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Abstract

In this paper the definition of Zindler-type hypersurfaces is introduced in R4

as a generalization of planar Zindler curves. After recalling some properties
of planar Zindler curves, it is shown that Zindler hypersurfaces satisfy similar
properties. Techniques from quaternions and symplectic geometry are used.
Moreover, each Zindler hypersurface is fibrated by space Zindler curves that
correspond, in the convex case, to some space curves of constant width lying
on the associated hypersurface of constant width and with the same symplectic
area.
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1. Introduction

It has been a century ago when Zindler published his article [40] where he
described a special kind of planar curves today known by his name. Zindler
curves are those such that all chords that divide the curve perimeter (or area)
in a half, have the same length. These curves are also the boundaries of figures
of constant density that float in water in equilibrium in any position [5] and
serve as solutions to other famous problems, such as the ambiguous tire-track
problem or the motion of an electron in a parabolic magnetic field (see e.g. [4],
[34] and [2]).

There are known generalizations of these curves in the literature. For in-
stance, some works studied Zindler curves in non-Euclidean geometries, such as
in isotropic geometry [33] or together with some spherical motions [29]. Other
works on Zindler curves in normed planes are also available [22, 23].
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Zindler curves are very related to curves of constant width. In fact, Zindler
curves can be generated by rotating double-normals of a closed plane curve of
constant width a right angle about their midpoint (see e.g. [21], [12] or [31]). A
visualization of this construction is presented in Figure 1.
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Figure 1: A Zindler curve β constructed by rotating double-normals of a constant width curve
α. The curve described by the midpoint of the chords is the middle hedgehog γ.

The same idea led to other generalizations of Zindler curves. On the one
hand, Hoschek extended Zindler curves to R3 using double-normals of a closed
transnormal space curve of constant width in [13] and [14]. The resulting curve
has analogous properties as the planar one. Wegner generalized the result to
Rn in [38]. On the other hand, Wunderlich constructed Zindler curves without
using spatial curves of constant width in [39] based on the family of tangent
lines of the midpoint curve. From this, Pottmann generalized these results in
[28], as the midpoints of the constant length chords lied on the striction curve
of the ruled surface that is generated by these directions.

The generalization of constant width curves to hypersurfaces of constant
width has been widely studied (see e.g. [21] and its references therein). The cor-
responding generalization to hedgehog hypersurfaces of constant width in Rn

has been developed as well, see e.g. the works [16, 17, 19] by the first author,
including the notion of a projective hedgehog as those hypersurfaces of constant
width 0. Nevertheless, as far as the authors know, nobody has provided a gener-
alization of Zindler curves as surfaces in R3 or, more generally, as hypersurfaces
in Rn.

The aim of this paper is to present the definition of a Zindler-type hypersur-
face in R4, which constitutes a generalization of planar Zindler curves and that
satisfies analogous properties.

First of all, we recall some facts about planar Zindler curves in Section 2
and we describe a different construction of these curves from the evolute of
a projective hedgehog (Proposition 5). Later, in Section 3 we introduce some
concepts of symplectic geometry and the geometry of R4 as a quaternion algebra
with a Kähler vector space structure. After that, in Section 4 our Zindler
hypersurfaces are defined (Definition 1) and some of their properties are stated
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in Theorem 1.
It is known that any orthogonal projection of a hypersurface of constant

width is a curve of constant width [21]. In particular, we deduce the analogous
property for Zindler hypersurfaces: any orthogonal projection of a Zindler hy-
persurface is a planar Zindler curve. Another interesting property that comes
from the same theorem is that Zindler hypersurfaces are fibrated by some spatial
curves which are Zindler curves in the sense of Pottmann [28].

Convex hypersurfaces of constant width have associated Zindler hypersur-
faces by definition. In Theorem 2 we show that the image of the Hopf circles on
these hypersurfaces yields pairs of associated curves, a space curve of constant
width (in the sense of Fujiwara [10]) and a space Zindler curve (in the sense of
Pottmann), through a unit pure quaternion. In addition, the symplectic areas
of these pairs of associated curves are the same (Theorem 3).

Finally, the property presented in Proposition 5 relating the evolute of the
projective hedgehog and the associated Zindler curve is generalized to Zindler
hypersurfaces in Theorem 4.

We want to remark that although the generalization to Zindler hypersurfaces
in R4 introduced in this paper is quite natural, it does not seem to be the case
for a generalization to R3, which remains an open problem.

2. Some properties of planar Zindler curves

The objective of this section is to describe some properties of planar Zindler
curves, some of which will be generalized later on to Zindler hypersurfaces.

The middle hedgehog of any convex curve of constant width (i.e. the locus of
midpoints of all the diameters) is a projective hedgehog. From it we can easily
construct an associated Zindler curve. But notice that not every Zindler curve
is generated from a middle hedgehog (see e.g. the example by Mampel in [15]).
In this paper we will focus on Zindler curves which are associated with a convex
curve of constant width and, thus, which can be generated from a projective
hedgehog.

In general, the midpoint curve is the envelope of the halving chords. This is
a consequence of the following property (see e.g. [7] and [8]).

Proposition 1. Let z be a C1-regular parametric curve and let c be a vector
defining its halving chords at each point following the parameterization z. Let
m be the curve generated by the midpoints of the halving chords. The curve z is
a Zindler curve if and only if c′ is orthogonal to m′.

In the generalization of Zindler curves to space curves in Rn proposed by
Pottmann in [28], this condition is imposed in the definition.

Auerbach [1] was the first that set the “duality” between Zindler curves and
curves of constant width. In particular, he proved that Zindler curves have as-
sociated curves of constant width with the same area. The reverse construction
is true as well [15]: curves of constant width have associated Zindler curves and
the area of these figures is invariant.
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A simple proof of this area invariance can be given using Holditch’s theorem
(see e.g. [30] or [27] for an introduction to Holditch’s theorem) as we show next.
It can also be seen as a particular case of swept-out areas by bicycle tire-track
curves (see e.g. [9]).

Proposition 2. Pairs of associated curves, a convex curve of constant width
and a Zindler curve, have the same area.

Proof. Let xh be a projective hedgehog parameterized by a support function h
such that, given r > 0, xh+r and zh,r are a convex curve of constant width and
its associated Zindler curve, respectively, for chords of length 2 r. By Holditch’s
theorem, we have that A(xh+r) − A(xh) = π r2 and A(zh,r) − A(xh) = π r2.
Therefore, A(xh+r) = A(zh,r).

Proposition 3. Zindler curves generated from a C2-projective hedgehog are
regular.

Proof. Let xh : [0, 2π] → R2 be a projective hedgehog parameterized by a C2-
support function h:

xh(t) = h(t)u(t) + h′(t)u′(t),

where u(t) = (cos t, sin t). Given r > 0, the corresponding Zindler curve can be
parameterized as

zh,r(t) = xh(t) + r u′(t) = h(t)u(t) +
(
h′(t) + r

)
u′(t).

Since
z′h,r(t) = r u(t) +

(
h(t) + h′′(t)

)
u′(t),

we have that ∥∥z′h,r(t)∥∥ =

√
r2 +

(
h(t) + h′′(t)

)2 ̸= 0

for all t ∈ [0, 2π], so that zh,r is regular.

Notice that the Zindler curve of Figure 1 has singularities. This is because
the support function of its projective hedgehog is not twice differentiable at
some points.

There is a well-known result about the angle that the halving chords of a
Zindler curve make with the tangents at their endpoints. It can be stated as
follows (see e.g. [39]).

Proposition 4. The halving chords of a Zindler curve form the same angle
with both tangent vectors to the curve at the corresponding endpoints.

Proof. Let u(t) = (cos t, sin t). The endpoints z1 and z2 of the halving chord of
a Zindler curve can be described from its middle hedgehog xh as follows:

z1(t) = xh(t)− r u′(t),

z2(t) = xh(t) + r u′(t). (1)
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Thus, since

z′1(t) = r u(t) +
(
h(t) + h′′(t)

)
u′(t),

z′2(t) = −r u(t) +
(
h(t) + h′′(t)

)
u′(t), (2)

we have
〈
z2(t)− z1(t), z

′
1(t)

〉
=

〈
z2(t)− z1(t), z

′
2(t)

〉
, from which the statement

follows.

The following proposition shows a nice geometrical property between the
evolute of the middle hedgehog and the Zindler curve. We do not know if it is
a new result or not, but at least we have not found it in the literature.

Proposition 5. Let Hh be a plane projective hedgehog with a C2-support func-
tion h and let E be its evolute parameterized by ε(t), which is a projective hedge-
hog. Let Zh,r be the Zindler curve parameterized by zh,r that corresponds to
a curve of constant width with a support function h + r. Then the vector
zh,r(t) − ε(t) has the same length as z′h,r(t) and it is orthogonal to Zh,r at
zh,r(t)

Proof. Let u(t) = (cos t, sin t). The evolute of Hh is

ε(t) = xh(t)−Rh(t)u(t),

where Rh(t) = h(t) + h′′(t) is the radius of curvature of Hh at xh(t). Since

ε(t) = h′(t)u′(t) + h′′(t)u′′(t)

= p(t+ π/2)u(t+ π/2) + p′(t+ π/2)u′(t+ π/2),

for h′(t) = p(t + π/2), we have that E is a projective hedgehog with a support
function h′(t− π/2), see e.g. [18] or [20].

Let J : R2 → R2 be defined by J(a, b) = (−b, a). The Zindler curve Zh,r

can be parameterized in two ways, z1 and z2, as in (1). Using (2), we have

z1(t)− ε(t) =
(
h(t) + h′′(t)

)
u(t)− r u′(t) = −Jz′1(t)

z2(t)− ε(t) =
(
h(t) + h′′(t)

)
u(t) + r u′(t) = −Jz′2(t),

which are orthogonal to Zh,r at z1(t) and z2(t), respectively, and have the same
length as z′1(t) and z′2(t).

Remark 1. Proposition 5 provides a method to construct Zindler curves geo-
metrically from the evolute of a projective hedgehog (see Figure 2).

Let Hh be a projective C2-hedgehog. Consider the evolute E of Hh parame-
terized by ε(t). For all t, take the circle centered at ε(t) that cuts the support
line of Hh at xh(t) in two points z1(t) and z2(t) such that

[
z1(t), z2(t)

]
has

length 2 r. We have that z1(t) and z2(t) are two parameterizations of a Zindler
curve. Furthermore, the Frenet frame of zi at zi(t) is given by{

J
(
zi(t)− ε(t)

)∥∥zi(t)− ε(t)
∥∥ ,

ε(t)− zi(t)∥∥zi(t)− ε(t)
∥∥
}
.
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t (t)z

– n (t)z

Figure 2: A projective hedgehog Hh, its evolute E and the associated Zindler curve Zh,r with
tangent and normal vectors tz and nz , respectively.

3. Geometric preliminaries in R4

In this section we will introduce the vector space in which we will work as
well as some concepts on hedgehogs and symplectic geometry which are needed
for our purpose.

Definition of a symplectic area

Let (V, J, ω) be a Kähler vector space, where J is a complex structure
compatible with a symplectic form ω. The symplectic area of a closed curve
γ : S1 → V is defined by

A(γ) :=

∫
γ

α, (3)

where α is the 1-form given by (α)x(dx) =
1
2 ω(x, dx), which is such that dα = ω.

Notice that the integral (3) does not depend on the orientation of the curve γ
(as if we change the orientation of γ, the 1-form α is changed into its opposite).
Explicitly, if S1 ∼= R/2πZ, the symplectic area of γ (sometimes called the action
of γ) can be written as

A(γ) =
1

2

∫ 2π

0

ω
(
γ(t), γ′(t)

)
dt.

Geometrically, the symplectic area can be regarded as the sum of the algebraic
areas of the projections of γ onto a set of orthogonal vector planes. The inter-
ested reader can find more details in [26], [25], [24] or [6].

Geometry of R4 as a Kähler vector space

Now, we are going to outfit a geometric structure to R4. The reader can see
[20], [35] and [26] as main references for the background of this section.
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We identify R4 with the quaternion algebra H and thus the unit sphere S3
with the set S1H of unit quaternions. We denote by S2 the set S1H∩Im (H) of pure
unit quaternions. Furthermore, to any pure unit quaternion v we associate the
linear complex structure Jv : R4 → R4, x 7→ vx. In other words, for any v ∈ S2,
we choose to work in the Kähler vector space

(
R4, Jv, ωv

)
, where ωv denotes the

associated Kähler form (i.e. the alternating 2-form ωv (X,Y ) = ⟨JvX,Y ⟩, where
⟨·, ·⟩ is the standard Euclidean metric on R4). To any v ∈ S2, it corresponds a
Hopf fibration and a Hopf flow on S3 ∼= S1H leaving the Hopf fibration invariant,
namely the Hopf flow induced on S3 by the vector field Xv (u) := Jv (u), that
is the Hopf flow {(ϕv)θ}θ∈S1 given by (ϕv)θ (u) := (cos θ)u+ (sin θ) vu, for any

u ∈ S3.
For every (u, v) ∈ S3 × S2, let S1u,v be the oriented geodesic of S3 through

u in the direction of Jv(u). This oriented Hopf circle of S3 ⊂
(
R4, Jv

)
can be

regarded as a unit circle of the vector plane C(u, v) := Ru+RJv (u) oriented by
(u, Jv(u)). Conversely, any oriented vector plane ξ in R4 determines an oriented
unit circle S1ξ = S3 ∩ ξ and a pure unit quaternion vξ that is such that: for all

u ∈ S1ξ , TuS1ξ is oriented by the unit vector Jvξ(u).

Thus, the symplectic area of γ : S1u,v → R4 in the Kähler vector space(
R4, Jv, ωv

)
is the sum of the algebraic areas of its projections onto the planes

C(u, v) and C(u, v)⊥. Notice that the orientation of S1u,v (or of the plane that
contains this Hopf circle) is not relevant for the computation of the symplectic
area.

Expression of the symplectic area of the image of a Hopf circle under
hedgehogs

Let Hh be any C2-hedgehog in R4 with a support function h. Let su,v(h)
be the symplectic area of the curve xh : S1u,v → R4:

su,v (h) :=

∫
xh(S1u,v)

αv,

where αv is the 1-form given by (αv)x (dx) := 1
2ωv(x, dx) = 1

2

〈
x, (−Jv) (dx)

〉
.

The first author proved the following proposition in [20]:

Proposition 6. For all h ∈ C∞ (
S3;R

)
and (u, v) ∈ S3 × S2,

su,v (h) =
1

2

∫ 2π

0

⟨xh(uθ), Rh(uθ, v)uθ⟩ dθ,

where uθ := (cos θ)u + (sin θ) Jv(u) and Rh(uθ, v) := −v (Tuθ
xh) (Jv (uθ))uθ,

with uθ being the quaternion conjugate of uθ.

Decomposition of hedgehogs [20]

Let (v, w) be any couple of pure unit quaternions that are orthogonal when
they are regarded as vectors of R4. The quadruple (1, v, w, vw) is then a direct
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orthonormal basis of H ∼= R4. For any C2-hedgehog Hh in R4 and, for any
u ∈ S3, we have the following decompositions:

xh(u) = h(u)u+∇h(u)

= h(u)u+ ⟨∇h(u), vu⟩ vu+ ⟨∇h(u), wu⟩wu+ ⟨∇h(u), vwu⟩ vwu
= h(u)u+ ∂vh(vu) vu+ ∂wh(wu)wu+ ∂vwh(vwu) vwu

=
(
h(u) + ∂vh(vu) v + ∂wh(wu)w + ∂vwh(vwu) vw

)
u.

4. Zindler-type hypersurfaces in R4

Let Hh be a C2-hedgehog in R4 that is projective. Recall that the condition
for a C2-hedgehog Hh to be projective is that h(u) + h(−u) = 0 for all u ∈ S3,
and thus xh(−u) = xh(u). For all r > 0, the C2-hedgehog of R4 with support
function h+r is then of constant width 2r (in other words, the distance between
the two support hyperplanes that are orthogonal to the line Ru is equal to 2r),
and if r is large enough then Hh+r is necessarily convex and regular.

Definition 1. Let Hh be a projective hedgehog in R4 and let r > 0 be such that
Hh+r is a convex hypersurface of constant width. Given a pure unit quaternion
v ∈ S2, the hypersurface Zv

h,r of R4 that is parametrized by

zvh,r : S3 → R4

u 7→ xh (u) + rvu.

will be called the v-Zindler hypersurface associated with Hh+r.

Notice that the hypersurface Zv
h,r = zvh,r

(
S3

)
is fibrated by the smooth

curves that are the image of the Hopf circles S1u,v under zvh,r : S3 → R4. The
following result essentially states some properties that make Zv

h,r a Zindler-type
hypersurface.

Theorem 1. Let Hh be a projective hedgehog in R4 and let r > 0 be such that
Hh+r is a convex hypersurface of constant width 2 r. Let Zv

h,r be the associated

v-Zindler hypersurface, for some v ∈ S2. Then

1. Any chord
[
zvh,r(−u), zvh,r(u)

]
, with u ∈ S3, has the projective hedgehog

xh(u) as its midpoint and has constant length 2 r.

2. The curve Zu,v
h,r := zvh,r

(
S1u,v

)
is regular and has perimeter halving chords[

zvh,r (−uθ) , z
v
h,r (uθ)

]
,

where uθ := (cos θ)u+ (sin θ) vu ∈ S1u,v for all θ ∈ R/2πZ.

3. The halving chords
[
zvh,r (−uθ) , z

v
h,r (uθ)

]
form the same angle with both

tangent vectors to the curve Zu,v
h,r at the corresponding endpoints.
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4. The orthogonal projection of the curve Zu,v
h,r onto the vector plane C(u, v) :=

Ru + RJv(u) oriented by (u, Jv(u)) is a Zindler curve of C(u, v) that is
parametrized by

z : R/2πZ → C (u, v)
θ 7→ xh|S1u,v

(θ) + rvuθ,

where Hh|S1u,v
is the projective hedgehog of C(u, v) whose support function

is the restriction of h to S1u,v.

Proof. 1. By construction, the Zindler hypersurface satisfies

zh,r(u) + zh,r(−u)

2
= xh(u),

which is the projective hedgehog Hh. Moreover, since xh(−u) = xh(u) for all
u ∈ S3, we have ∥∥zh,r(u)− zh,r(−u)

∥∥ =
∥∥2 rvu∥∥ = 2 r.

2. First, notice that uθ+π = −uθ ∈ S1u,v. We must show that the length of
each part of Zu,v

h,r connecting zvh,r (−uθ) and zvh,r (uθ) is one half the length of

Zu,v
h,r . Indeed, the curve θ 7→ zvh,r (θ) := zvh,r (uθ) is such that for all θ ∈ R/2πZ,(

zvh,r
)′
(θ) = (Tuθ

xh) (vuθ) + rv (vuθ) = (Tuθ
xh) (vuθ)− ruθ,

where Tuθ
xh is the tangent map of xh at uθ. Since Hh is projective,

(zvh,r)
′(θ + π) = (Tuθ+π

xh)(vuθ+π)− ruθ+π

= (T−uθ
xh)(−vuθ) + ruθ = (Tuθ

xh)(vuθ) + ruθ.

Thus, ∥∥∥(zvh,r)′ (θ + π)
∥∥∥ =

√∥∥(Tuθ
xh) (vuθ)

∥∥2 + r2 =
∥∥∥(zvh,r)′ (θ)∥∥∥ .

This means that the norm
∥∥(zvh,r)′

(θ)
∥∥ is π-periodic and, therefore,∫ t+π

t

∥∥∥(zvh,r)′ (θ)∥∥∥ dt = ∫ π

0

∥∥∥(zvh,r)′ (θ)∥∥∥ dt = L

2
,

where L is the length of Zu,v
h,r . The curve Zu,v

h,r is indeed regular because r > 0.
3. We have that zvh,r(uθ) − zvh,r(−uθ) = 2 rvuθ is orthogonal to uθ for all

θ ∈ R/2πZ. Therefore,〈
zvh,r(uθ)− zvh,r(−uθ), (z

v
h,r)

′(θ)
〉
=

〈
zvh,r(uθ)− zvh,r(−uθ), (z

v
h,r)

′(θ + π)
〉
.

4. By the decomposition of a hedgehog given in the previous section, we
have that

xf (u) = f(u)u+ ∂vf(vu) vu ∈ C(u, v),
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where f = h|C(u,v). Therefore, the orthogonal projection of Zu,v
h,r onto C(u, v)

can be parameterized by

z(θ) = xh|S1u,v
(θ) + rvuθ,

for any θ ∈ R/2πZ. It is a planar Zindler curve by construction, as xh|S1u,v
is

a planar hedgehog parameterized by supporting lines which are parallel to vuθ.
Notice, in fact, that the length r is large enough to have a Zindler curve because
it is associated with the curve defined by the same orthogonal projection ofHh+r

onto C(u, v), which is known to be a planar convex curve of constant width.

Remark 2. The curve Zu,v
h,r := zvh,r

(
S1u,v

)
from Theorem 1 is a spatial Zindler

curve in the sense of Pottmann [28] because it is written as

zvh,r(θ) = xh(uθ) + rvuθ

where m(θ) = xh(uθ) is the striction line of the ruled surface generated by the
halving chords with directions e(θ) = vuθ. This is because m′(θ) is orthogonal
to e′(θ). In addition, we have m(θ + π) = m(θ) and e(θ + π) = −e(θ).

Therefore, we can say that the Zindler hypersurface Zv
h,r is fibrated by space

Zindler curves in the sense of Pottmann.

The following result aims to show that the space Zindler curve Zu,v
h,r on the

Zindler hypersurface Zv
h,r has an associated space curve of constant width lying

on the corresponding hypersurface of constant width Hh+r.
There are several generalizations of constant width curves to space in the

literature and which are not necessarily equivalent. Fujiwara [10] was the first
one to make a definition in R3. He also considered a more restrictive class of
curves there and later in [11]. After him, some other authors provided similar
definitions based on his work (see e.g. [37], [3, p. 147] or [36]).

The original definition by Fujiwara extended to Rn reads as follows.

Definition 2 (Fujiwara). Let C be a closed and regular curve in Rn. Given a
point A ∈ C, let δA,P be the shortest distance between the tangent line at A
and that at another point P ∈ C. The width of C with respect to A is defined
by

MA = max
P∈C

δA,P .

The curve C is said to be of constant width if MA is constant for all A ∈ C.

It can be proved that a sufficient condition to have a space curve of constant
width is the following (see also the characterizations provided in [32]):

Proposition 7. If there exists a diffeomorphism P ⇄ P ′ between points of C
such that PP ′ are maximal chords which are double-normal (i.e. orthogonal to
the tangents to C at the endpoints P and P ′) and such that as a point M on C
moves from P to P ′ according to an orientation, the point M ′ moves from P ′

to P with the same orientation, then the curve C is of constant width.
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We are going to use this proposition in the following result.

Theorem 2. Let Hh be a projective hedgehog in R4 and let r > 0 be such that
Hh+r is a convex and regular hypersurface of constant width 2r. Let Zv

h,r be

its associated v-Zindler hypersurface, for some v ∈ S2. Then, for all (u, v) ∈
S3 × S2, the curve xh+r(S1u,v) is a space curve of constant width that has the
space Zindler curve zvh,r(S1u,v) as its associated by a rotation of the constant
length chords through the unit pure quaternion v.

Proof. Let α : S1u,v → R4 be defined by α(θ) = xh(uθ) + r uθ, where uθ =
(cos θ)u + (sin θ) vu for any θ ∈ R/2πZ. First, notice that α is regular since
xh+r is regular.

The points α(θ) and α(θ + π) are unequivocally associated by means of a
diffeomorphism θ 7→ θ + π. In addition,

α′(θ) =
(
Tuθ

xh

)
(v uθ) + rvuθ,

α′(θ + π) =
(
Tuθ

xh

)
(v uθ)− rvuθ.

and
α(θ)− α(θ + π) = 2ruθ.

Thus, the chords with endpoints α(θ) and α(θ + π) are double-normal. Since
Hh is projective, these chords are of constant length:∥∥α(θ)− α(θ + π)

∥∥ = 2r.

As α lies on a hypersurface of constant width 2r, these chords are also maximal.
Therefore, we conclude by Proposition 7 that the curve α is of constant width.

Finally, notice that if the chords of constant length

α(θ)− α(θ + π) = 2ruθ

are rotated through the pure unit quaternion v, then we obtain the halving
chords

zvh,r(uθ)− zvh,r(uθ+π) = 2rvuθ

of Zu,v
h,r = zvh,r(S1u,v), so that α is associated with zvh,r through the unit pure

quaternion v.

Remark 3. The space curve of constant width of Theorem 2 is not transnormal,
as the vectors α′(θ) and α′(θ + π) are not parallel and, therefore, they do not
share the same normal hyperplane at the corresponding points α(θ) and α(θ+π).

The previous results can be complemented with the following theorem, which
states that the symplectic areas of these pairs of associated curves (a space curve
of constant width and a space Zindler curve) are the same. This constitutes a
generalization of Proposition 2.
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Theorem 3. Let Hh be a projective hedgehog in R4 and let r > 0 be such that
Hh+r is a convex hypersurface of constant width 2r. Let Zv

h,r be its associated

v-Zindler hypersurface, for some v ∈ S2. Then, for all (u, v) ∈ S3×S2, the sym-
plectic area of zvh,r(S1u,v) is equal to the symplectic area su,v(h+r) of xh+r(S1u,v).
More precisely, both symplectic areas are equal to su,v(h) + πr2.

Proof. By definition, the sympectic area of zvh,r(S1u,v) in the Kähler vector space(
R4, Jv, ωv

)
is∫

zv
h,r(S1u,v)

αv =
1

2

∫ 2π

0

〈
zvh,r(θ), (−Jv)

((
zvh,r

)′
(θ)

)〉
dθ

=
1

2

∫ 2π

0

〈
xh(uθ) + rvuθ, (−Jv)

(
(Tuθ

xh)(vuθ)− ruθ

)〉
dθ

=
1

2

∫ 2π

0

〈
xh(uθ) + rvuθ, (−Jv)

(
(Tuθ

xh)(vuθ)
)
+ rvuθ

〉
dθ.

By bilinearity of ⟨·, ·⟩ we then deduce∫
zv
h,r(S1u,v)

αv = su,v(h) + πr2 +
r

2

∫ 2π

0

〈
xh(uθ), vuθ

〉
dθ

− r

2

∫ 2π

0

〈
vuθ, v(Tuθ

xh)(vuθ)
〉
dθ.

Now, ∫ 2π

0

〈
xh(uθ), vuθ

〉
dθ =

∫ 2π

0

〈
h(uθ)uθ +∇h(uθ), vuθ

〉
dθ

=

∫ 2π

0

〈
∇h(uθ), vuθ

〉
dθ = 0,

because for all θ ∈ R/2πZ we have〈
∇h(uθ+π), vuθ+π

〉
= −

〈
∇h(uθ), vuθ

〉
,

by the fact that Hh is projective. Since Jv : R4 → R4, x 7→ vx is an isometry
we also have∫ 2π

0

〈
vuθ, v(Tuθ

xh)(vuθ)
〉
dθ =

∫ 2π

0

〈
uθ, (Tuθ

xh)(vuθ)
〉
dθ = 0.

Therefore, ∫
zv
h,r(S1u,v)

αv = su,v(h) + πr2.

Now, by Proposition 6 we have

su,v(h+ r) =
1

2

∫ 2π

0

〈
xh+r(uθ), Rh+r(uθ, v)uθ

〉
dθ

=
1

2

∫ 2π

0

〈
xh(uθ) + ruθ, Rh(uθ, v)uθ + ruθ

〉
dθ

12



and by bilinearity of ⟨·, ·⟩ we deduce then

su,v(h+ r) = su,v(h) + πr2 +
r

2

∫ 2π

0

〈
xh(uθ), uθ

〉
dθ

+
r

2

∫ 2π

0

〈
uθ, Rh(uθ, v)uθ

〉
dθ.

The first integral is∫ 2π

0

〈
xh(uθ), uθ

〉
dθ =

∫ 2π

0

〈
h(uθ)uθ +∇h(uθ), uθ

〉
dθ

=

∫ 2π

0

h(uθ) dθ = 0,

because Hh is projective. Again, since Jv is an isometry, we also have∫ 2π

0

〈
uθ, Rh(uθ, v)uθ

〉
dθ =

∫ 2π

0

〈
uθ,−v(Tuθ

xh)(vuθ)
〉
dθ

=

∫ 2π

0

〈
vuθ, (Tuθ

xh)(vuθ)
〉
dθ = 0,

by the fact that〈
vuθ+π, (Tuθ+π

xh)(vuθ+π)
〉
=

〈
−vuθ,−(Tuθ

xh)(−vuθ)
〉

for all θ ∈ R/2πZ. Therefore,

su,v(h+ r) = su,v(h) + πr2.

The relation between the evolute of the projective hedgehog and the Zindler
curve in the plane described in Proposition 5 can also be extended to R4.

Recall that the evolute of a projective hedgehog Hh in (R4, Jv, ωv) with
respect to the pure unit quaternion v ∈ S2 is a projective hedgehog that can be
parameterized as

εv(u) = xh(u)−Rh(u, v)u,

where Rh(u, v) = −v Tuxh

(
Jv(u)

)
u, for any u ∈ S3 (see [20]).

Theorem 4. Let Hh be a projective hedgehog in R4 with a C2-support function
h and let Ev be its evolute with respect to a pure unit quaternion v ∈ S2, which
is a projective hedgehog. Given r > 0, let Zv

h,r be the v-Zindler hypersurface

associated with Hh+r. Then, for all (u, v) ∈ S3×S2, the vector zvh,r(uθ)−εv(uθ)
has the same length as (zvh,r)

′(uθ) and it is orthogonal to Zv
h,r at zvh,r(uθ), where

uθ = (cos θ)u+ (sin θ) vu ∈ S1u,v.

Proof. The v-Zindler hypersurface Zv
h,r can be parameterized as zvh,r : S1 → R4

by
zvh,r(θ) = xh(uθ) + rvuθ.

13



We have (
zvh,r

)′
(θ) = (Tuθ

xh)(vuθ)− ruθ.

The image of a Hopf circle S1u,v through the parameterization of the evolute Ev
can be written as εv : R/2πZ → R4 given by

εv(θ) = xh(uθ) + v (Tuθ
xh)(vuθ).

Therefore,

zvh,r(θ)− εv(θ) = rvuθ − v (Tuθ
xh)(vuθ) = −v

(
zvh,r

)′
(θ),

which implies that∥∥zvh,r(θ)− εv(θ)
∥∥ =

√
r2 +

∥∥(Tuθ
xh)(vuθ)

∥∥2 =
∥∥∥(zvh,r)′(θ)∥∥∥

and 〈
zvh,r(θ)− εv(θ),

(
zvh,r

)′
(θ)

〉
= 0.
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(IMPA), Rio de Janeiro, 2003.

14



[7] Adrian Dumitrescu, Annette Ebbers-Baumann, Ansgar Grüne, Rolf Klein,
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