice), previous property is a direct consequence of [[15, Theorem
1-4.26 p.126].

Remark 2. We note that & = M — Irr(S) is the unique smallest subset of & satisfying property (42)).
This point is mentioned in [15, Remark 1-4.22 p.125].

(A4) Yo €6, G:HGQ, where o = (

pure

A simple characterization of completely meet-irreducible elements within posets is given in [15]
Definition 1-4.21] :

cecB

- { 0 € Max(6) (Type 1) 43)

(TGG) ~ {0} admits a minimum element (Type 2)

This characterization is equivalent to the basic definition (4Q) for a bounded-complete Inf semi-lattice
like 6.
From Corollary [Il using Zorn’s Lemma, we deduce that

Voe&, 3Jo'eMax(6)|cC, 0. (44)

From that remark, we can decide to eliminate Type 2 pure states. Indeed, it is clear that *Type 2’ pure
states have no physical meaning. Indeed, for any *Type 2’ pure states, it exists some 'Type 1’ pure states
sharper than it (and, then, containing more information than it). The existence of "Type 2’ pure states in
the space of states leads then to a redundant description of the system. We will then require that "™,
i.e. the set of completely meet-irreducible elements M — Irr(&), be constituted exclusively of maximal
elements of &. In other words, we require the space of states to be such that

(AS5) MN—Irr(6) =Max(S). (45)

From now on, Chu spaces (&, &, €) which elements satisfy the axioms (A1) — (A5) will be called
States/Effects Chu spaces.

2.4 Remarkable properties of spaces of states

According to [16| definition p.117 and Section 11 Lemma 1 p.118], we introduce the following no-
tion.

Definition 1. A space of states G is said to be distributive iff

V0,01,00 €6, (01N 0m)C, 0 = 3J0(,0,€6|(01C. 0], 0T, 05 and 6 =0]l,03).

When G is distributive, we have the following standard properties satisfied, as soon as the implied

SWe note that complete meet-irreducibility implies meet-irreducibility. In other words,

ceg,,., = (Vo1,00€6, (0=01MNg0n) = (6=0j or 6=07)). 41)

(46)



suprema are well defined

011Mg (62 Ug 63) = (G] Mg 62) Ug (G] Mg 63) @7
01 Ug (62 Mg 63) = (G] Ug 62) Mg (G] Ug 63). (48)

According with [10, Section 3.5], we introduce the following notion.
Definition 2. Let us introduce the following binary relation, denoted >, and defined on & by

~ =& — —
¥(c,0') € 6*%, o0 &= (Vo'Cg0',060” and Vo' 0,0'c” andnotoo’ ). (49)
(here we have used the notation introduced in (19)).

The space of states & is said to be orthocomplemented iff there exists a map x: &~ {L } —
S~ {Lg} such that

Vo €6, o™ =o, (50)
Vo,,0, € G, 01Cs 00 = o] J, 05, 5D
Vo € &, o< 0" (52)

2.5 Symmetries of the system

Observer O; has prepared a state o] € 6(0‘) and intends to describe it to observer O,. Observer O,
is able to interpret the macroscopic data defining o in terms of the elements of &' ” using a map
Sy &' - e (i.e., 0> knows how to identify a state f, , (o1) corresponding to any o). Observer
0O, has selected an effect [, € ¢ and intends to address the corresponding question to O;. Observer
O is able to interpret the macroscopic data defining I, in terms of the elements of ¢ using a map
fm) ¢ (i.e., 07 knows how to fix an effect f<21)([2) corresponding to any ly). The pair
of maps (fm),f(z')) where f,, 6 =& and " : €% = &V defines a dictionary formalizing
the transaction from O to O,. The main task these observers want to accomplish is to confront their
knowledge, i.e., to compare their ’statements’ about the system. As soon as the transaction is formalized
using a dictionary, the two observers can formulate their statements and each confront them with the
statements of the other. First, observer O; can interpret the macroscopic data defining [, using the map

fm). Then, he produces the statement 8}?211))([ )(61) concerning the results associated to this effect on
2

the chosen state. Secondly, observer O, can interpret the macroscopic data defining o) using the map

fi1)- Then, observer O, pronounces her statement 8[(202) ( fo (o1)) concerning the results associated to the

effect [, on the correspondingly prepared state. The two observers, O and O,, are said to agree about

all their statements iff

©1) ©02) ©0) ©1)
Vore6 " Vhe€, g (f,(0)=¢ (211)([2)

5 (01). (53)

To summarize, we will define symmetries of the system as follows.

Definition 3. The symmetries of the system are defined as Chu morphisms [23]] from a States/Effects
Chu space (6(0] : , ¢ , £<01)) defining the space of states and effects associated to the observer Oy,
to another States/Effects Chu space (6<02) ) ¢ , 8(02)) associated to the observer Oy, i.e. as pairs

of bijective maps f, , : &Y 5 &' and £ € — ¢V satisfying property (33).

Lemma 2. Let us consider (fm),fm)) a symmetry from (&7, ¢ ") 10 (&7, &7 %),



we have

f(zl) (6(02)+) g €(0|)+ (54)
|
Proof. Immediate consequence of the defining property (33). U

Definition 4. The composition of a symmetry (f, ,, S from (6877, €Y €Y 1o (8%, @ )
by another symmetry (g, , ¢"”) defined from (6<02),(’3<02),8<02)) to (6%, (‘£<03),6<O3)) is given by

(32)) (01) (01))

the pair of bijective maps ( 83 O S0y f RS g ) defining a valid symmetry from (Gw') ,E e

©03) 403) _(03)
to (&7, ¢ 7 e ).

As noted in [10], the duality property (33)) suffices to deduce the following properties.

Theorem 2. f, and f(m are maps satisfying

s(01) s(02)
vsice, o] s)= |_|Glesl [ (1) (55)

&(01) &(02)
V€1 Schain 6(0])’ f<12)(|_| G) = |_|oleC1 f<12)(61) (56)
f(lz)(J-G(o,)) = J_6(02) (57)

and
(02) ©1)

vE,C €%, ([T E) =T, £ () (58)
vhee, (R =M () (59)
() =9 (60)

Note that, due to properties (33) (57) and (38), as long as SOV satisfies axioms (A1) (A2) (A3),
S(92) satisfies axioms (A1) (A2) (A3) as well. u

Proof. All proofs follow the same trick. For example, for any S; € &(©1) and any I, € Q?<02), we have,

using (33) and (30) :
(0y) &(01) ©y) &(01)
8[22 (f‘(]Z) (I—I Sl)) = € 21])([2) (I—I Sl)

s
(01)
/\o.es. 3f<211)([2)(01)
(07)
= /\O'|€S| &, (f(lz)(cl))

&(02)

(02)
= 8[22 (|_|61651f;12)(61)) (61)
We now use the property to conclude on (33).
To give another example, we justify the property (37) :
(02) (02) ©01)
V[Q S @ 3 8[2 (f'(m)(J_G(Ol))) = 8f<21)([2)(J_6<01)) == J_ (62)
implies f<l2>(J‘6<01>) = J‘@wz)' O

10



Theorem 3. Pure states in G(?2) are exactly the direct images by fi1) of pure states in o),
Moreover, as long as S0 satisfies axiom (A4), S(92) gatisfies axiom (A4) as well. [ |

Proof. Let us consider a state 6, in G(92) such that f(;; (o) is a pure state in G(%1), For any S, C &(02)

&(02) &(01)

e &) _ _ .
satisfying oo =[]~ Sz, we have I 2)( y) = fmi(ﬂ S2) = |—|Gées2f(|2§(6§) using (53), and then
f( 1_21 (on) € f<1_2; (S2) (due to complete irreducibility of f( 1_21 (02)), and then 6, € S,. As a conclusion, o3 is
completely meet-irreducible in G(92), j.e. it is a pure state of G(2).
Conversely, let us consider 6, a pure state in G(©2) and let us consider §; € &(©) such that £ _1( o) =

501

5(01) s(01)
Me 'S, we have 6, = f<12)(|—|Q ] Sy) = |_|G es.f<12 (o7) using (33). Now, using complete irreducibility
of 0, we deduce that there exists 0y € S such that 0, = f,, (01), i.e. f(m (02) € ;. Hence, f<12>( 2) is

a pure state in SO,

Secondly, let us consider that &(©V) satisfies axiom (A4). We note that, due to the property fa ( 01)) =

pure

6&? and the monotonic character of the map f, , , we have f, , (o) = f<12>( o). Using this result axiom

T s &(01)

(A4) and property (33), we obtain for any o1 € 601, @) =1, ([T o)=[1 f,,(01)=
501)
N ] fi» (01). In other words, S = fun) (6(91)) satisfies axiom (Ad). O

Theorem 4. As long as &9 satisfies axiom (A5), G(92) satisfies axiom (A5) as well and
f(lz) (Max(6(0‘>)) = Max(@(Oz)). u

Proof. For any 6, completely meet-irreducible element in &(92), f(;;

element in &(°1) and then ffl( 5) € Max(S(91) because GO satisfies axiom (A5). Let us imag-
0, we have necessarily fm)( 7) Jon f(l_zg(oz) because f,, is bijec-
tive and order-preserving, and then f - o) = fm)(%) because f“z;(cg) € Max(6(9)). As a result,

o, € Max(G( )). We conclude that 6(02) satisfies axiom (AS).
Let us consider 6; € Max(&()) and let us consider that there exists o, J0n fup(01). We have

(02) is a completely meet-irreducible

ine that there exists ¢} JJ (01

necessarily f( 2)( 02) IIG<O2) 0] because f<12> is bijective and order-preserving, and then f(]*;(oz) = 0]
because 0 € Max(&9)). As a result, fuy(01) € Max(&'22)). We conclude that T (Max(69)) C
Max(&(?2)). On another part, for any 6, € Max(G&(92)), f(‘i (02) is a completely meet-irreducible ele-
ment of G(9V), i.e. an element of Max(&(1), and then 6, = T (f<12 (02)) € fi1y) (Max(&9))). As a
final conclusion, f,, (Max(&(%))) = Max(&'%2). O

As a conclusion of all results of this subsection, the defined symmetries relate fully and faithfully the
States/Effects Chu spaces.

Remark 3. We note that the identity map (id,,id, ) is a symmetry from the States/Effects Chu space
(6,¢,¢) to itself.

From now on, we will consider this category of States/Effects Chu spaces equipped with Chu mor-
phisms and denote it Chu‘;/E.
We will also have to consider the category . which objects are spaces of states (Axioms A1-AS5) and

which morphisms are bijective order-preserving maps satisfying (33)(G6) (7).

11



3 Multipartite experiments

3.1 An axiomatic proposal

We now intent to describe an experiment on compound systems, implying two parties : Alice and Bob.
The bipartite state space will be formed from two given spaces of states G4 and Gp. It will be clear later
on that this notion of bipartite space of states is ambiguous and different constructions can be proposed.

We now begin with a basic axiomatic proposal for the description of bipartite experiments (see [22,
Section 5] for an analogue proposal in GPT’s perspective). We will denote by G4p = G4 X Gp the cor-
responding space of states. ) We will also denote by €45 = €4 X Ep the bipartite effect space formed
from two given effect spaces €4 and €. We will denote €45 the corresponding bipartite evaluation map
from €45 to B4, We will assume the following requirements about these elements.

First of all, we have to build (Sap, €4p,£48) as a valid Spaces/Effects Chu space.

In particular, we will assume that G4 admits mixed bipartite states. In other words,

V{ O;AB ‘ i€ I} - GAB, HZ}B OiAB exists in 6,43,

(B1) : (63)
V{0iap|ic€l} C Gup,Vlap € €y, sﬁﬁ(l—li@e’}f‘ iaB) = Nier €15 (0iaB).
In the same logic, we will assume that &4 admits mixed bipartite effects. In other words,
V{liap |i €1} C E4p, Bl ap exists in E4p,
B2) {liag | }C €, [1id lias AB 64

V{liag | i €1} C €pp,VOup € Gap, €8

s (0a8) = Nier €15 (Cap)-
i1 lias "
Secondly, for every effects [4 and [ realized independently by Alice and Bob respectively, we will
assume that there must exist a unique associated bipartite effect in 45. As a consequence, we will as-
sume that there are maps lfB : €4 X Eg — E4p which describe the inclusion of ’pure tensors’ in E4p
(for readability, we shall write [4 X [z rather than lA@B([A, [g)). This axiom will be denoted (B3).
In the same logic, for every states o4 € G4 and op € Gp, prepared independently by Alice and Bob,
we will assume that there must exist a unique associated bipartite state in G4p. As a consequence, we
will assume that there are maps lfB : 64 X G —> G4p which describe the inclusion of *pure tensors’
in G 4p (for readability, we shall write 64 X op rather than lAGB(GA, o3)). This axiom will be denoted (B4).

Thirdly, for every oyp, GIQ 5 € G4p such that 64p # GIQ > we will assume that there must exist effects
l4 € €4 and [ € Ep such that when Alice and Bob prepare o4p and apply [4 and [z respectively, the
resulting determination is different from the experiment where Alice and Bob prepare o, and apply [4
and [p respectively. As a summary, applying effects locally is sufficient to distinguish all of the states in
Gap (this principle is called ”tomographic locality”), i.e.

(B5)  Voup, 045 € Gap, (Vlu € Ca,lg € €5, €15y, (0ap) = €1, (0Ag)) < (Oap=04p). (65)
Endly, let us consider that Alice and Bob realize their experiments on a pure tensor state. In the sim-

plest scenario, Alice applies [4 € &4 and Bob applies [p € €p independently. Since these two experiments
are independent, the resulting determination has to be the *product’ of the respective determinations, i.e.

(B6)  Vou € 64,Vop € G, VIy € €4, Vig € Ep, €1y (04N 0p) =€ (04) 0L (05). (66)

5Throughout this short axiomatic introduction, we adopt the inadequate notation X for the tensor product in order to allow
for different candidates for this tensor product. These different candidates will be denoted ®, ®,...
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It is essential to note that our identification of the bipartite states space G4p according to previous
axioms is such that, if Alice (or Bob) prepares a mixture of states, then this results in a mixture of the
respective bipartite states. More explicitly,

(|_| o cia)Xop = |_|,6€A,B (0,4 X op), (67)
6A®(|_|?€B, oig) = |_|,.G€A,B(GA®G,',B). (68)
Indeed, using properties (66) (I3) (3) (63), we deduce that, for any [4 € €4,z € Ep, {Cja | i€} C Sy
and op € Gp
edft, ([ Nidom)Bon) = el ([|:0) o€l (on)
= (Nicr €t (0ia)) o€, (0B)
= /\iel(&'ﬁ(Gi,A)'Eé(GB))
= Nier €%, (0ia K 0p)
= et ([ (0:aR o)), (69)

and then, using property (63)), we obtain the property (67). We obtain the property (68)) along the same
lines of proof.

In the following, we intent to identify potential candidates for this bipartite space of states S 45 and space
of effects €45 and posit it with respect to the standard construction of tensor products of Inf semi-lattices.
But before that, we complete the previous axiomatic by a discussion of the symmetries of the multipartite
experiments.

3.2 Symmetries of the bipartite experiments

Definition 5. Letus consider a symmetry (f, ,, f <21)) from a States/Effects Chu space (Sy,, €4,, ")
associated a first observer, to another States/Effects Chu space (Ga,, €,,,€42) associated to an-
other observer. Let us also consider a symmetry (g, , gm)) from the Chu space (6 8,,€p,,€81) to
the Chu space (Sp,,Ep,,e52). We define the pair of maps (FXE) (f&g) ) from the Chu
space (Sa,5,,€a,5,,€48") to the Chu space (Sa,p,, €a,5,,£1252) by

S4B S4B
(f&g)(lz)(l—liell ] Oia; X 61'731) = |_|iel2 2-]‘;12)(61'«41)‘Eg(IZ)(GisBl) (70)
1) €8 €A (21) 1)
(f¥g) (|_|jEZJ2IJA2®[JBz) = |_|jeljlf (lia)®g ™ (Ls,) (71)

Theorem S. The pair of maps ((fXg) ,,(fX g)m)) is a well defined symmetry, i.e. a Chu

morphism from the Chu space (&4, p,, €a,5,,€%15") to the Chu space (Ga,5,,Ea,5,,€1252). N
Proof.
S S
ArB A1B) _ JAB A2By
€ 2@;282 ((fgg)(lz)q_lzel GiA, gcﬂBl)) = € 2¢A2232 (|_|zel f(lz (61A1)|Z|g(12 (6131)>
jeJ L Azglj By I_IjEJ L, Azml By

= /\jeJ/\leI 8 f(12 (Cia,)) e j; (&12)(61}31))
= /\je.l/\lel 8](2])“ )(Gl'«,Al).e (21) : )(leBl)

Ay & (B,
—  QAIB) a8y X
= e o, o [ ier” 0ia, Kois,)
Mies 7 a8 (18,
&
A1B A2B;
= g7l <|_|i€1 Gi,Algci,Bl)>- (72)

AyB
()" (I‘I jei AR, Bz)
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O

From this result, we deduce that the categories ChuS;B/E and . are equipped with a tensor product.

3.3 Towards a monoidal sub-category of spaces of states

In order to equip . with a full monoidal structure, we have to check that there exists an object / (called
unit object) in this category and two natural isomorphisms ensuring /XX = X and X X/ = X. In this
subsection, we are going to check in fact that there exist generic objects X such that B XX = X and
X X% = X. This will lead to identify a sub-category of ., which will be a monoidal category of space
of states.

Let us consider S a given object in the category of spaces of states .. We define the co-slice category
denoted S | . as follows. The objects in S | . are couples (A,a) where A is an objectin . anda: S — A
is a morphism in .. The morphisms from (A,a) to (A’,d’) in S | .# are given by morphisms f: A — A’
in . such that

S— 5 A

\ l‘f commutes. (73)
A/

We note that the initial object of this co-slice category denoted L & is given by
Lspy = (S,ids). (74)
The unique morphism, from the initial object Lg| & to the object (A,a), denoted L, ,), is given by
Lug = @ (75)

For any endo-functor F of the category . and any morphim 7 : § — F(S) in ., we can define an
endo-functor of the category S | ., denoted Fy, as follows. For any object (A,a) and any morphism f :

Fr(A,a):= (F(A),F(a)om) and Fz(f):=F(f). (76)
Using (Z6) and (Z73)), we deduce
J-Fn(lsi.sf) = T (77)

A Fr—algebra is a couple ((A,a), ) where (A,a) is an object in S | . and a : F(A) — A is a morphism

in § | .7 such that
S 75 F(S) 2 Fa)
\ l o commutes. (78)
A

Fr—algebras are objects of a category where the morphisms f : ((A,a),a) — (A’,d'),a) are given by
morphisms f: A — A’ in . such that

§ % A F(A) —2— A

\ lf and F(ﬂl lf commute. (79)
A/

F(A") T>A’
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An @—chain being given by A (Ag,ap) LN (A1,a;) /NN < (Ap,ap) LN , & co-cone

U:A— (A, a) is defined as long as

(Ag,ap) SELEN (A, a1) IR (Ay,an) /R

ﬂol / commutes. (80)

This co-cone is said to be co-limiting iff, for any other co-cone v : A — (A’,d), there exists a unique
mediating morphism f such that Va,v, = fou,.

Let us consider the following particular @—chain associated to Fy :

Ap,a = Flls,s
>0, Anw f) - Fi"gﬁiilm (81)
Using (76) and (77) we note that

Fi(Lspz) = (F'(S),F" !(m)o---om) and FF(Llp, ) =F"(7). (82)

Lemma 3. Let ((A’,d’), o) be any Fp—algebra, we can define a co-cone v : A — (A’,d") by
Voi=Llway=d, vii=doF(vo)=a'oF(d), -+ Vyii=a oFg(v,). (83)

Indeed, we can check by recursion that

Vi1 oF(Lpis ) = Vi (84)
|

Proof. The equality v, OFf(r)(J-Fn(st)) =o' oF(d)om =d = v is a consequence of (78). We have

also Vn+] OFg(J-Fn(lsiy)) =V, lmplles Vn+20F7¥+1(J‘F7z(L5¢y)) = a/OFn(V,1+] OFg(J_Fn(lsiy))) = a/O
Fn:(vn) = Vit1. ]

Theorem 6. Let us suppose that the co-cones t : A — (A,a) and Fr (i) = Fr(A) — Fz(A,a) are
co-limiting. Then the initial Fr—algebra exists and is equal to ((A,a), @) where o is the mediating
morphism from Fr(u) to u—, i.e. oo Fr(l,) = Up+1. As a conclusion, ((A,a), o) is an initial
fixed point of the equation Fr(X) = X. [

Proof. Let ((A’,d’),a’) be any Fr—algebra and let us consider a co-cone v : A — (A’,d’) defined accord-

ing to (83). Let f denote the unique mediating morphism from u to v, i.e. Vn, Vv, = f o i, and o denote

the unique mediating morphism from Fr(u) to u=, i.e. oo Fr(ly) = W1

We have (foa)oFr(iy) = fo(aoFz(liy)) = f ottt = Va1 and (o' 0 Fr(f)) 0 Fr(Un) = @' 0 Fr(f 0

W,) = a' o Fr(v,) = V41 The unicity of the mediating morphism from Fr (i) to v~ implies then

foo=d oF(f), i.e. there exists a homomorphism f : ((A,a), ) — ((A’,d’),a’) of Fr—algebras.

Let us now suppose that f : ((A,a),a) — ((A’,d’),o) is a homomorphism of Fp—algebra. We check

by recursion that f is unambiguously fixed by v, = fol1,. Indeed, we have first of all vo = L (4 ) =
=foa=folya=foloand fol, 1 =foaoF(i,)= o' o Fr(f) o Fr(tn) = ' 0 Fr(f o ty) =

o o Fr(V,) = V,11. Hence, the homomorphism of F—algebras f is uniquely defined.

As a conclusion of the two previous results, we obtain that ((A,a), a) is the initial Fr—algebra.

Let us now suppose that ((A,a), o) is an initial Fy—algebra. (Fr(A,a),Fr()) is also a Fp—algebra
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and there exists a unique homomorphism of Frp—algebra f : ((A,a),a) — (Fz(A,a),Fz(ct)). Note that
o: (Fr(A,a),Fr(a)) = ((A,a), ) is also a homorphism of Fr—algebra. Then, oco f: ((A,a),a) —
((A,a),a) is also a homomorphism of Fr—algebra, equal to id(4 4) as ((A,a), @) is initial. At the same
time, we have foa = Fr(a) o Fr(f) = Fr(ao f) = Fr(id(4 4)) = idp,(aq)- Then, a is an isomorphism.
As a final conclusion, ((A,a), ) is an initial fixed point. O

Let us now particularize these results in order to find simultaneous solutions of the equations B XX =
X and X X B = X in the category ..
Let us now fix an object G in .¥ and let us consider the co-slice category & | .7. Let us then consider the
endo-functor F of the category . defined by F (X ) := B XX for any object X of . and F(f) := ids X f
for any morphism f in the category .7.

We define the morphism 7y : X — F(X) as follows

y X — BKXX

u —  1Xu (85)

We note that the embedding 7y forms an embedding-projection pair with the projection 7y defined by

Ty BRX — X (86)
BRX X
Hce% c XI Uo = Hoe% Uo
We check easily the following embedding-projection relations
71';2 Oy = idx, Ty O 71';2 C id%gx. (87)
We check moreover the following homomorphic properties
. X BXX
Vulie I} CX, my([ | u) =[] mx(w), (88)
. X BRX
v{ui ’l S I} gChain X7 EX(Uielui) - |_|iel n'x(u,-), (89)
mx(Lx) = Lowx- (90)

S

Let us then compute the components of the @—chain A : (A, ap) é (A1,a;) fﬁl e (Apyay) =/ -
i fa

s

JO 1 Jn

defined in reference to (82]) and (81)) (we denote by f;* the projection associated to the embedding f) :
Ap:=6, and Vn>1, A,:=F"(&)=B8"" K &
ap:=ids and Vn>1, a,:=F" (ng)o---ong = 1% K idg

for=7s and ¥n> 1, f,=F'(ns) : Ay An

iel i i
fo=mg and Vn2>1, f7 Anig A,
A

|—|i€”[+] R KRV RS |—|:Iul(l) X-.. &ul(") @v?e)

i i i i

iel

—
|—|An u(])ﬁ---ﬁu(”)ﬁvl@) . I_lAﬂﬂugl)g“'gul(n)gJ_ngG)
—

We also define the co-cone i1 : A — (A,a) as follows (we denote by i the projection associated to the
embedding ;)

[0 w
— —_—~
A=8BK- .- X G, a=1K-.-Xidg, 95)
J TP A, — A 96)
A)l ~ j 6 A g j 6
|—|iel(®léj§nugj)) IZVI( ) = |—|iel(®1§jénul§])) ‘ZlJ‘gwlzvl( )
J TR A — Ap ©7)
A S j S An S j (]
ML @& o 7@, )8
We note immediately the following embedding-projection relations
Vn>0,  Uyol,=idy,, Hnop, Cidy. (98)

We also check the following result.

oD
92)

93)

(94)



Lemma 4.

(W0 W, )n>0 is an increasing sequence of elements of Hom(A,A) 99)

n Uno Uy =idy. (100)

As a conclusion, u is an O—colimit of A (see [25, Definition 7]). [ |
Proof. Straightforward. O
Lemma 5. u is a colimit of A. |

Proof. Direct consequence of Lemma 4l

Let u’: A— A’ be another co-cone and let us consider f : A — A’ a mediating morphism from p to u’ (i.e.
”1/1 = f o ly). We check that f is defined uniquely by f = fol |ty 0 l; = Lln(fo ”n) of, = l_ln.ur/z o,
(we have used property (10Q).

Concerning the existence of such a mediating morphism, we have to use property (99) to conclude that

£ =Untt o 13 is a solution. Indeed, we have £ fhy = (s 144 © 1) © Hin = Uy 1y 0 17 0 110 © fo1 0

"'Ofm:l_anm”;gofn—lo"'ofm:.u;%- U
Lemma 6. Fr (1) =u~,ie. Vn >0, Fyy(Un) = Unt1s [ ]
Proof. Straightforward. U

Theorem 7. ((A,a),id) is an initial fixed point of the equation Fz. (X) = X. In other words, we
have BXA = A. |

Proof. Consequence of Lemma[3 and Lemma [6]using Theorem O

In order to treat simultaneously the two recursion relations, we have to replace & by A = B¥° X &
from the beginning of the construction, to consider the co-slice category A | .¥” and to choose the endo-
functor G defined by G(X) := X X8 in place of F. The proof follows the same lines as before and we
obtain :

[0] (0]
— —_——
Theorem 8. For any space of states G, the space of states defined as BX --- K S X --- KB is
a simultaneous solution of the recursion equations BX X = X and X XB = X. |

We then intent to consider the sub-category of .7, denoted ., and formed by objects of the form
w

BX--- XK G X --- XB where S is an object of .. The morphisms from BX --- X S X --- KB
() (0] (0] [0

— —_—— . —_——— ——
to BX --- X & K --- KB are given by maps of the form /i X X .- K foX--- XK f X f | where
fi and f_; are bijective order-preserving maps from 5 to B satisfying (33)(R6)(57), for any i > 1, and
where fj is a bijective order-preserving map from & to & satisfying (33)(G6) (7).

Remark 4. We note that a bijective order-preserving map from 9B to B satisfying (33)(36)(57) is either
the identity map idy or the involutive map ~ on ‘B.
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4 Candidates for a tensor product

4.1 The basic tensor product construction

We begin to introduce the classical construction of G.A. Fraser for the tensor product of semi-lattices
[13[14]]. As it will be clarified in the next subsection new proposals for the tensor product of semi-lattices
have to be made in order to complete our work. In this subsection, it will be assumed that (S, €?) satisfy
Axiom (A1).

Definition 6. Let A, B and C be semilattices. A function f : A x B— C is a bi-homomorphism if
the functions g, : B— C defined by g,(b) = f(a,b) and hj : A — C defined by hp(a) = f(a,b)
are homomorphisms for alla € A and b € B.

Theorem 9. [13, Definition 2.2 and Theorem 2.3]

The tensor product Syp := G4 ® Gp of the two Inf semi-lattices G4 and Gp is obtained as a solution
of the following universal problem : there exists a bi-homomorphism, denoted 1 from G4 x Gp to
Sap, such that, for any Inf semi-lattice & and any bi-homomorphism f from G4 x Gp to G, there
is a unique homomorphism g from Syp to & with f = got1. We denote 1(0,0’) = 6 ® ¢’ for any
0 €6, and 0’ € Gp.

The tensor product S4p exists and is unique up to isomorphism, it is built as the homomorphic
image of the free [ semi-lattice generated by the set G4 x Gp under the congruence relation de-
termined by identifying (o Mg, 0,,0") with (01,0") M (0,,0’) for all 61,0, € S4,0" € Sp and
identifying (0,07 0;) with (0,67)11(0,0;) forall 6 € &4,01,0; € &p.

In other words, S4p is the Inf semi-lattice (the infimum of S C S4p will be denoted |_|SAB S) gener-
ated by the elements 04 ® o with 04 € G4, 05 € Gp and subject to the conditions

(0aNg, 04) @0 =(0a®0p)M, (04 ®0p), 0a®(0pMg, Op) = (0a®0p), (Ca®O0p).
The elements of Syp can be written (|—|IS’€”; 0,4 ® 0;p) with I finite and 0,4 € G4,0;5 € Gp, for
any i€ 1. |
Definition 7. The space Sap = G4 ® Gp is turned into a partially ordered set with the following

binary relation

VOB, GAB € Sap, (GAB ESAB GAB) = (GAB I_ISAB GAB = GAB)- (102)

Definition 8. A non-empty subset R of G4 x Gp is called a bi-filter of G4 x Gp iff

V04,014,004 € 64,Y0p,01 8,025 € Gp,

((GI7A761,B) < (62,A7027B) and (017,4,0173) < %) = (62,A7027B) < ZR, (103)

(GI,A,GB)’ (GQ’A,GB) ER = (GLA |_|6A 627A,GB) € R, (104)

(GA, GI,B), (GA,GZ,B) ER = (GA, O1.B |_|GB 62’3) € fR. (105)
Definition 9. If {(01 4,01 5), - ,(0n4,0,5)} is a non-empty finite subset of G4 x Sp, then the
intersection of the collection of all bi-filters of &4 x & which contain (61 4,01 8),- - ,(Cn4,0nB)
is a bi-filter, which we denote by F{(014,018), - ,(Ona,0n8)}
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Lemma 7. If F is a filter of Syp = G4 ® Sp then the set a(F) :={(04,08) € 54 x Sp | 64 R 0p €

F } is a bi-filter of G4 x Gp. |
Lemma 8. [14, Lemma 1] Let us choose 04,014, - ,0,4 € G4 and 0p,01 3, --,0,p € Gp.
Then,
N
(0a,08) € 5{(01.4,018), - ,(Ona,0nB)} & ( 1Sicn OiA ® Gi,B) C,, 04 ® 0p.(106)
[ |

Proof. Let us suppose that (64,03) € §{(01.4,018), - ,(0n4,0,5)}. Let F be the principal filter in
G4 ® G generated by (I_liA;ign CiaA® G,"B). Then 0;4 ® 0;p € F forany 1 <i<n, and then (0;4,0;5) €
o(F) for any 1 <i <n. Hence, §{(014,018), - ,(0na,0n8)} C 0(F), and then (04,0p) € a(F). As
aresult, o4 ® op € F and then (ﬂ?‘;ign Oia® G,',B) QSAB 05 @ Op.

Let us now suppose that ( iAggign CiaA® G,"B) Cs,, 0a®@0p. Letu: 64 x Sp — {0,1} be such that

u(ox,08) =1 < (04,08) € 5{(014,018),  ,(Ona,0np)} (107)

u is a bi-homomorhism. Then, there exists a homomorphism v: G4 ® &g — {0, 1} such that u(cs,0p) =
v(os ® op) for any 64 € G4 and op € Gg. We have then u(cy,05) = v(04 ® 0) > v( §A<Bi<n Cia ®
G,"B) = /\ 1<i<n V(GjﬂA ® G,"B) = /\ 1<i<n M(G,"A, (7@3). Since M(G,"A, G,"B) =1 for any 1<i< n,fwfe deduce
that u(oy,0p) = 1 and then (o4, 03) € §{(014,018), - ,(Ona,0ns)}- O

Lemma 9. [14, Theorem 1]

Let us choose 04,014, ,0,,4 € &4 and 0,01 B, -+ ,0, 8 € Sp. Then,

S . . .
( 1Licn 0ia ® G,"B) C,,, 0Aa®0p <« there exists a n—ary lattice polynomial p | 64 I p(G14, ", 0n4)
and o Jg p*(O18, +,0up) (108)

where p* denotes the lattice polynomial obtained from p by dualizing the lattice operations. W
Proof. Letus fix 614, ,0,4 € &4 and 013, , 0, p € Gp and let us consider
F:={(oa,08)| 04 I, p(O14, " ,0n4) and o I p* (01,5, +~,0,p) for some n—ary polynomial p }(109)

It is obvious that F' contains (01 4,01.8), - ,(OnA,OnB)-

It is also easy to check that F is a bi-filter.

Endly, we can check that every bi-filter which contains (014,018), --+, (Gn4,0,p) contains also F.
This point can be checked by induction on the complexity of the polynomial p by using the following
elementary result, consequence of the bi-filter character of F,

(04U, 04,080, Op) €F

Vou,04 € Sa,0p,05 € Sp, ((04,08),(04,05) €EF) =
14 € O,05,05 € S5, {(60,00), (0%, 05) € ) (041, 005 Ly Op) € F

O
Theorem 10. For any [4 € €4, [ € Eg the map
AB .
Ly - ©ax6p — B (110)

(0a,08) — € (0a)eel(0p)

is a bi-homomorphism. It exists then a unique homomorphism from Sy = G4 ® Gp to B, denoted
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AB fuine fAB — yAB o
V1,1, and satisfying fi ' = v’ ot. Explicitly, we have

A 5 A
vib ([ i&i0ia®6is) = Nier €1, (0ia) 0 €5, (0i5). (111)
Anticipating the construction of the bipartite effect state, we may denote V{5 by {8 . [ |
As'B A B

Proof. The bi-homomorphic property is a direct consequence of (I3) and (3). The existence of v‘éﬁB

satisfying -f[/j;ﬁg = v’éﬁB o is then obtained as a consequence of Theorem [0l O

Theorem 11.

VOu, Opp € Sap, (Oap Ly, Oap) = (Via € €4,Vig € €5, viP, (oup) < Vi1, (0hp)), (112)
. N
V{0iap | i €1} Cin Sap,Via € €4, Vip € €, fo@(ﬂféi ia) = Niet V5, (Gia)- (113)
|

Remark 5. We have not managed to prove that Syp is chain-complete when G4 and Gp are chain-
complete, or the fact that, for any [, € €4 and [z € €, the map sﬁB[B is chain-continuous. Nevertheless,
we have a weaker result expressed as follows. We suppose that G4 and G are chain-complete and that
e‘a and ei are chain-continuous for any [4 € &4 and [z € €. Then, we have
. . . SAB s
V{ CiAB | 1€ I} CChain SAB | CiAB ‘= 0ia® Gi7B,Vl el, I_liel O; AB €XI1Sts 1n SaB,
AB 5 AB
and V[A € @A,V[B € @B, v[A,[B(UiéI;Gi7AB) = \/iEIV[A,[B(Gi,AB)- (1 14)

Indeed, using Lemma [0 we know that {C;ap | i € I'} Copgin Sap implies immediately {oj4 | i €

I} Cchain ©a and {o;5 | i € I} Cepain Sp. Hence, (|_|iG€AIG,;,A) and (| | ;’;GLB) exist in S4p. As a conse-

N . . . .
quence, the lowest upper-bound | |2} 6; ap exists in Sy and we have explicitly

S S
|_|fé‘7 iag = (|_|ic10ia) @ (||ic10i.8)- (115)

Moreover, using (I11), we have
Vﬁl?[B(Gi,AB) = 8/&(0,'7/4)'86;(0:',3)- (116)

In reference to [5 Definition 2.1.10], we note that

{ef (cia)eel (0pp) | (i,i') €1} (117)

is a monotone net, and then, using (I16), the relation [3, Proposition 2.1.12], the distributivity property
(6), the chain continuity of e‘a and 6{2 , the homomorphic property (I11) and the equality (I13), we
obtain

Viy € €4,V € Cp, Vet VB, (0ias) = \fier€l,(0i4) 0 €1 (015)
= Vier Vrer€1,(0i4) 0 7, (07 )
= (Vieret (cia)) o (\frer €1, (07.))
= et (| |ioia)eel (| |5 00)
= vl (U @ (sovs)
= V& (L% oias)- (118)
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4.2 The maximal tensor-product

It is now possible to give a second definition of the tensor product of G4 and Gp. This tensor product will
be called maximal tensor product and denoted S, 8- 1t will be defined in reference to the axiomatic rela-
tions (B1) — (B2) — (B3) — (B4) — (B5) — (B6). It will be assumed that (S 4,€*,&,) and (Sp, 8, Ep)
satisfy the axioms of States/Effects Chu spaces.

Definition 10. The set (S, x Sp) is equipped with the Inf semi-lattice structure U and with the
following Inf semi-lattice morphisms defined for any [4 € €4 and Iz € €p,

VAB : @(6,4)(63) — B

la,lB . . 119
(o) [icl} — VIB ({(0ia,008) |i€1}) 1= Aicr €1 (01a) 05 (015). )

Definition 11. (G, x &p) is equipped with a congruence relation defined between any two
elements usp and )y, of (S x Sp) by

(”AB ~ MAB) = (V[A € €4, Vg € Ep, Véf[B(MAB) = V’éﬁB(MAB)). (120)

Definition 12. The space Sap = G405 is built as the quotient of (G, x Gp) under the con-
gruence relation ~=.

Voup € Q(GA ><63), 6,\4—1;12{14,43 ’ GAB%uAB}. (121)

The map vﬁf[B will be abusively defined as a map from Ssz to B by vﬁfIB(EAE) = V‘éf[B(GAB) for
any Oap in Q(GA X 63)

Definition 13. Sy is equipped with a partial order defined according to
VGup,0hp € Sas, (Ouz . Gup) & (VIa€ €y Vige € vt (6as) < Vi, (Ghs)). (122)

_This poset structure can be “explicited” according to following lemma addressing the word problem
inS ARB-

Lemma 10. Let us consider usp := {(0j4,0;p) | i €I} an element of Z?(S4 x Gp). We have
explicitly, for any o4 € G4 and op € Gp, the following equivalence

— P IS
(l/tAB EEAB (GA,GB)> = ((|_|ké‘1 Gk,A) EGA (o)) and (|_|S121 Gm,B) EGB OB and
(Vo e Kol ([ itk oka) Ce, 0a or ([ |n2_x Omp) Ce, 05))-

It is recalled that &4 and G are down-complete Inf semi-lattice and then the infima in this formula
are well-defined. [ |

Proof. We intent to expand the inequality uag C. (04,0p). Itis equivalent to
AB

Vis € €4, Vg € Ep, (/\,’61 gﬁ(ﬁi,A) 08{;(6,"3)) < Eﬁ(GA) 08{;(63). (124)

We intent to choose a pertinent set of effects [4 € €4 and [ € Ep to reformulate this inequality.
Let us firstly choose [ = %), . Using ), we obtain

gﬁ(ﬂi?] Oia) < €1 (04),VI4 € €4, (125)
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whcih leads immediately

[ 64 Cq, 0a. (126)

Choosing [4 =9), , we obtain along the same line

S
[ i’ 05 Co, 05- (127)

Let us now consider & & K & I and let us choose [4 and [p according to

8’&(6) :=N,Vo Jg, |_|ng ora and eﬁ(o) =1, elsewhere, (128)
ef(0):=N,Yo I Hj’é,,,{ onp and €f(0):=L1, elsewhere. (129)
We deduce, from the assumption (124)), that for this @ & K & I we have
S S
([ xék oka E, 6a) or ([ |uis—& Onp T, ). (130)

We let the reader check that we have obtained the whole set of independent inequalities reformulating
the property (124). O
Definition 14. We will adopt the following definition
VG € Spp, () = Max{uec P (S, x Sp) | il &}

= {(0a,08) | (04,08) 3; G}, (131)

Lemma 11. We have the following Galois relation

VG € Spp,Vue P(S,xSp), (6)Du < GL. W (132)

T SAB

Proof. Letus fix u:={(0;4,0:5) | i € I}. We derive straightforwardly the following equivalences

(6)2u <« Viel (6,03, O
B
& Viel,Vigp e €y, Vg e @B,VQB ( ) < 811((7,',,4)081[9 (G,'B)
S Ve €y Vipe €y vl (3) < Nieref (014) o€l (0ip)
& oL u (133)
SAB
O
Theorem 12. §AB is a down-complete Inf semi-lattice with
. SAB ~
V{uillel}§@(6Ax6B), |_|iél; l/t,':U,E[ Uj. (134)
Moreover, for any 4 € €4 and [ € Ep, we have
~ . ~ SAB ~ ~
V{ u; | 1€ I} - SAB, Vﬁﬁg(l—lié};”i) = /\ie] VfﬁB(ui) (135)
|
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Proof. The property (I34]) is a direct consequence of the Galois relation established in previous lemma.
For any [4 € €4 and [ € €, using (I34) and the homomorphic property for v[ 15> We have

W lie 1} C 2@ x &), vis (e m) = vis, (U w)
= VﬁﬁB(Uieluz‘)
= /\ielvﬁl?[B(ui)

= Niavih, @) (136)

O

Definition 15. The element i € Sy associated to the element u := { (G;4,0i5) | i €1} € P (G4 x
Sp) will be denoted ﬂfé‘; 01 ARO; p.

Theorem 13.

V{ OiA | i€ I} - GA,VGB S 63, (|_| :2, G,"A)(fXV)GB = |_| 61,A®GB (137)
V{ OB ‘ i€ I} - GB,VGA S GA, GA®(|_| ZI; G,'7B) = |_| GA®G, B (138)
[ |

Proof. Indeed, using successively properties (I11) (13) (@) and (I11I) again, we deduce that, for any
l4 € €4,lp € Ep,
S S
Vﬁﬁg((l—lie/llciAvGB)) = eé\(l—lieAIGiA)’eﬁ;(GB)
= (/\iel 8ﬁ\(0i,A))’3€;(GB)
= /\iel (Eﬁ(Gi,A)'Eﬁ,(GB))
= v{B ({(0ia,08)|icT}), (139)

la,lp

and then, by definition, we obtain the property

([Nioia.08) ~ {(0ia,08)|icl} (140)
and then

(Toa@os = [ (ciados). (141)
We obtain the second property along the same lines of proof. U

4.3 The bipartite construction for the States/Effects Chu space associated to the maximal
tensor product

In this subsection, we will assume that (G4, €4, &%) and (Sp, €p, £8) are valid States/Effects Chu spaces.
In other words, they satisfy Axioms (A1)—(AS).

Definition 16. The evaluation map will be defined as a map

£ P(Ey x Eg) — B (142)
{(Lalip)licly — ¥ | VGas € Sap, ?(BAJI.‘BWGI}(&AB):/\ielvf?‘f,[i‘g(&AB)'

{(talip) i€t}
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Definition 17. &7(&4 x €p) is equipped with a congruence relation defined between any two
elements xsp and X, , of (€4 x ) by

(xaB=xpp5) & (VOup € San, €4y (Oan) = €37 (Gag))- (143)

Definition 18. The space EA p is built as the quotient of &2 (&4 x €g) under the congruence relation

~

V?LAB S 9(@,4 X @B), Z;X—l; = {XAB ’ lAB ’:XAB}. (144)

The evaluation map will be defined as a map from E,z to B S5 by 8%15 = 8‘259 for any Aup €

P (€4 X Cp), "

Definition 19. E,p is equipped with a partial order defined according to

VXAB,IAB S EAB, (IAB EEAB IAB) = (V&AB S §ABa Séf (6,43) < SéB (6,43)) (145)

Mg )L;&B
Definition 20. We will adopt the following definition
VA €Ess, (A) = Max{xe P(€4 x Cp) %3, 2}
= {1 (hlp) 2, A}, (146)
Lemma 12. We have the following Galois relation
VA € Exg,Vx € P(€4x €5), (A)Dx < A C, X (147)
[
Proof. Letus fix x := {(lia,lip) | i € I}. We derive straightforwardly the following equivalences
A)2x & Viel(ials) I, A
& Vie I,V&AB € gABa S%B(gAB) < Véf.,li,e(&AB)
& Y6up € Sap, 8%3(5/43) < Nier vi2 (., (Gag) = €27 (Gap)
s AC. X (148)
Exp
O
Theorem 14. EA g is a down-complete Inf semi-lattice with
V{xi|i€I}§<@(€Ax€B), Hfé?)a:Uielxi- (149)
Moreover, we have
W{Ai|i €1} C Exp,¥oup € Sag, 8ABEAB~.(6AB) = Nic1 €5 (Gan) (150)

iel ™
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In other words, EAB satisfies Axiom (A3). [ |
Proof. The property (149) is a direct consequence of the Galois relation established in previous lemma.
For any 645 € Ssp wWe have

V{xi|i€l} C P(€sx Ep), 8?'%%(5143) = e (Gyp)

8 Uier i

= e{}, . (Can)

= Nicr€2"(Gan)

= Nicr€”(Gus) (151)
O

Definition 21. The element ff; € E,p associated to the element [4p := {(a,lip) | i€} €
P(€4 x €p) will be denoted [],251; 4 &1 .

Theorem 15. §A g satisfies Axiom (A1). Explicitly, §AB is a down-complete Inf semi-lattice. More-
over, we have

_ _ ~ = ~ S ~ ~
V{Ciap |i €1} C Sap,VAup € Exp, E%fg(ﬂié[; OiAB) = /\iel E%i(oi,AB) (152)

|
Proof. Direct consequence of Theorem [12] with property (I30Q). O

Theorem 16. If 6A~ and Gp satisfy the axiom (A2), then §AB satisfies the axiom (A2) as well : the
bottom element of S4p is explicitly given by Le, <§~§>J_GB. |

Proof. Trivial using the expansion (123). O

Theorem 17.

~ pure pure pure

Sap = {oa@oploae6, 056y } (153)

Moreover, Syp = G4@Gp satisfies the axiom (A5), i.e. §ﬂ;€ = Max(gAB). |

Proof. First of all, it is a trivial fact that the completely meet-irreducible elements of Sap are necessarily
pure tensors of §A g, i.e. elements of the form c4&0p.

Let us then consider 64®0p a completely meet-irreducible element of §AB and let us assume that
Oy = I_lziAlGi,A for OiA € GA for any i € I. We have then (GA®GB) = ((ﬂ,%‘,c,;A)éog) = I_llsét; (G,’ﬁAéGB).
On another part, 04R05 being completely meet-irreducible in S, 45, there exists k € I such that 64Q0p =
GkA@GB, i.e, 04 = Ora. As a conclusion, oy is completely meet-irreducible. In the same way, op is
completely meet-irreducible. As a first result, pure states of Syp are necessarily of the form 64®op with
on€6, 0pEC,

Conversely, let us consider o4 a pure state of G4 and op a pure state of Sp, and let us suppose that
(Hfé‘} GLA@G,;B) = (oa®0p) with Oia € 64 and 0;3 € Sp for any i € I. We now exploit the ex-
pansion (123)), and in particular the two conditions (ﬂfg, oia) = o4 and (12, Op) = 0p. From
04 € Max(S,) and op € Max(Sp), we deduce that ;4 = 04 and 6; 3 = op for any i, j € I. As a second
result, we have then obtained that the state (GA®GB), with o4 a pure state of G4 and op a pure state of
Gp, is completely meet-irreducible.

From the expansion (I23), we deduce also immediately that (c4®03) € MaX(SVAB) as long as o4 €
Max(S,4) and op € Max(Sp). O
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Theorem 18. §AB = 6,65 satisfies the axiom (A4). Explicitly,

~pure

VG € Spz, G:|_|SABQ, where 0 = (Syp ﬂ(TSABG)). (154)

Proof. Letus fix 0 € Sas- i ~
We note that 6 ¢ for any ¢’ € (47 N (1%5)) and then & C. MN*oe.
AB AB

. S, ~ . .
Secondly, denoting ¢ := (['] l*e”; 0;A®0; g), we note immediately that, for any o4 € Gi\mre and o3 € 6;}”,
if o4 Js, Oia and op Jg_ O;p, then (0A®0B) Js,, O i.e. (04®0p) € 0. As a consequence, we have

SAB |_| SAB |_| SAB = SaB
. 3. []"e 1
(|_|l€1 I/ O4dg, Oia ope6y” | Opg, 0iB GA®GB) =Sup g (155)
Endly, using Theorem [I3lwe have
SaB = SaB SaB = SaB
0= |_| ic10i,A®0ip = |_| i€l (|_| 04€64" |30 O GA)®(|—| 0p€SE" |05 O Op)
SAB |—| SaB |_| SAB =
. . 1
|_|l€I GAEGZME ‘ O-A;GA Gia 0366§ure | O-B;GB Gi,BGA®GB ( 56)

As a final conclusion, we obtain

EAB EAB EAB = §AB
c= (|_|i€1 |_| GAGGQ'W ‘ GA;GA CiA |_| GBGGZ’W | GBQGB OiB GA®GB) - |_| g (157)
]

As a conclusion of previous theorems, we have also obtained that Sap is a valid space of states and
Eag is a valid space of effects satisfying axioms (A1) — (AS). As a consequence, they satisfy axioms
(B1) and (B2).

Axioms (B3) and (B4) are also trivial by construction.
By construction of the maximal tensor product, it will also satisfy the axiom (BS), i.e.

V&AB, 8143 S §AB, (V[A € €y, Vg € Ep, 8&%[3(&43) = 81&%[3(8’43)) - (6AB = 8143) (158)
Endly, Definition [10/ has been chosen in such a way that we obtain trivially the axiom (B6), i.e.

Yoy € G4, Vop € G, Vi € €4, Vig € €5, €48

AL (oaBop) = €f, (0a) @€, (08).  (159)

4.4 Multipartite experiments defined by the maximal tensor product

Let G4,65,S¢ be three spaces of states. We intent to define the tripartite state space Spc ? Clearly
one option is to first form the bipartite state space G4 ®G g and then tensor the result with S¢, so that we
get (6,@65)@G¢. Another way to build these tripartite experiments is to first form Gz@G¢ and then
tensor with G4 to obtain G4 (Sz®G¢). It is natural to require that both of these constructions yield
the same result.

Theorem 19. The maximal tensor product of state spaces is associative, i.e., we must have
(GAR65) 26 = GR(6R6¢). (160)
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Proof. (6A<§>63)®6c is defined as the quotient of &?(S4 x S x &¢) by the congruence relation de-
fined for any uapc,uygr € P (Ga x Spx S¢)

(uaBc ~am)c u,,ABC) = (Vg € EAB? lc €€, v[ABv[C(uABC) = v[ABs[C(u;\BC)) (161)
& (Viy € Ep,lg € €p.lc € 0, Vi1 (Uanc) = Vi ipic (Uape))  (162)

where

Viipic({(614,018,0ic) |i€1}) = A€l (o) el (0i5) 0L (0ic) (163)
el

In the same way we have that G, ®(S@6c) is defined as the quotient of (S, x G x S¢) by the
congruence relation defined for any uapc, g € P(Sa x S x S¢)

(MABC %A(BC) MABC) = (V[BC € EBCv l4 € &4, v[AJBc(uABC) = V[AJBC(MABC)) (164)
& (VI € €y, lg € Eplc €€, Vi ipic(Uanc) = Vi, i (Uhpe) ). (165)

The announced equality is then proved. U

We can then define a multiple tensor product of spaces of states.

Definition 22. The set Z([] ¢, GU)) is equipped with the Inf semi-lattice structure U and with
the following Inf semi-lattice morphisms defined for any ({(/));c; with (V) ¢ ¢()

@)

jer

@(H,@G”)) - B
{6 liel}y = AaO . en(o?)

where we have used the symbol () to denote the multiple e product.

(166)

Definition 23. Z([];¢, 6(j)) is equipped with a congruence relation defined between any two
elements u,u’ € P([1;c, &) by

u= I/[/ = V([(J))jej € Hjeje(J), v([(j))jel (M) = v([(j))jel (u/). (167)

Definition 24. The multiple tensor product é je ;6 is defined as the quotient of the set P(Mjes 1Y ))
under the congruence relation ~.

voe 2([[6Y), & :={ulo~u}. (168)
jeJ

The element & €8 := éjEJG(j) associated to the element u := { (Gi(j))jej liel} e 2([1e;6Y)
will be denoted [ 3 ,é ie Joi(j ).

Theorem 20. Let us introduce the following notation
= KD ey | (KY 1 Ve d)and (K K = @, 9), /' € J)and (U jes kY = D} (169)

The poset structure on S:= (§ je JG(j ) is defined according to

(|—|ise/®jej Gi(j)) EE ® G(j)

JjeJ

. . , 5(/) :
& (VKDY e e, 3jed | (KD £oandeV 2 [ o)) (170)

S
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Proof. The proof follows the same line as in Lemma [I0l U
4.5 Comparison of the two tensor product constructions
Lemma 13. For any G in Sag, (o) is a bi-filter of G4 x Gp and we have explicitly

5 ~ S S
([ |i(ia®0in)) = {(0a,08) | ([ |e2 Oka) Ee, 04 and ([ |12, Oms) C,, 05 and

(V@ L KG&1, (I—lfél( Ora) g, Oa o |_|m2171< Onp) Ee, GB) }-

171)

= {(GA,GB)]HJ{ ' C2l with U =2 N =2, {oye " TcH,

|_|Ke/ kEK ka\) EGA o and K’e)f”l_|mel K GmB —6 GB}

We will also use the following notation §{(0;4,0i5) |i €I} := ( Hfét];(ci,AéGLB) ). [ |

Proof. From Definition [I4] and Lemma[I0l we deduce immediately the expression (I71)).

Let us now check the bi-filter properties.

The property (I03) is trivially obtained from the expression (I7I).

Let us now consider that (o 4,0%),(0; 4,03) € ( ;% (6;,4®0i5) ). In other words, we have for
any [, € €4 and [ € €p : vﬁB ((G{A’GI,})) > vﬁB[B({ (Cia,0iB) | i€l}) and v[A [B((GZ”A,GIQ)) >

(172)

VﬁﬁB({ (0ia,0ip) | i €1}). Moreover, we have proved in (139) that v[A [B((GLA’ op)) AV o [B((GZI,A’ op)) =
Vﬁﬁs( (01 4Ms, 03.4:0p) ). As aconsequence, we obtain VIAJB( (014Ms, 02.4:05)) = VﬁBIB({ (Cia,0iB) i€

1}) for any [y € €4 and [ € €p. As a result, we obtain that (67 4 Mg, 63 4.0p) € ( M2 (0i40:5) ).
We have then proved property (104).

The property (I03)) is proved along the same lines.

The expression (I72) is a trivial reformulation of (I7I). O

Definition 25. We denote S?;;’; the sub-poset of §AB defined as follows :
SZZ' = {u|uCyin Gax6Gp}. (173)

It is also a sub- Inf semi-lattice of §AB.

Theorem 21. We have the following obvious property relating the partial orders of §Z’; and Sap.
For any {(G,"A,G,"B) ’ i€ I} gf,-,, Sy X Gp,

S §AB =~ ~
([ i&iom®ois) By, or0op = ([ |ijoia®ois) E;  04&05 (174)

|
Proof. We intent to prove §{(0j4,0ip) | i€} C §{(Gi,A’6i7B) |i €1} forany {(0j4,0:8) | i €1} Cfin
G4 X S (we recall that we have adopted the notation {(0j4,0;5) | i € I} = ( ﬂféf;(ﬁm<§>6i,3) ).
First of all, it is recalled from Lemma[[3] that §{(G, A,0;g) | i €1} is a bi-filter.
Secondly, it is easy to check that (4,0 p) € 3{(@,4,6,3) | i € I} for any k € I using the expres-
sion (I7I). Indeed, for any K C I, if k € K we have (|_|16K o14) Ce, Oka and if k ¢ K we have
(l—l;ieIfK Gm,B) EGB Ok,B-
As a conclusion, and by definition of §{(0;4,0;5) | i € I'} as the intersection of all bi-filters containing
(0ia,0ip) for any i € I, we have then g’{(o,',A,G,',B) liel} DF{(0ia,0ip)|icl}.
We now use Lemma 8 and Definition [I4]to obtain the announced result. O
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Theorem 22. If S or Gp are distributive, then Sf 4p and Syp are in fact isomorphic posets.
As shown in Remark [6] the distributivity of G4 or Sp is a key condition for this isomorphism to
be valid. |

Proof. 'We now suppose that S, or & is distributive and we intent to prove that §{(cj4,0ip) |i €[} =
g{(G,"A,G,'7B) ‘ i€ I} for any {(G,'7A,G,'7B) ‘ ie I} gﬂn Gy x Gp.

Let us prove the following fact : every bi-filter F which contains (0 4,0 g) for any k € I contains also
§{(0ia,0i8) | i €I}. In fact, we can show that, for any bi-filter F' we have

(Vk €1, (Oka,0kB) € I_lKe)f’ keK Gk7A’|_|IG(7‘€Jf/’ 1:21 x Omp) EF,

V%,%’ cA.xun' =2 nx = {oyex Icx. (175)
The first step towards (I73) is obtained by checking that V.#",.¢" C 2! v U’ =21 N’ =
g l{otex e X,
(G} G}
(I_ll(’e%’l—lmel—ld Om) 2 |_|Ke)£/ |_|keK O) (176)

for any distributive & and any collection of elements of G denoted oy for k € I for which these two sides
of inequality exist. To check this fact, we have to note that, using [8, Lemma 8 p. 50], we have first of all

(e kex 00 = Ue{l_liemxm) Ae ] K} , (177)

Kex

where g denotes the projection of the component indexed by K in the cardinal product []xc » K. More-
over, for any A € HKEfK there exists L € J#” such that U{nx(A) | K € #} 2 (I~ L) and then

S

(I_lKG/TCK(A)) Ce (|—|mE, L Om) C (I_IK,G;(/ [,uci—x Om)- As aresult, we obtain the property (I76).
The second step towards (I73) consists in showing that

(Vk €1, (Oa,0c8) € F) Uxer | T2k oeas] 1x2r LIk ows) €F (178)

for any Ji/ C 2. This intermediary result is obtained by induction on the complexity of the polynomial
(L= Py ke '« Ok.a) by using the following elementary result

(04U, 04,08, Op) €F

Vou,04 € Gy, 08,05 € &g, ((0a,08),(04,05) €EF) =
A VB » ((04,08), (04, 05 ) (0aMs, O4,08Ug, Op) €F

trivially deduced using the bi-filter character of F, i.e. properties (103)(104)(103).

As a final conclusion, using the explicit definition of §{(0;4,0;5) | i € I} as the intersection of all
bi-ideals containing (O, Ok g) for any k € I, we obtain §{(0j4,0i5) | i € I} =F{(0ia,0ip) | i € I}.

S/’; & and Ssp are then isomorphic posets. O

Remark 6. We note that the distributivity property is a key condition to obtain previous isomorphism
between S/’;’g and Syp. Indeed, let us consider that S4 and Gp are both defined as the lattice associated
to the following Hasse diagram:

O] (o)) O3
1
According to (123), we have (L ,Ls )€ 3{(c1,01),(02,6,),(03,03)}. However, we have obviously

(Le,rLs,) & 8{(01,01),(02,02),(03,03)}.
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4.6 Remarkable properties of the tensor product

Theorem 23. Let 645 and 513 g be two elements of §AB having a common upper-bound. Then the
supremum of {Gup, 04z} exists in Sap and its expression is given by

~ ~ s ~
GABI_lgAB GAB_ng@ﬂ%G (179)
|

Proof. As long as Gxp and G5 have a common upper-bound, G4z N GA p 18 not empty.

SaB

SaB ~)
GGGABnaAB

cand 0,5 =( seat,

Su ~ SAB ~
Secondly, it is clear that 645 = ( 55, 0) — [ - [ Gedusn5y, O

Then, if we suppose there exists G such that G4p,C4z C. G4z we can use Theorem [I§] to obtain
AB

s Sl Sap ~ : : ~ - ~n = = =~/ =
the decomposition 65, = ([] eal, o) with necessarily Yo € 0}, Oap C, © and O)p C, 0 ie
= o= =/ SaB ~ 7
0 € 0pp N Oy, and then ([ | o5, o) ;. , Oap: O

Theorem 24. If G4 and Gy are distributive (cf. Definition [T)), then SAB is also distributive.
Note, using Theorem 2] that, in this situation, we have also S/’; 5 = SaB.

In that case, the explicit expression for the supremum of two elements in SZ’; is given by

SaB

55 ~ 5 _
([ & oia@0is) L jeiC 78)=| liel, jes (Gialg, 074)@(0isUs, G 5)-  (180)
[ |

Eroof. First of all, using Theorem 22| we note that, as soon as S5 or Sp is distributive, we have
Sap = Sap as Inf semi-lattices. We are then reduced to prove the distributivity of S4p.

In reference to the definition of distributivity of an Inf semi-lattice given in Definition [I we have
then to prove that if |—|iA<Bi<nGiA®Gi B C,, 0A®0p, then there exists o/ A®G’ =, 0ia®0;p for any
1 <i < n such that |—| 1<i<nO; A® ip = 0A®0p. From Lemma O we conclude that it is sufficient to

prove that, for any n—ary polynomlal p, if o4 g p(O14,+,0na) and 0 I p*(O18," ", Onp),
then there exist Gi/,A g, Oia and Gi/,B g, Oip for 1 <i < n such that o4 Jg, p(GLA,--- ’GYILA) and
op Js, p*(GII,Bv"' ,G,;B), and GZ{A Js, 04 and G,{B Jg, 0pfor 1 <i<n.

The proof of this fact is sketched in [14, Theorem 3], and we give here a developed version of it.

Let us prove the following statement for any n—ary polynomial p :
04 I, P(O1a;+,0,4) = 30/, g, Oia,V1<i<n] (GA e, P(O1 4,0, 4) and 074 T 04, V1 <i < n) (181)
This statement is obviously true for p(GLA, ‘e ,G,,A) = Op.4, it suffices to chose 04 = 04.

Let us assume that the induction statement is true for two n—ary polynomials p and ¢, and let us
prove the statement is also true for (pgq).
We will assume 64 I p(C1 4, ,0n4) M, q(014,-+,0,4). Then, there exist y4,04 € S, such that
G4 QGA (’}/A l—IGA 6A) and YA QGA P(GLA, t 76117A) and 5A QGA C](GLA’ te 76117A)-
From distributivity of G4, we deduce that there exist }{4 and 04 such that o4 = (7,11 s 0y) and 7, Js, VA
and 6) J 6A As a result, we have 7, Jg p(61 As-o+,0pa)and 8) Jg q(cn Ast 3 OnA).
By assumptlon there exist o} 4 Js, Oia and GlA Js, G,A for 1 <i < 7 with 7! Js, p(GlA, .0 4)
and &3 J¢ q(cr]A,-- GA) andw1thGAZI }{‘and J.. 6y forl1 <i<n. '

n A =6,

Let us denote Gia: A Ms, G,',A-

We first note that 6;4 I 0;4 for 1 <i<n.

&y
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From G4 Cg GA and 04 T, 0/, for any 1 <i<n, and 7, Js, p(0] 4,0, 4) and &} s,

i n,

‘I(Gma . nA) we deduce}éj p(om, -+, 0p4) and Oy s, qg(C14, -+ ,0n4). As a consequence,
GA:(}{U—'@A 8y) Js, P(C1a5 GnA)l_I@ q(G14, "+, 0na)

From o}, J¢ o }QandGlAZI 6’ f0r1<z<n we deduce also G4 T, ){QI‘I oy =oyforl <i<n.

As a summary, there exist G; 4 4 5. 0ia for 1 <i<n,suchthat 4 J o p(GLA, . 6,17/4)|‘|GA q(C1a, -+, OnA),

=6,
and G;4 s, OA for1 <i<n.In other words, the n—ary polynomial (pgq) satisfies also the induction

assumption.

Let us assume that the induction statement is true for two n—ary polynomials p and g, and let us now
prove the statement is also true for (pLlq).

We will assume o4 Js, p(O14,-+ ,0na) Us, q(014,-++,0,4). Then, we have 64 e, p(C1 4, ,0n4)
and o4 I ¢(O14, "+, Ona).

: : / i . . / /
By assumption, E/here ex1s/t/ Cia 2, 'GiA fmd Cia 2, GIA for1<i<nm w1th Oa g, p(clﬂA, .. ’gn’A)
and oy Jg g0y, GnA) and with 6/, Jg o4 and 6;y I, 04 for 1 <i<n.

Let us denote Oia = GA Me, oy

We first note that 6, 4 Q@ G,7A for 1<i<n.

From G;4 C z,A and G;4 Cg, 1’14 for any 1 <i<n, and o4 J¢, p(G{A,--- ’Gr/zA) and 05 Jg,
q(Gl’fA,--- GnA) we deduce 04 J, (G4, ,0na)and oy ds, g(C14, -+ ,0n4). As aconsequence,
oa Jg, PG, Ona) s AII(GLA, ©,OnA).

From Gi/,A Js, Oa and Gi/’% Js, Oa for 1 <i <n, we deduce also G; 4 Js, Oa forl1 <i<n.

As a summary, there exist 6,-7/4 = ;4 for 1 <i<n, such that 6y s, P(C1a, -+, 0pna) Us, q(C1a, -+, OnA),

=6,
and G;4 . 04 for 1 <i < n. In other words, the n—ary polynomia satisfies also the induction
d’ZIGA for 1 <i < n. In oth ds, th ry poly 1(pUg fies also the ind

assumption.

By induction on the complexity of the n—ary polynomial p we have then proved the statement. As a
final consequence, S4p and then also S4p is a distributive Inf semi-lattice.

As a consequence of this distributivity property, we obtain the following simplification
S, ~ S, S,
([ ]:roia®0i5) L |_|jeJ = [ 1] 1% ( (0:4®0;8) L, - 0/ 480 )) . (182)
Using the expansion (123)), we know that
(0ia®0ip) U (07480 5) = (0ialg, 04)8(0i5 U, 0)p) (183)

This concludes the proof of the formula (I80). O

Theorem 25. If S, and Gp are atomic, then §AB is also atomic, i.e.
H%AB C Sap | Yaup € %AB, (J_GA éLGB) EEAB OAB, (184)
Voup € Sap, Joap € A | oup T, Oup. (185)
AB SaB

Here, we denote 6 C o' iff (6 C 6’ and(6 E6” C 6’ < (0 =0"orc” =0))).
The set of atoms of Syp is indeed defined by

{(aa@ L) (Lo, ®ap) |0 € s, ap € s, }- (186)

gAB

Proof. Using the expansion (I23)), we deduce immediately

Yoy € s, Vop € Dy, (4@ L )M - (L, ®ap) s L, ® L, - (187)
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In other words, 1o @L¢ . (u®Lls,) M (Ls, @aB).
Secondly, let us show that, for any oyp := (ﬂfé‘; 0iA®0; ) distinct from Le, QN{)J_GB, there exist
oy € s, and Qg € g, such that ((OCA®J_GB) M. (J_GA®OCB)) C. oap. Using once again the expan-
AB

SAB
sion (123)), we know that o5 i L, ®Lg, (or, in other words, 645 ’ZEAB L, ®Lg,) implies that there
exists @ C K C I such that ([ 4 Oa) g, L, and (M52, _x Omp) e, Le,- Letusfix sucha K and

let us choose oy € 975, and o € <), such that (|—|ng OkA) Jg, Oa and (ﬂi‘é,_K On.B) Jg, 0. We

obtain ([}%% 6,4 ®0;5) 2 (a®Lg,)and (M2 6,420 5) 3 (L, ®ag). Asafirst conclusion,

we obtain ((aAQN{)J_GB) M. (J_GAéag)) EEAB Oup.

SAB
Thirdly, let us consider oyp := (|_|,Sét; 0;A®0; ) such that cap EEAB ((xAé)J_GB) |_|§AB (J_GAé)OCB). As
a first case, we may have obviously cxp = | &, ®J_GB. If however cap # L &, ® L 65 the previous result
implies that there exist o) € /s, and aj € o7, such that ((aA@J_GB) M (Le, Q0p)) C; , 94 Using
once again the expansion , we deduce immediately that o4 = o) and ap = otp. As a result, we
obtain
oS (Bl )N, (Lo, Bas) = (om=1g, @1, or ous= (L) (L, B0p)). (188)

Sa

As a second conclusion, we then obtain J_gAB Cs (u®Lls,) M (Le,@0B). O

Lemma 14. If the space of states & is orthocomplemented, then the spaces of states B&S and
G are orthocomplemented.
The star map defined on S := B®S will be denoted % as well. This star map is built according to

(2102)" :=Z®LM, 1Rz, Vu@neS™, (189)
(Tur= Hi/emaeuz"/’ vU cS§™. (190)
We have the same formulas for SRB. [ |

Proof. The main point to check is the property (52)) for the star map on S. Precisely, we have to check
that u := 2@z M. 2182, v = 21022 M. 2}©75 and w := z}© L. L&z} satisfy ww and v for any
z1 € B and 22,75,7) € & with 25 # 75.

v is obtained quite easily as follows. We have (i) 7102 M.21®2 = 219(22 Mg 25) and (i) (22 M 25)
and z; have a common upper-bound denoted z (because of the property (52)) applied to &). From (i) and
(ii) we deduce that u and w have z ®z as common upper-bound.

" is obtained because z{@z’z’ is a common upper-bound of v and w. O
(0] (0]
—_—N—
Theorem 26. If the space of states & is orthocomplemented, then the space of states B® - R G ® -+ B
is also orthocomplemented. |

Remark 7. Let us consider the following orthocomplemented space of states

o (973 of oy
\\J_//

Sy = (191)
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It is easy to check that ;9:’ = $4S4 is NOT orihocomplgmented. Indeed, from the result above, the
single candidate for (o ®@a;)* is obviously o @@L My L ®o. However, we check immediately, using
the expansion (I23), that the two elements o] ®L My J_éal* and oy @0y My 0 ®0p have no common
upper-bound : this point contradicts the condition (32)) for the definition of x on s.

Remark 8. According to [10, Axiom 9 and Lemma 40], we can introduce the following notion : the
space of states G is said to be irreducible iff
voi,0,€6"",  {o1,0:} G 01 g O, (192)

otherwise, G is said to be reducible.
Then, it is important to remark that, even if G4 and Gp are both irreducible, the tensor product G4 26 B
appears to be always reducible. Indeed,

Vo1,01 € &) V02,0, €6y [01#£0[,00£0), 01802 0]®0) = {0100,,0{@05}. (193)

5 Conclusion

Inspired by the operational quantum logic program, we have the contention that probabilities can be
viewed as a derived concept, even in a reconstruction program of Quantum Mechanics. The already
cited remark of S. Abramsky [1, Theorem 4.4] can be viewed as another justification of this perspec-
tive on quantum mechanics. These two perspectives have stimulated our desire to build an operational
description based on a possibilistic semantic (in a sense, the *probabilities’ are replaced by statements
associated to a semantic domain made of three values ’indeterminate’, definitely YES’, "definitely NO’).
The present paper intents to develop such an operational formalism. It will be called Generalized possi-
bilistic Theory (GpT) as it is partly inspired by the formalism of Generalized Probabilistic Theory (GPT).
We note that we are also indebted to the work of Abramsky [1] for our choice to give to Chu duality a
central role in our construction, in replacement of traditional duality between states and effects.

Section 2 is devoted to a brief summary of the axiomatic relative to the space of states (subsection 2.1),
the space of effects (subsection 2.2), the set of pure states (subsection 2.3), and the notion of “channels”
or symmetries for our theory (subsection 2.4). This section collects some elements already developed
in our previous work [[10]. The convexity requirements imposed traditionally in GPT on the space of
states and space of effects are naturally replaced by Inf semi-lattice structures on these spaces in GpT,
the set of pure states being naturally associated to completely meet-irreductible elements of the space of
states. Our central point is the Chu duality imposed between the space of states and the space of effects,
with an evaluation space given by the three elements domain associated to possibilistic statements of the
observer. This Chu duality is sufficient to deduce the whole set of properties of the channels which are
viewed as Chu morphisms. Section 3 and 4 are dedicated to the construction of bipartite experiments on
compound systems. This point is central because it has been the main obstacle on the pathway towards a
complete reconstruction of quantum mechanics along the operational quantum logic program. The cen-
tral problem in our perspective is the construction of a tensor product for our space of states and space
of effects. It is well known that this tensor product notion is ambiguous in GPT program [22], Section
5]. The traditional construction of tensor product of Inf semi-lattices should have been of some help
for our work [13]], it is succinctly recalled in subsection 4.1l and called basic tensor product. The tensor
product, naturally build from the Chu construction [23]], could also have played a role here. Surprisingly,
the natural axiomatic for bipartite experiments, proposed in subsection 3.1l imposes a completely new
construction for the tensor product of Inf semi-lattices, called maximal tensor product and presented in
subsection The comparison between maximal and basic tensor product is made in subsection 4.5land
some remarks concerning the specific properties of the maximal tensor product are made in subsection
The construction of the bipartite space of states and of the bipartite space of effects is achieved
in subsection 4.3 and the construction of the symmetries associated to the bipartite space of states is
completed in subsection
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