Yamoun Lahcen

Guessoum Zahia

Girard Christophe

Transformer RoBERTa vs. TF-IDF for websites content-based classification

Keywords: Web classification, RoBERTa transformer, TF-IDF, Sentence embeddings, Text classification

Transformer RoBERTa vs. TF-IDF for websites content-based classification

Lahcen Yamoun, Zahia Guessoum, Christophe

Introduction

The WEB today is present everywhere and in a large way. It is used as an interface for multiple services, such as the cloud and the email. A variety of subjects can be thus found on the WEB, and different needs arise from it. Hence the categorization of web pages in order to facilitate the exploitation, at the end-user level, of the important amount of related data, for example only choose preferred topics; facilitate the processing and the knowledge extraction from data at the service vendor level; and allow the filtering of content according to pre-established criteria, for example the restriction of access to adult or hateful content.

The aim of this paper is to classify websites. This machine learning task, i.e., classification, is a supervised task. To achieve this task, a model learns from input data that has been labeled. In the case of the WEB, the labeling can take different forms depending on the context and the need, for example a classification into malicious or reliable websites, or a classification according to the topics found in the websites, and it is the latter that we studied in this work. The input can also take different forms. In the case of classification of the WEB according to the content, and more precisely according to the text, different studies make different proposals to make the representation, in this work we study the contribution of the embedding of a pre-trained RoBERTa without finetuning compared to TF-IDF features. At the best of our knowledge, our work is the first to use RoBERTa for the task of classifying WEB, and the second to use transformers for this task, the first being the authors of [START_REF] Demirkıran | Website Category Classification Using Fine-tuned BERT Language Model[END_REF], where BERT is used.

In this paper, we first define TF-IDF and RoBERTa, and describe related works and analyse the different approaches to classify websites. We then introduce our approach, explain the way we built the database, and describe the general architecture used for the classification. We will end by discussing the obtained results in terms of mono-multiclassification into 16 categories, and in the 16 binary classifications according to the one vs. all strategy.

Our work can be used in the filtering of websites, since we have reached a validation accuracy of 100% on the classification of adult content websites.

Definitions

In this section, we will briefly give the essential definitions for the rest of the paper.

TF-IDF: term frequency, inverse document frequency, an alternative to term frequency feature vector. It's a formula that aims to define the importance of a keyword or a phrase within a document or a web page. TF-IDF weights calculated from equation 1 intend to give higher weights to terms which appear in fewer documents and lower weights to terms occurring in many documents. This is achieved by multiplying a term's frequency described in Equation 2 by an inverse document frequency (IDF) factor described in Equation 3.

tf idf (t, d, D) = tf (t, d) • idf (t, D) (1)
tf (t, d) = f t,d t ′ ∈d f t ′ ,d (2)
idf (t, D) = -log(|d ∈ D : t ∈ d| |D|) (3)
In Equation 1, tf idf (t, d, D) is the weight of the term t in the document d according to the corpus of documents D. In Equation 2, tf (t, d) is the relative frequency of term t in document d. In Equation 3, the inverse document frequency is a measure of how much information the term t provides, i.e., if it is common or rare across the corpus D. It is the logarithmically scaled inverse fraction of the documents that contain the term t.

Different other variants exist to calculate the term frequency and the inverse document frequency.

Transformers: A transformer is a deep learning model that adopts the mechanism of self-attention [START_REF] Vaswani | Attention is all you need[END_REF], differentially weighting the significance of each part of the input data. It is used primarily in the fields of natural language processing (NLP) and computer vision. For a given sentence for example, the model extracts features for each word using a self-attention mechanism to figure out how important all the other words in the sentence are with regard to the word itself. Like recurrent neural networks (RNNs), transformers are designed to handle sequential input data, such as natural language, for tasks such as translation and text summarization. However, unlike RNN-like models, no recurrent units are used to obtain these features, since transformers use only weighted sums and activation values, and they do not necessarily process data in order, thus, they can be very parallelizable and efficient.

BERT: Bidirectional Encoder Representations from Transformers (BERT) [START_REF] Devlin | Bert: Pre-training of deep bidirectional transformers for language understanding[END_REF] is a transformer-based machine learning technique for NLP pre-training developed by Google. BERT, at its core, is a transformer language model with a variable number of encoder layers and self-attention heads. The architecture is almost identical to the original transformer implementation in [START_REF] Vaswani | Attention is all you need[END_REF]. It is a revolutionary technique that achieved state-of-the-art results on a range of NLP tasks while relying on unannotated text drawn from the web, as opposed to a language corpus that's been labeled specifically for a given task. The technique has since become popular both as an NLP research baseline and as a final task architecture.

RoBERTa: A Robustly Optimized BERT pre-training Approach (RoBERTa) [START_REF] Liu | Roberta: A robustly optimized bert pretraining approach[END_REF], is an improved version of BERT, where key hyper-parameters are modified, some pre-training tasks are omitted, and pre-training is done with higher learning rates and much larger mini-batches.

Related Work

In contrast to text classification where different methods are well established and comparisons are made, website classification is relatively less pronounced, and the number of works is much reduced. This being said, the latter has been treated in different ways in the literature, basically, there are old works that looked at the classification of URLs as strings, and more recent works that classified web pages according to a mixture of several criteria, according to [START_REF] Sahoo | Malicious URL Detection using Machine Learning: A Survey[END_REF] these criteria fall in one of the following categories: content-based features, including text, images, styles and scripts; blacklist features, meaning wether the website is present in blacklists or not; lexical features; host-based features; third-party features, as example Alexa ranking.

From the DMOZ database, the idea of using an n-gram with different ranks was proposed to constitute the features of the urls [START_REF] Baykan | Purely URLbased topic classification[END_REF]. In this work, SVM, Naive Bayes, Maximum Entropy gave comparable results. In [START_REF] Rajalakshmi | Web page classification using ngram based URL features[END_REF] all possible 3-grams have been used, to constitute a space of tokens independent of the dataset, Term-Frequency has been used afterwards with SVM and Maximum Entropy to classify the urls. In [START_REF] Le | URLNet: Learning a URL Representation with Deep Learning for Malicious URL Detection[END_REF], the authors focused on creating better embeddings for urls, and opted for what they called URLNET architecture, a character and word level CNNs. With this technique, even unknown words have a unique representation due to the character level CNN. They then used these embeddings for binary classification of urls into malicious or legitimate url, without proceeding to a stopwords removal. 78 lexical features were introduced in [START_REF] Mamun | Detecting malicious urls using lexical analysis[END_REF] and used in [START_REF] Johnson | Towards Detecting and Classifying Malicious URLs Using Deep Learning[END_REF] to classify urls as malicious or legitimate. Random Forest gave better results than neural networks.

URL-based features are found in many works, including [START_REF] Rami | An assessment of features related to phishing websites using an automated technique[END_REF] [START_REF] Somesha | Efficient deep learning techniques for the detection of phishing websites[END_REF]. The authors combined the URL features with other features, in [START_REF] Rami | An assessment of features related to phishing websites using an automated technique[END_REF] among other set of features, we find anomaly features for the malicious websites classification, in [START_REF] Abunadi | Feature extraction process: A phishing detection approach[END_REF] The authors claim to have proposed 3 new features that significantly improve the classification of malicious websites, which are: Google page rank, Google position of website title, and Alexa rank. Still for the classification of malicious websites, in [START_REF] Zuhair | HYBRID FEATURES -BASED PREDICTION FOR NOVEL PHISH WEBSITES[END_REF] authors proposed and studied the impact, advantages and disadvantages of 58 new features based on url, online characteristics, and webpage content characteristics.

[3] [23] [19] [9]
Different works have been based on the textual content of the websites to make the classification, we have summarized them in Table 1. In [START_REF] Karthikeyan | Personalized Content Extraction and Text Classification Using Effective Web Scraping Techniques[END_REF], in order to build a database, the authors extracted texts from a list of websites, and then according to a list of keywords per class they automatically classified their database via a voting system. To train the classification model they considered BoW embeddings and a feature selection method, and concluded that a fully connected two layer network gives better results than SVM or random forrest models. We also find this idea of using keywords for classification in [START_REF] Patel | Web Page Classification on News Feeds Using Hybrid Technique for Extraction[END_REF]. LSTMs were used in [START_REF] Buber | Web Page Classification Using RNN[END_REF], the authors used text and some meta-tags of websites: title, description, keywords. 5 layers LSTM model was trained on a maximum length sequences of 100, with BoW embeddings to achieve almost 85% accuracy on a classification of 23 classes database. The work [START_REF] Demirkıran | Website Category Classification Using Fine-tuned BERT Language Model[END_REF] is, to the best of our knowledge and according to the authors themselves, the only one using transformers (among others BERT) for the task of website classification. The authors did not give details on which text they used from the websites, and whether they used meta-tags or not, however, on the 5000best dataset [START_REF]5000 best[END_REF], containing 5000 websites classified in 32 categories, they compared the results obtained from BERT, from an LSTM with pretrained GloVe embeddings, and from an LSTM with pretrained GloVe embeddings and char level embeddings concatenated. BERT gave the best results, 67.81% in terms of accuracy. To represent the websites, two embedding policies have been implemented: the embeddings resulting from the RoBERTa model, and TF-IDF embeddings to make comparison and see if there is a benefit.

In the following, we start by detailing the used data, and the way we collected, preprocessed them, and the augmentation techniques we applied. We then explain the architecture of the classification model.

Data Collection and Preprocessing

To constitute the pairs (website, category), we referred to the 5000best [START_REF]5000 best[END_REF] website regrouping 5000 things, including websites. The websites are chosen according to the popularity, and are classified into 32 categories, such as Porn, News, Technology, etc. However, we encountered two problems with this database, the first one is the presence of several down websites, and the second one is that the database is strongly unbalanced as shown in the Figure 1. So, a first work to prepare our dataset was to eliminate the dead links. It was enough to use script making HTTP get requests and react according to the responses status. Then, in order to extract the textual content of the well-reachable websites, we use the playwright browser automation framework under NodeJS to do the scraping. The aim of using a browser automator instead of using old scrapping techniques is to allow the generation of the website at the client level by allowing the execution of Javascript, what we call client side rendering, thus having a more precise rendering.

Then, we keep only the websites belonging to the best 16 categories in terms of the number of websites. Since a category like Portals which contains only 10 websites after dead-links elimination is practically impossible to be incorporated into our training pipeline with a category like Web which contains more than 750 websites.

The textual data taken from each website are the description and keyword metadata, the page title, the titles from h1 to h5, the texts forming a link, and then the texts under the tags div, span, p. All these texts are concatenated and separated by spaces.

We so obtain a database of 3023 rows and 3 columns: website URL, website textual content, category. Then we applied back translation and Easy Data Augmentation (EDA) techniques [START_REF] Wei | Eda: Easy data augmentation techniques for boosting performance on text classification tasks[END_REF] on 70% of the data dedicated to the training (2117 as train set, and 906 as validation set):

1. Back translation: we started by translating the texts into a language other than the original, i.e., English, we chose for this aim French, and then we made a back translation of the result into English, this allows a reformulation of the text. For that we used the Google translation API. 2. Synonym Replacement (SR): a technique in which we replace a random proportion of words by their synonyms. For the synonyms we opted to use the WordNet corpus, and the proportion was fixed to 1/5 of the number of total text words which are not stop words. 3. Random Insertion (RI): finds a random synonym of a random word in the sentence that is not a stop word. Insert that synonym into a random position in the sentence, and repeat this n time, n being a parameter. In our work, we set n to 1/10 the number of non stop words in the text. 4. Random Deletion (RD): randomly removes each word in the sentence with probability p, in our work we set p to 1/10. 5. Random Swap (RS): randomly chooses two words in the sentence and swaps their positions, we do this n times, n being a parameter, in our work we set it to 1/10 the number of non stop words in each text.

The result is: 12702 rows for training containing 2117 original data and 10585 augmented data. The remaining 906 lines with no augmentation were used as validation data.

To train the binary classifiers, we take for each of the 16 categories all the positive samples, and randomly the same number of negative samples.

Proposed Architecture

In our work, from each input, we apply a text cleaning, followed by a tokenization. For each result we create a representative vector for the text, and this vector is then injected into the classification model. This classical pipeline is given in Figure 2. Text cleaning consists in keeping only alphanumeric characters. We eliminate punctuation and line breaks by replacing them with spaces. We also eliminate stop words even if there is a loss of useful context in the case of RoBERTa, but we did it with a perspective of having a maximum of important words within the limit of the RoBERTa maximum sequence length, which is 512 tokens. The list of stop words we used is the one proposed by the Python library: Nltk. Texts are lowercased after that.

For tokenization, byte-level BPE tokenizer is used for the RoBERTa model, and to obtain TF-IDF embeddings, words are first derived by splitting texts by spaces.

To extract the embeddings with RoBERTa model, we use the frozen pretrained model, since the size of the database, and the computational power we have, do not allow finetuning. The CLS token of the last layer is used to represent the input text. To obtain the TF-IDF embeddings, we use the top 10000 features ordered by term frequency across the corpus.

As classifier, we use a 3 layered fully connected network, a first layer of length 768 in the case of RoBERTa embeddings, and 10000 in the case of TF-IDF. A hidden layer of length 64 in the case of the mono-multiclassification and of 32 in the case of binary classification as the experiments we show that these are the sizes that give the best results. And a last layer for the output, of size 16 for the multiclassification, or 2 for the binary classification.

We use ReLU activation for the hidden layer, and softmax for the output. A dropout with probability 0.15 was used for the hidden layer. The cross entropy error function is used in its weighted version. The Adam optimizer is used with an initial learning rate of 0.01, this learning rate is divided by 10 every 30 epochs.

The training is performed in a minimum of 100 epochs with an early stopping strategy, and a maximum of 200 epochs. The training batch size is 16.

Results and Discussion

We implemented two approaches to test the added value of RoBERTa embeddings compared to TF-IDF features. The first one is a mono-multiclassification task into 16 classes; and the second one is different binary classification tasks for each of the 16 classes following the one vs. all strategy. Table 2 and Table 3 highlight the main results, and show that RoBERTa embeddings clearly outperform TF-IDF features in the binary classifications, with a difference in accuracy of +5.41%. For mono-multiclassification the results obtained with the RoBERTa and TF-IDF embeddings were practically the same.

Table 2 shows that the classification model gives better results for some classes compared to others, e.g. we get 100% validation accuracy for the Porn category, but only 79.70% for the Articles category. This is due to the nature of the category itself: categorizing a page containing pornographic content is relatively easier, since a lot of keywords make the detection simple, which is not true for the Article category, where the web page contains several pieces of information potentially belonging to several different topics, resulting in considerable noise and a degradation of the classification results. Also, by consulting the classification results on the validation data, we found examples where for instance a sports articles site is classified in the Sport category but the ground truth label is Articles. There are plenty of examples of this kind, which shows the limit of mono-classification for this kind of tasks.

It has been confirmed that using binary classifications gives better results than a mono-multiclassification as shown in the Table 4, the cost being obviously that we must train as many classifiers and make as many inferences as classes. Also, the fully connected 3-layer neural network proves to be the best approach with RoBERTa embeddings compared to other classical classifiers, such as Nearest Neighbors (NN), Support Vector Machine (SVM), Gaussian Process (GP), Decision Trees (DT), Random Forest (RF), AdaBoost, Naive Bayes (NB), Logistic Regression (LR) (see Table 5).

When we retrained and tested again the models with no augmentation, the average accuracy dropped by 4% for the one vs. all strategy, thus its importance.

In comparison to [START_REF] Demirkıran | Website Category Classification Using Fine-tuned BERT Language Model[END_REF], the only work using transformers for the task of web classification and based on 5000best dataset [START_REF]5000 best[END_REF], our multiclassifiers, based on BERT or TF-IDF respectively, gave slightly better results. We reached an accu- racy of 68% and 68.2% respectively, and the authors of [START_REF] Demirkıran | Website Category Classification Using Fine-tuned BERT Language Model[END_REF] reached an accuracy of 67.81%.

Conclusion

Websites' classification is a complex task that can be tackled in several ways by using the text of the web page. In this work, we showed the interest of using RoBERTa transformer, a variant of BERT, to represent web pages in a first step and then exploit them to make the classification. We proceeded to a monomulticlassification in 16 different classes, and also to binary classifications with the strategy one vs. all. Pre-trained and non-finetuned RoBERTa embeddings provided better results compared to classical TF-IDF features. Moreover, we showed that using a 3-layer fully connected neural network as a classifier gives better results than classical machine learning classifiers, such as SVM or Logistic Regression. It is preferable to opt for binary classifiers with the one vs. all strategy, since it improves significantly the results compared those of a monomulticlassification model. However, there is a trade-off, since one has to train many classifiers and make as many inferences as classes. We mention that we reached a validation accuracy of 100% for the classification of adult content websites when using a binary classifier. Thus, our work can be used for website's adult content filtering.

As a perspective, it is important to build a less noisy database that is not mono-categorized, since a web page can belong to both the class Articles and Sport for example, and this multi-categorization aspect was absent in our database. It would also be interesting to test other transformers, and to finetune them on a larger database, to have better embeddings, which will surely end up by improving the results.

Fig. 1 .

 1 Fig. 1. Categories distribution according to 5000best [1].

Fig. 2 .

 2 Fig. 2. Classification architecture.

Table 1 .

 1 Table summarizing the work done for the classification of websites based on textual content.

	Work	Task	Technique	Dataset	Results
	[11] Classification of	Bag of Words for features,	1870 blog	The fully
		blogs into:	and logistic	websites	connected
		technical,	regression-recursive feature	categorized	network gave
		fashion and	elimination. For classification	automati-	the best
		news	the authors compared	cally	accuracy:
			support vector machine,		94.36%
			random forrest and a 2		
			hidden layers fully connected		
			network.		
	[5]	Multi	They extracted from	A subset of	Accuracy:
		classification to	websites texts and metatags:	Roksit's	86.18%
		23 categories	title, description and	database [2]:	
			keywords. classification	887195	
			they used a 5 layers LSTM	samples	
			with GloVe embeddings.	categorized	
				in 23	
				categories	
	[15] Classification of	Extraction of keywords from	12020	Mean F1
		news articles to	the news feed and	articles from	measure: 10.5%
		predefined	comparison with	various	Mean Precision:
		categories such	predetermined keywords	Indian news	46.9%
		as sport and	obtained from WordNET	web portal	Mean Recall:
		economy	library [8].		5.98%
	[6] Classification of	3 models were proposed:	5000best	Accuracy:
		websites to 32	LSTM with pretrained	dataset [1]	67.81%
		categories	GloVe embeddings, LSTM		
			with pretrained Glove		
			embeddings and char level		
			embeddings, BERT		

Table 2 .

 2 Accuracies of the binary classifications with the one vs. all strategy. Last line is the average of all the accuracies

	Label/Embeddings RoBERTa embeddings TF-IDF features
	Porn	100.00%	92.70%
	Services	83.30%	77.10%
	Games		92.00%	93.80%
	Pictures	92.20%	81.20%
	Tools		86.70%	87.50%
	Web		86.70%	90.10%
	Articles	79.70%	78.10%
	Technology	91.70%	80.20%
	News		90.20%	92.20%
	Sport	96.90%	93.80%
	Style	97.90%	85.90%
	Education		86.50%	87.50%
	Business	92.20%	79.70%
	Commerce		85.60%	85.60%
	Entertainment	95.80%	78.10%
	Health	93.80%	81.20%
	AVG	90.70%	85.29%
			Accuracy Top-3 Accuracy
	RoBERTa embeddings	68%	88.83%
	TF-IDF features		68.2%	86.7%

Table 3 .

 3 Mono-multiclassification results.

Table 4 .

 4 Classification accuracy of each class, using the classifier trained on the monomulticlassification task, and the binary classifiers trained with the one vs. all strategy.

	Label	One vs. all classifiers Mono-multiclassification model
	Articles		79.70%		21.74%
	Business		92.20%		65.22%
	Commerce	85.60%		60.27%
	Education	86.50%		84.62%
	Entertainment	95.80%		66.67%
	Games		92%		72.06%
	Health		93.80%		69.23%
	News		90.20%		78.16%
	Pictures		92%		69.70%
	Porn		100%		85.45%
	Services		83.30%		62.96%
	Sport		96.90%		87.50%
	Style		97.90%		65.62%
	Technology	91.70%		70.37%
	Tools		86.70%		51.11%
	Web		86.70%		62.31%
	Avg		90.69%		67.06%
	3 layers FCN NN	SVM	GP	DT	RF AdaBoost NB	LR
	90.70%	75.58% 84.91% 87.03% 69.84% 70.38% 80.07% 79.81% 82.98%

Table 5 .

 5 Accuracies obtained from RoBERTa embeddings as input to different classifiers, among others: a 3 layers fully connected network.

Proposed ApproachIn this work, we tested several classification models on a database of 3023 websites categorized into 16 classes, mainly a fully connected neural network with 3 layers (input, hidden layer, output). Two classification approaches were developed, the first one being a mono-multi-classification, and the second one, being different binary classifiers for each category, proceeding by the one vs. all strategy.