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In this paper, we show enhanced upper bounds of the nontrivial n 1 × n 2 × n 3 points problem for every n 1 ≤ n 2 ≤ n 3 < 6. We present new patterns that drastically improve the previously known algorithms for finding minimum-link covering paths, completely solving the fundamental case n 1 = n 2 = n 3 = 3.

Introduction

The n 1 × n 2 × n 3 points problem [11] is a three-dimensional extension of the classic nine-dot problem appeared in Samuel Loyd's Cyclopedia of Puzzles [1][2][3][4][5][6][7][8], and it is related to the well-known NP-hard traveling salesman problem, minimizing the number of turns in the tour instead of the total distance traveled [1][2][3][4][5][6][7][8][9][10][11][12][13].

Given n 1 • n 2 • n 3 points in R 3 , our goal is to visit all of them (at least once) with a polygonal path that has the minimum number of line segments connected at their end-points (links or generically lines), the so called . In particular, we are interested in the best solutions to the nontrivial n 1 × n 2 × n 3 dots problem, where (by definition)

1 ≤ n 1 ≤ n 2 ≤ n 3 and n 3 < 6. Let h l (n 1 , n 2 , n 3 ) ≤ h(n 1 , n 2 , n 3 ) ≤ h u (n 1 , n 2 , n 3
) be the length of the covering path with the minimum number of links for the n 1 × n 2 × n 3 points problem, we define the best known upper bound as h u (n 1 , n 2 , n 3 ) ≥ h(n 1 , n 2 , n 3 ), and we denote as h l (n 1 , n 2 , n 3 ) ≤ h(n 1 , n 2 , n 3 ) the proved lower bound. For the simplest cases, the same problem has already been solved [2].

Let n 1 = 1 and n 2 < n 3 , we have that h

(n 1 , n 2 , n 3 ) = h(n 2 ) = 2 • n 2 -1, while h(n 1 = 1, n 2 = n 3 ≥ 3) = 2 • n 2 -2 [5].
Hence, for n 1 = 2, it can be easily proved that

h(2, n 2 , n 3 ) = 2 • h(1, n 2 , n 3 ) + 1 =    4 • n 2 -1 iff n 2 < n 3 4 • n 2 -3 iff n 2 = n 3
.

(1)

1 Figure 1: A trivial pattern that completely solves the 2 × 3 × 5 points puzzle (avoiding self-intersections). Therefore, the aim of the present paper is to solve the ten aforementioned nontrivial cases where the current upper bound does not match the proved lower bound.

2 Improving the solution of the n 1 × n 2 × n 3 points problem for n 3 < 6

In this complex brain challenge we need to stretch our pattern recognition [6][7][8][9] in order to find a plastic strategy that improves the known upper bounds [2][3][4][5][6][7][8][9][10][11][12] for the most interesting cases (and the 3 × 3 × 3 puzzle, which is the three-dimensional extension of the immortal nine-dot problem, is by far the most valuable one), avoiding those standardized methods which are based on fixed patterns that lead to suboptimal covering paths, as the approaches presented in [7][8][9][10].

Theorem 1. If 3 ≤ n 1 ≤ n 2 ≤ n 3 , then a lower bound of the general n 1 × n 2 × n 3 problem is given by h l (n 1 , n 2 , n 3 ) = 3 • (n 3 • n 2 • n 1 -n 1 ) 2 • n 3 + n 2 -3 + 1.
(2)

Proof. Let n 1 × n 2 × • • • × n k be a set of k i=1 n i points in R 3 such that n 1 ≤ n 2 ≤ ... ≤ n k , it is not possible to intersect more than (n k -1) + (n k-1 -1) + n k -1 = 2 • n k + n k-1
-3 points using three straight lines connected at their endpoints; however, there is one exception (which, for simplicity, we may assume as in the case of the first line drawn). In this circumstance, it is possible to fit n k points with the first line, n k-1 -1 points using the second line, n k -1 points with the next one, and so forth. In general, the third and the last line of the aforementioned group will join (at most) n k -1 points each.

In order to complete the covering path, reaching every edge of our hyper-parallelepiped, we need at least one more link for any of the remaining n i , and this implies that k -2 lines cannot join a total of more than n k-2 -1 + n k-3 -1 + ... + n 1 -1 = k-2 i=1 n i -k + 2 unvisited points. Thus, the considered lower bound h l (n 1 , n 2 , ..., n k ) satisfies the relation

k i=1 n i - k-2 i=1 n i + k -2 -1 ≤ (2 • n k + n k-1 -3) • h l (n 1 , n 2 , ..., n k ) 3 -k + 2 . (3) Hence, h l (n 1 , n 2 , ..., n k ) = 3 • k i=1 n i -k-2 i=1 n i + k -3 2 • n k + n k-1 -3 + k -2. ( 4 
)
Substituting k = 3 into (??), we get the statement of Theorem 1.

The current best results are listed in Table 1, and a direct proof follows for each nontrivial upper bound shown below.

Figures ?? to ?? show the patterns used to solve the n 1 × n 2 × n 3 puzzle (case by case). In particular, combining (??) with the original results shown in Figures ??&??, we obtain a formal proof for the major 3 × 3 × 3 points problem, plus very tight bounds for the 3 × 3 × 4 case. Corollary 1.

h l (3, 3, n 3 ) = 3 • (n 3 • n 2 • n 1 -n 1 ) 2 • n 3 + n 2 -3 + 1. (5) 
Proof. The covering path of the 3 × 3 × 3 case shown in Figure ?? consists of 13 straight lines connected at their end-points, and Eq. (??) gives h l (3, 3, 3) = ⌈12⌉ + 1 = 13. Finally, it is interesting to note that the improved h u (n 1 , n 2 , n 3 ) can lower down the upper bound of the generalized k-dimensional puzzle too. As an example, we can apply the aforementioned 3D patterns to the generalized n 1 ×n 2 ו • •×n k points problem using the simple method described in [11].

Let

k ≥ 4, given n k ≤ n k-1 ≤ ... ≤ n 4 ≤ n 1 ≤ n 2 ≤ n 3 , we can conclude that h u (n 1 , n 2 , n 3 , ..., n k ) = (h u (n 1 , n 2 , n 3 ) + 1) * k j=4 n j -1. (6)
3 Conclusion

In the present paper, we have drastically reduced the gap h u (n 1 , n 2 , n 3 ) -h l (n 1 , n 2 , n 3 ) for every previously unsolved puzzle such that n 3 < 6. Moreover, by Eq. (??), h(3, 3, 3) = 13 naturally provides a covering path with link-length h u (3, 3, 3, 3) = 41 for the 3

• 3 • 3 • 3 points in R 4 .
We do not know if any of the patterns shown in Figures ?? to ?? represent optimal solutions, since (by definition) h l (n 1 , n 2 , n 3 ) ≤ h(n 1 , n 2 , n 3 ). Therefore, some open questions about the NP-complete [2] n 1 × n 2 × n 3 points problem remain to be answered, and the research in order to cancel the gap h u (n 1 , n 2 , n 3 ) -h l (n 1 , n 2 , n 3 ), at least for every n 3 ≤ 5, is not over yet.
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 2 Figure 2: Another example of a trivial case: the 2 × 5 × 5 points puzzle.
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 3 Figure 3: The 3 × 3 × 4 puzzle has finally been solved: h u (3, 3, 3) = h l (3, 3, 3) = 13. This solution can trivially be proved to be optimal.
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 5 Figure 5: Best known (non-crossing) Hamiltonian path for the 3 × 4 × 4 puzzle. 19 = h u = h l + 3.
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 6 Figure 6: An original Hamiltonian path for the 4 × 4 × 4 puzzle. 23 = h u = h l + 2 [12].
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 8 Figure 8: Best known (non-crossing) Hamiltonian path for the 3 × 4 × 5 puzzle, consisting of 20 = h u = h l + 3 lines.
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 9 Figure 9: Best known Hamiltonian path for the 3 × 5 × 5 puzzle. 24 = h u = h l + 5.
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 10 Figure 10: Best known Hamiltonian path for the 4 × 4 × 5 puzzle. 26 = h u = h l + 4.
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 11 Figure 11: Best known Hamiltonian path for the 4 × 5 × 5 puzzle. 31 = h u = h l + 6.
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 12 Figure 12: Best known upper bound of the 5 × 5 × 5 puzzle. 36 = h u = h l + 5.