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Quasi-probability distribution of Classical solitons

Quasi-probability distributions are useful in formulating the phase space analogue of quantum mechanics. We calculate them for the Kink and Sine-Gordan solitons. The quasi-probability distributions are useful as they can be used to calculate quantities like charge distributions, current density, and the upper bound on the quantum speed limit. We calculate the charge distributions and current densities from the derived quasi-probability distribution for both the types of solitons.

Introduction

One of the seminal works in the field of semi-classical physics was carried out by Wigner, who combined the distribution of particle's position (co-ordinate) and momentum in terms of a wave function. This function which is termed as Wigner function or Wigner distribution [START_REF] Wigner | On the quantum correction for thermodynamic equilibrium[END_REF] shows the phase space formulation of quantum mechanics. Moreover, it acts as a standard tool to study the quantum-classical interface [START_REF] Bolivar | Quantum-classical correspondence: dynamical quantization and the classical limit[END_REF]. The classical particle is represented by a point with its position and momentum as coordinates in the phase space [START_REF] Goldstein | Classical mechanics[END_REF]. For a given ensemble of particles, the Liouville density [START_REF] Groenewold | On the principles of elementary quantum mechanics[END_REF] gives the probability distribution of that ensemble. The probability distribution is of sheer importance as it helps in finding the trajectory of that entire ensemble. In the case of an ensemble of quantum particles, a similar representation is not possible due to the uncertainty principle [START_REF] Robertson | The uncertainty principle[END_REF]. Therefore, Wigner distribution [START_REF] Wigner | On the quantum correction for thermodynamic equilibrium[END_REF], mentioned above, comes for the rescue as it gives a quasi probability distribution [START_REF] Groenewold | On the principles of elementary quantum mechanics[END_REF] for that ensemble although it does not satisfy all the properties of conventional classical probability distribution and becomes negative [6] in some regions of the phase space. Thus Wigner distribution is helpful in studying the quantum analogue of the classical phase space approach. It has a broad range of applications namely in the field of quantum optics [7,8,9,[START_REF] Marshall | Interpretation of quantum optics based upon positive Wigner functions[END_REF]11], quantum computing [START_REF] Cormick | Classicality in discrete Wigner functions[END_REF][START_REF] Galvao | Discrete Wigner functions and quantum computational speedup[END_REF][START_REF] Raussendorf | Contextuality and Wigner-function negativity in qubit quantum computation[END_REF][START_REF] Delfosse | Wigner function negativity and contextuality in quantum computation on rebits[END_REF]16], signal processing [START_REF] Veitch | Efficient simulation scheme for a class of quantum optics experiments with non-negative Wigner representation[END_REF][START_REF] Bandyopadhyay | Wigner distribution of elliptical quantum optical vortex[END_REF]19,20,21,[START_REF] Bastiaans | The Wigner distribution function applied to optical signals and systems[END_REF], quantum chromodynamics [START_REF] Lorce | Quark Wigner distributions and orbital angular momentum[END_REF][START_REF] Engelhardt | Quark orbital dynamics in the proton from Lattice QCD: From Ji to Jaffe-Manohar orbital angular momentum[END_REF][START_REF] Mukherjee | Quark Wigner distributions and orbital angular momentum in light-front dressed quark model[END_REF][START_REF] Mukherjee | Wigner distributions for gluons in a light-front dressed quark model[END_REF], etc.

In this work, we have calculated the Wigner distribution of the classical solitons [START_REF] Rubakov | Classical Theory of Gauge Fields[END_REF] namely, the kink and the Sine-Gordan solitons. Solitons are the solutions of the classical field equations which are similar to particles sometimes referred to as pseudo particles [START_REF] Rajaraman | Solitons and Instantons. An Introduction to Solitons and Instantons in Quantum Field Theory[END_REF]. We have also calculated the charge and current distributions of the same, using the results obtained from the calculation of the Wigner distribution. The motivation of us to calculate the Wigner distribution of these solitons is due to the behaviour of these solitons as described in [START_REF] Rajaraman | Solitons and Instantons. An Introduction to Solitons and Instantons in Quantum Field Theory[END_REF], which says that soliton forms the solution of semi-classical approximation in the second quantized relativistic field theory. Moreover, the Wigner distribution also emphasises a similar idea as that of a quasi probability distribution. The study of solitons is restricted in the field of particle physics but has a widespread application in condensed matter physics and quantum computing. Therefore, we have given a short glimpse of how the Wigner distribution helps us to find the Classical speed limit time [START_REF] Shanahan | Quantum speed limits across the quantum-to-classical transition[END_REF], semi-classical speed limit time [START_REF] Shanahan | Quantum speed limits across the quantum-to-classical transition[END_REF], and Quantum speed limit time [START_REF] Deffner | Quantum speed limits: from Heisenberg's uncertainty principle to optimal quantum control[END_REF] in the present context of solitons towards the end, as the quantum speed limit time [START_REF] Deffner | Quantum speed limits: from Heisenberg's uncertainty principle to optimal quantum control[END_REF] forms the foundations of quantum information computing.

In section [START_REF] Bolivar | Quantum-classical correspondence: dynamical quantization and the classical limit[END_REF] we begin by calculating the Wigner distribution of the Kink soliton and further calculating the charge distribution and current distribution for the same. The contour, Wigner, and the charge distribution are plotted.

In section (3) we have calculated the Wigner distribution of the Sine-Gordan soliton, then we calculate the charge and current distribution for the same. Similar to the previous section we plot the contour, Wigner and the charge distribution.

Wigner distributions for the kink soliton

One of the quite common methods to represent a quantum mechanical system in phase space is by Wigner representation [START_REF] Wigner | On the quantum correction for thermodynamic equilibrium[END_REF]. The general notion of the Wigner distribution (W(x,p)) for a given state ψ can be given by

W (x, p) = 1 h b a dyψ(x + y)ψ * (x -y)e iP y ℏ (1) 
Here a and b represent the bounds within which the particle exists. We have calculated the Wigner distribution of the kink soliton [START_REF] Rubakov | Classical Theory of Gauge Fields[END_REF]. The kink is the simplest topological soliton [START_REF] Rubakov | Classical Theory of Gauge Fields[END_REF] that arises in the theory of real scalar field in 1 + 1 dimensional space-time. The Lagrangian density for the simple kink soliton is written by

L = 1 2 ∂ µ ψ∂ µ ψ + V (ψ)
where V (ψ) represents the potential energy which can be given by

V (ψ) = -µ 2 2 ψ 2 + λ 4 ψ 4 + µ 2
4λ or, which amounts to the same thing

V (ψ) = λ 4 (ψ 2 -a 2 ) 2
where, a = µ λ , the value of λ depends on the particular system. The minimum of the potential occurs when dV dψ = 0. The classical vacua occur at the minima of the potential. Therefore, they are at ±a. ψ is continuous and a transition region is observed between the two vacua. This is called the Domain wall [START_REF] Rubakov | Classical Theory of Gauge Fields[END_REF] and the symmetry is spontaneously broken upon the transformation, ψ → -ψ in this domain wall. Thus the kink soliton can be considered as a static solution of the field equations which is interpolating between two vacuum solutions. The wave function [START_REF] Rubakov | Classical Theory of Gauge Fields[END_REF] of the simplest kink soliton can be given by

ψ(x) = atanh λ 2 ax (2)
Since the soliton exists between its vacuum solutions we define the bound of the solitons between -a and +a. Substituting the value of the wave function i.e., eq.( 2) in eq. ( 1) we get

W (x, p) = 1 h a -a dy atanh λ 2 a(x + y) atanh λ 2 a(x -y) e iP y ℏ (3) 
By using the series expansion 1 of tanh( λ 2 a(x + y)), tanh( λ 2 a(x -y)), e iP y ℏ and simplifying we get

W (x, p) = a 2 h a -a dy tanh 2 λ 2 ax + 2ipy ℏ tanh 2 λ 2 ax - 4p 2 2! 1 ℏ tanh 2 λ 2 ax y 2 (4)
1 Series expansion is given in Appendix A 2 By integrating eq. ( 4) we get

W (x, p) = a 2 h ytanh 2 λ 2 ax + 2ipy 2 2ℏ tanh 2 λ 2 ax - 4p 2 2! 1 ℏ tanh 2 λ 2 ax y 3 3 a -a
Therefore, upon substituting the boundary values we obtain the Wigner distribution of the kink soliton as

W (x, p) = 2a 3 h tanh 2 λ 2 ax - 2p 2 a 2 9ℏ tanh 2 λ 2 ax (5)
Figure 1: Wigner distribution for Kink soliton; For -a < x < a and a = 10 -10 m

Calculation of charge and current density from Wigner distribution of Kink soliton

The charge distribution (Q W (x)) [START_REF] Colomés | Comparing Wigner, Husimi and Bohmian distributions: which one is a true probability distribution in phase space?[END_REF] is obtained by

Q W (x) = 1 h dp dy ψ(x + y)ψ * (x -y)e iP y ℏ (6) 
From eq.( 1) we can write eq.( 6) as

Q W (x) = dpW (x, p) (7)
Let us assume the arbitrary bounds for momentum, say p 1 and p 2 . Thus we get

Q W (x) = p2 p1 dpW (x, p)
By substituting the value of Wigner distribution [START_REF] Wigner | On the quantum correction for thermodynamic equilibrium[END_REF] from eq.( 5) we get Integration leads us to

Q W (x) = 2a 3 h p2 p1 dp tanh 2 λ 2 ax - 2p 2 a 2 9ℏ tanh 2 λ 2 ax (8)
Q W (x) = 2a 3 h tanh 2 λ 2 ax p - 2p 3 a 2 27ℏ tanh 2 λ 2 ax p2 p1
Therefore the charge distribution is given by

Q W (x) = 2a 3 h tanh 2 λ 2 ax (p 2 -p 1 ) - 2a 2 27ℏ tanh 2 λ 2 ax (p 3 2 -p 3 1 ) (9) 
If we take the value of p 1 , p 2 to be -p 0 , p 0 respectively. Then eq. ( 9) reduces to

Q W (x) = 2a 3 h 2p 0 tanh 2 λ 2 ax - 4p 3 0 a 2 27ℏ tanh 2 λ 2 ax ( 10 
)
By neglecting the higher order powers of p 3 0 we obtain

Q W (x) = 4a 3 p 0 h tanh 2 λ 2 ax ≈ |ψ(x)| 2 (11) 
The computation of current density [START_REF] Colomés | Comparing Wigner, Husimi and Bohmian distributions: which one is a true probability distribution in phase space?[END_REF] from Wigner distribution is given by

J W (x) = dp.p.W (x, p)
From eq. ( 1) we get Let us assume the arbitrary bounds for momentum, say p 1 and p 2 . So,

J W (x) = 1 h dp.p dy ψ(x + y)ψ * (x -y)e iP y ℏ (12) 
J W (x) = 2a 3 h p2 p1 dp.p tanh 2 λ 2 ax - 2p 2 a 2 9ℏ tanh 2 λ 2 ax
Integrating and substituting the boundary values gives

J W (x) = 2a 3 h 1 2 tanh 2 λ 2 ax (p 2 2 -p 2 1 ) - 2a 2 36ℏ tanh 2 λ 2 ax (p 4 2 -p 4 1 ) (13) 
If we take the value of p 1 , p 2 to be -p 0 , p 0 respectively, then eq.( 13) reduces to J W (x) = 0

Wigner distribution for the Sine-Gordan soliton

Let us consider an another simple classical soliton [START_REF] Rubakov | Classical Theory of Gauge Fields[END_REF] which is a non-linear hyperbolic differential equation that is the Euler-Lagrange equation of the following Lagrangian density,

L SG = 1 2 ∂ µ ψ∂ µ ψ + V (ψ)
where V (ψ) represents the potential energy which can be given by

V (ψ) = α(cosβϕ -1)
where α, β depend on the system which we consider. The function of the Sine-Gordan soliton can be given by

ψ SG = 4 β tan -1 [e √ αβx ] (14) 
where, the value of α and β depend on the system which we take in to consideration. Using eq.( 1) we write the corresponding Wigner distribution for the Sine-Gordan soliton as

W (x, p) = 1 h b a dy 4 β tan -1 (e √ αβ(x+y) . 4 β tan -1 (e √ αβ(x-y) e ipy ℏ (15) 
Here a and b can be fixed by the bounds in which the solitons exist. For convention, let us take their values to be finite values with the length dimension. We do the series expansion 2 of tan -1 (e √ αβ(x+y) ), tan -1 (e √ αβ(x-y) ), e iP y ℏ and simplifying we get

W (x, p) = 1 h b a dy tan -1 (e √ αβx ) 2 - ip ℏ tan -1 (e √ αβx ) 2 y - αβ 2 e 2 √ αβx y 2 (e 2 √ αβx + 1) 2 - ip ℏ αβ 2 e 2 √ αβx y 3 (e 2 √ αβx + 1) 2 (16) 
Integrating eq. ( 16) we get

W (x, p) = 1 h b a [tan -1 (e √ αβx )] 2 y + ip 2ℏ [tan -1 (e √ αβx )] 2 y 2 - p 2 3ℏ 2 [tan -1 (e √ αβx )] 2 y 3 - αβ 2 e 2 √ α βxy 3 3[e 2 √ αβx + 1) 2 ] + Oy 4
Substituting the limits and neglecting the higher orders we get

W (x, p) = 1 h [tan -1 (e √ αβx )] 2 (b-a)+ ip 2ℏ [tan -1 (e √ αβx )] 2 (b 2 -a 2 )- p 2 3ℏ 2 [tan -1 (e √ αβx )] 2 + αβ 2 e 2 √ α βx 3(e 2 √ αβx + 1) 2 (b 3 -a 3 )+Oy 4
Let us consider a ≡ -b we obtain the Wigner distribution of the Sine-Gordan soliton as 

W (x, p) = 2b h [tan -1 (e √ α βx)] 2 -b 2 p 2 3ℏ 2 [tan -1 (e √ α βx)] 2 + αβ 2 e 2 √ αβx 3(e 2 √ αβx + 1) 2 + O(b 3 ) (17)

Calculation of charge and current density from Wigner distribution of Sine Gordan soliton

The charge distribution (Q w (x)) [START_REF] Colomés | Comparing Wigner, Husimi and Bohmian distributions: which one is a true probability distribution in phase space?[END_REF] is obtained by

Q W (x) = 1 h dp dy ψ(x + y)ψ * (x -y)e iP y ℏ ( 18 
)
2 Series expansion is given in Appendix A From eq. ( 1), we can write eq. ( 6) as

Q W (x) = dpW (x, p) (19) 
Let us assume the arbitrary bounds for momentum, say p 1 and p 2 . Thus we get

Q W (x) = p2 p1 dpW (x, p)
By substituting the value of Wigner distribution from eq.( 17) we get

Q W (x) = 2b h p2 p1 dp [tan -1 (e √ α βx)] 2 -b 2 p 2 3ℏ 2 [tan -1 (e √ α βx)] 2 + αβ 2 e 2 √ αβx 3(e 2 √ αβx + 1) 2 + O(b 3 ) (20) 
By integrating, substituting the limits and neglecting the higher orders we get

Q W (x) = 2b h (p 2 -p 1 ) [tan -1 (e √ αβx )] 2 - αβ 2 b 2 e 2 √ αβx 3(e 2 √ αβx + 1) 2 - b 2 (p 3 2 -p 3 1 ) 9ℏ 2 tan -1 (e √ αβx ) 2 
If we take the value of p 1 , p 2 to be -p 0 , p 0 respectively. Then we get

Q W (x) = 4b h p 0 [tan -1 (e √ αβx )] 2 - αβ 2 b 2 e 2 √ αβx 3(e 2 √ αβx + 1) 2 - b 2 p 3 0 9ℏ 2 tan -1 (e √ αβx ) 2 ≈ |ψ(x)| 2 (21) 
Figure 6: Charge distribution for Sine-Gordan soliton

The computation of current density [START_REF] Colomés | Comparing Wigner, Husimi and Bohmian distributions: which one is a true probability distribution in phase space?[END_REF] from Wigner distribution is given by

J W (x) = dp.p.W (x, p) (22) 
With the arbitrary bounds for momentum, say p 1 and p 2 , we get

J W (x) = 2b h p 2 2 {tan -1 (e 2 √ αβx } 2 -b 2 p 4 12ℏ 2 {tan -1 (e √ αβx )} + αβ 2 e 2 √ αβx p 2 6[e 2 √ αβx + 1] 2 p2 p1
Substituting limits we get

J W (x) = 2b h p 2 2 -p 2 1 2 {tan -1 (e 2 √ αβx } 2 -b 2 p 4 2 -p 4 1 12ℏ 2 {tan -1 (e √ αβx )} + αβ 2 e 2 √ αβx (p 2 2 -p 2 1 ) 6[e 2 √ αβx + 1] 2 (23) 
Assuming the bounds of 'p' to be symmetric, (i.e.) p 1 = -p 0 &p 2 = p 0 we get the current density

J W (x) = 0
Since it is an even function.

Concluding Remarks

We plotted the Wigner distribution for Kink and Sine-Gordan solitons in Fig. 2), (3), the value of a represents the bound in which the Kink soliton exists. In the figures (4), ( 5), (6), the value of a and b represent the bound in which the Sine-Gordan soliton exists. From the contour plot of the kink soliton (Fig. (2)) we infer, for a given point P from -x to x, the Wigner distribution remains the same. We also infer from the plot that as we move away from the origin the Wigner distribution shows the variation, specifically along the diagonals. In the case of Sine-Gordan soliton (Fig. ( 5)), the Wigner distribution obtained is the real part of the Wigner distribution, as the complex part of the distribution has vanished, which can be observed from the calculations performed. The Wigner distributions of both the Kink soliton and the Sine-Gordan solitons are calculated in their respective pure states. These can be used to study the classical, semi-classical, and quantum speed limit time [START_REF] Deffner | Quantum speed limits: from Heisenberg's uncertainty principle to optimal quantum control[END_REF] which forms the foundations of quantum computing. The quantum speed limit time gives us the value of the rate at which two quantum states are evolved [START_REF] Deffner | Quantum speed limits: from Heisenberg's uncertainty principle to optimal quantum control[END_REF]. It can be calculated by calculating the value of Quantum Fidelity (QF) [START_REF] Richard | Fidelity for Mixed Quantum States[END_REF] -which measures the closeness of two states. Upon calculating the QF, we get the value of the quantum speed limit time as

τ QSL = 1 -F (t) √ 2 ℏ ∆E (24) 
where, F (t) represents the Quantum fidelity [START_REF] Richard | Fidelity for Mixed Quantum States[END_REF], which is given by

F (t) = 2πℏ dqdpW 0 W t
where W 0 , W t represent the Wigner distribution in the initial state and in the time dependent state respectively. The quantum speed limit time [START_REF] Deffner | Quantum speed limits: from Heisenberg's uncertainty principle to optimal quantum control[END_REF] which we have written above in eq. ( 24) represents the Mandelstam-Tamm speed limit time [33]. In the current work we have calculated the Wigner distributions of the kink and Sine-Gordan solitons. We will extend this work to calculate the same for the tunneling instantons [START_REF] Rubakov | Classical Theory of Gauge Fields[END_REF] and also try to find the rate of evolution of two quantum states in case of instantons.
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Appendix A -Series expansion

The series expansion of tanh( λ 2 a(x + y)), tanh( λ 2 a(x -y)), e 
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 2 Figure 2: Contour plot of Wigner distribution for Kink soliton; For -a < x < a and a = 10 -10 m
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 3 Figure 3: Charge distribution for Kink soliton
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 4 Figure 4: Wigner distribution for Sine-Gordan soliton; For -b < x < b and b = 10 -10 m
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 5 Figure 5: Contour plot of Wigner distribution for Sine-Gordan soliton; For -b < x < b and b = 10 -10 m
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 1 and Fig. (4) respectively. Fig. (2) and Fig. (5) are the contour plots of the Wigner distribution of Kink and Sine-gordan solitons. Fig. (3) and Fig. (6) show the variation of charge distribution of Kink and Sine-Gordan solitons. In the figures (1), (
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