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Abstract: Systemic Sclerosis (SSc) is a chronic autoimmune disease with high morbidity and mortality.
Autologous Hematopoietic Stem Cell Transplantation (AHSCT) is the best therapeutic option for
rapidly progressive SSc, allowing increased survival with regression of skin and lung fibrosis. The
immune determinants of the clinical response after AHSCT have yet to be well characterized. In
particular, the pivotal role of the Human Leukocyte Antigen (HLA) system is not well understood,
including the role of non-classical immuno-modulatory HLA-E and HLA-G molecules in developing
tolerance and the role of Natural Killer cells (NK) in the immunomodulation processes. We retro-
spectively tested whether the genetic and/or circulating expression of the non-classical HLA-E and
HLA-G loci, as well as the imputed classical HLA determinants of HLA-E expression, influence the
observed clinical response to AHSCT at 12- and 24-month follow-up. In a phenotypically well-defined
sample of 46 SSc patients classified as clinical responders or non-responders, we performed HLA
genotyping using next-generation sequencing and circulating levels of HLA-G and quantified HLA-E
soluble isoforms by ELISA. The -21HLA-B leader peptide dimorphism and the differential expression
level of HLA-A and HLA-C alleles were imputed. We observed a strong trend towards better clinical
response in HLA-E*01:03 or HLA-G 14bp Del allele carriers, which are known to be associated with
high expression of the corresponding molecules. At 12-month post-AHSCT follow-up, higher circu-
lating levels of soluble HLA-E were associated with higher values of modified Rodnan Skin Score
(mRSS) (p = 0.0275), a proxy of disease severity. In the non-responder group, the majority of patients
carried a double dose of the HLA-B Threonine leader peptide, suggesting a non-efficient inhibitory
effect of the HLA-E molecules. We did not find any correlation between the soluble HLA-G levels
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and the observed clinical response after AHSCT. High imputed expression levels of HLA-C alleles,
reflecting more efficient NK cell inhibition, correlated with low values of the mRSS 3 months after
AHSCT (p = 0.0087). This first pilot analysis of HLA-E and HLA-G immuno-modulatory molecules
suggests that efficient inhibition of NK cells contributes to clinical response after AHSCT for SSc.
Further studies are warranted in larger patient cohorts to confirm our results.

Keywords: systemic sclerosis (SSc); inflammation; autologous hematopoietic stem cell transplantation
(AHSCT); responder status; HLA-G; HLA-E

1. Introduction

Systemic Sclerosis (SSc) is a rare and severe chronic systemic autoimmune disease
characterized by early vascular alterations, activation of immune processes, and progressive
fibrosis of skin and internal organs [1,2]. It is associated with reduced health-related quality
of life (HRQoL) and a shorter life expectancy [3–5]. Early rapidly progressive SSc is the
most lethal connective tissue disease, with a 5-year survival rate of 50–70% depending
on the extent of organ involvement [6,7]. Risk factors for high mortality are diffuse skin
fibrosis [7], clinically assessed by the modified Rodnan skin score (mRSS, range 0–51) [8],
elevated C-reactive protein levels [9], altered left or right ventricular ejection fraction [10],
interstitial lung disease with reduced forced vital capacity (FVC) or diffusion capacity for
carbon monoxide (DLCO) on lung function tests [11], proteinuria, and male gender [9].
The presence of anti-topoisomerase II (Scl-70) auto-antibodies, reduced functional status on
the Scleroderma Health Assessment Questionnaire (sHAQ) [12], and pulmonary arterial
hypertension were also shown to adversely affect survival [7,13].

Three successive randomized controlled trial (RCT) demonstrated the efficacy of Au-
tologous Hematopoietic Stem Cell Transplant (AHSCT) compared to cyclophosphamide
intravenous (iv) pulses. ASSIST (American scleroderma stem cell versus immune suppres-
sion trial) [14] and ASTIS (Autologous stem cell transplantation international scleroderma
trial) [15] used a non-myeloablative regimen and the SCOT trial (Scleroderma: Cyclophos-
phamide or transplantation) [16] used a myeloablative conditioning regimen. AHSCT has
become the best therapeutic option for patients with severe or rapidly progressive SSc, and
is recommended by the 2016 American Rheumatism Association (ACR)-European League
Against Rheumatism (EULAR) guidelines (grade A level of evidence) [17], the American
Society for Transplantation and Cellular Therapy (ASBMT) (standard of care) [18], and the
European Bone Marrow Transplant Association (EBMT) (grade 1 level of evidence) [19].

Several immune processes may underpin the inter-individual responses to AHSCT in
SSc patients. SSc patients can be categorized as responders (R) or non-responders/relapsing
(NR), using pre-defined criteria systematically assessed during routine post-transplant
follow-up [20,21]. Specific analysis of T and B cell reconstitution profiles and diversity of
the T-cell repertoire, together with mRSS and FVC scoring at 1–2 years post-transplant has
permitted the identification of long-term clinical responders and non-responders/relapsing
SSc patients at 4–5 years after AHSCT [22].

Certain innate and adaptive immune processes are associated with the clinical evolu-
tion of SSc before and after AHSCT [23]. The non-classical HLA-class I molecules, specifi-
cally HLA-E and HLA-G, contribute to Natural Killer (NK) cell-mediated immunomodula-
tory function [24–26]. HLA-E and HLA-G exist either as membrane-bound molecules or as
soluble circulating isoforms. Both HLA-E and HLA-G are encoded by pauci-polymorphic
loci. HLA-E is encoded by two functional alleles, namely HLA-E*01:01 and HLA-E*01:03,
which differ by a single amino acid substitution (Arginine to Glycine at position 107) in
the alpha-2 heavy chain domain and by different cell surface expressions; HLA-E*01:01
being almost undetectable, while HLA-E*01:03 is expressed at normal levels [27,28]. The
HLA-E soluble circulating isoform (sHLA-E) results from the shedding of membrane bound
HLA-E molecules, which can be induced by stressful events, such as infection or inflam-
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mation. In addition, the rates of expression of both HLA-A and HLA-C classical alleles
appear to modulate the HLA-E expression through allele-dependent release of the M leader
peptide. Higher HLA-A and C expression levels are believed to yield higher expression
levels of HLA-E molecules, given that all HLA-A and C alleles carry the methionine leader
peptide [29,30]. HLA-G expression is characterized by seven isoforms consisting of four
membrane-bound (HLA-G1 to -G4) and three soluble isoforms (sHLA-G) (HLA-G5 to -G7).
HLA-G locus displays a unique polymorphism pattern distributed along the non-coding
regions, namely the promoter and the 3′-untranslated (3′UTR) regions, with a limited
number of exonic polymorphisms with 102 alleles and 35 protein variants reported so
far (IMGT/HLA sequence database, March 2022). Each allele carries a 14-base pair (bp)
insertion (Ins) or deletion (Del) in the 3′UTR which modulates HLA-G expression and a
higher circulating level of sHLA-G is associated with the Del/Del genotype as compared to
the Ins/Ins genotype [31].

We took advantage of a phenotypically well-defined sample of 46 SSc patients before
and after AHSCT to retrospectively analyze the influence of the HLA-E and HLA-G circu-
lating expression levels and genetic diversity on the observed clinical responses at different
time points during follow-up after AHSCT for SSc.

2. Results
2.1. Socio-Demographical Characteristics and Response to AHSCT

The study population included 29 females and 17 males, with a mean age of 45.6 years
(±12.8) [range: 17–66] at time of AHSCT. SSc patients were from European (58.7%), Afro-
American (17.4%), North African (15.2%), and Asian (8.7%) geographic origins (Table 1).
According to the observed clinical response after AHSCT, 32 patients were classified as re-
sponders (R) and 14 patients as non-responders/relapsing (NR) at 12 months. At 24 months,
33 patients were classified as responders (R) and 13 patients as non-responders/relapsing
(NR) (Table 2). No statistically significant differences in clinical responses were observed ac-
cording to sex, geographic origin, and age at time of transplant (Table 2 and Supplementary
Figure S1).

Table 1. Demographic and clinical characteristics of 46 Systemic Sclerosis patients before autologous
hematopoietic stem cell transplantation (AHSCT).

n (%)/Mean (SD) [Min–Max] Missing Values (n)

Age, years 45.6 (12.8) [17–66]

Sex
Male 17 (37.0)
Female 29 (63.0)

Geographic origin
European 27 (58.7)
Afro-American 8 (17.4)
North African 7 (15.2)
Asian 4 (8.7)

Disease duration, years 2.3 (1.5) [0.2–6.2]

modified Rodnan Skin Score (mRSS) 24.9 (10.3) [3–51]

Pulmonary involvement
FVC, % predicted 78.0 (17.2) [52–130] 2
DLCO, % predicted 52.6 (15.7) [26–90]

Auto-antibodies
Antinuclear positive 44 (95.7) 1
Anti-Scl 70 positive 29 (63.0) 1
Anti-centromere positive 1 (2.2) 2

DLCO: Diffusing capacity of the Lungs for Carbon Monoxide; FVC: Forced Vital Capacity; SD: standard deviation.
Continuous variables are summarized as mean (Standard deviation) [minimum-maximum] and categorical
variables as numbers of patients (percentage).
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Table 2. Demographic characteristics of 46 Systemic Sclerosis patients, according to the observed
clinical response (responder or non-responder) at 12 and 24 months after autologous hematopoietic
stem cell transplantation (AHSCT).

12 Months after AHSCT 24 Months after AHSCT

R, n (%) NR, n (%) p-Value
R vs. NR

Global
p-Value

R, n (%) NR, n (%) p-Value
R vs. N

Global
p-Valuen = 32 n = 14 n = 33 n = 13

Geographic origin
European 20 (62.5) 7 (50) 0.43 20 (60.6) 7 (53.8) 0.68
Afro-American 4 (12.5) 4 (28.6) 0.19 4 (12.1) 4 (30.8) 0.20
North African 6 (18.8) 1 (7.1) 0.41 6 (18.2) 1 (7.7) 0.65
Asian 2 (6.2) 2 (14.3) 0.37 3 (9.1) 1 (7.7) 1.00

European and North African 26 (81.3) 8 (57.1) 0.16 26 (78.8) 8 (61.5) 0.23
Afro-American and Asian 6 (18.8) 6 (42.9) 7 (21.2) 5 (38.5)

Age at transplantation
Mean (SD), 45.6 (12.4) 45.6 (14.4) 0.44 45.4 (13.0) 45.9 (12.9) 0.86
Median 45.8 50.6 46.8 48.9
Min–Max 20.1–66.4 16.7–61.5 20.1–66.4 16.7–61.1

Sex
Male 14 (43.8) 3 (21.4) 0.15 14 (42.4) 3 (23.1) 0.32
Female 18 (56.3) 11 (78.5) 19 (57.6) 10 (76.9)

AHSCT: Autologous Hematopoietic Stem Cell Transplantation; R: responder patients, NR: non-responder patients,
SD: Standard Deviation.

2.2. Non Classical and Classical HLA Class I Genetics and Response to AHSCT

We observed a trend towards a higher frequency of high HLA-E*01:03 and HLA-G
14bp Del expressor alleles in responder patients. Overall, non-classical and classical HLA
class I genetics analyses did not identify any statistically significant differences between
responder and non-responder patients (Tables 3, S1 and S2).

Table 3. Genotype distributions and allele frequencies of HLA-E and G and the imputed HLA-B and
C polymorphisms in Systemic Sclerosis patients, according to the observed clinical response (respon-
der or non-responder) 12 and 24 months after autologous hematopoietic stem cell transplantation
(AHSCT).

12 Months after AHSCT 24 Months after AHSCT

R, n (%) NR, n (%) p-Value
R vs. NR

Global
p-Value R, n (%) NR, n (%) p-Value

R vs. NR
Global
p-Value

HLA-E genotype n = 32 n = 12 n = 32 n = 12
E*01:01/E*01:01 7 (21.9) 3 (25) 1.00 7 (21.9) 3 (25) 1.00
E*01:01/E*01:03 18 (56.2) 9 (75) 0.26 18 (56.2) 9 (75) 0.26
E*01:03/E*01:03 7 (21.9) 0 (0) 0.16 7 (21.9) 0 (0) 0.16

HLA-E allele n = 64 n = 24 n = 64 n = 24
E*01:01 32 (50) 15 (62.5) 0.30 32 (50) 15 (62.5) 0.30
E*01:03 32 (50) 9 (37.5) 32 (50) 9 (37.5)

HLA-G 14 bp genotype n = 32 n = 13 n = 33 n = 12
DEL/DEL 13 (40.1) 3 (23.1) 0.32 14 (42.4) 2 (16.7) 0.16
INS/DEL 13 (40.1) 7 (53.8) 0.42 13 (39.4) 7 (58.3) 0.26
INS/INS 6 (18.8) 3 (23.1) 0.70 6 (18.2) 3 (25) 0.68

HLA-G 14 bp allele n = 64 n = 26 n = 66 n = 24
DEL 39 (60.9) 13 (50) 0.34 41 (62.1) 11 (45.8) 0.17
INS 25 (39.1) 13 (50) 25 (37.9) 13 (54.2)

HLA-C rs2395471 genotype n = 32 n = 13 n = 33 n = 12
AA 6 (18.8) 4 (30.8) 0.44 6 (18.2) 4 (33.3) 0.42
AG 21 (65.6) 6 (46.2) 0.23 23 (69.7) 4 (33.3) 0.04
GG 5 (15.6) 3 (23.1) 0.67 4 (12.1) 4 (33.3) 0.18
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Table 3. Cont.

12 Months after AHSCT 24 Months after AHSCT

R, n (%) NR, n (%) p-Value
R vs. NR

Global
p-Value R, n (%) NR, n (%) p-Value

R vs. NR
Global
p-Value

HLA-C rs2395471 allele n = 64 n = 26 n = 66 n = 24
A 33 (51.6) 14 (53.8) 0.84 35 (53) 12 (50) 0.80
G 31 (48.4) 12 (46.2) 31 (47) 12 (50)

HLA-B peptide
leader genotype n = 32 n = 13 n = 33 n = 12

MM 3 (9.4) 0 (0)
0.19

3 (9.1) 0 (0)
0.53TM 8 (25.0) 8 (61.5) 10 (30.3) 6 (50)

TT 21 (65.6) 5 (38.5) 20 (60.6) 6 (50)

AHSCT: Autologous Hematopoietic Stem Cell Transplantation; R: responder patients, NR: non-responder patients,
SD: Standard Deviation. Due to missing DNA samples, one non-responder patient was not typed for all HLA
loci and DNA from one non-responder was insufficient for HLA-E genotyping. A total of 13 patients and 12
patients were analyzed for the respective HLA-G and HLA-E genotyping calculations among the 14 NR patients
at 12 months. In total, 12 patients were analyzed for HLA-G and HLA-E genotyping calculations among the 13
NR patients at 24 months.

HLA-E expression appeared lower in non-responder patients with higher frequency of
the homozygous state of the low HLA-C expressor rs2395471 G allele and of the homozygous
state of the T-HLA-B leader peptide allele in responders at 12 and 24 months after AHSCT.
None of these results reached statistical significance (Table 3).

2.3. HLA-A and C and the Modified Rodnan Skin Score (mRSS)

A significant negative correlation between the imputed quantitatively low level of
HLA-C expression and higher mRSS score was observed at baseline (p = 0.0075; r =−0.3937)
and 3 months post-AHSCT (p = 0.0117; r = −0.3854), but this was no longer the case by
12 months post-AHSCT (p = 0.0654; r = −0.2802) (Figure 1). At baseline, the median
mRSS in patients with the homozygous rs2395471AA HLA-C high expressor genotype was
not significantly different compared to those with the rs2395471GG/AG genotype (19.5
vs. 25, p = 0.0674). By the 3-month follow-up, mRSS was significantly lower in patients
homozygous for the rs2395471AA HLA-C allele (9 vs. 19, p = 0.0087) (Figure 2). This
result remained significant when others variables (sex, geographic origin, age at transplant,
disease duration, presence of interstitial lung disease (ILD) at baseline, and presence of
anti-Scl70 antibodies at baseline) were taken into account in multivariate analyses (p = 0.041)
(supplementary Table S3).

We did not find any correlation between the imputed expression levels of HLA-A and
mRSS scores (data not shown).
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2.4. Circulating Levels of Soluble HLA-G and E Molecules

A significant positive correlation between sHLA-E levels and mRSS (p = 0.0275;
r = 0.3624, Figure 3) was observed at 12 months post-AHSCT. The levels of sHLA-E
at baseline were not predictive of mRSS evolution at 12 months (data not shown). We found
that post-transplant clinical responses after AHSCT were not influenced by the circulating
levels of sHLA-G molecules at baseline, nor during follow-up (data not shown).
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3. Discussion

This retrospective analysis of 46 phenotypically well-defined SSc patient before and
after AHSCT was focused on the genetic and/or the circulating expression of two potent
immuno-modulatory molecules namely HLA-E and HLA-G, and their potential influence
on clinical response.

In terms of function, upon binding to self-peptides from various HLA-class I molecules,
the HLA-E molecules modulate the natural killer (NK) cell responses through interaction
with the CD94-NKG2A inhibitory NK cell receptor, with consequent inhibition of NK
cell-mediated cytotoxicity and cytokines production [27,32,33]. HLA-G molecules also play
a prominent role in immune tolerance and are important immune checkpoints. They are
tightly involved in the inhibition of NK cell cytotoxicity, antigen-specific cytotoxic CD8 + T
cell functions, and CD4 + T cell allogeneic proliferation. Consequently, HLA-G molecules
settings may influence post-AHSCT complications in autoimmune/rheumatologic diseases,
including in SSc [34–37].

In the present study, we observed that imputed high expression levels of HLA-C
alleles were associated with lower mRSS after AHSCT. Both the quantitative expression of
HLA-C alleles per se and rs2395471 polymorphism were associated with lower mRSS after
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AHSCT. These results may reflect the relationship between NKG2A-HLA-E and killer cell
immunoglobulin-like (KIR)-HLA and NK cell inhibition. High expression of HLA-C alleles
increases available M leader peptide thereby allowing more efficient expression of HLA-E
and consequent NK cell inhibition. High expression of HLA-C also contributes to inhibiting
NK cell activation via a different mechanism involving interaction with the inhibitory
KIR receptors [38]. The ontogeny of NK cells is characterized by sequential early to late
developmental stages with the respective expression of specific CD56bright or CD56dim cell
surface molecules. While the early CD56bright NK cell uses the CD94/NKG2A receptor to
interact with HLA-E molecules towards mediating NK cell inhibition, NK cell maturation is
accompanied by a shift from NKG2A to KIR-mediated NK cell inhibition [38,39]. Hence, one
can hypothesize that: (i) clinical response to AHSCT may be related, at least in part, to NK
cell inhibition and (ii) such processes are likely to involve sequential HLA-E/NKG2A- and
HLA-C/KIR-mediated interactions following NK cell maturation during post-transplant
immune reconstitution process [23].

Given the above-mentioned HLA-E characteristics, analysis of the potential influence
of the HLA-B T leader peptide dimorphism failed to provide significant associations even
though the HLA-B T leader peptide was predominantly found in non-responder patients
suggesting an inefficient HLA-E-mediated NK cell inhibition with sustained inflammatory
processes in this setting after AHSCT for SSc.

We also observed a trend towards a better response in patients bearing either the high
expression HLA-E*01:03 allele or the HLA-G high expressor 14 bp Del allele, suggesting
that the ability of both HLA-E and HLA-G molecules to inhibit effector cells (NK and or T
cells), after AHSCT, is genetically determined. Future studies with larger numbers of SSc
patients undergoing AHSCT are warranted to confirm the present exploratory results, to
be in line with previous findings after allogeneic HSCT [40–43].

High circulating levels of sHLA-E were associated with high mRSS, and constitute a
potential risk factor for non-response after AHSCT in SSc patients. This has been observed
in patients with acute and chronic Graft versus Host Disease after allogenic HSCT [44].
High circulating levels of sHLA-E were also found in various cancer settings [44–47], which
led to the development of a novel immune check point inhibitor targeting the HLA-E
specific NKG2A inhibitor receptor, namely Monalizumab [47].

We did not find any correlation between sHLA-G levels and post AHSCT outcomes,
an observation that is somewhat intriguing in the light of numerous studies in organ
or stem cell transplantation, showing that high sHLA-G levels are often associated with
better post-transplant outcomes [35,48]. In SSc patients, higher expression of both HLA-G
membrane bound and soluble isoforms were observed compared to healthy controls [49,50].
Other studies showed that low sHLA-G levels were associated with severe forms of SSc
diseases. These controversial data together with our present findings may also reflect
a more complex regulation of SSc-related sHLA-G synthesis after treatment by AHSCT.
However, we cannot exclude a simple lack of statistical power due to the relatively low
sample size.

This descriptive study presents several limitations and may be underpowered due
to the small sample size (46 SSc patients). However, this small, but unique sample study
population is of importance. Systemic Sclerosis is a rare chronic auto-immune disease
(prevalence 15/100,000 people), with the highest morbidity and mortality of all rheumatic
diseases. To date, AHSCT is the only treatment to improve overall survival and event-free
survival in severe rapidly progressive diffuse SSc patients [15,20]. During the study period,
66 SSc patients were transplanted in France overall. Therefore, analyzing the present cohort
of 46 SSc patients treated by AHSCT, with appropriate sample collection, has generated
important preliminary data on the role of HLA-G and HLA-E in the immune response
following AHSCT in SSc patients. Another study limitation is the lack of functional
experiments in this retrospective study. Only a few vials of frozen peripheral blood
mononuclear cells (PBMCs) preserved in Dimethyl sulfoxide (DMSO) were available for
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the study and were used for DNA extraction dedicated to genetic analysis, the primary
endpoint of the study.

In summary, this study first addressed the potential influence of genetic and expression
profile of two potent immunomodulatory molecules, namely HLA-E and HLA-G, on clinical
responses following AHSCT for SSc. If confirmed/replicated, our observations may lead to
a better understanding and management of clinical responses to transplantation not only
for SSc but for other systemic autoimmune disorders.

4. Material and Methods
4.1. Study Subjects

Forty-six SSc patients, diagnosed according to the 2013 ACR/EULAR criteria [51],
were treated with autologous stem cell transplant (AHSCT) between 2002 and 2018 at
either the Saint-Louis or at Saint Antoine hospitals (Assistance-Publique Hôpitaux de
Paris (AP-HP)), using the ISAMAIR (Intensification et Autogreffe dans les Maladies Auto
Immunes Résistantes, phase I-II) [20] or the ASTIS (Autologous stem cell transplantation
international scleroderma trial, phase III) [15] clinical trials protocols, or routine AHSCT
care procedures thereafter (www.mathec.com, accessed on 28 June 2022). All patients
provided informed consent and were included in the prospective Maladies Auto-Immunes
et Therapie Cellulaire (MATHEC) cohort for long-term follow-up, data collection, and
analysis.

Clinical follow-up was performed according to the European [52] and the French [53]
good clinical practice guidelines for patient evaluation and monitoring. Patients were
assessed before AHSCT and followed for two years post-transplant, on a quarterly basis
during the first year post-transplant and twice a year thereafter. According to the observed
clinical response at 12 or 24 months after AHSCT, SSc patients were retrospectively classified
as either responders (R) or non-responders (NR), as previously published [20,21]. Response
to treatment was defined as (1) at least 25% improvement of mRSS or (2) greater than 10%
increase in Forced Vital Capacity (FVC) and/or in pulmonary diffusion capacity for carbon
monoxide (DLCO) as compared to the baseline scores. Non-responders were patients with
SSc progression or relapse at the time of evaluation. Progression and Relapse were defined
by any of the following criteria when comparing the best observed response to baseline: at
least a 25% increase in mRSS or a 10% decrease in FVC and/or 15%, decrease in DLCO,
onset of renal crisis, start of total parenteral nutrition, or need for new immune-suppressive
or modulating medication after AHSCT [20,21].

Pre- and post-transplant peripheral blood mononuclear cells (PBMCs), plasma, and
serum, were collected at baseline before the mobilization and at 3, 6, and 12 months after
AHSCT, as well as semi-annually during the second year. The samples were immediately
processed and stored at required temperatures until experiments according to EBMT [54]
and MATHEC-SFGM-TC [55] guidelines. The study was conducted in accordance with
the Declaration of Helsinki and Good Clinical Practice guidelines. All patients provided
written informed consent for research on their biological material and clinical data.

4.2. HLA Genotyping

Genomic DNA was extracted from EDTA-treated peripheral blood samples or from
frozen peripheral blood mononuclear cells (PBMCs) using commercially available kits (Qi-
agen EZ1 blood or Tissue kit, respectively, Qiagen, Hilden, Germany) and were quantified
by spectrophotometry analysis (BioDrop µLITE+, Biochrom, Cambridge, UK).

Classical HLA class I (A, B, C) and non-classical HLA class I (E, F, G) loci genotyping
was performed on the DNA samples from the 46 SSc patients at the Immunogenetic
laboratory of the French Blood Transfusion Department (EFS), Marseille, France using
Next-Generation Sequencing (NGS, NG mix) technology. The 3’UTR-HLA-G haplotypes
were reconstructed, using an EM algorithm from the Gene [56] program and confirmed
using the EM and ELB algorithms from the Arlequin v3.5.1.2 package. Data were analyzed
and interpreted as previously described [57,58].

www.mathec.com
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4.3. Soluble HLA-G and E Measurements

The levels of circulating sHLA-G and sHLA-E were measured on plasma and serum
samples collected before AHSCT (baseline), and at 3 and 12 months (±2 months) post-
transplant during routine follow-up.

Both soluble HLA-G1 and soluble HLA-G5 isoforms were measured using the enzyme-
linked immunosorbent assay (ELISA) kit (EXBIO/Biovendor, Karásek, Czech Republic;
capture antibody: MEM-G/9), defined at the “Wet Workshop for the Quantification of
sHLA-G” in 2004 [59], according to the manufacturer’s instructions. Soluble HLA-G
standard was diluted to obtain a calibrator curve within a range from 3.91 to 125 interna-
tional units/mL (IU/mL) for sHLA-G ELISA. The total protein concentration levels were
expressed in IU/mL of plasma.

Circulating sHLA-E levels were measured using a dedicated ELISA with sandwich
enzyme immunoassay for in vitro quantitative measurement of sHLA-E according to the
manufacturer’s recommendations (cloud-clone corp. Katy, TX, USA).

4.4. Imputation of Classical HLA Determinants of HLA-E Expression

To examine whether functionally important classical HLA variations, known to in-
fluence HLA-E expression and consequently NK cell functions, have an impact on the
treatment response status, we performed high resolution genotype imputation to deter-
mine: (i) the -21 exon 1 HLA-B methionine (M) to threonine (T) leader peptide change
that categorize patients as strong or weak expressor of HLA-E molecules respectively
and (ii) the differential expression level of both HLA-A and HLA-C alleles by determining
the quantitative expression of HLA-A and HLA-C alleles per se [29,30] or the rs2395471
polymorphism, given that higher HLA-A and HLA-C expression levels result in higher
expression of HLA-E molecules.

4.5. Statistical Analyses

Chi-square “χ2” tests (or Fisher test for small groups) were used to test whether gender,
age, and geographic origin, HLA haplotype, or HLA polymorphism frequencies varied
between responders (R) and non-responders (NR).

A Mann–Whitney test was applied to compare sHLA-G or sHLA-E levels/concentrations
between responder (R) and non-responder (NR) patients, independently or according to
HLA-G/E genetic status, and to compare the evolution of mRSS between patients stratified
according to their classical and non-classical HLA genotype.

Spearman correlation was applied to assess the relationship between mRSS at baseline
and at 3, 6, and 12 months post-AHSCT, and soluble HLA-G and HLA-E levels or HLA-A
and HLA-C imputed expression levels. p-values less than 0.05 were considered significant
(GraphPad Prism 6 (La Jolla, CA, USA).

A linear regression model was used to evaluate the relationship between sex, geo-
graphic origin, age at transplant, disease duration, presence of interstitial lung disease
(ILD) on High-resolution computed tomography (HRCT) at baseline, presence of anti-Scl70
antibodies at baseline, and HLA-C rs2395471, as independent variables, with the mRSS
value at 3 months after AHSCT as a continuous dependent variable, using R software
version 4.0.3. p-values less than 0.05 were considered significant.
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