

LFP battery aging behavior: diagnosis of cell materials for second life applications

William Wheeler, Ali Sari, Pascal Venet, Yann Bultel, Elie Riviere

▶ To cite this version:

William Wheeler, Ali Sari, Pascal Venet, Yann Bultel, Elie Riviere. LFP battery aging behavior: diagnosis of cell materials for second life applications. 21st International Meeting Lithium Batteries (IMLB2022), Jun 2022, Sydney, Australia. . hal-03725345

HAL Id: hal-03725345 https://hal.science/hal-03725345

Submitted on 22 Jul 2022

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

LFP battery aging behavior: diagnosis of cell materials for second life applications

William Wheeler^{1,2,3}, Ali Sari¹, Pascal Venet¹, Yann Bultel², Elie Riviere³

¹Univ Lyon, Université Claude Bernard Lyon 1, INSA Lyon, Ecole Centrale de Lyon, CNRS, Ampère, UMR5005, 69622 Villeurbanne, France ²Univ. Grenoble Alpes, Univ. Savoie Mont Blanc, CNRS, Grenoble INP, LEPMI, F-38000 Grenoble, France

³EVE System, 69440 Taluyers, France

Corresponding author: william.wheeler@univ-lyon1.fr

1. INTRODUCTION

- ✓ The battery sorting process is essential in achieving & ensuring reliability of batteries in 2nd life
- ✓ Batteries from electric vehicles : different ageing due to design, use and environment
- $\checkmark 2^{nd}$ life batteries must be **guaranteed** for a specified time and use
- ✓ Sudden shift in cell ageing may appear: capacity loss, resistance increase [1-3]
- Prognosis of the remaining useful life requires a diagnosis of aging modes to understand changes [4]
- This poster proposes a method to characterize graphite / lithium iron phosphate (C/LFP) cells
 Loss of Lithium Inventory (LLI)
 - \checkmark Loss of Active Material at the negative electrode (LAM_{\rm NE})

4. ELECTRODE CHARACTERISATION

- **Electrode material characterisation**
- ✓ 18650 fresh cylindrical cells (18650) dismantling in glove box
- ✓ Electrode characterisation in half cell vs. Li/Li⁺ (coin cell CR2032)
- ✓ Open Circuit Potential (OCP) of each electrode (figures & ❷)
- \checkmark Negative electrode phase transition detection using ICA/DVA [5] (figure $oldsymbol{0}$)

Phase transition	С	LiC ₅₄	LiC ₃₆	LiC ₁₈	LiC ₁₂
SoC _{neg} [%]	0	10	16	30	60

- ✓ No characteristic transition for the positive electrode
- ✓ Cell voltage profile (OCV) reconstruction
 - Enable negative electrode phase transition detection on full-cell measurement (figure (a)) & allow SoH_{neg} estimation (section 5)

2. EXPERIMENTS

Cell reference	Charge type	Charge Cut-off voltage	Charge C-rate	Discharge type	Discharge C-rate	DoD
Prismatic cell 1	CC	3.65 V	C/3	WLTP	C/3	70 %
Prismatic cell 2	CC-CV	3.65 V	C/3	WLTP	C/3	70 %
Prismatic cell 3	CC-CV	3.55 V	C/3	WLTP	C/3	70 %
18650 4 ∘, 5 ×	CC	3.65 V	C/3	WLTP	C/3	70 %
18650 cell 6 •, 7 ×, 8 *	CC	3.65 V	C/3	WLTP	C/3	100 %
18650 cell 9 ∘, 10 ×, 11 ∗	CC-CV	3.55 V	C/3	WLTP	C/3	70 %
18650 cell 12 ∘, 13 ×, 14 ∗	CC-CV	3.65 V	2C	WLTP	C/3	70 %
18650 cell 15 •, 16 ×, 17 *	CC-CV	3.55 V	2C	WLTP	C/3	70 %
18650 cell 18 ∘, 19 ×, 20 ∗	CC-CV	3.65 V	2C	CC	2C	70 %
18650 cell 20 •, 21 ×, 23 *	CC-CV	3.65 V	C/3	WLTP	C/3	70 %
CC: Constant Current CV: const	tant Voltage	WLTP: Wo	orldwide Harm	nonised Light Ve	hicles Test Prod	cedure

3. SOH_{CELL} FOLLOW-UP

✓ Cell State of Health (SoH_{cell})

- ✓ Fast SoH_{cell} decrease for all the cells in the first hundred cycles
- ✓ Fast decrease of SoH_{cell} for cells 7,8 & 9 after 700-1000 cycles

- **Possible ageing scenarios**
- ✓ LLI (Loss of Lithium Inventory) : offset ∆Q_{LLI} increase between electrode
 OCP (figures (a) & (b))
- LAM_{NE} (Loss of Active Materials at the Negative Electrode) : shrink of negative electrode OCP (figure (b) & (c)). Lower charge/discharge capacity between phase transitions, ΔQ_{neg} decrease
- ✓LLI + LAM_{NE} : combination of both effects: offset increase and negative electrode shrinking.

5. PROPOSED SOH_{neg} ESTIMATION METHODS

- SoH_{neg} negative electrode follow-up
- ✓ Based on full-cell measurement and phase transition detection using ICA/DVA
- SoH_{neg} negative electrode estimation
- Estimation SoH_{neg} LiC_a SoC_{neg a} LiC_b SoC_{neg b}

• Step 1: $\Delta Q_{neg} = Q(LlC_a) - Q(LlC_b) $ [An]	
✓ Step 2 : $Q_{neg_{max}} = \frac{\Delta Q_{neg}}{SoC_b - SoC_a}$ [Ah]	
✓ Step 3 : $SoH_{neg} = \frac{Q_{neg_{max}}}{Q_{neg_0}}$ [%]	

Method 1	С	0	<i>LiC</i> ₁₂	0,6
Method 2	LiC ₅₄	0,1	LiC ₁₂	0,6
Method 3	LiC ₅₄	0,1	LiC ₁₈	0,3
Method 4	LiC ₃₆	0,16	LiC ₁₈	0.3

6. SOH_{neg} ESTIMATION RESULTS

✓ The results of the four SoH_{neg} estimations are presented below. Colors correspond to cells in the table in section 2 "experiments".

between 1000 and 3500 depending on the cell LLI is too great \rightarrow LiC₁₂ phase transition disappears in cell voltage profile (figures (a) & (b)) Estimations methods 3 and 4 works on all lifecycl
 ✓ Lower accuracy due to the use of closer phase transition

✓ Fast SoH_{neg} decrease for cells with fast decrease of SoH_{cell} (cells 7, 8 & 9 with 100% DoD, in red)

7. CONCLUSION	8. FUTUR WORK	ACKNOWLEDGEMENT	REFERENCES
 The estimation method makes it possible to differentiate: Aging dynamics between cell and negative electrode Aging of the negative electrode accelerates during use 	 ✓ Link between the negative electrode aging acceleration and cell aging acceleration 	We acknowledge EVE SYSTEM for the funding of this research with the support of ANRT (Grant number: CIFRE 2018/1625).	 [1] S.F. Schuster, T. Bach, E. Fleder, J. Müller, M. Brand, G. Sextl, A. Jossen, Nonlinear aging characteristics of lithium-ion cells under different operational conditions, J. Energy Storage. 1 (2015) 44–53. doi:10.1016/j.est.2015.05.003. [2] M. Klett, R. Eriksson, J. Groot, P. Svens, K. Ciosek Högström, R.W. Lindström, H. Berg, T. Gustafson, G. Lindbergh, K. Edström, Non-uniform aging of cycled commercial LiFePO4//graphite cylindrical cells revealed by post-mortem analysis, J. Power Sources. 257 (2014) 126–137. doi:10.1016/j.ipowsour.2014.01.105.
✓ Correlation between cell and negative electrode for the	✓ Prognosis of the RUL in 2 nd life applications based	We thank IRN-FACES for their	[3] M. Safari, C. Delacourt, Aging of a Commercial Graphite/LiFePO4 Cell, J. Electrochem. Soc. 158 (2011) A1123. doi:10.1149/1.3614529.

aging acceleration

 \checkmark

✓ End of the experimental tests : planned for $SoH_{cell} = 30\%$

on the diagnosis of	
degradation modes	

international Meeting on Lithium Batteries 2022 conference. [4] M. Dubarry, C. Truchot, B.Y. Liaw, Synthesize battery degradation modes via a diagnostic and prognostic model, J. Power Sources. 219 (2012) 204–216.

[5] L. Zheng, J. Zhu, D.D.C. Lu, G. Wang, T. He, Incremental capacity analysis and differential voltage analysis based state of charge and capacity estimation for lithium-ion batteries, Energy. 150 (2018) 759–769. doi:10.1016/j.energy.2018.03.023.

