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A B S T R A C T   

Synchrotron X-ray diffraction was applied to study the evolution of lattice strain and stresses in 
both phases of pearlitic steel during a tensile test. The advantage of the methodology used in this 
work is the possibility of experimental study of stress localisation, which is directly determined 
from measurements and can be used to study the process of strain strengthening of lamellar 
pearlite. It was found that in the elastic range of deformation, both cementite and ferrite are 
loaded similarly due to the nearly equal elastic properties of both phases, while plastic defor
mation leads to significant load transfer from ferrite to cementite. Due to the complexity of the 
lamellar microstructure of the material, the classical elastic-plastic self-consistent model does not 
correctly predict the partitioning of the stresses between phases during plastic deformation. 
Therefore, the grain-matrix interaction given by the self-consistent model was modified and 
successfully applied to simulate the interaction between phases. 

The synchrotron experiment allowed us to determine the critical resolved shear stresses of 
ferrite phase in the pearlitic steel subjected to different thermal treatments. The role of cementite 
in material strengthening was evaluated on the basis of the evolution of von Mises stress, 
experimentally determined in both phases. It was found that during plastic deformations, the von 
Mises stress does not change significantly in ferrite compared to an important increase in elas
tically deformed cementite. Therefore, the partitioning of stresses between phases is mainly 
responsible for the strain strengthening of the tested pearlitic steel exhibiting fully lamellar 
microstructure.   
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1. Introduction 

Carbon steels are widely used in industrial applications due to their low cost and excellent combination of ductility and strength 
resulting from heat treatment (Das, 2018; Xiang et al., 2019; Yahyaoui et al., 2014) which can be significantly improved by processing, 
such as cold drawing (Lamontagne et al., 2015; Wei et al., 2019; Zhang et al., 2018). The yield stress of these steels varies with their 
carbon content from 450 MPa (0.4 wt% C) to 720 MPa (1.6 wt% C) and for a heavily drawn 0.88 wt% C steel up to 2400 MPa. The same 
trend was observed for the ultimate tensile stress (UTS), which varies from 700 to 1300 MPa and for the ductility varying from 3% to 
12% (Young et al., 2007). Currently produced steel wires can reach a strength of up to 5 GPa (Wei et al., 2019) or even 6.8 GPa (Li et al., 
2014). The fully pearlitic steel, with a carbon content near to 0.8 wt% C, is the most used in manufacturing plain carbon steel to 
produce wires for reinforcing tires, cables for suspension bridges, engineering springs for automotive and railroads. The structure of 
this steel consists of cementite granules or alternating parallel lamellae of cementite, forming randomly orientated colonies of pearlite. 
Cementite, considered as a hard phase, contributes to the strength of pearlite, while the soft ferrite matrix provides ductile properties. 
Several studies have been devoted to microstructure investigation at different length scales and its effect on the behaviour under 
loading up to fracture (Sidhom et al., 2015; Zhao et al., 2018). Also the influence of fatigue tests (Adamczyk-Cie�slak et al., 2019; 
Leitner et al., 2019), cold rolling (Liu et al., 2018) and cold drawing (Das, 2018; Zhang et al., 2018) on mechanical properties and 
microstructure of pearlite was investigated. A significant role of interfacial dislocation in deformation and fracture processes in 
nanolayered composite materials was recently demonstrated using molecular dynamics calculation (Shimokawa et al., 2019). It was 
found that the mechanical properties and the elastoplastic behaviour of these steels are controlled by numerous microstructural 
variables such as prior austenite grain size, pearlite colonies orientation and size, cementite morphology, inter-lamellar spacing, 
interfacial deformation and fracture. 

Direct observations performed using TEM (Fang et al., 2014) and synchrotron diffraction method (Taniyama et al., 2017) showed 
the evolution of crystal lattice defects and the increase of dislocation density in cementite during severe plastic deformation of pearlite. 
However, in the latter study, the evolution of dislocation density was determined from a variation of diffraction peak widths, which 
may also result from other reasons. For example, Weisser et al. (2015) measured a large broadening of peaks for cementite using 
synchrotron radiation during a tensile test. They explained that this phenomenon is due to a significant local stress heterogeneity in 
cementite particles rather than due to the increase of dislocation density in this phase. Therefore, the authors suggested that the main 
contribution to peak broadening for cementite is related to pure elastic effects, whereas the peak broadening for ferrite was attributed 
to an increase in dislocation density. 

Although the cementite is usually considered as purely elastic, the plastic/inelastic deformation of this phase was also observed 
during severe deformation of pearlitic steel, for example due to wire drawing. The EBSD and SEM investigations showed such phe
nomena as slipping and thinning of lamellae, as well as cementite fragmentation (Zhang et al., 2018). The latter processes usually lead 
to fracture and cracking processes initiated in the pearlite grains (Sidhom et al., 2015; Zhao et al., 2018). Using an in situ SEM method 
during tensile tests, the shearing and shear cracking across whole pearlite colonies of cementite lamellae were observed by Sidhom 
et al. (2015) for the last stage of deformation. The important evolution of the lamellar structure in pearlitic steel (0.8 wt% C) during the 
drawing process was described by Zhang et al. (2018), showing an aligning of the lamellae along the drawing directions for large 
deformations. Finally, it should be emphasised that during cold drawing process, a solid solution hardening mechanism related to the 
decomposition of cementite also occurs (Lamontagne et al., 2015; Liu et al., 2018; Zhang et al., 2018). All the mentioned processes lead 
to a complex evolution of the strengthening of the material during deformation. 

It is generally recognised that the combined effects of ferrite hardness and stress partitioning between ferrite and cementite are the 
most important phenomena responsible for controlling the deformation, hardening and damage of pearlite. The initial yield stress of 
this steel is controlled mostly by the hardness of the ferrite and depends on different additive components (Iza-Mendia and Guti�errez, 
2013; Liu et al., 2018; Zhang et al., 2018), i.e.: the lattice friction stress, the interstitial and substitutional elements, contribution of the 
precipitates (solid solution hardening), the distance between cementite lamellae or/and ferrite grain size (boundary strengthening), 
the dislocation density and their special distribution in the ferrite (dislocation strengthening). The grain boundary strengthening is 

Abbreviations 

CRSS critical resolved shear stress 
EPSC elastic-plastic self-consistent model 
EPM elastic-plastic mixed model 
GND geometrically necessary dislocation 
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SSD statistically stored dislocation 
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UTS ultimate tensile stress 
FEM finite element method  
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caused by a pile-up of dislocations at the grain boundary, and consequently an increase of the stress necessary for slip initiation can be 
observed. The classical Hall-Peach (H–P) law says that the boundary strengthening contribution to the yield stress is proportional to 
the inverse square root of the grain size. This law was also used for pearlitic steel by Embury and Fisher (1966). In that work, the TEM 
experiment showed an important role of narrow, oriented dislocation cells in strengthening of drawn hypereutectoid steel (0.93 wt% 
C) wires. Using the H–P relation, the yield stress determined for drawn pearlite wires was correlated with wire diameter and the 
inter-lamellar spacings limiting dislocation gliding distance in ferrite. Different microstructures of C–Mn–Nb steel (ferrite–pearlite, 
bainite, quenched and tempered) were tested by Iza-Mendia and Guti�errez (2013) in order to establish the empirical equations for 
calculation of the material yield stress. As the result the coefficient of H–P relation was found and moreover the strengthening effects 
coming from the Nb precipitation, free interstitial solutes and transformation dislocations were determined. 

Although the H–P relation is frequently used to correlate strengthening due to grain or interphase boundaries, it seems incorrect in 
the case of fully pearlitic steel having lamellar microstructure. It was found that negative or too low values of the lattice friction stress 
were obtained when the H–P law was adjusted to experimental data (when the inter-lamellar spacing was considered as the grain size). 
Therefore a more appropriate relation is that in which the lamellar strengthening is proportional to the inverse of the distances be
tween cementite lamella (Dollar et al., 1988; Marder and Bramfitt, 1976; Yahyaoui et al., 2014). This relation (L-C law) was proposed 
by Langford and Cohen (1969) and it is based on the Frank–Read mechanism of dislocation generation in ferrite lamellae (Li et al., 
2003; Yahyaoui et al., 2014). 

The Voce type law with L-C relation, describing both the initial yield stress and the strain hardening during plastic deformation, was 
proposed for fully lamellar pearlite (Allain and Bouaziz, 2008; Bouaziz and Le Corre, 2003). This empirical equation with adjustable 
parameters expresses the current yield stress σper as a superposition of the initial one (the first and second term) and the contribution 
depending on a current plastic strain εper of the sample, i.e.: 

σperðεperÞ ¼ σper
f þ

μMb
s
þ

K
g

h
1 � exp

�g
2

εper
� i

(1)  

where: M is the mean Taylor factor, μ is the shear modulus of the ferrite, b is the Burgers’ vector of mobile dislocations, s is the 
distance between cementite lamellas (inter-lamellar spacing), σper

f is the total friction stress (lattice strength increased by solid solution 
hardening), g and K are two calibrating parameters independent of the inter-lamellar spacing and chemical composition. 

The above equation was used to predict the strengthening of fully pearlitic steels with different inter-lamellar spacings and for 
ferrite-pearlite steels containing different fractions of pearlite (Allain and Bouaziz, 2008). In the cases of ferrite, it was assumed that the 
grain size effect described by the H–P relation dominates and the interactions between dislocations can be neglected. Using the 
simplified stress localisation method the predicted stress-strain plots were successfully adjusted to the experimentally determined 
macroscopic behaviour of the studied material. Using the model, it was also shown that important internal stresses inside pearlite, as 
well as the plastic mismatch stresses between ferrite and pearlite, are generated during plastic deformation. These stresses arise due to 
the different mechanical behaviour of the phases (in this case ferrite and pearlite) and they are responsible for the significant kinematic 
hardening determined by Bauschinger tests for ferrite-pearlite, as well as for fully pearlitic steels. Important differences between 
stresses localised in ferrite and pearlite grains during the deformation process were found using model calculations. However, the 
presented model, based on Eq. (1), cannot predict the stress localisation in cementite and ferrite lamella within pearlite grains. 

Recently, the Bouaziz’s relation was successfully tested for C70 pearlitic steel which is studied also in the present work, showing a 
huge difference in the hardening process between a fully lamellar (s ¼ 206 nm) and a globular microstructure (Allain et al., 2019). 
Therefore, it can be stated that the microstructure and especially the spatial arrangement of the cementite phase plays an important 
role in pearlite strengthening. 

An important conclusion concerning the strain hardening of fully pearlitic steel with lamellar microstructure was drawn by Allain 
and Bouaziz (2008). They found that the distance between cementite lamella affects the initial yield (due to second terms of Eq. (1)) 
accordingly to L-C law but surprisingly it does not affect the strain-dependent term (third term of Eq. (1)). This result is fully supported 
by experimental results obtained for a wide range of interlamelar spacings (s ¼ 2 nm–530 nm), as observed by many authors (Allain 
and Bouaziz, 2008; Dollar et al., 1988; Yahyaoui et al., 2014). The above conclusion leads to a deeper reflection on the nature of 
lamellar pearlite strengthening. If the main reason for strengthening is in the evolution of dislocation density and their spatial dis
tribution, the width of the ferrite lamellae should affect the strengthening rate. This particularly applies to the plastically deformed 
ferrite lamellae adjacent to elastically deformed cementite. In the plastically deformed phase, the density of the so-called statistically 
stored dislocations (SSDs) increases, and moreover dislocation pile-ups against interphase boundaries. In addition, the accommodation 
of strain gradients between a hard cementite phase and a soft ferrite phase requires the generation of so-called geometrically necessary 
dislocations (GNDs) heterogeneously distributed in ferrite lamella (Linz et al., 2018; Zhang et al., 2013). It can be concluded that the 
varying density of dislocations and their heterogeneous distribution should lead to a significant dependence of the strengthening 
process on the width of the ferrite lamellae, but this is not the case observed in the experiment. Therefore, it is important to examine 
whether the process of strengthening of lamellar pearlite is dominated by the dislocation hardening of ferrite, whether it is mainly 
caused by stress partitioning between the cementite and ferrite phases during the plastic deformations process. 

Using TEM and EBSD methods, the stress field in hypereutectoid lamellar pearlitic steel (0.9 wt% C) steel was investigated on the 
basis of crystallographic orientations of ferrite and cementite lattice. The material was subjected to isothermal heat treatment at 973 K 
for 900 s followed by water quenching (Nakada et al., 2009). It was found that the orientations of ferrite and cementite rotate 
simultaneously and the misorientation of the ferrite phase increases continuously through a cementite lamella. The TEM investigation 
did not show significant density of GNDs in the studied ferrite crystals, therefore only elastic strain was considered while possible 
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plastic rotation was neglected. Because lattice strain varies continuously between ferrite and cementite, it was concluded that variation 
of short-range local strain or lattice misfit at the ferrite-cementite interface was not responsible for the observed lattice rotation. Using 
a simple elastic model it was found that the stress change through cementite and ferrite lamella equals 380 and 63 MPa, respectively. 
The reason for this stress as well the range of variation was not discussed but it seems that the determined stress would be caused by 
hypereutectoid cementite or/and temperature gradients during sample quenching. Therefore, the range of stress variation is probably 
close to the size of pearlite grain or much longer. An important message of this paper is that the stress between ferrite and cementite 
within pearlite grain is not observed in spite of longer-range stress gradients which were found in the quickly cooled hypereutectoid 
lamellar pearlitic steel. 

Two methodologies were developed in order to determine stresses in both phases of pearlitic steel during elastic and plastic 
deformation. The first one is based on the modelling, which relates the stress applied to the material with the stresses localised in the 
polycrystalline grains. To do this, the FEM calculations or/and crystallographic scale transition models can be used. Another meth
odology is a direct diffraction measurement of the elastic lattice strains (or stresses) localised in polycrystalline grains during elastic- 
plastic deformation. In this case, neutron or X-ray synchrotron radiation is usually applied. 

Different crystallographic scale transition models were elaborated in order to predict micromechanical behaviour of one or two 
phase polycrystalline materials. Among them, the algorithms developed by Turner and Tom�e (1994), Beyerlein and Tom�e, (2008), Neil 
et al. (2010), Lebensohn et al. (2012), Upadhyay et al. (2018), Chelladurai et al. (2019) were used and their results were successfully 
compared with neutron and synchrotron diffraction experiments (e.g. Agnew et al., 2018; Cai et al., 2012; Jia et al., 2009; Neil et al., 
2010). In parallel, the self-consistent crystallographic models were elaborated by Lipinski and Berveiller (1989), Lipinski et al. (1995), 
Bonfoh et al. (2004), Franz et al. (2013), Baczma�nski et al. (2016), Fajoui et al. (2016) and applied to interpret diffraction experiments 
(e.g. Baczma�nski et al., 2016; Gadali�nska et al., 2018; Gloaguen et al., 2014; Hounkpati et al., 2016; Kot et al., 2019). 

Experimental studies of mechanical properties of phases in the pearlitic and high carbon steels (containing cementite) were pre
viously performed using in situ neutron diffraction (Daymond and Priesmeyer, 2002; Oliver et al., 2004) and synchrotron diffraction 
(Ghosh et al., 2018; Taupin et al., 2013; Young et al., 2007) for samples subjected to external loading. Analysing lattice strains in both 
phases an important stress transfer from plastically deformed ferrite to elastic cementite was found, i.e. the important reason for 
material strengthening was directly observed. 

A successful prediction of the stress partitioning between ferrite and cementite (hypereutectoid structure) was done for the first 
time by Daymond and Priesmeyer (2002) using Elastic-Plastic Self-Consistent model (EPSC), based on the Eshelby inclusion method 
(Eshelby, 2007). In this aim, the EPSC model developed by Turner and Tom�e (1994) was modified to take into account the presence of 
elastic cementite phase. The model results were compared with neutron diffraction measurement performed in-situ during a tensile test 
for the 0.4 wt% C carbon steel with 8 vol% of cementite plates. The effect of lattice strain partitioning between phases was correctly 
predicted for the small deformation range of up to 3% of sample strain. However, the anisotropy effect was considered only for the 
ferrite phase. 

Using X-ray diffraction, Che et al. (2007) demonstrated, that during mechanical loading and after unloading, the stress state in the 
ferrite and spheroidal cementite depends on the volume fraction and size of cementite particles. The role of the inter-lamellar spacing 
on the elastoplastic behaviour of C70 pearlitic steel has been investigated by Yahyaoui et al. (2014), using conventional X-ray 
diffraction during tensile tests coupled with the self-consistent model. It was established that the initial critical resolved shear stress 
(CRSS) of ferrite decreased with an increase of inter-lamellar spacing. 

A micromechanical model based on the self-consistent scheme was developed by Taupin et al. (2013) in order to reproduce stress 
partitioning between phases in 0.4 wt% C steel containing 5.7 vol% of spheroidal cementite and to take into account the dislocation 
pile-up effect. The results were compared with stresses measured during an in situ tensile test using synchrotron X-ray diffraction. 
However, in the analysis of experimental data, only one reflection for each phase was considered, therefore the anisotropy of elastic 
and plastic deformation was not taken into account. It was found that to achieve a good estimation of the important difference between 
stresses in two phases, a third phase should be introduced. This so-called “third phase” represents finite intermediate layers in ferrite 
accounting for the accumulation of geometrically necessary dislocation (GND) at the ferrite-cementite interfaces. This assumption can 
be realistic with respect to the TEM studies of the deformed microstructure, discussed above. The developed model was inspired by that 
used in the modelling of elastic composites with spherical multi-coated inclusions as proposed by Cherkaoui et al. (1994) and Mar
cadon et al. (2007). In model calculations the ferrite is considered as an elastoplastic phase, which deforms and hardens through 
dislocation density evolution, the cementite is supposed to be purely elastic and the third phase layer together with cementite particle 
form a composite inclusion (Taupin et al., 2013). The thickness of this layer, assumed constant during plastic deformation, was 
calibrated in order to reproduce the elastic strain measurements and corresponding stress in ferrite and cementite. The estimated 
thickness of the hardened layer was 0.3 μm. The authors demonstrated that stress partitioning between cementite and ferrite was 
correctly predicted but only for sample strains higher than 5%. However, an important discrepancy between the model stress response 
and the experimental data was found for small deformations (lower than 5%), including elastic range of deformation and for Lüders 
plateau occurring in ferrite. 

The finite element method (FEM) was also used to predict the elastoplastic deformation of composite material. This method was 
successfully applied by Young et al. (2007) in the case of spheroidal cementite inclusions. In this work, the load partitioning during 
elastic-plastic deformation has been investigated on the ultrahigh carbon steel (1.6 wt% C) with 34% of spheroidal Fe3C particles, 
using synchrotron X-ray diffraction. It was shown that in the elastic range there is no load transfer between the microstructure con
stituents, due to the nearly equivalent elastic properties, since the macroscopic Young modulus is frequently considered equal to 210 
GPa for α-Fe and 200 GPa for Fe3C, whereas the average Poisson ratio is assumed around 0.29 for both phases (cf. Ledbetter, 2010; 
Nikolussi et al., 2008; Young et al., 2007). Young et al. (2007) showed that the load transfer occurred from the ductile ferrite to the 
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brittle Fe3C spheroids during the plastic deformation of the steel and this effect was well predicted by FEM with the assumption of 
spherical inclusions. On the basis of measured α-Fe (220) and the Fe3C (220) reflections the authors demonstrated that at sample strain 
equal to 0.7%, the effective stress (von Mises equivalent stress) localised in cementite was 2.3 times higher than the stress in ferrite and 
this ratio increased up to the value of 3.5 at 6.1% of sample strain. This result implies that load transfer from ferrite to cementite 
continues until the fracture of the steel. 

The dual phase structure of pearlitic steels involves an inherent and a prospective elastic and plastic induced anisotropy, which 
could significantly affect the local and the overall material properties under various monotonic (Nikolussi et al., 2008; Young et al., 
2007) and cyclic loading paths (Long et al., 2008) as a consequence of load transfer changes. Young et al. (2007) discussed the in
fluence of anisotropy of elastic and plastic deformation in ferrite phase on a load transfer between grains. They showed differences in 
lattice strain evolution for measured hkl reflections and concluded that these evolutions are similar to those previously observed in the 
case of single phase ferritic steel. The elastic anisotropy of cementite was not seen in the elastic range of deformation, while the 
difference in lattice strain evolution was determined for different hkl reflections during the plastic deformation of pearlitic steel. In data 
analysis anisotropic X-ray elastic constants (XECs) based on Kr€oner model were used for ferrite, however isotropic elastic constants 
were based on macroscopic Young modulus and Poisson ratio. 

Analysing lattice strains for different orientations of the scattering vector, a curvature of sin2ψ plots (for details see eg. Hauk, 1997) 
was observed by Young et al. (2007) during the plastic deformation of ferrite. This is evidence that significant second-order plastic 
incompatibility stresses, depending on the orientation of crystallite lattice, were generated in ferrite. The latter stresses usually arise in 
polycrystalline material because of the difference in the plastic behaviour of crystallites, leading to non-linearities of the sin2ψ plot, as 
observed by Wro�nski et al. (2007) in duplex steel and by Wawszczak et al. (2016) in ferritic and austenitic steels. On the other hand, 
linear character of sin2ψ plots measured by Young et al. (2007) for cementite, during whole deformation range, showed that this phase 
is deformed elastically. The problem of the second-order stresses in pearlitic steel is analysed in the present work. 

Another model based on FEM calculations combined with EPSC model was developed by Oliver et al. (2004). In this case, the FE 
method was used for modelling of interphase stresses, while the intergranular interactions within ferrite phase were predicted by the 
EPSC model. The model results were compared with lattice strains measured by neutron diffraction during a tensile test in both phases 
of steel (1.0 wt% C) with 20% of spheroidal cementite. It was found that the partitioning of the lattice strains between phases as well as 
the difference between lattice strains for different hkl reflections were correctly predicted, however the anisotropy of cementite was 
not taken into account. 

In above presented models of elastoplastic deformation, isotropic elastic constants were assumed for cementite phase. In many 
works the elastic behaviour of cementite was studied and different values of overall Young’s modulus were reported (E ¼ 140–230 
GPa, cf. literature review given by Ledbetter (2010)). However, the ab initio calculations showed significant anisotropy of Fe3C single 
crystals (Nikolussi et al., 2008), which was verified using synchrotron X-ray diffraction experiments (Nikolussi et al., 2008; Weisser 
et al., 2011). In the first work (Nikolussi et al., 2008) a massive Fe3C layer, grown on the ferritic steel surface, was examined and an 
intermediate weighted model was used for the calculation of the X-ray elastic constants. The XEC were calculated as the weighted 
values between those obtained with Voigt (1928) and Reuss (1929) assumptions of homogenous stress or homogenous strain, 
respectively. It was shown that the measured values of XEC are well correlated with a mixture of 84% of Voigt and 16% of Reuss values, 
indicating an intermediate type of grain interaction, which is closer to the Voigt type one. The idea of an intermediate weighted model 
is developed in the present paper for the plastic range of deformation. 

In the work of Weisser et al. (2011) the ab initio elastic constants were successfully verified using in situ synchrotron diffraction for 
bainitic 1% CrMoV steel under applied loads. The authors compared single crystal Young moduli in different crystallographic di
rections hkl (Ehkl) with the measured values. In general, a good agreement was found, however the effect of the polycrystalline matrix 
was not taken into account, which caused disagreement in the case of extreme E301 and E122 moduli. 

In spite of the numerous experimental and modelling studies devoted to the understanding the micromechanical properties and 
phase interactions in pearlitic steels, a number of questions remain unsolved due to the complex microstructure and its evolution, 
phenomena occurring in ferrite lamella during plastic deformation and significant transfer of stresses between the phases. Therefore, in 
the present work, the micromechanical behaviour of fully pearlitic C70 steel with fine and coarse lamellar structure under tensile 
loading is studied using synchrotron X-ray diffraction method. The main goals of this work are to obtain the experimental charac
teristics of phase stress during elastoplastic deformation and, on the basis of these data, to determine the strengthening mechanisms 
occurring in fully lamellar pearlite. In addition, the elastic and plastic anisotropy and the related plastic incompatibility stresses are 
studied at the scale of individual phases and crystallites. To predict the elastoplastic behaviour of the studied steel, the idea of an 
intermediate model proposed previously by Nikolussi et al. (2008) for the elastic range of deformation is extended. The new method is 
based on the EPSC model developed by Lipinski and Berveiller (1989) and applied for two phase materials by Baczma�nski et al. (2016), 
Bonfoh et al. (2003), Hounkpati et al. (2016). 

Table 1 
Chemical composition of EN C70 pearlitic steel.  

C Si Mn S P Ni Cr Mo Cu Al Fe 

0.68 0.192 0.846 0.010 0.010 0.114 0.160 0.027 0.205 0.042 Balance  
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2. Experimental 

2.1. Material 

The pearlitic steel EN C70 (SAE 1070) investigated in this study was produced by the company ASCOMETAL France in the form of 
round bars with a diameter of 80 mm. The chemical composition of this steel is given in Table 1. Two annealing treatments reported in 
Table 2 were performed in order to obtain different microstructures in the same material. The resulting microstructure consists of 
entirely pearlite colonies having an average size of 7–8 μm with cementite lamellae (Fig. 1) arranged at different distances from each 
other (cf. Table 2), depending on the thermal treatment. In both materials, the volume fractions of the ferrite and cementite phases are 
88 vol% and 12 vol%, respectively. More information related to the heat treatments and microstructure is provided in the previous 
works (Sidhom et al., 2015; Yahyaoui et al., 2014). 

2.2. Measurements 

The lattice strains were measured in situ during a tensile test for two samples of pearlitic steel (subjected to treatments HT1 and 
HT2, cf. Table 2) at the ID15 synchrotron beamline (ESRF, Grenoble, France). The applied high energy synchrotron radiation with 
wavelength λ ¼ 0:14256�A and a beam size of 100 μm� 100 μm enabled transmission measurements in the interior of the samples 
having a square cross-section with a side length of 1.5 mm (Fig. 2 a). Two-dimensional diffraction patterns were recorded by a square 
CCD detector (Thales PIXIUM 4700) during time of expositions equal to 10 s with interval times of 5 s. The short time of data collection 
enabled to perform diffraction measurements in situ during a continuous tensile test. The example 2D diffraction image is presented in 
Fig. 2 b, where the visible rings correspond to different reflections coming from the ferrite phase. Due to a small volume fraction of 
cementite the intensity of diffraction pattern from this phase is relatively low and not seen in this figure. However, the experimental 
data recorded on the 2D detector with a high energy synchrotron beam allowed to analyse lattice strains also in cementite, which is not 
possible using a laboratory X-ray diffractometer. The diffractograms showing the diffraction peaks analysed in this work are presented 
in Fig. 3. 

No significant changes in intensity along the diffraction rings were found, i.e. the crystallographic texture could be considered as 
negligible in both phases of the studied steel. The latter observation was confirmed by independent X-ray measurements of pole figures 
for ferrite phase using Cu Kα radiation on a laboratory diffractometer. Therefore, in the analysis of experimental data as well as in 
model calculations, a random distribution of crystallite orientations was assumed. 

3. Methods of analysis 

The data obtained from the ESRF experiments were processed with the Fit2D software (Hammersley et al., 2007), transforming the 
two-dimensional diffractograms into typical one-dimensional ones consisting of intensity dependence versus 2θ scattering angle. The 
one-dimensional diffractograms were obtained through the integration of 2D sectors with an angular size equal to Δψ ¼ 15� for 
cementite (because of low intensity of the recorded rings) and Δψ ¼ 2� for ferrite phase (Fig. 2 b). This procedure enables to analyse 
distortions of the circles correlated with lattice strains. The next step in data analysis is the use of the Multifit software (Merkel and 
Hilairet, 2015), which automatically fits the theoretical functions to the diffractograms, obtained by the Fit2D software. The positions 
of the diffraction peaks were found by adjusting the pseudo-Voigt function and the interplanar spacings 〈d〉fhklg for {hkl} planes were 
determined from the Bragg law (the average values of 〈d〉fhklg for symmetrically equivalent sectors shown in Fig. 2 b were computed). 
The procedure described above was applied for the initial samples, and then repeated for each load applied to the samples. 

3.1. Lattice strains and phase stress determining 

Two different types of analysis were performed for the diffraction data collected during the tensile test. In the first one, the relative 
lattice strains for the loaded sample with respect to the non-loaded material were calculated. This has been done for two orientations of 
the scattering vector, i.e. along x3 - direction of applied load corresponding to the sector with centre at ψ ¼ 0� and along x2 – transverse 
direction corresponding to the sector with centre at ψ ¼ 90� (cf. Fig. 2): 

〈ε33〉fhklg ¼
〈dx3〉Σ

fhklg � 〈dx3〉0
fhklg

〈dx3〉0
fhklg

and ​ ​ ​ ​ 〈ε22〉fhklg ¼
〈dx2〉Σ

fhklg � 〈dx2〉0
fhklg

〈dx2〉0
fhklg

(2)  

where: 〈d〉Σ
fhklg and 〈d〉0

fhklg, respectively, are the interplanar spacings measured for a given applied stress Σ and for non-loaded sample 

Table 2 
Thermal treatments applied and characterization of EN C70 pearlitic steel (Yahyaoui et al., 2014).  

Annealing heat 
treatment 

Austenizing temperature 
(K) 

Austenizing time 
(h) 

Colling 
method 

Inter-lamellar spacing 
(nm) 

Colonies size 
(μm) 

Grains size 
(μm) 

HT1 1073 0.5 calm air 230 7.4 19 
HT2 1323 0.11 blown air 170 7.9 26  
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(initial, i.e. for Σ ¼ 0), while the < …>fhklg brackets denote an average over the diffracting crystallites volume for a given reflection 
hkl. Indices x3 or x2 mean that the interplanar spacing was measured in the direction of the applied load or in the transverse direction, 
respectively. 

Fig. 1. Microstructures of C70 pearlitic steel after two types of heat treatment applied: (a) HT1 and (b) HT2 (cf. Table 2).  

Fig. 2. The experimental setup used for lattice strain measurement at the ID15 synchrotron beamline (a) and the 2D image obtained for the studied 
pearlitic steel (b). The diffraction rings corresponding to reflections from ferrite (α phase) are indexed and two sectors with an angular size of Δψ are 
shown (the diffraction pattern corresponding to cementite is not visible due to relatively low intensity). 

Fig. 3. Example diffractogram obtained for the studied pearlitic steel. The indices are shown for the peaks used in the analysis.  
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In the next step of analysis the mean stresses in both phases were determined directly from diffraction data. To do this, the ori
entations of the scattering vector for different 2D sectors were defined by ψ angle, as shown in Fig. 2. Subsequently, parts of the in
tensity rings were integrated within the sectors and the interplanar spacings < dψ>fhklg were calculated for the reflections provided in 
Table 3. The method of stress analysis based on the measured < dψ>fhklg spacings is shortly presented in Appendix A. At first, using the 
measurements obtained for the initial non-deformed sample and assuming negligible hydrostatic stresses (Young et al., 2007), the 
stress free lattice parameters were determined for cementite and ferrite using the Rietveld method (Table 3). It was also found that the 
deviatoric stresses in both phases of the initial sample are close to zero, comparing to the range of uncertainty (Appendix A). Then the 
lattice parameters < aψ>fhklg were determined for the samples subjected to different loads and the three principal components of stress 
tensor were found for each load, assuming the stress free parameters given in Table 3 and axial symmetry of the sample. In the cal
culations, the second-order incompatibility stresses were also taken into account (for details see Appendix A). The example de
pendences of lattice parameters < a>fhklg vs. sin2ψ in each phase, measured and recalculated for the initial and loaded sample, are 
shown in Figs. A1 and A2. 

3.2. Model calculations 

The interpretation of the results was done with the help of a model in which different types of stress localisation in the phases were 
considered. Due to a large aspect ratio of the cementite lamellae and extremely complex microstructure of cementite the interpretation 
of experimental results with elastoplastic models is quite problematic. Therefore, in this work the interaction between cementite and 
ferrite, described by the Eshelby type models (Eshelby, 2007), was modified. 

The self-consistent calculations using EPSC model (Baczma�nski et al., 2016; Baczma�nski and Braham, 2004; Lipinski and Berveiller, 
1989) were performed for 10,000 inclusions, representing ferrite (88 vol%) and cementite (12 vol%). As the texture of the examined 
material was insignificant, the random initial orientations of the lattice were generated for pearlite grains in both phases. At first, the 
model calculations with spherical cementite inclusions were performed (it was treated as the reference result) and next, the shape of 
the inclusions was modified to mimic the shape of cementite lamella. Different orientations of the habit plane with respect to the 
cementite lattice (Das, 2018; Kante and Leineweber, 2019; Zhang et al., 2007; Zhou and Shiflet, 1992) were also tested. The model 
predicted lattice strains and macromechanical stress-strain plots were compared with experimental data obtained for purely elastic 
range of deformation. It was found that the best agreement between experiment and model was obtained for plate shape of cementite 
and ferrite lamellae with the axes ratios a’/b’ ¼ 1 and a’/c’ ¼ 2.5, randomly orientated with respect to the sample. The assumed habit 
plane was ð010Þc in cementite and ð112Þf in ferrite, as given by Bagaryatsky crystallographic orientation relationships (Das, 2018; 
Kante and Leineweber, 2019; Zhou and Shiflet, 1992). The flat ellipsoidal inclusions with a habit plane parallel to the interphase 
boundary were used in calculations performed for the elastic and plastic range of deformation. However, it should be emphasised that 
the results obtained for Bagaryatsky orientation relationships are not significantly different compared to those obtained assuming 
Isaichev or Pitch-Petch relationships and corresponding habit planes (Kante and Leineweber, 2019; Zhou and Shiflet, 1992). Slightly 
worse agreement between experiment and model prediction was found in the case of spherical inclusions having random orientations 
of habit planes. 

The plastic deformation of ferrite was described by the slip systems: <111> {211} and <111> {110}, having initially the same 
value of CRSS. It was assumed that cementite lamella do not undergo plastic deformation. The elastic properties of the cementite and 
ferrite crystallites were described by the elastic constants given in Table 4. During plastic deformation, the critical resolved shear 
stresses, stresses localised in crystallites and lattice orientations were varied according to algorithms described by Lipinski and Ber
veiller (1989), Baczma�nski and Braham (2004), Baczma�nski et al. (2016). 

In model calculation initial stress was assumed to be equal zero for all inclusions belonging to cementite and ferrite phases (this 
assumption is based on the stress measurement performed for the initial sample, presented in Appendix A). 

Assuming that only the ferrite phase undergoes plastic deformation, the hardening of the ferrite was described by the phenome
nological Voce law. This law describes the evolution of CRSS during plastic deformation in a given crystallite g within ferrite phase 
according to the equation (Neil et al., 2010; Tome et al., 1984): 

τg;fer
Voce ¼ τ fer

0 þ
�
τ fer

1 þ θ fer
1 ϑg; fer�

"

1 � exp

 

�
θ fer

0

τ fer
1

ϑg; fer

!#

(3)  

where: 

Table 3 
Lattice parameters determined from the initial HT2 sample and the reflections available for different analyses.  

Phase Lattice parameters 
-stress free values ð�AÞ

Reflection used in stress  
analysis and to calculate  

mean lattice strains in phases 

Reflections available during elastic  
deformation 

Cementite (orthorhombic) a0 ¼ 5:0689 ð4Þ;b0 ¼ 6:7493 ð7Þ; c0 ¼ 4:5116 ð5Þ 121/210,122,123,222,301 002,201,211,112, 
121,122,123,222,301 

Ferrite (bcc) a0 ¼ 2:86364ð2Þ 110, 200, 211, 220, 310 110, 200, 211, 220, 310  
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τ fer
0 - initial critical shear stress necessary to start crystallographical glide in ferrite, 

τ fer
1 - the shear stress back-extrapolated from the terminal linear hardening region, 

θ fer
0 , θ fer

1 - are the initial and final slopes of the hardening curve in ferrite, respectively and ϑg; fer ¼
P

t
γt is a sum of total shear strains 

γt for all slip systems t activated in crystallite g. 

The idea of using empirical law for the plastic behaviour of the ferrite phase directly comes from Eq. (1), which correctly describes 
the yield stress evolution for fully pearlitic steel having lamellar structure, as shown by Bouaziz and Le Corre (2003) and Allain and 
Bouaziz (2008). In this work, a similar Eq. (3) is assumed to describe the plastic behaviour of ferrite within lamellar pearlite. The latter 
equation is written for critical shear stress τg;fer

Voce necessary to start crystallographic slip in ferrite crystallite g. This means that Eq. (3) is 
defined for a smaller scale than Eq. (1). As discussed in the Introduction, the initial yield of pearlite (friction stress σper

f and size 

strengthening μMb
s in Eq. (1)) depends on the initial hardness of ferrite, and it is represented by the initial critical shear stress τ fer

0 in Eq. 
(3). The third term of Eq. (1) describing pearlite hardening depends only on the strain of pearlite, while in the corresponding second 
term of Eq. (3) takes into account the hardening of the ferrite depending on total shear strain ϑg;fer in given plastically deformed 
crystallite g (i.e., hardening is considered at smaller scale in Eq. (3) comparing to Eq. (1)). 

In principle, the EPSC model was used to calculate the interaction between crystallites and consequently stress partitioning be
tween phases. However, it found that the interaction of the Eshelby inclusion with elastoplastic self-consistent matrix is not sufficient 
to correctly reproduce the experimental results. To overcome the above problem, a similar approach as proposed for elasticity by 
Nikolussi et al. (2008) was extended to plastic deformation. We decided to modify the strain concentration tensor Asc

ijkl predicted by the 
self-consistent model, which relates macroscopic _Ekl and local _εij total strain rates (elastic plus plastic) or analogical stress concen
tration tensor Bsc

ijkl relating macroscopic _Σkl and local _σij stress rates (dot means time derivative): 

_εij ¼ Asc
ijkl

_Ekl and _σij ¼ Bsc
ijkl

_Σkl (4) 

The modified strain concentration tensor A can be constructed as the weighted mean of the self-consistent tensor Asc and identity 
four rank tensor I being a strain concentration tensor in the case of homogenous total strain assumption ( _εij ¼ _Eij), as in simplified Lin 
model (Lin, 1957, 1971): 

A ¼ η ðAsc � IÞ þ I ¼ ηAsc þ ð1 � ηÞ I for η 2 ½0; 1� (5)  

where scalar factor η represents the contribution of the self-consistent tensor Asc. 
Similarly, the modified strain concentration tensor B can be expressed as the weighted mean of the self-consistent tensor Bsc and 

identity four rank tensor I corresponding to homogenous stress distribution ( _σij ¼ _Σkl), as in simplified Sachs model (Sachs, 1928): 

B ¼ ξ ðBsc � IÞ þ I ¼ ξBsc þ ð1 � ξÞ I for ξ 2 ½0; 1� (6)  

where scalar factor ξ represents the contribution of the self-consistent tensor Bsc. 
The physical meaning of the above defined localisation tensors and their derivation based on the Lipinski-Berveiller model are 

given in Appendix B. In this Appendix also the equivalent formulation of Eqs. (5) and (6) for the Hill model (Hill, 1965) is presented (cf. 
the definition of weighting parameter αH 2 ½0;∞Þ in Eq. (B16)). Moreover, it was shown that if the value of η coefficient in Eq. (5) is 
equal to 1 (or αH ¼ 1) the pure self-consistent model is assumed, if η < 1 (or αH > 1 ) the model shifts partially to the Lin’s assumption, 
which is obtained for η ¼ 0 (or αH → ∞). Analogically, ξ in Eq. (6) is equal to 1 for the pure self-consistent model, ξ < 1 (or αH < 1) 
assumption shifts stress localisation towards the Sachs type model, obtained for ​ ξ ¼ 0 (or αH ¼ 0). It can concluded that ξ and η 
inform us how far the real interaction between crystallites or phases is from this predicted by EPSC model. 

It should be emphasised that the above introduced elastic-plastic mixed (EPM) model based on Eqs. (5) and (6) (or Eq. (B16)) is 
similar to this proposed by Berveiller and Zaoui (1978) in which the α plastic accommodation parameter (Eq. (B17)) was used to 
modify the interaction of a given grain with the surrounding matrix (for details see Appendix B). In turn, the Berveiller and Zaoui 
model is approaching the elastic type Kr€oner model (Kr€oner, 1961) for α ¼ 1 and upper Lin’s boundary for α ¼ 2. The accommodation 
parameter α take into account both the “plastic softening” of the matrix and other physical effects not connected with this 
phenomenon. 

When the Berveiller-Zaoui model is fitted to experimental data, the value of classical plastic accommodation parameter α informs 
us how far the results are from the elastic Kr€oner model (α is usually in the range 0.01–0.1). On the other hand the η and ξ (or αH) 
determine deviation from the incremental Lipinski-Berveiller (or Hill) model, in which the “plastic softening” of the matrix is already 

Table 4 
Single-crystal elastic constants of cementite (Nikolussi et al., 2008) and ferrite (Simmons and Wang, 1971) used in data analysis and modelling. In the 
case of cementite the elastic constants were obtained using the ab-initio method.  

[GPa] C11 C22 C33 C44 C55 C66 C12 C13 C23 

Cementite 385 341 316 13 131 131 157 162 167 
Ferrite 231 – – 116 – – 134 – –  
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taken into account and grains interaction depends on the tangent modulus tensor Lsc (or constrain tensor L*
sc in Eq. (B16)), which 

changes during deformation. Because the difference between the Kr€oner model and the incremental Hill (or Lipinski-Berveiller) model 
varies with deformation (Hutchinson, 1970), there is no straightforward relation between the parameter α and the parameters 
introduced in this work, i.e. η and ξ (or αH). The approximate relations between all parameters are visualised in Fig. 4, where addi
tionally the bound of Taylor (1938) is also shown. However, the latter bound cannot be compared with Hill or Lipinski-Berveiller 
model due to Taylor’s unrealistic assumption of homogenous plastic strain (not total strain), which leads to a rigid matrix 
excluding the elastic interaction. It should be underlined that the upper bound of the EPM model is the Lin’s assumption of homog
enous total strain, when the plastic strain of inclusion is fully compensated by the elastic deformation of the matrix. 

The undertaken EPM approach enables to consider the interactions between phases, which can be estimated on the basis of 
experimental results. The fraction of Lin/Sachs model can be adjusted so the partitioning of the stresses between phases can be tuned. 
For example a bigger contribution of the Lin model (η < 1) in the plastic range of deformation causes that the cementite phase carries a 
higher stress than predicted by the self-consistent model. 

In this work, Eq. (5) was used, because only the shift of the strain localisation tensor towards the assumption of homogenous strain 
(Lin model) was observed. As presented in the next section, it was found that the self-consistent model correctly predicted partitioning 
of the stresses between phases during elastic deformation, however definitely to low stress is localised in the cementite phase at the 
beginning of plastic deformation. This means that the contribution of the Lin model (given by the value of 1 � η ) must be significantly 
increased just above the yield point. Subsequently, the stress localisation again approaches to this predicted by self-consistent model, i. 
e. the value of 1 � η must decrease. Therefore, the Lin model contribution can be described by the asymmetrical peak-shaped rela
tionship of ð1 � ηÞ vs. the sample strain E during plastic deformation (cf. Fig. 6 a in section 4.1). In such a case, the η parameter being a 
quantitative measure of the self-consistent model contribution, can be approximated by a phenomenological function, which allowed 
to adjust the model calculations to experimental data (cf. Fig. 6 a): 

η¼ 1 � A exp
�

�
1
B

�

ln
�

E
C

��2�

(7)  

where A,B,C are the adjusted parameters without physical interpretation and E ¼ E33 is the sample strain in the direction of the 
applied load (cf. Fig. 2 b). 

3.3. Stress localisation in the phases 

It is essential to describe quantitatively the stress partitioning between phases. This was previously done on the basis of phase total 
stresses and strains determined in the direction of the applied load (Bouaziz and Buessler, 2004). In the present work a more precise 
description of stress partitioning, based on the stress localisation tensor Bsc, is used. The advantage of this method is that the com
ponents of the Bsc tensor can be determined from the experimental diffraction data and the stress localisation both in tensile and in the 
transvers directions are taken into account. This method was already proposed by Baczma�nski et al. (2012) for duplex steel and the 
components of localisation tensor were successfully compared with the self-consistent model. The aim of the present work is to 
determine localisation tensors for both phases of pearlitic steel directly from experimental data and to verify the localisation tensor 
calculated from the model used. 

The classical stress rate localisation tensor Bph
ijkl relates the rate of stress in a given phase with the rate of applied macrostresses and 

can be defined by the formula: 

_σph
ij ¼Bph

ijkl
_Σkl (8) 

Fig. 4. Relations between η, ξ, αH and α parameters defined for different types of elastoplastic.  
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where _σph
ij and _Σkl are respectively the mean stress rates for the phase ph and the rate of applied stresses. 

For small increments, it can be written: 

Δσph
ij ¼Bph

ijkl ΔΣkl: (9) 

In the case of tensile test and quasi-isotropic sample, the axial symmetry is assumed, therefore the main components of the stress 
localisation tensor can be determined from experiment and model results if the appropriate increments of the stresses are known, i.e.: 

Bph
3333 ¼ Δσph

33
�

ΔΣ33 and ​ ​ ​ Bph
1133 ¼ Bph

2233 ¼ Δσph
11
�

ΔΣ33 ¼ Δσph
22
�

ΔΣ33 (10)  

where the x3 axes is defined along the applied load, i.e. Σ33 ¼ Σ. 

4. Analysis and discussion of the results 

The analysis of the synchrotron data was performed in three steps. At first, the weighted EPM model proposed above was tested for 
both elastic and plastic deformation ranges by comparing model prediction with the macromechanical behaviour and the lattice strains 
measured in two perpendicular directions during a tensile test. As the results, the optimal model parameters (τ fer

0 , τ fer
1 , θ fer

0 and θ fer
1 in 

Eq. (3), and η or ξ in Eq. (5) or (6)) for the best agreement between theoretical and experimental data were found. What is more the 
elastic constants of ferrite and cementite, as well as anisotropy of elastoplastic deformation were verified analysing the lattice strains 
measured for different reflections hkl. Subsequently, the partitioning of the stresses between phases was studied and discussed. To do 
this, the mean phases stresses were calculated from the measured lattice strains, including von Mises and hydrostatic stresses. Finally, 
the partitioning of the stresses was qualitatively discussed on the basis of the determined components of the stress localisation tensor. 
In each step of the analysis the comparison between experimental and model results was checked. 

The obtained experimental and model result allow us to discuss the dominating reasons for pearlite strain strengthening and to 
confront the conclusions drawn with previously published papers. 

Fig. 5. Experimental stress-strain curve (a) and arithmetic mean of lattice strains (for reflections given in Table 3) in both phases of the specimen 
HT2 (b,c) are compared with EPSC model predictions, assuming spherical inclusions of cementite. The mean lattice strains in the direction of the 
applied load (< ε33>mean) and in the transverse direction (< ε22>mean) are shown as a function of the applied macrostress. 
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4.1. Tuning of the model based on strain evolution 

The first adjustment of the model to experimental data was performed for the unmodified EPSC model assuming η ¼ ξ ¼ 1 in Eq. 
(5) or (6). It was found that a good agreement for the macroscopic data (Fig. 5 a) was obtained for unreasonable values of Voce law 
parameters for ferrite phase (τ fer

0 ¼ 230 MPa, τ fer
1 ¼ 120 MPa, θ fer

0 ¼ 1200 MPa, θ fer
1 ¼ 10 MPa), i.e. the predicted work hardening for 

ferrite phase seems to be too strong. Indeed, the diffraction experiment has shown that lattice strains in phases (cf. Eq. (2)) are not 
correctly predicted by the model during plastic deformation. As presented in Fig. 5, the arithmetic mean values of lattice strains 
measured for sets of reflection in each phase (specified in Table 3) do not agree with the corresponding model values in the plastic 
range of deformation. It can be concluded that in theoretical calculations the work hardening is definitely too strong for the ferrite 
phase, while the stress localised in cementite is too low. 

Tuning of the model parameters was done in order to fit the predicted evolution of mean lattice strains in both phases as well as 
macroscopic stress vs. strain plot to the experimental results (Fig. 6 c). It was found that the agreement between model and experiment 
can be obtained only when the strain localisation tensor is expressed by Eq. (5) and the parameter η is adjusted. The optimal parameters 
describing the hardening process (according to Voce law, Eq. (3)) as well as for the evolution of η interaction parameter (Eq. (7)) are 
given in Table 5, for two studied samples. Additionally, the variation of η with sample strain E ¼ E33 is presented Fig. 6 a, and compared 
with the mechanical Σ vs. E curve shown in Fig. 6 b. It was found that in order to obtain a good fit of the micromechanical tensile plot as 
well as the evolution of lattice strains, the model should be shifted from self-consistent toward Lin model (Lin, 1957) in the early stages 
of plasticity and then back toward self-consistent at higher strains. 

Different values of critical resolved shear stress (τ fer
0 ) were determined for ferrite phase in HT1 and HT2 specimens, while the same 

parameter θ fer
1 was used to characterise a linear, isotropic and very small hardening of ferrite in both samples (assuming θ fer

0 ¼ θ fer
1 and 

τ fer
1 → 0), which was observed in the experimental plot in Fig. 6 b. The simulation result with the parameters given in Table 5 shows a 

very good agreement between the model and the measurements for the predicted mechanical curves (Fig. 6 b) as well as for the mean 
lattice strains in each phase (Fig. 6 c and d). Some disagreement occurred for lattice strains for relatively large deformation of HT1 
specimen. 

It should be emphasised that the value of η parameter results in modification of the effective strain concertation tensor A (cf. Eq. 
(5)) and consequently stress partitioning between phases. The same evolution of η as a function of sample stain E is observed for both 
studied samples HT1 and HT2 (cf. Fig. 6 a and Table 5). In both samples, the elastic range is well predicted by pure self-consistent 
model (η ¼ 1), but at the beginning of plastic deformation of ferrite a strong interaction between phases is observed (model shifts 
toward to Lin’s approach, i.e. η � 0:8 ). Next, the evolution of microstructure leads again to a weakening of interaction, which can be 
related to changes in distribution and/or cracking of cementite lamellae (η is closer to 1). 

The evolutions of lattice strains are perfectly predicted for the whole range of deformation in the case of sample HT2, while for 
sample HT1 some lattice strain relaxation (not predicted by the model) is seen at the end of the tensile test. The mean experimental 
lattice strains seem to tend to higher absolute values for ferrite phase while those measured for cementite go to lower absolute values. 
This effect can be caused by the inversion of stress partitioning due to the damaged cementite lamellae. Indeed, fragmentation of the 
lamellae was observed in the HT1 sample after tensile tests (Yahyaoui et al., 2014). 

In the next step of the analysis, the anisotropy of elastic and plastic behaviour of the phases is discussed. To do this the lattice strains 
(< ε33>hkl ) evolution for individual hkl reflections are compared with the model prediction. The results of tensile test in the elastic 
range of deformation for the specimen HT2 are presented in Fig. 7 a, where experimental results are compared with the EPM model for 
both phases and for all hkl reflections separately. The calculations in the elastic range of deformation were performed for η ¼ 1, which 
leads to a pure EPSC model. It can be concluded that the self-consistent model with the assumption of plate inclusions of cementite 
perfectly predicts the anisotropy of elastic strains in ferrite and cementite. To analyse the anisotropy of elastic properties in both phases 
the values of so-called diffraction Young modulus Ehkl are calculated from the linear part of lattice strains < ε33>fhklg vs. applied stress 
Σ dependence, i.e.: 

Ehkl¼
Σ

< ε33>fhklg
(11) 

The graphs in Fig. 7 b show the correlation between measured and calculated Young modulus for groups of crystallites corre
sponding to different hkl reflections. A very important conclusion from these graphs is that the Young modulus (Ehkl) is quite similar for 
both phases, i.e. the Ehkl values are in the range of 180 � 240 GPa for ferrite and 160 � 260GPa for cementite. Moreover, the predicted 
overall Young modulus for pearlite is Ehkl ¼ 220 GPa, hence the average properties of the matrix considered in the model calculations 
are isotropic (no texture) and almost equal for both phases as well as for the overall material. This is probably the reason for the good 

Table 5 
Parameters describing hardening of ferrite and evolution of weighting parameter η in EPM model.  

Specimen Hardening parameters for ferrite (Eq. (3)), assuming θ fer
0 ¼ θ fer

1 and τ fer
1 → 0  Constants determining evolution of η parameter (Eq. (7)) 

τ fer
0 (MPa)  θ fer

1 ​ ​ (MPa)  A B C 

HT1 145 50 0.19 0.8 0.0138 
HT2 230 50  
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prediction of stress localisation by the EPSC model (within the elastic range of deformation) with the simplified assumption of plate 
shape of cementite inclusions, in spite of real complex lamellar structure of this phase. The presented results confirm the hypothesis of 
the elastic anisotropy measured using different reflections, which is well predicted for both phases. In the case of ferrite the 

Fig. 6. Evolution of interaction parameter η (a) compared with experimental mechanical stress-strain curves (b), and arithmetic mean of lattice 
strains (c and d) for the reflections given in Table 3 in both phases of specimens HT1 (left) and HT2 (right). Mechanical stress-strain plot and lattice 
strains are compared with EPM model predictions (a–d), assuming the weighted method with the parameters given in Table 5 (in figure b also the 
macromechanical curve simulated by pure EPSC model is shown). 
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Fig. 7. Lattice strains < ε33>hkl and < ε11>hkl measured within the elastic range of deformation for the individual reflections hkl in both phases of 
the specimen HT2, compared with pure EPSC model (a) and correlation of the experimental diffraction Young moduli with model predicted 
values (b). 

Fig. 8. Measured lattice strains < ε33>hkl and < ε11>hkl for the individual reflections hkl in ferrite (a) and cementite (b) compared with the weighted 
EPM model for the whole deformation range (specimen HT2). The simulation was performed with the parameters given in Table 5. 
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experimental results correlate perfectly with the model prediction, while for cementite the values of Ehkl are more scattered and slightly 
deviate from the correlation line (Fig. 7 b). The latter disagreement can be caused by the systematic inaccuracy of the single-crystal 
elastic constant used in the self-consistent prediction (the ab initio SEC were applied for cementite, Table 4), by the above mentioned 
problem of the proper calculation of stress/strain localisation for lamellar shape of inclusions or/and by experimental uncertainties of 
the diffraction peak positions due to low intensities of cementite reflections. 

In Fig. 8 the behaviour of lattice strains < ε33>hkl and < ε11>hkl during a full range of elastoplastic deformation is compared with 
the model prediction. It can be concluded that during plastic deformation of ferrite the variation of lattice strains measured using 
different hkl reflections and the effect of lattice strain anisotropy is correctly predicted for ferrite in both measured directions. 
However, in the case of cementite the anisotropy is not correctly simulated, i.e. the resulting predicted lines do not correspond to 
experimental points, and only the range of anisotropy is well reproduced. The latter disagreement is probably caused by the complex 
shape of cementite lamellae and the fact that the introduced η parameter improved calculation of the mean stress/strain localisation in 
the cementite phase but the use of a single weighting parameter is not enough to correctly predict the interactions of cementite lamella. 

Also interesting is the wavy-character of the lattice strains vs. applied stress dependences observed in the plastic range of defor
mation for ferrite in sample HT2 (Fig. 8 a). Such fluctuations are not seen in the case of cementite because, even if they exist, they are 
not significant comparing to the large strain increase in this phase (compare strain scales for both phases in Fig. 8). Surprisingly, the 
fluctuations in ferrite disappear when the mean strain is calculated for all hkl reflection measured in HT2 sample (cf. Figs. 8 a and Fig. 6 
c, on the right). This means that the strains fluctuations depend on the statistics of the pearlite grains contributing to the selected 
reflections hkl (see large pearlite grain size in Table 2) and reflect the transfer of stresses between these grains or other stress het
erogeneities at a larger scale than pearlite grain size (cf. Nakada et al., 2009). These stress heterogeneities oscillate during plastic 
deformation as seen in Fig. 8 a and they are not taken into account in the model calculations. When a large number of grains contribute 
to the mean lattice strain calculated for all hkl reflections, the fluctuations disappear (Fig. 6 c, on the right) because the local het
erogeneities are averaged to zero. It can be also seen that in the case of sample H1 the fluctuations are seen even for the mean lattice 

Fig. 9. Evolution of the phase stresses (a) and the overall stress (b) in specimen HT2 as a function of the applied macrostress. Experimental values 
(points) are compared with EPM model prediction (lines). 
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strain (Fig. 6 c, on the left), i.e. the stress heterogeneities occur at larger scale. 

4.2. Stress evolution in the phases 

The mean stresses in each phase, as well as the overall stress for the specimen HT2 were determined using the method presented in 
Appendix A, with the assumption of axial sample symmetry, i.e. σph

11 ¼ σph
22. The overall stress is defined as: 

σM
ii ¼ f σcem

ii þ ð1 � f Þ σ fer
ii (12)  

where f is the volume fraction of cementite and i  ¼ 1,2 or 3. 
The evolution of the so obtained phase and overall stresses as a function of applied macroscopic stress are shown in Fig. 9. A very 

good agreement between the experiment and the model was found for the principal stresses in ferrite phase, while some deviation of 
the model from experimental data is observed for cementite, especially in the transverse direction (i.e. for σcem

11 ¼ σcem
22 ). This means that 

the model correctly predicts the lattice strains for ferrite not only in two directions (see previous chapter) but the agreement is also 
good for the stresses determined from sin2ψ plots, i.e. on the basis of many hkl reflections and orientations of the scattering vector (cf. 
Appendix A). The deviation of the corresponding plots in cementite is not large and is acceptable taking into account the experimental 
difficulties for this phase. 

A very important conclusion can be made for the overall stress σM
33 (in load direction) calculated from phase stresses using Eq. (12). 

It can be seen in Fig. 9 b, that the σM
33 stress is approximately equal to the value of applied stress (σM

33 � Σ). Also, the components σM
11 ¼

σM
22 are close to zero, with small deviation caused by some disagreement of the phase stress in cementite (see Fig. 9). Therefore, the 

Fig. 10. Experimental (points) mean von Mises stress (a,b) and hydrostatic (c,d) stress in both phases of the HT2 specimen in relation to the applied 
macrostress, compared with EPM model predictions (lines). 
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mixture law defined by Eq. (12) is well fulfilled for the measured phase stresses (especially in the direction of applied load) and 
certainly it is fulfilled for the predicted stresses (see Fig. 9 b). 

To analyse the elastoplastic process occurring in the phases, the von Mises and hydrostatic phase stresses were calculated from the 
measured and predicted mean σph

ii values. The analysis of von Mises stress in the ferrite phase (shown in Fig. 10 a) leads to the 
conclusion that in the plastic range of deformation work hardening is not significant in the ferrite phase, so the main cause for 
macroscopic hardening is elastically deformed cementite, which accumulates very high stress. This conclusion is obviously confirmed 
by the model calculations in which the hardening parameter (θ fer

1 ) was set to 50 MPa, see Table 5 (the theoretical values of von Mises 
stress are slightly overestimated). The von Mises stress for the cementite phase (Fig. 10 b) increases significantly in the plastic range of 
ferrite deformation, which is a consequence of the elastic nature of cementite deformation and its response for the plastic deformation 
of ferrite. The evolution of large von Mises stress in cementite agrees perfectly with the EPM model prediction (within the range of 
experimental uncertainty). 

The observed low increase of von Mises stress in ferrite is caused by tensile stresses σ fer
11 and σ fer

22 (generated in ferrite due to the 
presence of cementite, see Fig. 9), which compensate an increase of σ fer

33 . It should be concluded that the coexistence of large von Mises 
stress in elastically deformed cementite and low von Mises stress in ferrite is possible due to the presence of interphase interaction in 
the transverse direction (i.e., presence of tensile stresses σ fer

11 ¼ σ fer
22 in ferrite). 

Other interesting conclusions concern hydrostatic stresses. It can be assumed that the hydrostatic interphase stresses are not present 
in the initial sample and that the values assumed in data analysis as the stress free parameters are reasonable. As stated in the work of 
Young et al. (2007), the near-zero values of hydrostatic stresses can be related to two phenomena, which generate residual stresses in 
composite materials. The first reason is the mismatch in the thermal expansions coefficients of matrix and reinforcement which leads to 
compressive stress in cementite, and the second one is connected with the allotropic γ � α transformation of ferrite matrix which on the 
other hand generates the tensile stresses in the cementite phase (Basinski et al., 1955; Young et al., 2007). These two phenomena 
balance each other explaining the observed near zero stresses. 

As shown in Fig. 10 c, a perfect agreement of the hydrostatic stress between the model and the experiment is observed in the ferrite 
phase. A high value of this stress is not limited by the ferrite yield threshold, since the hydrostatic stress does not affect the plastic 
deformation process. The hydrostatic stress corresponds only to the linear elastic deformation of the phases or generally of the ma
terial. Therefore the hydrostatic stresses should increase linearly also during plastic deformation, what is well seen in the case of ferrite 
phase. In the present experiment the hydrostatic stress in cementite does not agree well with the model prediction (cf. Fig. 11 d) but 
this stress is relatively small compared to the von Mises stress in this phase. It can be concluded that some disagreements of the 
principal stresses in cementite with the model prediction (cf. Fig. 8 a) are caused mostly by the deviation of experimental hydrostatic 
stress (Fig. 10 d), while the von Mises stress agrees very well with the model result (Fig. 10 b). 

The estimation of the second-order stresses (see Appendix A) was also performed and root mean square values of stress tensor 
components for a statistical crystallite in the ferrite phase are shown in Fig. 11. The analysis revealed that the second-order stresses 
�

σII; fer
ij

�
were generated in ferrite only during its plastic deformation i.e. for applied stress over 500 MPa. It was observed that the 

values of σ fer
ij determined from experimental data saturate at maximum values lower than 100 MPa (Fig. 11), i.e. they are much smaller 

than σ fer
ij mean stress in ferrite (Fig. 9 a). It is also seen in Fig. 11 that the model predicted values of σII; fer

ij are overestimated, especially 

in the direction of the applied load (x3). The second-order stresses sum to zero value when the phase stresses σ fer
ij are calculated over 

Fig. 11. Tensor components of experimental (points) second-order stress tensor in ferrite (HT2 specimen) as a function of the applied macrostress, 
compared with EPM model predictions (lines). The root mean square values are shown. 
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the ferrite phase. Although the values of σ II; fer
ij do not directly affect the average phase stresses, they influence the microscopic 

deformation at the scale of crystallites, and this effect is taken into account in model calculations. It should be emphasised that small 
second-order stresses were present also in ferrite, in the initial sample and during elastic deformation, however, the values of the initial 
second-order stresses caused by sample preparation cannot be determined by the method shown in Appendix A. 

As mentioned above the cementite phase did not undergo plastic deformation, i.e. the incompatibility stresses in this phase were 
generated due to the interaction of elastic pearlite lamellae with the plastic matrix. It is interesting to notice the different behaviour of 
the < a>fhklg vs. sin2ψ plots for both phases, corresponding to the different sources of the incompatibility stresses. Nonlinearities arise 
on the ferrite plots due to plastic anisotropy (Fig. A1) of ferrite crystallites, in which glides are activated on different slip systems. On 
the other hand for the elastic cementite the < a>fhklg vs. sin2ψ plots remains linear (Fig. A1), but the slopes of these lines change due to 
differences in interaction of anisotropic elastic lamella with the plastic matrix. The latter phenomena is not well predicted by the model 
as shown in Appendix A. 

4.3. Stress rate concentration tensor 

The next step of the analysis concerned the localisation of stresses in both phases during elastoplastic deformation. The evolution of 
the stress localisation components (Eq. (10)) for the ferrite and cementite phases is shown in Fig. 12. In this figure the model predicted 
curves are also shown for the weighted model (EPM, Table 5) and the pure self-consistent model (EPSC). It can be concluded that in the 
elastic range of deformation the applied longitudinal stress Σ33 ¼ Σ localises in both phases equally (i.e., B fer

3333 ¼ ​ B
cem
3333 � 1) and the 

transversal stresses are not generated (B fer
3311 ¼ ​ B

cem
3311 � 0). Significant changes are observed at the beginning of the elastic-plastic 

transition, when the component Bph
3333, responsible for the localisation of longitudinal stress, decreases in the ferrite phase and in

creases significantly in cementite (up to Bcem
3333=B

fer
3333 ​ � 14:5). This illustrates the partitioning of the stresses between phases, discussed 

above (cf. Figs. 9 and 10). On the other hand, the B fer
3311 component, responsible for the generation of the transverse stresses in ferrite, 

increases from zero to a positive value, causing the generation of tensile transverse stress. On the contrary, model calculations show a 
negative value of Bcem

3311 for cementite, which should lead to equilibrium of stresses over both phases in the transverse direction. The 
latter prediction agrees qualitatively with the measurements, but in this case the experimental values are not accurately determined 
due to the low quality of the diffraction signal coming from the cementite (it was found that the phase stresses equilibrium condition 
was not fulfilled for their experimental values in the transverse direction - cf. discussion concerning Fig. 9). Finally, the stabilisation of 
all determined components is observed, which means that the stress localisation does not change significantly during advanced de
formations. When the stabilisation of localisation occurs for two components and the Bph

3333 and Bph
3311 values approach each other for 

the ferrite phase (causing that von Mises stress does not arise in this phase, cf. Fig. 10 a) and diverge for cementite (leading to high von 

Fig. 12. Components of stress rate concentration tensor in ferrite (a) and cementite (b). Experimental (points) results for HT2 sample as a function 
of the applied macrostress are compared with EPM model and EPSC model predictions (lines). 
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Mises stress increase, cf. Fig. 10 b). 
In the case of the EPM model, the predicted components Bph

33ii of the localisation tensor agree well with the experimental results for 
the whole deformation range and for both phases, while the results obtained from the EPSC model are far from the experimental data 
during plastic deformation (cf. Fig. 12 b). The variation of η parameter (Fig. 12 a) indicates precisely when the localisation assumed in 
the EPM model differs from that predicted by the EPSC model, i.e. the contribution of the Lin’s type interaction appears at the 
beginning of plastic deformation, while for the advanced sample strain (cf. also Fig. 9 a) this contribution decreases. 

4.4. Reasons for the strengthening of perlite 

The experimental data presented above allows us to discuss the main physical reasons for different initial hardness and very similar 
strain strengthening for the investigated samples. It was found that the initial CRSS for ferrite and yield stress of pearlite depend on the 
inter-lamellar spacings between cementite lamella, i.e. a smaller distance leads to a higher hardness of ferrite and, consequently, to a 
higher macroscopic yield stress of the steel (cf. τ fer

0 in Table 5 and the pearlite yield stresses in Fig. 6 b with interlamelar spacings given 
in Table 2 for HT1 and HT2 samples). This conclusion agrees with the previous experimental results (Allain and Bouaziz, 2008; Dollar 
et al., 1988; Yahyaoui et al., 2014) and is consistent with the empirical models proposed for lamellar pearlite given by Eq. (1) (Allain 
et al., 2019; Bouaziz and Le Corre, 2003). It should be emphasised that almost equal stress localisation in both phases during elastic 
deformation (i.e., B fer

3333 ¼ ​ B
cem
3333 � 1 and B fer

3311 ¼ ​ B
cem
3311 � 0) causes that the effect of stress transition between phases is not sig

nificant and the mean stresses are approximately equal in ferrite and cementite. In this case, the plastic flow of pearlite is controlled 
only by the hardness of the ferrite, which is related to the thickness of ferrite lamellae (the size effect). This type of material 
strengthening depends on the dislocation interactions with the ferrite-cementite interphase boundaries. Hence, the dislocation density 
and spatial distribution significantly affect the initial yield of the ferrite phase and, consequently, the initial yield of pearlite, as 
determined by Yahyaoui et al. (2014). 

It was found that during plastic deformation large stresses are concentrated in cementite (Bcem
3333=B

fer
3333 ​ → 14:5) causing important 

strain strengthening of the pearlite. This is caused by a large difference in the tangent moduli of elastically stiff cementite and soft, 
plastically deformed ferrite. The roles of cementite and ferrite in material strengthening can be studied on the basis of the von Mises 
stress evolution determined in both phases. In the range of plastic deformation the mean von Mises stress in ferrite (being a measure of 
yield stress evolution for this phase) does not change significantly due to a small work hardening of this phase. As noticed above, the 
low and stable value of the ferrite yield stress is possible due to the increase of tensile stress generated in this phase, in the direction 
perpendicular to the applied load. The evolution of the measured phase stresses and the corresponding macrostress (calculated from 
Eq. (12)) directly showed that the increase of the overall strength of lamellar pearlite during elastoplastic deformation comes mostly 
from the extraordinary value of stress concentrated in elastically deformed cementite. The total stress practically does not depend on 
the comparatively slight increase in the stress in ferrite (cf. Figs. 9 and 10). This means that the effect of stress distribution between the 
phases during plastic deformation dominated the effects associated with the dislocation hardening of ferrite, and as a consequence 
interlamelar spacings do not significantly affect the yield stress evolution of fully lamellar pearlite. Measurements of phase stresses and 
their analysis explained the surprising experimental result showing that the deformation strengthening of fully lamellar pearlite does 
not depend on the inter-lamellar distances. This effect was observed by many authors (Allain and Bouaziz, 2008; Dollar et al., 1988; 
Yahyaoui et al., 2014) and it was also incorporated into the empirical hardening law (Bouaziz and Le Corre, 2003). It should be 
emphasised that, unlike fully lamellar pearlite, in other pearlitic steels, e.g. ferrite–pearlite steel (Allain and Bouaziz, 2008) or globular 
pearlitic steel (Allain et al., 2019), the sizes of pearlite or cementite grains significantly affect the strain strengthening of the material. 

5. Summary 

Synchrotron X-ray diffraction measurements were used to study the evolution of lattice strain and stresses in both phases of C70 
fully pearlitic steel during an elastoplastic in situ tensile test. The evolution of the components of the stress rate concentration tensor 
showed approximately equal stress localisation in the cementite and ferrite phases during elastic deformation, an important change of 
stress localisation during elastic-plastic transition, and finally stable and significantly higher localisation of stresses in cementite 
compared to ferrite during advanced plastic deformation. 

The distribution of stresses between the phases has a significant impact on the type of reinforcement of fully lamellar pearlite. The 
initial yield strength is affected only by the hardness of the ferrite (depending on inter-lamellar spacings), because equal stresses are 
located in both phases. However, during plastic deformation, the transfer of stress from ferrite to cementite (a process independent of 
inter-lamellar spacing) dominates in the strain strengthening of pearlite, therefore the effect of the low hardness of ferrite is not 
significant. The obtained results explain the experimental observations presented by many authors for completely lamellar pearlite. 

In elasticity, the lattice strains measured for different crystallite groups (selected by different hkl reflections) agree with these 
predicted by EPSC model, but it was found that this model does not correctly predict the partitioning of the lattice strains and stresses 
between phases during the plastic deformation of pearlite. The diffraction results, as well as macroscopic mechanical behaviour, were 
much better reproduced by the proposed intermediate EPM model, in which contributions of the stress localisation calculated on the 
basis of the self-consistent and Lin models were varied during plastic deformation. 

The second-order stresses were observed in this phase in the initial and elastically deformed samples, but these stresses are replaced 
by plastic incompatibility stresses in the beginning of plastic deformation. The latter stresses were quantitatively determined in the 
ferrite phase and they are much smaller than the mean phase stress. Insignificant second-order stresses were detected in cementite, 
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which remains elastic during the whole range of deformation. 
Finally, it was found that the lattice strains measured in cementite do not agree with the EPM model for a relatively large sample 

strain. Experimental data show a relaxation of the load in this phase and this effect can be explained by the fracturing of the cementite 
lamellae. 
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Appendix A 

The normal components of the stress tensors σph
ii were determined independently for each phase using the multireflection method 

(Baczmanski et al., 2008; Wro�nski et al., 2007). In analysis the X-ray stress factors were calculated from single-crystal elastic constants 
(SEC) given in Table 4, using the Eshelby-Kr€oner model with the assumption of non-textured material (Baczmanski et al., 2008). 

Additionally, in the case of the ferrite phase the second-order plastic incompatibility stresses σII; ph
ij generated during the tensile test 

were evaluated (Wawszczak et al., 2016; Wro�nski et al., 2007). The latter stresses describe fluctuation around a mean phase stress σph
ij 

due to differences in plastic deformation of crystallites having different lattice orientations. It can be shown, that for non-textured 
material the < a>fhklg vs. sin2ψ plots (ψ angle is defined in Fig. 2) exhibit linear character, when only the phase stresses (σph

ii ) are 
present, while the second order stresses σII; ph

ij in plastically deformed phase cause nonlinearities of these plots (Baczmanski et al., 
2008). 

The above stress analysis was used to determine the principal stresses σph
ii in cementite and ferrite during a tensile test performed for 

a pearlitic sample (Fig. 9), assuming axial symmetry around x3 axis (i.e. σph
11 ¼ σph

22). This assumption is reasonable because of the 
random crystallographic texture and the fact that uniaxial stress was applied along axis x3. For a given phase, the theoretical lines were 
fitted simultaneously to all < a>fhklg values measured with different reflections (cf. Table 3) and scattering vector orientations (i.e. 
different ψ , cf. Fig. 2), as presented in Figs. A1 and A.2. It should be stated, that analysis of σII; ph

ij stresses based on non-linearity of <
a>fhklg vs. sin2ψ is applicable only for ferrite which is subjected to plastic deformation. 

At first the stress analysis was done for the initial sample assuming additionally that the hydrostatic stresses in both phases are 
equal to zero (Young et al., 2007), and as a result, negligible stresses were found in ferrite (σ fer

11 ¼ σ fer
22 ¼ 6.3 � 3.2 MPa and σ fer

33 ¼

12.6 � 2.7 MPa), as well as in cementite (σcem
11 ¼ σcem

22 ¼ 16.6 � 18.8 MPa and σcem
33 ¼ -11.8 � 15.2 MPa). Because the stresses in both 

phases are very small, the stress free lattice parameters (Table 3) were determined for both phases from diffraction data obtained for 
the initial sample. These stress free lattice parameters were then used in stress analysis performed for the loaded sample. The results of 
this analysis are shown in Fig. 9 (phase stresses) and Fig. 11 (second-order stresses). 

As seen in Fig. A1, small nonlinearities exist on the < a>fhklg vs. sin2ψ plot for ferrite in the initial sample and the same character of 
nonlinearities remains unchanged for elastically deformed sample (cf. Σ ¼ 508 MPa). However, the origin of these nonlinearities is 
unknown, and they are not correlated with model prediction done for tensile test. As a result a value close to zero of σII; ph

ij was obtained 
for the initial, as well as the elastically deformed sample (Fig. 11). For the advanced plastic deformation of ferrite (cf. Σ ¼ 914 MPa) 
the plots are also non-linear but the character of the deviations is different (smooth curvature appeared). The curvatures of the <
a>fhklg vs. sin2ψ plots are well matched by the theoretical lines. As a result, increasing second-order stresses σII; ph

ij with subsequent 
saturation were found during plastic deformation (Fig. 11). 

In the case of elastic cementite the < a>fhklg vs. sin2ψ plots are linear, but the trends of the experimental points are correlated with 
the slope of the predicted line for the individual hkl reflections only during elastic deformation (cf. plot Σ ¼ 508 MPa in Fig. A2 a,b). 
During plastic deformation, the experimental plots are still linear but there are not well correlated with the theoretical lines. However, 
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if the differences between the hkl reflection are neglected, it can be concluded that theoretical lines in general fit well to the exper
imental data (cf. plot Σ ¼ 914 MPa in Fig. A2 c,d). 

Fig. A1. The example sin2ψ plots for ferrite measured with step of Δψ ¼ 2� for the initial (a) and loaded sample HT2: Σ ¼ 508 MPa (b) and Σ ¼ 914 
MPa (c). Results are shown for two sets of inclination angles (defined in Fig. 2): þψ and -ψ. The fitted lines correspond to the determined stresses.   
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Fig. A2. The sin2ψ plots for cementite measured with step of Δψ ¼ 15� for the initial and loaded sample HT2: Σ ¼ 508 MPa (a,b) and Σ ¼ 914 MPa 
(b,c). Results are shown for two sets of inclination angles (defined in Fig. 2): þψ (a,c) and -ψ (b,d). The fitted lines correspond to the determined 
stresses (notice very different vertical scales between a,b and c,d). 

Appendix B 

The principles of the EPM method allowing the quantitative description of a deviation of the experimental results from the EPSC 
model are presented below. This method is based on the η and ξ parameters used to tune model prediction to experimental results and it 
can be easily incorporated into the EPSC algorithm.  

a) Principles of homogenisation 

In homogenisation procedures used to describe the elastic or elastoplastic (tangential) behaviour of polycrystalline materials, a 
homogenous medium equivalent to the considered RVE (representative volume element) of polycrystal is considered. It can be shown 
that in the case of homogenous boundary conditions the stress and strain applied to the sample ( Σ and E ) are equal to the volume 
averages, calculated for local values σ ¼ σðxÞ and ε ¼ εðxÞ over the RVE (Bishop and Hill, 1951; Hill, 1967; Mandel, 1966; Morawiec, 
2004), i.e.: 

Σ ¼
1
V

Z

V

σ dV ¼< σ > and ​ ​ ​ ​ E ¼ 1
V

Z

V

ε dV ¼< ε > (B.1) 

The mean specific energy and Hook’s law can be expressed through the averages defined above and the effective macroscopic 
stiffness tensor C, i.e.: 

< U >¼< ε > C < ε > =2 and ​ ​ ​ < σ >¼ C < ε > (B.2) 

For homogenous boundary conditions, the effective moduli must fulfil the equivalence energy principle (Hill-Mandel’s lemma 
(Bishop and Hill, 1951; Hill, 1967; Mandel, 1966; Morawiec, 2004): 
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2<U >¼< εσ >¼< ε > C < ε >¼< ε >< σ > (B.3) 

which leads to definitions of effective modulus given through relationships: 

C < ε >¼< cε > or ​ ​ ​ < ε > C < ε >¼< εcε > (B.4)  

where the local Hook’s law is written using the local modulus σ ¼ cε:
If we define the local strain A and stress B concentration tensors through: 

ε ¼ AE ¼ A < ε > and ​ ​ ​ σ ¼ BΣ ¼ B < σ > (B.5) 

the effective modulus (consistent with Hill-Mandel’s lemma and Eq. (B.1)) can be computed from one of the equations: 

C ¼< cA > or ​ ​ ​ C ¼< A� 1cA > (B.6a)  

or, alternatively from 

C ¼< c� 1B>� 1 or ​ ​ ​ C ¼< B� 1c� 1B>� 1 (B.6b) 

Similar description can be used in the case of incremental models of plastic deformation in which constant tangent moduli are used 
within small increments of deformation (Bishop and Hill, 1951; Hill, 1967). In this case, the stress and strain rates denoted by dot can 
be related through a local tangent modulus l or an overall tangent modulus L: 

_σ ¼ l _ε and _Σ ¼< _σ >¼ L < _ε >¼ L _E (B.7)  

and the effective tangent modulus L tensor can be calculated from: 

L ¼< lA > or ​ ​ ​ L ¼< A� 1lA > (B.8a)  

or, alternatively from 

L ¼< l� 1B>� 1 or ​ ​ ​ L ¼< B� 1l� 1B>� 1 (B.8b)    

b) Lipinski-Berveiller model and scaling parameters 

In this work the EPSC (elastoplastic self-consistent) incremental model proposed by Lipinski and Berveiller (1989) and Lipinski 
et al. (1995) and its modification are used to predict elastoplastic deformation of pearlite. The polycrystalline grains (crystallites) are 
represented by ellipsoidal Eshelby inclusions (Eshelby, 2007), numbered by i, for which the strain rate concentration tensor is given by 
the equation: 

Ai
sc ¼

�
I � Tii

scΔli
sc

�� 1 and ​ ​ ​ ​ Bi
sc ¼ li

scA
i
scL
� 1
sc (B.9)  

where Δlisc ¼ li � Lsc , Tii
sc ¼ Si

scL� 1
sc is the interaction tensor expressed by Eshelby tensor Si

sc and effective tangent moduli tensor Lsc, 
while I is the fourth rank unit tensors (for details see Lipinski et al., 1995; Lipinski and Berveiller, 1989). 

The effective moduli are calculated according to the first of Eqs. B.8a and B.8b, which take form of a sum over all considered 
inclusions: 

Lsc ¼< liAi
sc>N ¼

1
N
XN

i
liAi

sc or L� 1
sc ¼<

�
l� 1�iBi

sc>N ¼
1
N
XN

i

�
l� 1�iBi

sc (B.10) 

If the experimental data deviate from the model results, the observed discrepancy should be described quantitatively. To do this, we 
propose the parameters η 2 ½0; 1� and ξ 2 ½0;1�, which determine the distances of the experimental results from the self-consistent 
model (η ¼ ξ ¼ 1) toward the Lin/Voigt models (η ¼ 0; assuming homogenous total strain _εi

sc ¼
_E (Lin, 1957; Voigt, 1928) or to

ward the Sachs/Reuss models (ξ ¼ 0; assuming homogenous stress _σi
sc ¼

_Σ (Reuss, 1929; Sachs, 1928), respectively. The dependence of 
the model type on the η and ξ values is visualised in Fig. B1. The parameter η (or ξ) proportionally reduces the fluctuations of local 
strain rates _εi

sc (or local stress rates _σi
sc) around the average value < _εi

sc>N ¼ _E (or < _σi
sc>N ¼ _Σ), predicted by the self-consistent model, 

i.e.: 
�

_εi
� _E

�
¼ η
�

_εi
sc �

_E
�

for ​ ​ ​ η 2 ½0; 1� or
�

_σi
� _Σ

�
¼ ξ
�

_σi
sc �

_Σ
�

for ​ ​ ​ ξ 2 ½0; 1� (B.11)  

where _εi and _σi correspond to the given scaling parameters η and ξ. 
Substituting relations _εi

¼ Ai
η

_E and _εi
sc ¼ Ai

sc
_E (or _σi ¼ Bi _Σ and _σi

sc ¼ Bi
sc

_Σ) the localisation tensor for a given η (or ξ ) can be 
constructed: 

Ai
η ¼ η

�
Ai

sc � I
�
þ I ¼ ηAi

sc þ ð1 � ηÞ I for η 2 ½0; 1� or Bi
ξ ¼ ξ

�
Bi

sc � I
�
þ I ¼ ξBi

sc þ ð1 � ξÞ I for ξ 2 ½0; 1� (B.12) 
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Therefore, the effective tangent moduli calculated from Eq. (B.10) are: 

Lη ¼< liAi
η>N ¼ η < liAi

sc>Nþ < li>N � η < li>N ¼ ηLsc þ ð1 � ηÞ LTV or L� 1
ξ ¼<

�
l� 1�iBi

ξ>N ¼ ξL� 1
sc þ ð1 � ξÞ L� 1

SR (B.13)  

where LLV ¼< li>N is the Lin/Voigt arithmetical mean corresponding to the assumption of homogenous total strain field (i.e. _εi
¼ _E), 

and L� 1
SR ¼<

�
l� 1
�i
>N is the Sachs/Reuss harmonic mean corresponding to the assumption of a homogenous stress field (i.e. _σi ¼ _Σ). 

The so calculated tangent modulus tensor Lη is between that obtained from the self-consistent model (Lη ¼ Lsc for η¼ 1Þ and the 
Lin/Voigt upper bound (Lη ¼ LLV for η ¼ 0Þ, while the Lξ tangent modulus tensor is between the one obtained from the self -consistent 
model (Lξ ¼ Lsc for ξ¼ 1Þ and the lower bound determined by the Sachs/Reuss assumption (Lξ ¼ LSR for ξ ¼ 0Þ, i.e.: 

LLV � Lη � Lsc and Lsc � Lξ � LSR (B.14)    

c) Hill’s approach and the simplified Zaoui-Berveiller model 

Alternatively, the deviation from the self-consistent model can be quantitatively described using Hill’s constitutive equation 
(equivalent to the Lipinski-Berveiller model, but with the assumption of equal interaction tensor Tii

sc for all inclusions). Hill’s equation 
(Hill, 1965) can be written for the case of a self-consistent model and then the strain or stress fluctuation field can be modified using Eq. 
(B.11): 

�
_σi
� _Σ

�
¼ L*

sc

�
_E � _εi

sc

�
¼ 1
.

η L*
sc

�
_E � _εi

�
for η 2 ½0; 1� or

�
_εi
� _E

�
¼
�
L*

sc

�� 1
�

_Σ � _σi
sc

�

¼ 1
.

ξ
�
L*

sc

�� 1
�

_Σ � _σi
sc

�
for ​ ​ ​ ​ ξ 2 ½0; 1� (B.15)  

where L*
sc ¼ ðT

ii
scÞ
� 1
� Lsc ¼ LscððSi

scÞ
� 1
� IÞ is the Hill’s constrain tensor and Si

sc is the Eshelby tensor for elastoplastic effective medium 
characterised by tangent modulus tensor Lsc. 

The latter equations can be rewritten in another form: 
�

_σi
� _Σ

�
¼ αH L*

sc

�
_E � _εi

�
(B.16)  

where αH ¼ 1=η2 ½1;∞Þ and αH ¼ ξ 2 ½0;1� ​ , i.e. αH 2 ½0;∞Þ. 
This equivalent approach leads directly to the well-known simplified Berveiller and Zaoui (1978) model when two significant 

assumptions are introduced: instead of effective tangent modulus, the isotropic elastic tensor of macroscopic stiffness is used in the 

calculation of Hill’s constrain tensor, i.e. L*
sc ¼ Ciso

��
Si�� 1

� I
�

, where the Eshelby tensor Si is calculated for spherical inclusion 

embedded in isotropic elastic matrix. Assuming proportional loading and using a secant “isotropization” method the constitutive 
relation given by Eq. (B.16) was simplified (Berveiller and Zaoui, 1978). For given Poisson’s ratio ν and shear modulus μ it can be 
written: 

�
_σi
� _Σ

�
¼ 2αð1 � βÞμ

�

_Epl
�
�

_εpl
�i
�

for ​ ​ ​ α 2 ½0; 2� (B.17)  

where β ¼ 2ð4 � 5νÞ=15ð1 � νÞ, _Epl and _εpl are the macroscopic and grain plastic strain rates, respectively. 
The equation above was proposed by Berveiller and Zaoui (1978) in an integrated form (without dots) for constant α; μ and ν. 
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