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Abstract. Discrete mathematics brings interesting problems for teaching and 

learning proof, with accessible objects such as integers (arithmetic), graphs 

(modeling, order) or polyominoes (geometry). Many problems that are still open 

can be explained to a large public. The objects can be manipulated by simple 

dynamic operations (removing, adding, ‘gluing’, contracting, splitting, 

decomposing, etc.). All these operations can be seen as tools for proving. In this 

paper we particularly explore the field of ‘discrete optimization’. A theoretical 

background is defined by taking two main axes into account, namely, the 

epistemological analysis of discrete problems studied by contemporary 

researchers in discrete optimization and the design of adidactical situations for 

classrooms in the frame of the Theory of Didactical Situations. Two problems 

coming from ongoing research in discrete optimization (the Pentamino Exclusion 

and the Eight Queens problems) are developed and transposed for the classroom. 

They underscore the learning potentialities of discrete mathematics and 

epistemological obstacles concerning proving processes. They emphasize the 

understanding of a necessary condition and a sufficient condition and 
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problematize the difference between optimal and optimum. They provide proofs 

involving partitioning strategies, greedy algorithms but also primal-dual methods 

leading to the concept of duality. The way such problems can be implemented in 

the classroom is described in a collaborative study by mathematicians and 

mathematics education researchers (Maths à Modeler Research Federation) 

through the Research Situations for the Classroom project. 

 

Keywords: discrete mathematics, optimization, proving processes, research 

situations for the classroom, polyominoes, eight queens problem. 

1. Introduction 

The literature in mathematics education concerning proof has produced 

fundamental findings regarding the epistemological, philosophical and didactical 

aspects of proof (e.g., Hanna & de Villiers, 2012; Hanna et al., 2010; Mariotti et al., 

2018; Stylianides, 2016). In all the research, the fields of arithmetic, number theory 

and combinatorics are often used. Such discrete mathematics clearly favors an 

“authentic mathematical activity” (Lampert, 1990) with work on heuristics in non-

routine problem solving (Polyá, 1954). It also brings a new beginning for students 

and teachers (Goldin, 2010). The concepts involved (mainly integers) are not an 

obstacle to the solving process, the students “come to the problem fresh” (Maher et 

al., 2010), and the proof is therefore central.  

All the research dealing specifically with the teaching of discrete mathematics at 

different school levels has pointed out the advantages of discrete mathematics for 

the teaching and learning of proof (e.g., Grenier & Payan, 1998, 1999; Ouvrier-

Buffet, 2020; Rosenstein et al., 1997; Heinze et al., 2004; Hart & Sandefur, 2018). 

The resolution of various kinds of problems (existence, characterization, 

recognition, optimization and extremal problems) mobilizes notions and skills such 

as implication, induction, and several proving processes, as follows: proofs by 

exhaustion, proofs by induction, algorithmic proofs, generic proofs, but also 

probabilistic methods, decomposition techniques, and structuration of objects (such 

as coloration in graph theory). We choose the field of discrete optimization1, less 

studied in itself in mathematics education than other fields of discrete mathematics 

 
1 Discrete optimization is a branch of optimization in applied mathematics and computer science 
that deals mainly with problems where one has to construct an optimal solution from a finite (or 
countable) number of possibilities. 
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(see for instance the main view of the teaching and learning of discrete mathematics 

worldwide by Hart & Sandefur, 2018 or Heinze et al., 2004). It is also an ongoing 

contemporary field with proving processes and open problems in constant 

evolution.  

Few of the above-quoted researchers have characterized precisely the proving 

processes that are specific to discrete optimization from the epistemological point 

of view. Moreover, the seeming accessibility of discrete concepts does not mean 

that solving discrete problems and searching proofs is easy. Thus, the didactical 

transposition of such proving processes in classrooms must be investigated.  

Therefore, we addressed two unexplored research questions, as follows: What are 

the features of proving processes in discrete optimization? Are these proving 

processes accessible for students from the perspective of didactical transposition?  

In this paper, we present the background to the study, designed collaboratively by 

discrete mathematicians and didacticians in the Maths à Modeler Research 

Federation, involving the didactical features of Research Situations for the 

Classroom and the Theory of Didactical Situations (Section 2). Then, we develop 

two problems in discrete optimization (derived from the Pentamino Exclusion 

problem and the Eight Queens problem) (Section 3) and their transpositions for the 

classrooms (Section 4). From an epistemological point of view, this allows us to 

deal with an existence and a non-existence problem and to highlight and 

characterize proving processes which are transversal to discrete mathematics and 

specific to discrete optimization, namely, framing optimal values, using necessary 

and sufficient proof, reasoning with local versus global optimality, developing 

algorithms or partitioning strategies, and using duality and primal-dual methods 

(Sections 5, 6, and 7). This then provides a frame for these proving processes and 

the epistemological obstacles they imply for an educational perspective. We use 

students’ work coming from several experiments designed with a common 

methodology, in order to highlight the accessibility of such proving processes. The 

conclusion opens perspectives regarding the teaching and learning of proof through 

discrete optimization and the perspective of Research Situations for the Classroom. 
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2. Definition, design and implementation of 
Research Situations for the Classroom with the 
Theory of Didactical Situations 

Since 1999, the French Maths à Modeler Research Federation has promoted 

collaborative work between mathematicians in discrete mathematics and 

mathematics education researchers. We design innovative Research Situations for 

the Classroom from real problems coming from ongoing mathematical research 

(e.g., Grenier & Payan, 1999, 2003; Ouvrier-Buffet, 2009). The aims of Research 

Situations for the Classroom are to put students in the role of researchers and to 

engage them in a proving process, or more generally in an inquiry process, 

including several transversal skills such as conjecturing, modeling, defining, etc. 

The main idea is also to foster a mathematical community in which perspectives are 

close to the sociomathematical norms where the criteria for acceptability of 

arguments are negotiated in the classroom (e.g., Lampert, 1990; Yackel & Cobb, 

1996). Besides this, the social dimension of exploratory proving remains 

fundamental (e.g., Balacheff, 2010; Stylianides, 2016).  

Research Situations for the Classroom must fulfill several criteria. Some of them 

are close to problem solving and to the French tradition of open problems (Arsac & 

Mante, 2007). The Theory of Didactical Situations (Brousseau, 1997) is used for 

the design, the analysis and the implementation of Research Situations in the 

Classroom. We present the main components of this theoretical background before 

defining the criteria of such situations. 

2.1 The use of the Theory of Didactical Situations 

An epistemological study of mathematical problems in discrete mathematics gives 

us a great variety of techniques and proving processes. Therefore, in a didactical 

perspective, we must make choices about certain points. In particular, we have to 

identify the variables that are characteristic of the problems, to choose values of 

such variables and to predict the effects of these choices on students’ reasoning and 

proving processes. Brousseau (1997) uses the term didactical variables “to 

designate the command variables which will be shown to have an important 

qualitative effect on the evolution of the procedures” (p. 176). The characterization 

of the potential proving processes and the identification of the variables of the 

mathematical problems studied allow us to select values for some didactical 
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variables in order to engage students in certain proving processes and to influence 

some changes in their proving processes. We can also let students search for the 

variables of the problem they propose: we call such variables research variables. 

Their choice can lead to a difficult or unsolvable problem or, on the contrary, it can 

facilitate the devolution of the problem. The devolution happens when the teacher 

makes the students accept the responsibility for a problem. In the case of RSCs, a 

specific research contract is implemented to avoid the bias of the usual didactical 

contract.  

In Brousseau’s engineering, the situation is divided into three adidactical phases 

(action, formulation, validation) that we follow when implementing Research 

Situations in the Classroom to “foster the discovery and demonstration (…)” (ibid., 

p. 4). The interactions between the student(s) and the environment (milieu) 

constitutes the dialectic of action. The action phase engages students in the 

exploration of the problem, often with manipulatives. This production of a set of 

experiences and results should be rich enough to nourish the collective discussion 

in the next phase. The dialectic of formulation consists in “progressively 

establishing a shared language”, making “possible the explanation of actions and 

modes of action”. It has an explicit social dimension. During the validation phase, 

students “have to put forward propositions and to prove to an opponent that they 

are either true or false” (p. 4). 

2.2 The definition of Research Situations for the Classroom 

Taking into account the above developments and the frame of Maths à Modeler, 

Research Situations for the Classroom must fulfill the eight following criteria 

(derived from Grenier & Payan, 1999, 2003; Ouvrier-Buffet, 2009, 2020). 

● Firstly, the research field should be ‘huge’, and have roots in mathematical 

ongoing research: a large part of it should be accessible to the students. 

● Secondly, the mathematical problem should be easily understood. 

● Thirdly, there should be few notional traps to start the research. Initial 

strategies without prerequisites should exist.  

These first three criteria foster the devolution of the mathematical problem and the 

dialectic of action, as well as the fact that nobody (neither the students nor the 

teacher) knows the solution.  

● Fourthly, the students should manage their research themselves: among the 

didactical variables, at least one of them, a research variable, is left to the 
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students, while the others can be set by the teacher. These variables are 

chosen depending on the didactical interest of the questions they can 

generate for the mathematical activity. 

● Fifthly, many strategies should be available to put the research forward, and 

several developments should be possible to enable the research process and 

the emergence of mathematical skills (such as proof, modeling etc.) and 

knowledge. 

● Sixthly, there are criteria of local resolution (local ending criteria) and 

possibly no final ending: an answered question often leads to a new 

question.  

● Seventhly, at the end of the research process, students are invited to share 

their results, e.g., through posters in their school or a presentation at 

university (in front of mathematicians and other school students, who are 

also there to present their results).  

● Eighthly, we underline that research is an activity that requires a large 

amount of time: a long-term situation is essential if one expects students to 

do research. 

The implementation of Research Situations in the Classroom should preserve the 

dialectics of action, formulation and validation (Grenier & Payan, 2003). The 

closure of a Research Situation with a presentation by students of their results ends 

the research process of the students and contributes to the institutionalization 

process. For this paper, we focus on the proving processes in discrete optimization, 

the design aspect, and on the accessibility of such proving processes for students.  

3.Two mathematical problems in discrete 
optimization 

We chose a minimization problem and a maximization problem, derived from the 

Pentamino Exclusion problem and the Eight Queens problem. We focus specifically 

on the following topics when identifying the proving processes: 

- Concepts of bound, framing optimal values, and in particular, lower and 

upper bounds versus necessary conditions and sufficient conditions; 

- Minimal, minimum; local versus global optimality; 

- Dual problems; and 

- Algorithmic approach and heuristics. 
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3.1 Hunting the Beast! based on the Pentamino Exclusion problem 
The Hunting the beast! problem involves polyominoes popularized by the game 

Tetris and the puzzles of Martin Gardner. A polyomino is a shape “made by 

connecting certain numbers of equal-sized squares, each joined together with at 

least 1 other square along an edge” (Golomb, 1966, p. 19). 

Here is the usual way to present the problem to students (Figure 1) in Maths à 

Modeler: 

Your garden is a collection of adjacent squares and a beast is a collection of 

squares. Your objective is to prevent a beast from entering your garden. To 

do this, you can buy traps. A trap is represented by a single square that can 

be placed on any square of the garden. The question is: what is the minimum 

number of traps you need to place so that no beast can land on your garden? 

These rules allow the beast to be rotated (90,180 or 270 degrees) or reflected 

(flipped over) at will. 

 

Fig. 1. A garden, a beast and a trap 

In this problem, placing a trap on each square is clearly not optimal, except if the 

beast is reduced to a single square (monomino). The difficulty thus lies in finding a 

configuration with the smallest number of traps. In the literature, this problem 

belongs to covering problems and can be seen as a variation of the Pentomino 

Exclusion problem introduced by Golomb (1966). In the latter problem, the garden 

is a k×n rectangular board and the aim is to minimize the number of traps so that no 

pentomino can be placed on it. For both problems, it turns out that the computation 

of the minimum number of traps is NP-complete2 in terms of algorithmic 

complexity (Gravier et al., 2007). However, for some special cases of the board and 

the beast, results exist concerning the minimum number of traps (Dorbec, 2007; 

Gravier & Payan, 2001). Such a problem leads to new research questionings in 

 
2 That is, “nondeterministic polynomial-time complete” (See Garey & Johnson, 1979). 
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graph theory (e.g., Gravier et al., 2007), such as new integer programming models 

that are still in progress (e.g., Kartak & Fabarisova, 2019). 

3.2 Fireworks based on the Eight Queens problem 

Here is the usual way to present the problem to students in Maths à Modeler: 

In a warehouse, we try to store the maximum number of boxes of fireworks 

under the following constraint: if one box explodes, it does not damage any 

other box. For our purpose, the warehouse will be a subset of the grid. A 

box of fireworks consists of a single cell of the grid to which is attached a 

security zone. A box of fireworks placed in the warehouse can therefore 

prohibit all cells in its security zone (Figure 2). 
 

 
Fig. 2. Example of a warehouse, a box of fireworks (star) and a security zone (red colored 

squares) 

If the warehouse is the 8×8 chessboard and the security zone of a box of fireworks 

placed on a cell is the set of cells in the same row, column and its two diagonals, 

then we get the so-called well-known Eight Queens problem. One attributes this 

problem to the German chessman Bezzel (1848). It was generalized for n queens 

by the mathematician Nauck (for historical references see Campbell, 1977). Lucas 

(1882) published the first complete solutions of this problem. Since then, several 

extensions of this problem have been studied (e.g., Simkin, 2021) such as 

dominating and stable sets in grid-like graphs, generalized Latin squares, etc.  

 

3.3. Existence and non-existence problems to be addressed 
Many problems of discrete optimization consist of finding a subset of a given 

ground set satisfying some given constraints with maximum or minimum 

cardinality. A feasible solution is simply a set satisfying the required constraints.  
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A feasible solution of Hunting the beast! is a set of cells of the garden (the 

ground set) where one places traps with the following constraint: each beast 

in the garden contains at least one cell with a trap (Figure 3). 

For Fireworks, a feasible solution consists of storing a set of cells of the 

warehouse (the ground set) where one places boxes of fireworks with the 

following constraint: no placed box of fireworks belongs to the security zone 

of another (Figure 4).  

               
Fig. 3. A feasible solution [left] and a non-feasible solution [right] for Hunting the beast! 

(L-tromino) 

            
Fig. 4. A feasible solution [left] and a non-feasible solution [right] for Fireworks  

(security zone defined by the bishop’s move) 

A solution of the optimization problem is a feasible solution with optimal 

cardinality. To solve our discrete optimization problems means to ‘find’ the best 

solution from all feasible solutions, i.e. a global optimum. Therefore, we have two 

distinct problems, as explicitly stated below3: finding a ‘good’ solution and proving 

its optimality. 

Finding a feasible solution of cardinality k is an existence problem (called 

Pexistence, k): 

- It means that there exists a configuration of k traps that is a feasible solution; 

one can exhibit a way of placing k traps in the garden so as to exclude the 

given polyomino. The goal is to find the smallest cardinality of the feasible 

 
3 Their proofs are distinct, whereas in continuous optimization problems, their resolutions are often 
put together in an asymptotic argument. 
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solutions. Hence, for the minimization problem Hunting the beast!, finding 

a feasible solution with k traps gives an upper bound of that cardinality. 

- Analogously, it gives a lower bound for a maximization problem 

(Fireworks). 

Proving that a feasible solution of cardinality k is optimal is often a difficult non-

existence problem (called Pnon-existence, k-1 i.e. every configuration of k-1 traps is not 

a feasible solution) which involves a universal quantifier (∀). Indeed, in Hunting 

the beast! we have to prove that any set of size n, with n < k, is not a feasible 

solution. It means proving that no fewer traps could have been used for the same 

purpose. This leads to the lower bound (the optimal value is greater than or equal 

to k). 

We now justify our choices for the design of Research Situations for the Classroom.  
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4. Towards Research Situations for the Classroom 
An epistemological and mathematical study of the problem helps us to define 

variables and to predict proving processes. But an empirical and cognitive 

adjustment of the values of these variables is always necessary. Most of the PhD 

theses defended in Maths à Modeler and international publications (e.g., Grenier-

Payan, 1998; Ouvrier-Buffet, 2011, 2020) offer Research Situations for the 

Classroom with didactic engineering (Artigue, 2014) in the Theory of Didactical 

Situations and an epistemological background in discrete mathematics. The topics 

of these research projects deal with combinatorial games (Colipan, 2014), 

implication and necessary and sufficient conditions (Deloustal-Jorrand, 2004), 

arithmetic and geometry (Dissa, 2020), modeling (Giroud, 2011), open-problems 

and research situations (Godot, 2005), algorithms (Modeste, 2012), and defining 

and proving processes (Ouvrier-Buffet, 2003). In all these works, several Research 

Situations for the Classroom were designed, analyzed, tested and implemented with 

a common methodology in different contexts, namely, elementary and secondary 

levels, university level, pre-service and in-service teacher training, popularization 

events, and also with autistic children in a medical environment (Coffin et al., 

2006). We use students’ work from these experiments to illustrate the accessibility 

of specific proving processes in discrete optimization. Although the mathematical 

concepts and reasoning are complex, we choose to illustrate how students from 

Grade 4 to Grade 7 approach them without prerequisites in discrete optimization or 

specific courses on proof. 
 

4.1. The Research Situation Hunting the beast! for the 
Classroom 

Presenting the problem in a general context leads to discussions to reduce the space 

of research. One may simplify the problem by setting the following didactical 

variables: 

● The number of squares used to define the beast: naturally, hunting small 

beasts appears to be more accessible. A beast is connected but not 

necessarily convex.  

● The shape of the beast plays an important part; for example, hunting a 

rectangle (whatever its size) is a problem that is solvable through elementary 

considerations depending on the size of the garden (it is easier to 

conceptualize such beasts in a squared board  rather than beasts such as in 
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Figure 5). On the contrary, the problems may become harder if the beast is 

a non-connected set of squares. Several beasts can be given considering the 

topology of the beasts (Figure 5). 

  

Fig. 5. A connected but not convex beast, a convex beast, a non-connected beast 

● The number of types of beasts that are simultaneously excluded makes the 

research more complex; in the initial case, we consider only one type of 

beast. In the Pentomino Exclusion Problem, all the polyominoes of size 5 

are hunted, which is very complex. After having considered each type of 

polyomino separately, excluding all of them simultaneously is also 

interesting.  

● The size and the topology of the board are also important: it may be relevant 

to let the students work on larger sizes, or also play on rectangular boards. 

During experiments (from elementary to university levels), we set the didactical 

variables in order to facilitate the devolution of the problem and an effective search 

of optimal configurations and proofs. It appears that playing on a rectangular board 

is reasonable. A first possible step may consist in letting the students choose a 

reasonable sized beast (consisting of less than 6 squares) and an 8×8 or a 7×7 board. 

The shape of the beast is then a research variable. After this first step, three kinds 

of polyominoes are chosen for the experiments in the classrooms to make the 

proving process evolve (see Sections 5 & 6). We usually choose a 5×5 garden, a 

monomino for a trap and three kinds of beast (Figure 6). We use this configuration 

in the following analysis of the proving processes at stake. Considering a 5×5 board 

is already enough to effect a nontrivial effective search of optimal configurations 

and to formulate arguments and proofs. It is also possible to open the problem with 

other values of the didactical variables and then to question the generalization of 

the results. For instance, starting from the 5×5 garden, we can generalize the results 

for rectangular gardens n×m with the straight tromino: the whole part of nm/3 is the 

optimal value (Dorbec, 2007).  
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Fig. 6. The beasts 

4.2. The Research Situation Fireworks for the Classroom 

We propose simpler formulations of the problem so that it is accessible at 

elementary school. Even in the simplified formulations, interesting proving 

processes arise (Section 7). In a similar manner as for Hunting the beast!, the 

didactical variables of Fireworks concern the shape and the size of the warehouse 

and the characterization of the security zone. The topology of a box of fireworks 

can also be a didactical variable, but here we consider only a single cell.  

From now on, the warehouse will be a n×n grid. To build a Research Situation for 

the Classroom based on this problem, we leave n as a research variable available to 

the students.  

This situation is usually scheduled with a first step which enables the devolution. 

We ask students to set a (reasonable) security zone. Then, the problem become a 

Fireworks’ problem on a warehouse (generally an 8×8 or 7×7 grid) with the security 

zone defined by students. During this step, symmetric properties on the security 

zone are discussed: for example, if the cell (i,j+t) is in the security zone of cell (i,j), 

then one may assume that cell (i,j-t) also belongs to its security zone. Indeed, in a 

feasible solution, cells (i,j-t) and (i,j) cannot occur simultaneously since, by 

definition of that security zone, (i,j) belongs to the security zone of (i,j-t). This first 

step mainly allows us to identify the questions which are the existence problem and 

the non-existence problem (Section 3.3). As it appeared that finding answers for 

these problems seemed difficult with the original security zones, we proposed to 

study special security zones such as those of chess moves.  

From now on, we consider the security zone defined by the bishop’s move in chess, 

that is the set of cells belonging to the same diagonals of the place where the box 

of fireworks (bishop) is. Students often used a graphical register instead of a formal 

one to represent the security zone or the diagonals (Figure 7). 
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Fig. 7. The diagonals 

 

4.3. Extensions of Hunting the beast! and Fireworks problems 

For these two optimization problems, we chose certain values of the didactical 

variables in order to facilitate the devolution of the Research Situations to the 

students and to have an effect on the evolution of the students proving processes. 

We illustrate the details in the next sections.  

We underscore here some other interesting values of the didactical variable (or 

research variable for the reader). For the Hunting the beast! problem, another 

perspective is to exclude both straight and L-trominoes.  

For the Fireworks problem, we could propose other chess moves to investigate. 

For both problems, we can try to generalize the results to a rectangular n×m board 

(m ≠ n) (starting with a fixed small n). Here, reasoning by induction can be explored. 

We remind the reader that the general problems (i.e. without fixed values of the 

didactical variables) are still open in ongoing mathematical research.  

In the following sections, we describe the main phases which occur in proofs when 

solving combinatorial optimization problems for the above-mentioned values of the 

didactical variables (Sections 4.1 and 4.2). We analyze the construction of feasible 

solutions (Pexistence) and the proof of the optimality of our best feasible solution or 

the proof of the bound of the optimal value (Pnon-existence) for Hunting the beast! 

(Sections 5 & 6) and Fireworks (Section 7). The described strategies are illustrated 

with the work of students. The aim is twofold, as follows: to reach an overview of 

the mathematical potentialities from the proof perspective of such optimization 

problems, and to point out the accessibility of proving processes in the classrooms. 

Of course, other interesting mathematical proofs exist, such as exploring rows and 

columns arguments (Ouvrier-Buffet et al., 2017) or covering numbers, but we focus 

on processes of reasoning that are transversal to discrete mathematics and often 

used in discrete optimization.  
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5. Existence problem: Construction of feasible 
solutions—Hunting the beast! 

Local arguments and difference between minimal and minimum 

To find a solution with n traps means to solve Pexistence,n but it is not necessarily an 

optimal solution of the problem. We need to show that the statements Pexistence,n and 

Pnon-existence,n-1 are true in order to prove that n is the optimal value. 

We remind the reader that we construct feasible solutions, i.e., we exhibit a way of 

placing a certain number of traps in the garden so as to exclude the given polyomino 

(existence problem). 

One can develop local strategies of optimality when searching for the use of a 

minimum of traps. Additionally, the symmetry of the garden (ground set) suggests 

finding a symmetrical feasible solution as well. We give an example of such a 

strategy (which often occurs in the classrooms) with the straight tromino.  

In a 5×5 garden, to exclude a beast from a single row, we need at least one trap. 

This trap must be placed on the middle square. The same is true for columns. 

Consider the first row and the last row by symmetry, on the one hand, and the first 

and the last columns on the other hand: we obtain the partial selection of the traps 

in Figure 8a. Still by symmetric argument, we choose the midpoint of the 5×5 

garden (Figure 8b).  

The cell (2;2) is one of the remaining cells of the garden which contains the greatest 

number of straight trominoes (4 as marked in Figure 8c), then we select this cell by 

a local optimality argument. Finally, by symmetry, we obtain the solution with 9 

traps in Figure 8d. 

    

Fig. 8. Strategy based on symmetrical and local arguments 

Such a strategy is usable for any shape of the beast. It generates a feasible solution 

which can have the following property of minimality: if one removes any trap from 

such a feasible solution, then one gets a set of traps which is not a feasible solution 

(Figure 9). 



16 

  
Fig. 9. Discussion of minimality of feasible solutions for the straight tromino (left) 

and the L-tromino (right): minimal but not minimum 

This kind of argument is used by students to claim the optimality of a solution: “If 

I remove any trap, a beast can land in the garden. Therefore, my value is optimal.” 

But it only proves that the feasible solution cannot be improved by removing certain 

traps: it means that this feasible solution is (sometimes called local optimum) 

minimal but not necessarily minimum. Yet this does not prove it is optimal. To show 

that this reasoning is wrong, a counterexample built with another locally minimal 

placement of the traps, with more traps, is enough (Figure 10): such a 

counterexample may emerge during students’ discussions or be introduced by the 

teacher. It is unlikely that any student would think that the placement on the right 

(with 13 traps) is the best possible. This is an interesting way to discuss the 

difference between minimal and minimum. 

 
Fig. 10. Straight tromino is excluded with two locally minimal but non-optimal 

placements of the traps 

Students may also be convinced that the above-mentioned argument fails because 

they get a better solution after a few trials. That is the case with the domino, when 

7th graders found a feasible solution with 13 traps and the optimal solution with 12 

traps (Figure 11). During their research, notice that their representation of the 

problem evolved, trying a packing (with some mistakes) (Figure 12).  
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Fig. 11. 7th graders’ work on feasible solutions [domino]:  

“We found better with 12 traps!!” 

 
Fig.12. 7th graders’ packing attempt [domino]  

with some mistakes in the placement of the traps (“1 trap per beast”) 

6. Non-existence problem: Proof of optimality—
Hunting the beast! 

In the previous section, we exhibited strategies to construct feasible solutions. Some 

of them are optimal (e.g., Figure 11, right). We now prove that no fewer traps could 

have been used for the same purpose “by whatever combinatorial reasoning or 

tricks suggest themselves” (Golomb, 1966, p. 42). 

 

6.1. Proof by exhaustion (also called proof by cases, or by 
case analysis)  

Examining all possible cases is always possible, mainly for small cases, but remains 

laborious and leads to a combinatorial explosion phenomenon in the general cases. 

It motivates the use of another kind of reasoning. 
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6.2. Necessary and sufficient proof—towards duality4 
The manipulation of beasts brings the necessary proof, accessible in primary 

schools, and questions the sufficient proof. Observe that any beast in the garden 

forces us to place a trap on at least one of the cells occupied by it. This observation 

may suggest considering the dual packing problem, i.e., to fill all the garden with 

disjoint beasts. 

For the domino (or, respectively, for the straight tromino), the packing of 12 

dominoes (resp. 8 straight trominoes) in the garden proves that 12 traps (resp. 8) 

are necessary to cover all the nonoverlapping dominoes (resp. straight trominoes) 

of the garden. Then, a minimum of 12 traps (resp. 8) is necessary to exclude the 

domino (resp. straight tromino): it is a lower bound. To exhibit a placement of 12 

traps (resp. 8) gives an upper bound. Since the two bounds coincide, then the 

optimal value is 12 (resp. 8). Domino (Figure 12) and straight tromino (Figure 13) 

can be seen as generic examples and can lead to a generic argument linked to the 

following proposition (which can be proved): ‘If one covers the garden with n non-

overlapping beasts, then at least n traps are needed to exclude the beast’. For the L-

tromino, this kind of proof is not enough. Indeed, only 8 L-trominoes cover the 5×5 

garden, but 10 traps are needed to exclude the L-tromino. Then, the optimal value 

is framed between 8 and 10 (Figure 14). 

 

 
4 We can point out that the word duality has the same meaning in geometry, algebra and 
combinatorics: it is linked to the notions of sphere covering, generating set and transversal on the 
one hand, and sphere packing, independent set and matching on the other hand. 
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Fig. 13. 7th graders’ solution and packing [straight tromino]: “I found 8 traps with 

this beast.” “One can put 8 beasts … The minimum number to exclude the beast is 

8.” 

In some experiments, it appears that after solving the problem with the straight 

tromino, the students started to solve the problem with the L-tromino by placing 

beasts in the garden. This is the case with 7th graders who have explored the problem 

intensively with manipulatives, and realized the interest of studying the dual 

problem when dealing with the trominoes, the L-tromino in particular. They 

claimed “The minimum of traps is 8 since there are 8 beasts. We have a solution 

with 10 traps and a tiling with 8 beasts. No luck! Best solution with 8, 9 or 10?” 

(Figure 14). Clearly, there is a confusion here between necessary and sufficient 

conditions: this is an epistemological obstacle. Then, one may ask students to give 

a solution with 8 traps. So, studying the L-tromino enables students to work on the 

differences between necessary and sufficient conditions.  

 
 

Fig. 14. 7th graders’ frame of the optimal value [L-tromino] at the end of an 

experiment 

It is particularly interesting to study clearly how the notions of upper and lower 

bounds are related to sufficient and necessary conditions. Indeed, determining that 

the optimal value is less than or equal to k shows that k elements are sufficient. 

Moreover, proving Pnon-existence shows that k elements are necessary. Indeed, for 

minimizing optimization problems, the lower bound (the optimal value is greater 

than or equal to k) shows that k elements are necessary to satisfy all constraints. 

Moreover, exhibiting a feasible solution of cardinality k shows that k elements are 

sufficient to satisfy all constraints. 
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From the combinatorial optimization point of view, the covering problem has a dual 

packing problem. This approach is usual when mobilizing duality theory in 

combinatorial optimization problems, which can be considered from two 

perspectives, called the primal and the dual problems. 

No prerequisite in combinatorial optimization is required to understand the weak 

duality relationship that links the problem of placing the minimum number of traps 

(primal problem) so as to exclude all the beasts and the problem of placing the 

maximum number of non-overlapping beasts (dual problem), namely that any upper 

bound of the first provides a lower bound of the second. 

Notice that methods to solve these two dual problems are rather different. In the 

primal problem (minimum number of traps so as to exclude all the beasts), we 

exhibit a configuration of n traps to exclude the beast to prove that the minimum 

number of traps is at most n. In the dual problem (maximum number of non-

overlapping beasts), we exhibit a packing of m beasts to prove that the minimum 

number of traps is at least m. The non-existence problem is directly transformed, 

by duality, into an existence problem (find a packing of the ground set with beast)5. 

Thus, the universal quantifier is needed only to determine the constraints of the 

covering problem. For Hunting the beast! With the domino and the straight tromino, 

the bounds do coincide, the inequality is an equality. In that case, we say that the 

primal and dual problems have a strong duality relationship. Sometimes, these two 

bounds do not coincide: this is the case with the L-tromino (the minimum of traps 

is 10 whereas at most 8 beasts can be packed on the garden). In that case, we say 

that the primal and dual problems have a weak duality relationship. The L-tromino 

clearly leads to a shift in the proving process from the epistemological and 

didactical point of view (Ouvrier-Buffet, 2017 & 2021), thus the interest in 

choosing the L-tromino as a value of the didactical variable ‘shape of the beast’. 

The other values of this didactical variable are also justified. The domino allows 

the devolution of the problem, and the straight tromino fosters the reuse of actions 

and formulations produced when students explore dominoes: therefore, it helps 

students to stabilize their proving processes.   

 

 
5 Packing and covering problems are existence problems for which we know effective procedures 
to get feasible solutions (see all the presented techniques for Pexistence). 
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6.3. The L-tromino and the need to use another proving 
process: studying smaller cases—towards cuts 
In any case, whenever the beast is the L-tromino, one may study smaller gardens. 

This allows us to remark that two traps are needed to keep the L-tromino off a 2×2 

garden. Then, one trap is needed for the beast landed on this garden and one more 

trap on a cell not covered by a beast in order to keep another neighboring beast off 

the 2×2 garden. So, for each 2×2 garden, 2 traps are needed (Figure 15). Now, we 

consider a larger garden: if we focus on a 2×2 square included in this garden, then 

we may claim that we need at least 2 traps in this restricted 2×2 square. Therefore, 

we use the packing with 2×2 squares and L-trominoes (Figure 16). When one 

structures the 5×5 garden with 2×2 squares, four 2×2 squares ‘at worst’ appear and 

two other beasts can come: then, 4 times 2 traps and 2 traps are required, so 10 traps 

are sufficient in order to keep the beast off the 5×5 garden. We have solved Hunting 

the beast! on the 5×5 garden.  

With the L-tromino, we here consider more restrictive constraints: 2 traps are 

necessary to exclude all the beasts off a 2×2 square. This technique of adding new 

constraints is classical in combinatorial optimization and can be seen in the case of 

linear programming as the cutting plane method introduced by Gomory (1960). The 

idea is to find a new problem for which the size of an optimal solution is equal to 

one in the initial problem. Therefore, we can link the previous reasoning to abstract 

reasoning, namely adding a set of valid inequalities using the cut given by the 

constraints on the 2×2 squares. Consider a 2×2 garden: at least two traps are 

required to exclude the L-tromino. Then, consider any packing of m L-tromino and 

m'  2×2 squares in the garden: at least m+2m’ traps are required to exclude the L-

tromino (Figure 16).  

This kind of reasoning is available even with young students (4–5th graders, see 

Ouvrier-Buffet et al., 2017). They claimed: “When we exclude the domino beasts, 

we find a solution with 12 traps, it is the best solution for now. The domino beasts, 

we can put 12 maximum; we need at least 1 trap per beast, so 12 dominoes, we need 

at least 12 traps. With the trominoes, 1 trap per beast does not work, you need 2 

traps per beast.” So, they prove that 2 traps are necessary in the 2×2 garden, but 

they do not extend this argument to a larger garden. This extension of this argument 

appears to be an obstacle.    
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The L-tromino beast takes 2 lines. That allows us to 

find a solution with 10 traps: we have chosen one line 

out of two, avoiding the first one in order to have only 

two lines of five squares (and not 3´5 squares).  

In a solution for L-trominoes, we need to use 2 traps 

for a beast.  

 
Proof: for a four squares garden, we have:  

(they draw this picture) 

But sometimes, one trap is enough. We are sure that 8 

is impossible because there are 8 beasts and 

sometimes 2 traps are required. 

 

Fig. 15. 4–5th graders’ solution and arguments to exclude the L-tromino 

 

The same kind of argument is extended by 7th graders to the 5×5 garden with a 

packing of L-trominos and 2×2 gardens (Figure 16): their representation highlights 

that 2 traps are required to exclude the L-tromino from a 2×2 square garden and 1 

trap is required to exclude a L-tromino. They conclude that “At least 10 traps are 

required”. 

 
Fig. 16. 7th graders’ representation of the lower bound to exclude the L-tromino 

 
6.4. A heuristic: the greedy algorithm 

The greedy algorithm is a heuristic6. The definition we use here is a restrictive one: 

more general ones also exist (see for instance Bondy & Murty, 2008). A greedy 

 
6 The word heuristic is often used in mathematics education as Polyá (1954) defined it. In 

problem-solving, it includes, for instance, analogy, generalization, induction, decomposing and 
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algorithm consists in building a feasible solution, element by element, following 

local choice at each step to try to reach the optimality of the solution obtained, i.e., 

always choosing the next element that offers an optimal benefit (it needs to be 

defined carefully for each problem). This approach never reconsiders the choices 

taken previously. To choose the next element, some heuristics may be used since 

there may be multiple choices that offer the same benefit. A greedy algorithm stops 

when we get a (feasible) solution with no more benefit. So, the validity of a greedy 

algorithm consists in proving that a solution with no benefit has to be a feasible 

solution. In many problems, it fails to give an optimal solution (for instance in 

problems like that of the travelling salesman). 

For instance, in Hunting the beast!, ‘to choose a trap which excludes at least one 

beast and the most number of beasts not excluded by the other selected traps’ is a 

greedy strategy. To choose the next element, some heuristics may be used. For 

instance, in the case of a minimization problem, if, at some step, one has chosen a 

subset X of elements, then one chooses a new element e such that the set X+e 

satisfies a maximum number of constraints. One can still get a minimal feasible 

solution which is not necessarily optimal even if at each step the heuristic chooses 

an optimal element. The solution can then be locally optimal7 but not necessarily 

globally optimal. It is not natural at all and appears as an epistemological obstacle: 

‘Doing the best at each step does not guarantee the best at the end’.  

In Hunting the beast!, as the problem is posed, the students first hunt the beast by 

placing some traps on the board. The students can use a procedure to build, step by 

step, a solution, until they get a feasible solution by repeatedly choosing a trap 

which excludes a beast not excluded by the other selected traps. That is the case 

when they put one domino in the garden and one trap to keep this beast off the 

garden and so on (Figure 17). It leads to a solution with one trap for each two 

squares to exclude the domino, and then to an optimal solution (12 traps) or a non-

optimal one (13 traps) (Figure 11). This in-action process emerges during the 

 
recombining, working backward. We will keep in mind the definition of heuristic coming from 

operations research, which is non-contradictory with that of Polyá: “In general, for a given 

problem, a heuristic procedure is a collection of rules or steps that guide one to a solution that 

may or may not be the best (optimal) solution” (Laguna & Marti, 2013). 
7 Sometimes the heuristic gives a minimal or a maximal solution (as described in Fireworks, 
Section 6). 
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manipulation of the beasts and the traps. Nevertheless, the verbalization and the 

conceptualization of such a process is not self-evident (Figure 12).   

                        
Fig. 17. A manipulation following a greedy algorithm leading to an optimal (12 

traps) or a non-optimal (13 traps) solutions in Grades 4–5 

It is worth pointing out that greedy algorithms are intensively studied because they 

are simple and practical. A first application of such algorithms was used by Dijkstra 

(1959) for a graph theoretical problem. Mathematicians are currently trying to 

characterize those problems for which a greedy algorithm is effective. Matroids 

theory has attempted to provide an axiomatic framework describing the problems 

for which a greedy algorithm applied with any order of selection of the elements 

guarantees the optimality of the result (Welsh, 2010). 

7. Existence and non-existence problems: 
Construction of feasible solutions and proof of 
optimality—Fireworks 

We explore the above-described proving processes for the maximization problem 

Fireworks and point out their features: in this problem, the partitioning strategy and 

the primal-dual method are emphasized. The aim is still to underscore the 

mathematical underlying proving processes in such discrete optimization problems 

in order to give to the reader mathematical clues to deal with another optimization 

problems, and to enrich didactical a priori analysis (following Brousseau’s 

definition). In this section, we do not integrate pictures of students’ works; we 

explain them. 

The problems we deal with are the following.  

Pexistence,n : an arrangement of n boxes that does not overlap security 

zones (sufficient condition, existential quantifier) exists; the optimum is at least n.   

And Pnon-existence, n+1 is for every arrangement of n+1 boxes; one box is in another's 

security zone (universal quantifier). The optimum is at most n. 
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7.1. Construction of feasible solutions—Difference between maximal 
and maximum—Towards partitioning strategy 

To generate a feasible solution for Fireworks, we can use a heuristic (i.e. a local 

strategy) consisting in ‘placing one box of fireworks, removing its security zone, 

choosing another one and iterating this process until there are no more cells’. This 

strategy is often used by students even if it is not explicitly stated. The choice of the 

first element is not necessarily justified. Some geometrical arguments may be 

proposed (corner or center) without discussing a clear relationship with the 

problem.  

As for Hunting the beast!, a greedy algorithm can be used in Fireworks to build a 

feasible solution: it means, for instance, at each step, choosing a new firework 

which does not damage another one if it explodes, while trying to optimize this 

local choice. Notice that the above-described heuristic can be seen as such a greedy 

algorithm with no optimization. Another way to optimize such a local choice should 

define a benefit: for instance, to choose a new firework that does not damage 

another one in such a way that its added security zone covers as few new spaces as 

possible. 

An example of a local strategy for the security zone defined by the bishop’s move 

on an 8´8 board is given in Figure 18. Then, with the above-mentioned heuristic, 

we obtain a maximal solution with 9 boxes of fireworks. Here, maximal means that 

if we add another box of fireworks, then we get a non-feasible set, i.e., this new box 

of fireworks will damage another one if it explodes. So, we get the first bound: the 

optimal value is greater than or equal to 9. 

 
Fig. 18. Local strategy for bishop’s move on an 8×8 chessboard 

A new investigation gives a solution with 14 bishops (2n-2 in the general case) in 

Figure 19. This allows us to discuss the difference between maximal and maximum. 
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Fig. 19. Solution with 14 bishops 

After more attempts, we fail to improve this solution, so the conjecture that we have 

reached the optimal value, 14, can be formulated.  

 

7.2. The primal-dual method 

We here present the primal-dual method, using Fireworks as an illustration. The 

primal-dual method, proposed by Egerváry in the early 1930s in combinatorial 

optimization and then by Dantzig, Ford, and Fulkerson in 1956 in linear 

programming, is nowadays modified to deal with NP-hard problems (Goemans & 

Williamson, 1996). From a didactical point of view, this approach should be 

carefully checked since it could reveal a confusion between necessary and sufficient 

conditions, as underscored above. 

Remember that the primal problem consists in packing the maximum number of 

boxes in the ground set such that if one box explodes, it does not damage any other 

box. The dual problem consists in covering the ground set with regions (which may 

differ from the security zone of a box) such that at most one box can be placed on 

each region. Obviously, our optimum value cannot be larger than the number of 

regions. So, the dual is P*existence,n, i.e., there exists a covering of n regions that 

cannot contain more than one box. For the Fireworks problem defined by a king’s 

move (e.g., Gandit et al., 2014), the regions are 2×2 squares; for a bishop’s move, 

the regions are diagonals.  

The study of different definitions of the security zone leads to the mobilization of 

several strategies. For example, when the security zone is bounded (not depending 

on n) such as for the king’s move (left, right, up, down, diagonally), then it may 

induce a partitioning strategy. It consists in tiling the ground set (by translation) 

with tiles with one marked cell corresponding to the place of the king. Such a 

strategy can be described as follows: starting from a solution of the dual problem 
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(covering) which is also a packing (here, the tiling with 2×2 squares), one tries to 

find a solution of the primal problem where each region contains exactly one king.  

We have to make sure that this tiling provides a feasible solution. A way to ensure 

that we get a feasible solution is to consider the tiling defined by translations such 

that, for any case c and any translation used by the tiling, the case obtained by 

translation is not in the security zone of c. This strategy is illustrated for n=8 (Figure 

20).  

 
Fig. 20. Partitioning strategy to get a feasible solution with 16 kings 

From this terminology, the partitioning strategy (for instance, the king’s move 

above, or the bishop’s move below) can be generalized: it leads to a primal-dual 

method by solving at the same time the primal and the dual problems. Such methods 

consist in using a dual solution to build a feasible solution of the primal problem 

which satisfies optimally each (or a maximum of) constraint(s) of the dual solution.  

We recall that for the bishop’s move, we have built a solution with 14 bishops on 

the 8×8 board (Figure 19). After several attempts, we failed to improve this 

solution, so the conjecture that we reached the optimal value can be formulated for 

the primal problem. At this stage, the students tried a case analysis, but there were 

too many cases to consider, and they failed to find a full proof. One suggested 

studying the smallest warehouses. Therefore, a partitioning strategy could appear 

followed by work on the dual covering problem, that is, to place the smallest 

number of diagonals whose union covers the entire 8×8 board.   

As for Hunting the beast! the students used partitioning strategy as a proof 

argument, but they did not see it as a new problem. Quickly, the students placed 2n-

1 such diagonals (Figure 21). 
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Fig. 21. 2n-1 diagonals on a n×n board 

So, we have the closest frame on optimal value with 2n-2 and 2n-1. 

One can construct 2n-1 non-overlapping diagonals to cover the board (Figure 21). 

Since one can put at most one box on each diagonal, it follows, by duality, that the 

highest number of boxes is 2n-1. Since the two corner diagonals are just one square 

and the security zone of one contains that of the other, you cannot put a box on 

each, so the maximum is at most 2n-2. 

Finally, we get the desired upper bound 2n-2, which corresponds to a necessary 

condition on the value for all solutions, therefore for the optimum. 

Conclusion and perspectives 

Discrete mathematics has huge potential for the design of learning situations 

involving proof and proving processes and, more generally, mathematical inquiry. 

Even if many discrete mathematics problems can be easily explained, most of them 

are really difficult to solve. A non-trivial selection of ‘good’ mathematical problems 

for classrooms has to be validated by epistemological and didactical a priori 

analysis, but also by several experiments in different classrooms in a long-term 

process. 

Exploiting two contemporary problems, we have emphasized several proving 

processes used in discrete optimization. From the mathematical point of view, we 

have underscored specific proving processes and heuristics, including mainly the 

following: necessary and sufficient proof, partitioning strategies, greedy 

algorithms, primal-dual methods, weak and strong duality, and the cutting planes 

method. In such discrete problems, more classical proving processes such as proof 

by exhaustion or proof by induction can also be used. In all these proving processes, 

we found epistemological obstacles which lie in confusion or misunderstandings of 

necessary and sufficient conditions, of optimal and optimum, of local and global 
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optimality. To overcome these obstacles, we have pointed out solutions with 

illustrations involving the two optimization problems. In particular, necessary and 

sufficient conditions can make sense through the notions of lower and upper bound. 

Moreover, the definition of dual problems gives a general framework to obtain these 

bounds. The distinction between optimal and optimum appears during a problem of 

optimizing the cardinality of a set when the students are used to optimizing 

numerical functions. Again, the distinction between local and global optimality 

arises when the students produce feasible solutions with simple algorithms such as 

greedy ones. 

Therefore, the field of discrete optimization is really promising for getting students 

to work on different proving processes and to overcome certain epistemological 

obstacles which are transversal to mathematics. 

Using the Theory of Didactical Situations to transpose mathematical research 

activities developed in Maths à Modeler, we have designed two Research Situations 

for the Classroom (Hunting the beast! and Fireworks) derived from famous 

mathematical problems in discrete optimization (Pentamino Exclusion and the 

Eight Queens problems). Several experiments, mainly realized in action-research 

contexts but carefully planned and implemented with the help of the Theory of 

Didactical Situations, have strengthened our choices of didactical variables and 

revealed regularities in students’ processes at all school levels (from primary school 

to university). Therefore, we have emphasized how students’ proving processes are 

close to mathematical proofs with illustration of the work of 4th to 7th graders. In 

particular, the two Research Situations for the Classroom are particularly efficient 

for work on the distinction between necessary and sufficient conditions and on 

optimality (local versus global, optimal versus optimum). In the experiments, the 

proof of the sufficient condition which corresponds to solving an existence problem 

involved strategies, sometimes even algorithms, to produce a ‘good’ solution, i.e., 

a solution that students cannot improve. Greedy algorithms emerged in the students’ 

work. They are also used by mathematicians. Students generally adopted a 

partitioning strategy to prove the necessary condition: this technique allowed them 

to prove that the previously obtained solution could not be improved. There are two 

clearly distinct ways to prove the sufficient condition and the necessary condition 

respectively. Nevertheless, the students did not see that their partitioning strategy 

could be seen as a new problem, i.e., the dual, and they did not detect this new 
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problem as the solution to the previous one. This points out the limits of adidactical 

situations for proving processes and transversal processes and concepts such as 

primal-dual methods and duality. We also notice that the authors of some research 

studies concerning proof have pointed out the difficult shift in the validation process 

(e.g., Balacheff, 2010), the crucial role of the teacher’s guidance (e.g., Mariotti et 

al., 2018; Stylianides, 2016), and the difficulties in institutionalizing (e.g., 

Stylianides, 2007). We have not developed all these aspects here. It leads us to point 

out new research questions. Indeed, in an educational context, and nowadays in the 

frame of Inquiry Based Mathematics Education (Artigue & Blomhøj, 2013), 

researchers in mathematics education must question the relevant skills at stake in a 

mathematical proving process and in a mathematical inquiry. Starting from the 

examples developed in this paper, the following new research questions emerge: 

How may one choose proving processes in order to teach for curricula in 

mathematics? How may one transpose such processes as are relevant in 

mathematical inquiry to the classroom? How may one institutionalize such 

processes, which a priori required a long-term process in the classroom? Finally, 

how may one redesign teacher training? Such questions are crucial at the 

international level both for discrete mathematics (Rosenstein, 2018) and 

mathematics in general. 

It is obvious that collaborative work with research-active mathematicians can 

generate frameworks and tools for education at the interplay between mathematics 

education and mathematics (e.g., Alcock & Simpson, 2009). The research dealing 

with proof and ongoing mathematics using interviews with mathematicians (e.g., 

Lockwood et al., 2016; Ouvrier-Buffet, 2015; Weber, 2011) and the Research 

Situations for the Classroom endeavour, clearly open new perspectives for the 

teaching and learning of proving processes in discrete mathematics. The 

mathematical background developed in this paper allows the design of new didactic 

engineering in discrete optimization, including teacher training. 
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