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Abstract

The RISC-V Instruction Set Architecture (ISA) is an open-source, modular and exten-
sible ISA. The ability to add new instructions into a dedicated core opens up perspectives
to accelerate VM components or provide dedicated hardware IPs to applications running
on top. However, the RISC-V ISA design is clashing on several aspects with other ISAs
and therefore software historically built around them. Among them, the lack of condition
codes and instruction expansion through simple instruction combination. In this paper we
present the challenges of porting Cogit, the Pharo’s JIT compiler tightly linked to the x86
ISA, on RISC-V. We present concrete examples of them and the rationale behind their
inclusion in the RISC-V ISA. We show how those mismatches are solved through design
choices of the compilation process or through tools helping development: a VM simulation
framework to keep the development in a high-level environment for the most part, an ISA-
agnostic test harness covering main VM functionalities and a machine code debugger to
explore and execute generated machine code. We also present a way to prototype custom
instructions and execute them in the Pharo environment.

1 Introduction

Managed programming languages use a managed runtime environment called a virtual machine
(VM). Several well-known VMs (V8 for JavaScript, JVM for Java, CLR for C]) first compile
the code to an intermediate representation called bytecodes then interpret these bytecodes
at runtime. Having this layer of abstraction allows an application to be compiled to this
architecture-independent intermediate representation and benefit from the portability of the
VM. When porting the VM to new architectures, while most of the process is abstracted by the
compiler that generates the runtime environment executable, the generation of machine code
through the Just-in-Time (JIT) compiler has to be rewritten for each new architecture as it
needs to output machine code corresponding to the target architecture.

The RISC-V instruction set architecture defines open-source and modular specifications to
design processors. In the historical mindset of Restricted Instruction Set Computer, it is simpli-
fied to facilitate processor design: for example, it lacks condition codes or multiple data address
modes. This leads to simple processors that can cover a restricted amount of instructions de-
pending on the chosen extensions. The extensibility of the ISA opens it to new possibilities
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in terms of dedicated hardware tasks. Acceleration through specific IP cores in fields such as
signal processing or machine learning is one of those possibilities. Another would be specific
processor implementations of VM tasks such as garbage collection or security through new
instructions or hardware mechanisms. Experiments in hardware-software co-design for virtual
machines make this ISA an interesting architecture to support.

The two main motivations behind this port are: (1) use a complete VM on the RISC-V
architecture and (2) define and experiment with custom instructions. However, the complexity
leveraged from the processor has to be handled on the compiler side and might come at a
considerable price. While RISC-V defends key design choices, it comes as a clash for compilers
inspired from or supporting the x86 architecture. This mismatch has to be addressed when
writing a JIT compiler for RISC-V. To leverage some work needed to port a VM to a new
ISA, an instruction set architecture (ISA)-agnostic test suite has been developed around the
Pharo VM and its JIT compiler Cogit [1]. This suite consists of around 1400 configurable tests
that range from checks on simple one-bytecode recompilation to correct polymorphic inline
cache [2] generation. The whole test suite keeps most of the development within the Pharo [3]
environment itself to make the best usage of its powerful native tools such as the debugger
or object inspector or the dedicated JIT code debugger. It has helped port the Pharo VM
to the ARMv8 ISA without access to hardware supporting the instruction set. Once again,
these tools helped through the development of the Pharo JIT compiler port to RISC-V. Quick
prototyping of custom instructions ideas comes at a reduced cost thanks to the high-level
development environment Pharo and its simulation framework. Apart from the official RISC-V
specifications and well-known compiler implementations source code (such as gcc or clang),
few articles have highlighted the cost of porting a compiler to the RISC-V architecture. Others
VM have recently finished their port to RISC-V (V8 by the PLCT Lab) or are currently in
development (LuaJIT or DartVM by the PLCT Lab) and several have it planned but not public
(JikesRVM by Martin Maas or OpenJ9 that does not support JIT compilation yet).

This paper presents (1) the process of porting the Pharo JIT compiler Cogit to RISC-V,
(2) the main clashes between the original compiler and intermediate representation with RISC-
V, and (3) design choices and recommendations to overcome them. This paper presents the
following contributions:

� An open-source implementation of the Cogit RISC-V JIT compiler.

� A presentation of the clashes compiler developers face when porting to the RISC-V ISA.

� A presentation of design choices and recommendations when dealing with the RISC-V
architecture.

Section 2 of this paper presents the Pharo virtual machine components and the RISC-V
instruction set. Section 3 highlights the main clashes between the RISC-V ISA and the Pharo
JIT compiler and intermediate representation. It also presents design elements of the Pharo
VM to patch them. Section 4 presents the main issues with the existing JIT compiler, with the
development environment and how they could be extended and reworked. Section 5 hovers over
the simulation environment of the Pharo virtual machine and the extension added for custom
instructions. Section 6 concludes and outlines next steps for future work.

2 Background

2.1 Pharo VM

Pharo language: The Pharo language is an evolution of Smalltalk according to the Smalltalk-
80 specification. It is a pure object-oriented dynamically typed language that revolves around
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message passing as its base way to redirect control flow. It defends a simple syntax and
extensions over the base Smalltalk language. It has been in development for more than ten
years and is available for companies to build their project on either in web development, data
analysis and visualization or user interfaces. At their core, these applications are executed on
top of the Pharo VM.

Figure 1: Slang VM transpilation.

Slang: The Pharo VM is a meta-circular VM written in Smalltalk and transpiled to C
using a VM-specific translator called Slang [4]. Slang translates a group of classes into a single
C file, transforming methods into functions. Slang restricts the source language from some
features such as polymorphism or exceptions to translate it correctly to C code. The C code is
then compiled along mandatory and optional plugins to an executable that runs on the desired
architecture. The usage of Slang and translation to C has several advantages. It performs
various interpreter optimizations such as the inlining of bytecode cases in the interpreter and
implements threaded code [5]. Another key advantage is that it allows the VM developer to
stay in the Pharo environment to simulate the Pharo VM, before translating it to C as its
final step. This process is presented in Figure 1. This gives the developer full control over the
VM source code and simplifies the development as Pharo tools (such as the debugger or object
inspector) are available.

Cogit: The VM itself implements three main components: a threaded bytecode interpreter,
a linear non-optimizing JIT compiler named Cogit [6] and a generational scavenger garbage
collector. Diving deeper in Cogit, it is a method-based that uses a 2-address-code intermediate
representation (IR) called CogRTL to compile the succession of bytecodes down to machine
code. It does not model a control flow graph and compiles at the granularity of a method
linearly, meaning the generated machine code mostly has a one-to-one mapping to the JIT IR.
The CogRTL IR uses fixed virtual registers assigned ahead of time to physical registers for each
backend to avoid the need of a complex register allocator. The compilation of a method comes
in three phases:

� (1) Bytecode scan phase to extract metadata from the bytecodes (e.g. detection of
message sends to inform the need for a frame).

� (2) Bytecode parsing phase to translate bytecodes into IR.

� (3) Machine code generation phase to translate IR into machine code (also called
concretization).

This process is presented on Figure 2 and as shown, the first and second phases are ISA-
agnostic and only the third phase has to be redefined for every new architecture the JIT
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Figure 2: Cogit compilation phases.

compiler aims to support. It aims to be as machine-independent as possible as there is a clear
distinction between the parsing and concretization phase.

Code patching: As Pharo is a dynamically typed object-oriented programming language,
the JIT compiler also implements polymorphic inline caches [2] to improve performance. This
means Cogit has to patch machine code without the knowledge obtained from bytecode scan-
ning. Call sites are initially compiled as calls to dedicated trampolines send routines. The call
site is then linked to the method itself once method lookup is performed. Cogit uses machine
code stubs to rewrite the needed hook points: a call to a trampoline becomes a type-checked
entry point, a monomorphic cache. If the type check fails, a new case is added making it a
polymorphic cache up until a threshold where it is upgraded to a megamorphic cache. This
patching method is also used by the garbage collector to update references to moved objects.
Since these patching methods use machine code stubs, they are architecture-dependent and
need to be reworked for each new architecture to support.

2.2 RISC-V

RISC-V is an open-source and extensible instruction set. This instruction set architecture
(ISA) is gaining increasing attention from academics and industry as it focuses on simplicity
and modularity. It has been designed with the objective and history of a Restricted Instruction
Set Computer (RISCV) where the complexity is shifted away from the core and brought into
the compiler. Examples are the lack of rotate instructions or overflow detection that have to be
resolved in few other arithmetic operations. It also simplifies out-of-order processor execution
by removing condition codes or instructions that depend on implicit state.

The RISC-V architecture consists of 32 general purpose registers and a program counter.
Instructions are split in several extensions available in either 32 or 64 bits from which the
main ones are: I for integer operations, M for integer multiplication and division, A for atomic
operations, F for floating-point operations, C for compressed instructions, D for double precision
operations and G as an equivalent for RV64IMAFD. The combination of RV64GC allows a
RISC-V core to support a Linux distribution (e.g. Debian or Fedora support RISC-V).

While the above extensions have their specifications frozen, several others are still open to
propositions. This is the case for extensions such as the J extension related to Dynamically
Translated Languages [7]: it aims to provide specific instructions for Garbage Collectors or JIT
engines. This particular extension is an opportunity to determine what would be a coherent
choice of instruction(s) for a VM. The room for extensibility in the ISA allows adding dedicated
machine code instructions in the generated RISC-V instructions. Extensions open up the space
for hardware-related implementation ideas for the VM (i.e. garbage-collection or security) or
acceleration with coprocessors (i.e. signal processing or machine learning). This space can be
invested through quick prototyping of custom instructions.
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3 Porting an x86-inspired compiler to RISC-V

The RISC-V Instruction Set Architecture (ISA) makes bold design decisions to leverage com-
plexity from the processor. However, some of those decisions clash with expectations from
existing ISAs such as x86 or ARM. RISC-V provides one data addressing mode and no com-
plex call/return or stack instructions. Some of those design choices clash with Cogit historical
architecture that revolved around x86 at first. In this section, we present the main design
clashes between the RISC-V ISA and an x86-inspired JIT compiler.

3.1 Intermediate Representation Mismatch

The RISC-V instruction set, as MIPS, does not have flag registers and condition codes for
instructions. The reason behind this choice is to simplify out-of-order execution as condition
operands require the processor to use register renaming, which maps the register names in the
program onto a larger number of internal physical registers. As out-of-order processors execute
instructions opportunistically, it will map a physical register whether the condition holds. This
extra operand increases the cost of the register file, register renamer and out-of-order execution
hardware. RISC-V also gets rid of the well-known delayed branch of MIPS-32 or Oracle SPARC.
They add extra state that is implicitly set by most instructions and complicates the dependence
calculation of out-of-order execution.

In our case, as the CogRTL IR has been developed around the x86 ISA at first then extended
to ARM and other ISAs, it supposed conditional registers were mandatory and revolved around
it. This means it defines IR instructions that expect and implicit flag code from previous
execution. A notable case is the succession of CmpCqR/Jump<Condition>. This succession
compares the value of a register to a given quick constant (value that will be embedded in the
immediate field of an instruction if possible). It then jumps accordingly with the corresponding
condition and offset. The translation of these IR instructions to ARMv8 is presented in Listing
1. A one-to-one mapping between the IR and the generated machine code is possible.

Listing 1: ARMv8 machine code generation of a conditional jump.

# CogRTL instructions

cogit CmpR: ClassReg R: TempReg

cogit JumpNonZero: (Label 2).

# ARMv8 output

cmp r1 , r22 # x1 and x22 are ARMv8 class/temp registers

b.ne 48 # label 2 has offset 48

However, RISC-V, following the same path as the MIPS ISA by only defining branches that
compare the values of two registers. This way, beq, bge, blt, etc. need information from the IR
instruction setting implicit state and the next one expecting it to make a decision. Compiling
the IR instructions in Listing 1 to RISC-V should result in bne x<class>, x<temp>, 48,
therefore extracting information from two IR instructions at compile time.

� Rationale: Conditional codes have a large impact on out-of-order execution performance
on the hardware side as implicit state is used by instructions and should be kept through
the pipeline.

� Impact: A mismatch between the JIT IR and corresponding machine code leads to a
refactoring of either the IR itself, the redefinition of flag registers in the context of JIT
compilation only or another processing step on top of the machine code generation phase
to rewrite problematic instruction sequences.
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3.2 Condition Codes Handling

RISC-V does not define condition codes and therefore flag registers. On the other hand,
CogRTL IR is historically mapped on x86 instructions and expects implicit setting of those
flags to perform, for example, the JumpZero offset intermediate representation instruction
that expects a previous comparison that sets the zero register. To solve this issue, one way
would be to redefine the whole CogRTL IR instruction set. While this would benefit the RISC-
V or MIPS implementations, it would require a full rewriting of the existing x86, IA-32, ARMv5
and ARMv8 JIT implementations and therefore considerable development time.

Listing 2: Rewriting of conditional branching with no conditional codes.

CogCompiler >> noteFollowingConditionalBranch: nextInstruction

| newBranchLeft newBranchOpcode newBranchRight |

"Opcode extraction from the next instruction"

newBranchOpcode := nextInstruction opcode caseOf: {

[JumpZero] -> [BrEqualRR ].

[JumpNonZero] -> [BrNotEqualRR ].

...

} otherwise: [self unreachable. 0].

"Operands extraction from the current instruction"

opcode caseOf: {

...

[CmpRR] -> [newBranchLeft := operands at: 1.

newBranchRight := operands at: 0.

opcode := Label].

[CmpCqR] -> [newBranchLeft := operands at: 1.

newBranchRight := TempReg.

opcode := MoveCqR.

operands at: 1 put: TempReg ].

...

} otherwise: [self unreachable ].

nextInstruction rewriteOpcode: newBranchOpcode with: newBranchLeft

with: newBranchRight.

^ nextInstruction

Therefore, this mismatch is resolved either by redefining flag registers in the context of JIT
compilation (i.e. assigning scratch registers to play the role of flag registers) or by refining the
concretization process for architectures that do not have conditional codes. The first solution
implies no additional change to the underlying compilation process but changes the mapping
of one-to-one for IR to machine code to one-to-n as every arithmetic and logic instruction now
comes with flag register settings. The other solution refines compilation process by notifying
the concretization of a given IR instruction that there is a conditional instruction following.
The mapping changes from one-to-one to two-to-one (or two-to-two in cases where a constant
is involved). An example of this refinement and rewriting is presented in Listing 2.

Part of the method presented shows that when reaching a following conditional branch
in the IR, the compiler gets notified and rewrites the instruction to new ones, passing the
corresponding operands to the next instruction concretization. The first part extracts the new
opcode from the following IR instruction. For example, a following JumpZero results in a
BrEqualRR. The second part extracts operands from the current IR instruction. In the case of
CmpRR, both registers are extracted and the CmpRR instruction is converted to a Label (therefore
removed). In the case of CmpCqR, it is converted to a MoveCqR of the constant to a temporary
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register, and this register along with the original ones are passed to the branch instruction.

3.3 Instruction Expansion

RISC-V main objective is to come as a modular ISA. All instructions are not available by default
in the RV32I minimal set as it only contains 32-bits integer operations. The multiplication
and division instructions have to be added explicitly through the M extension, floating-point
operations in the F and 64-bits instructions in RV64. However, even when using RV64GC
(RV64IMAFDC), several instructions are not available as they are in x86 or ARM. RISC-V
rather relies on the combination of simple instructions to make up for a more complex one.
This is the case for example of rotate instructions that have to be composed of three to four
instructions. This is also the case for overflow checking in arithmetic operations.

Listing 3: rotate and software overflow checking.

# Rotate left with shift amount in register

rol:

sll rd , rs1 , rshamt # x[rs1] << rshamt

sub temp , zero , rshamt # get the negative count

srl temp , rs1 , temp # x[rs1] >> (xlen - rshamt)

or rd , rd , temp # or between (1) and (2)

# Software overflow check

addoverflow:

add t0 , t1 , t2 # actual addition

slti t3, t2, 0 # t3 = t2 sign

slt t4 , t0 , t1 # t4 = sum smaller than t1

bne t3 , t4 , overflow # if t3 != t4 , overflow

Listing 3 presents the instructions needed for a rotate instruction or the software checking
of overflow on a general signed addition as proposed by Patterson et al [8]. While the rotate
instruction rol will be present in the bit manipulation B extension, it is not, as the time of
writing, ratified and integrated in processors.

� Rationale: Most but not all programs ignore integer overflow or rotations. Relying on
software checking of overflows or rotations leaves room for new instructions on the hard-
ware side.

� Impact: Increase in the number of instructions for the specific instructions that are not
available and have to be derived in multiple instructions. This adds complexity in the
generated machine code.

3.4 Sign-Extension and Its Implications

The main size unit in common operations is 12 bits for a given offset. This is the case for
immediate arithmetical and logical instructions (addi, andi, slti, etc.), memory accesses (lb,
lwu, etc.) as well as for offsets in branches (beq, bge, etc.) or the jump and link register.
Exceptions to this size unit are the load upper immediate lui instruction that loads the 20
upper bits of an immediate and helps get 32-bits values in coordination with addi. In the
same spirit, add upper immediate to program counter (auipc) is the key to use PC-relative
addressing through those 20 upper bits. Finally, jump and link jal accepts a 21-bits offset and
jump and link register jalr a 12-bits offset. All of these bricks combined allow for powerful
operations and is the main resource for calls or jumps. However, all of the above instructions
sign-extend the given offset. While this is useful for single instructions loading negative values,
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it has to be taken in consideration in an instruction succession handling a value bigger than
the offset size and with sign bits activated.

Listing 4: call pseudo-instruction and sign-extension.

CogRISCV64Compiler >> concretizeCall

"Compute offsets"

"12 lowest bits"

offsetLow := self

computeSignedValue64Bits: (offset bitAnd: 16rFFF).

"20 upper bits"

"11th bit correction for sign extension"

offsetHigh := ((( self

computeSignedValue64Bits: offset) + 16r800) >> 12)

bitAnd: 16 rFFFFF.

"Emit instructions"

"auipc"

self machineCodeAt: 0 put:

(self addUpperImmediateToPC: offsetHigh toRegister: ConcreteIPReg).

"jalr"

self machineCodeAt: 4 put:

(self jumpTo: ConcreteIPReg withOffset: offsetLow

andStorePreviousPCPlus4in: LR).

^ machineCodeSize := 8

The concretization (i.e. machine code generation) of a call IR instruction to RISC-V
machine code is presented in Listing 4. The 11th bit of the call target has to be verified
manually to ensure it will come out as correct when combined with the next instruction, hence
the addition to 0x800 that will cover the case where the 11th bit is set to one and the jalr

instruction would sign-extend it. This impact on calls is also important in the code patching
step as most code patching consists of updating call targets in JIT methods or Polymorphic
Inline Caches.

� Rationale: Having sign-extension only enabled helps guide the specification towards a
single way to encode immediate values.

� Impact: Instruction combination on large numbers needs a check and correction at the
smallest size unit (12-bits here). This logic has to be added to the patching stage as well
to correctly handle call sites updates.

3.5 Immediate Loading Expansion

As shown earlier, handling immediate values is not a simple task in RISC-V. To further complete
this statement, we will look at the load immediate li pseudo-instruction available in RISC-
V assembly. It is available in both 32 and 64 bits through the RV32I or RV64I extensions.
Quoting the pseudo-instruction description, it loads a constant in the destination register using
as few instructions as possible. For RV32I, it expands to lui and/or addi; for RV64I, it can
grow as long as lui, addi, slli, addi, slli, addi, slli and addi. Therefore, a 64-bits wide
immediate will need to go through a succession of adding 12-bits then shifting them until it
can load the 20 upper bits. Note that, as presented earlier, offsets are sign-extended in addi

and need to be corrected if needed. An example of a worst case scenario immediate loading
is presented in Listing 5. The result is obtained after using clang and llvm-objdump on the
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resulting object file. It handles the shifts, sign extension corrections and optimizations for
sparse immediates.

Listing 5: li pseudo-instruction examples.

# Load long immediate to t0

li t0 , 0x7FFF800800800800

# Expands to

lui t0 , 32768 # 0x8000

addiw t0 , t0 , -2047 # 0x801

slli t0, t0 , 12

addi t0, t0 , -2047 # 0x801

slli t0, t0 , 12

addi t0, t0 , -2047 # 0x801

slli t0, t0 , 12

addi t0, t0 , -2048 # 0x800

# Load sparse immediate to t0

li t0 , 0x70000000000007FF

# Expands to

addi t0, zero , 7

slli t0, t0 , 60

addi t0, t0 , 2047 # 0x7FF

LLVM developers have defined a complex recursive function to handle all immediate values
in the fewest instructions possible [9]. To quote the comment on their function: In the following,
constants are processed from LSB to MSB, but instruction emission is performed from MSB
to LSB by recursively calling [the function]. In each recursion, first the lowest 12 bits are
removed from the constant and the optimal shift amount, which can be greater than 12 bits
if the constant is sparse, is determined. Then, the shifted remaining constant is processed
recursively and gets emitted as soon as it fits into 32 bits. The emission of the shifts and
additions is subsequently performed when the recursion returns. GCC also defines several ways
to encode a large immediate value and attribute a cost to each method before returning the
best fitting choice [10].

� Rationale: Loading 64-bits immediate is rare and does not need a dedicated instruc-
tion. No official specifications are added to allow any developer to come with their own
optimization.

� Impact: A single load can expand to up to 8 instructions and requires a complex logic
behind its instruction generation. Compilers that store their immediate values embedded
in instructions are severely impacted. Code patching of such values means that space for
up to 8 instructions has to be allocated and the generation logic has to be launched each
time a new immediate value has to be loaded. The logic to output the best sequence
of instructions depending on the value is complex and needs to be executed at each
regeneration or patch.

3.6 Out-of-Line Literals

Immediate values are literals that can be embedded in instructions. Pharo defines two types of
JIT compilers: inline literals and out-of-line literals compilers. The first one will use all given
literals as immediate values and therefore may need to split bigger literals through multiple
instructions. While using inline literals is simple in the case of variable length instructions
(CISC), it becomes trickier with fixed-length instructions (RISC). As presented earlier, RISC-
V compilers use complex methods to determine the best way to encode large immediate values in
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instructions and can inflate to up to eight instructions in the worst case. Out-of-line literals on
the other hand mimic the .data section of assembly by putting the literals in nearby memory
and accessible through a fixed-size succession of instructions. The two different designs are
presented on Figure 3.

Figure 3: Inline and out-of-line literals.

From the Pharo side, Cogit uses a LiteralsManager to keep track of the literals that are
needed in the nearby code region. This compiler is called OutOfLineLiteralsCompiler in
opposition to the InlineLiteralsCompiler that embed all values in instructions. We define
in a corresponding function usesOutOfLineLiteral the need or not for a literal during the
concretization of a given IR instruction. The threshold is set at 12 bits after which an immediate
value that could be embedded in instructions is promoted as a literal and handled by the
LiteralsManager. Rather than having to handle up to 8 instructions, the compiler outputs
a succession of auipc/ld to manage large values. This succession is always composed of two
instructions and is patched accordingly if needed.

4 Current Issues and Planned Corrections

4.1 Issues with the Current Compiler Design

The Cogit design is tightly linked to its intermediate representation CogRTL that was defined
to optimize for the common case and to design a JIT compiler mostly tailored to the Intel
x86/x64 ISA. This enabled several short cuts: the internal code representation is not very
abstract and resembles the x86/x64 ISA so much that the architecture-specific code generator
directly transcribes the internal representation to machine code. As a result, compiling for
x86 was simple. It also happened to work for ARMv8 which, despite becoming much closer
to RISC/MIPS than ARMv7 ever was, retained some particularities of ARMv7 that keep
it close enough to Intel (module number of registers), specifically branching on flags, many
addressing modes (including PC-relative), and rare bit manipulation operations (rotations).
While this worked for x86 and suffices for ARM, patching the JIT compiler for MIPS/RISC-V
becomes a tedious task because it needs to overcome the clashes presented earlier and questions
the CogRTL IR itself. While it has been simple by the past, it now drifts from its original
form to be accepted by new ISAs that focus on their own rationale of simplicity, common
case optimization and iterations from over 25 years of RISC architecture development and
refinement. The patching iterations on an IR that are now too different questions its definition
and while it implies a rewriting of all backends, it should be the correct choice.

4.2 IR Design Rework

The world of JIT IRs is complex and few articles cover the choice of their JIT IR. V8 uses a sea of
nodes [11] with three levels of nodes from high-level Javascript operators that express semantics
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of Javascript’s overloaded operators down to machine operators that correspond closely to single
machine instructions without effect on the overall graph. Between them, intermediate operators
express VM-level operations such as allocation or bound checks. LuaJIT implements a linear,
pointer-free 2-operand-normalized form SSA IR [12]. It presents higher-level instructions for
branching through guarded assertions: they provide an assertion on their operands and are
emitted by the backend as branching comparisons. The ability to quickly abstract a succession
of machine code to cover a mapping that would be different between backends (branching in our
case) is mandatory. Those two approaches are abstract enough to generate machine code for
architectures from RISC-V to x86 without meeting the clashes we encountered with CogRTL.
The design of a correct IR highlights the need for flexibility in the mapping to machine code as
this will also impact optimization passes. In our case, the mapping can be reversed by defining
a higher level IR instruction for branches with its operands (registers or immediates). It is
then on the backend side to define either one instruction, in the case of a comparison between
two registers and branch with an offset (e.g. bne) for RISC-V and MIPS or two if there is a
need for a cmp instruction before a branch relying on conditional flags for x86 or ARM. Having
this higher-level abstraction prevents us from the backtracking presented in MIPS and RISC-V
architectures in Listing 2.

5 Extending the simulation environment

5.1 Existing VM Simulation Setup

Smalltalk and Pharo by extension is an object system. The entire system is stored in a snapshot
file (called an image). A complete Pharo snapshot mostly consists of a memory dump of the
entire heap, containing the entire system, including its development tools and application code.
It includes objects, compiled methods as bytecodes, and running processes. Overall, this step
consists of a scaling of the interactions tested separately in unit tests. The VM simulator
(used to perform full-system simulation presented earlier) uses a particular memory mapping
of the heap that contains the machine code zone, the different spaces (old and young) of
the generational garbage collector as well as the C and Smalltalk stacks in a contiguous byte
array. The Smalltalk objects of the VM are used as is in the Pharo environment instead of the
.text and .data sections where their translated versions would be stored. The JITted code is
executed through the processor emulator (Unicorn in our case).

The Pharo test harness uses the processor emulator to setup a simulated environment. It
interacts with it by simulating some core features the VM will have to interact with such as
jumps, calls or register smashes. It also redirects calls from the machine code to the interpreter
by using fake addresses for trampolines or primitives the machine code might call, catching
invalid memory accesses that those fake addresses trigger then redirecting to the corresponding
simulator method in the Pharo environment before giving control back to the machine code.

5.2 Simulating a Custom Instruction

As RISC-V main interest lies in its modularity and extensibility, it is important to be able to
run custom instructions. Custom instructions are defined in the Pharo environment by adding
their corresponding behavior as a method on the processor simulator bindings, the same way
calls or jumps are simulated. Unicorn provides hooks to attach behavior on the detection of
given errors. The UC MEM UNMAPPED family is used to simulate trampolines or primitive sends
as presented earlier. In our case, we use the UC INSN INVALID error and add a hook to redirect
control flow.
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The custom instruction simulation process proceeds as follows: (1) the interpretation loop
begins in the VM simulator; (2) when a JIT-compiled method is encountered, control flow is
handed over to the processor simulator to execute JIT code; (3) when reaching an undefined
custom instruction, the simulator errors and triggers the associated hook; (4) this hook extracts
the opcode and operands from the undefined instruction, checks if a corresponding simulation
method exists and calls it; (5) Control flow is handed back over the custom instruction to the
processor simulator. Finally, once the JIT code is executed, the control flow is handed to the
interpreter in the Pharo environment.

Overall, this process requires the developer to: define the new machine code instruction;
add it to the concretization phase when compiling a given IR instruction; add its opcode to
the list of simulated instructions handled by Cogit; and define the instruction behavior in the
architecture simulator bindings. ISA simulator generators such as Pydgin create the simulator
along with custom instructions whose behavior is specified before generation. Since Unicorn is
used as the main simulator for unit-tests-related simulations due to its capacity to hook invalid
memory accesses, the instrumentation needed to run custom instructions comes at a relative
low cost.

6 Conclusion

RISC-V is an open-source extensible ISA. Its modularity makes it interesting to experiment
new features to accelerate application-specific code or parts of the execution engine. Virtual
machines could benefit from changes in the underlying hardware implementation itself to accel-
erate some of its components such as the garbage collector or enforce strong security properties.
It however comes with clashing design choices for compilers historically developed around the
x86 ISA.

The mismatch between Pharo JIT IR and RISC-V is presented through four major aspects
of RISC-V and the solutions added to Pharo either in terms of design choices or tools. A
way to close the gap of mapping between the IR and machine code around conditional codes is
presented and out-of-line literals allow us to avoid immediate loading through instructions. The
test harness and simulation framework present around the Pharo VM leverage tests writing to
check for architecture-specific tricks. The machine code debugger helps visualizing trampolines,
IR and machine code mappings to ease the development process.

We presented a way to prototype custom instructions using hooks from the underlying pro-
cessor simulator and redirecting the control to a Pharo method simulating the instruction’s
behavior. We want to use this method to experiment with RISC-V custom instructions both
in VM-related topics such as security or garbage collection and applications such as media pro-
cessing or machine learning. We would like to experiment some features from RISC-V custom
instructions and test them before modifying the actual processor and surrounding components.
Among these features, we want to implement a prototype of the RIMI [13] security model to
protect JIT code through RISC-V custom instructions.
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