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Abstract. We present the stellar resolution, a “flexible” tile system based on Robinson’s
first-order resolution. After establishing formal definitions and basic properties of the
stellar resolution, we show its Turing-completeness and to illustrate the model, we exhibit
how it naturally represents computation with Horn clauses and automata as well as non-
deterministic tiling constructions used in DNA computing. In the second and main part,
by using the stellar resolution, we formalise and extend ideas of a new alternative to proof-
net theory sketched by Girard in his transcendental syntax programme. In particular,
we encode both cut-elimination and logical correctness for the multiplicative fragment of
linear logic (MLL). We finally obtain completeness results for both MLL and MLL extended
with the so-called MIX rule. By extending the ideas of Girard’s geometry of interaction,
this suggests a first step towards a new understanding of the interplay between logic and
computation where linear logic is seen as a (constructed) way to format computation.

1. Introduction

The evolution of the notion of proof. Among the different materialisations of logic,
some remarkable and standard formalisms are Gentzen’s natural deduction and sequent cal-
culus [39, 40] which are attempts at formally representing mathematical reasoning by means
of logical rules one applies successively to construct proofs. These rules are represented by
means of sequents which are expressions Γ ⊢ A stating that the conclusion A follows from
a set of hypotheses Γ (Figure 1). Although intuitive and natural, logical rules seem rather
arbitrary and for that reason, attempts at justifying them were made in philosophy [34,
Chapter 8].

In the end of the 20th century, the so-called Curry-Howard correspondence was first
discovered by Curry [23] but then clearly stated by Howard [62], during the rise of computer
science. It shows a formal correspondence between proofs and programs but also between
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Γ,A,B ⊢ C
∧L

Γ,A ∧B ⊢ C

Γ ⊢ A Γ ⊢ B
∧R

Γ ⊢ A ∧B

Figure 1. Two inference rules for the conjunction in sequent calculus. The
first one states that we can combine two hypotheses A and B to build the
hypothesis A ∧B and the second one that proving A and B gives a proof of
A ∧B.

Γ ⊢ A ∆ ⊢ A⇒ B
MD

Γ,∆ ⊢ B

Γ ⊢ a ∶ A ∆ ⊢ f ∶ A→ B
app

Γ,∆ ⊢ f(a) ∶ B

Figure 2. Inference rule for modus ponens and the typing of function appli-
cation where Γ is seen as a typing environment. The upper part corresponds
to premises and the bottom to the conclusion. Giving an argument a of type
A to a function f turning an element of type A to an element of type B
indeed produces an element f(a) of type B.

formulas and types in programming for some logical systems and some (functional) typed
programming systems. A common illustration is the correspondence between natural de-
duction restricted to the implication (also called implicative minimal logic) and the simply
typed λ-calculus [20]. The mysterious rules of logic were then given a computational mean-
ing. For instance, the inference rule of modus ponens corresponds to the typing of function
application (cf. Figure 2).

Although mathematical proofs are naturally thought to be purely static objects, this
correspondence between proofs and programs shows that they also have a computational
or dynamic aspect. The cut rule of sequent calculus, defined as follows1:

Γ ⊢ A ∆,A ⊢ C
cut

Γ,∆ ⊢ C

represents the use of intermediate lemma in a proof. The expression Γ ⊢ A states that if a
statement A is provable from the hypotheses in Γ and that A together with some hypotheses
∆ lead to some conclusion C then we can have a “shortcut” stating that C is a consequence
of both Γ and ∆. Although essential in mathematical practice, Gentzen shows that it can,
in fact, be removed without any loss of meaning. Similarly to how we can inline the code
of function calls in the main body of a program, Gentzen’s cut-elimination theorem shows
that there exists a procedure of explicitation of proofs which inlines lemmas within proofs.
By the Curry-Howard correspondence, this corresponds to a logical counterpart of program
execution: proofs are dynamic entities.

The implicit operations in reasoning and their structure. Inspired by the semantics
of λ-calculus [43] and its role in the Curry-Howard correspondence, linear logic [41] was
introduced by Girard as a refinement of intuitionistic logic (the underlying logic of Gentzen’s
natural deduction). Linear logic can be simply presented as a sequent calculus with a control
and explicitation over the duplication and erasure of formulas, making formulas handled
as sort of limited resources. In particular, the famous decomposition of the implication
presents implication are a composition of two operations: A ⇒ B becomes !A ⊸ B where

1Notice that the cut rule is very close to modus ponens.
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π JπK

π′ Jπ′K

translation
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cut-elimation =

(a) Denotational semantics

π JπK

π′ Jπ′K

translation

translation

cut-elimination Ex(⋅)

(b) Geometry of Interaction

Figure 3. We associate a proof π to a mathematical object JπK. In deno-
tational semantics, we identify a proof π and its cut-elimination π′ because
we consider they have the same meaning, whereas in the GoI, they differ but
are linked by computation. In particular, we are interested in simulating the
computation linking them.
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Figure 4. Example of sequent calculus proof and its corresponding proof-
net in linear logic. Notice that the order of rules is forgotten and that we
have a sort of “parallel” [47] syntax for proofs.

!A allows for an arbitrary use of A and ⊸ is a linear implication using its premise exactly
once. On top of that, linear logic enjoys a nice involutive linear negation breaking the
separation between hypothesis and conclusion. This allows a nice compact sequent calculus
which will be presented in 4.

Apart from defining a sequent calculus for linear logic, Girard was led to introduce an
alternative syntax akin to natural deduction for linear logic: proof-nets (Figure 4), which
exhibit a non-sequential structure in proofs [47]. Initially seen as a mere syntactic conve-
nience, it led to a new understanding of proof theory with a fine-grained analysis of the
mathematical meaning of proofs and of how they relate to computation. Danos [25, Chapter
9-11] and Regnier’s [89] thesis, but also other developments of linear logic that came after
[32, 5] illustrate this analysis. Proof-nets are defined from more general alogical graphs
called proof-structures which constitute a model of computation by themselves (where the
graphs are reduced with cut-elimination). It is then possible to assert whether a proof-
structure corresponds to a proof-net, i.e. is the translation of a sequent calculus proof, by
using what we call a correctness criterion (cf. Section 4.3).

A semantic-free space for logic. Geometry of Interaction2 (GoI) [45, 44, 42, 46, 49] was
originally introduced as a mathematical analysis of cut-elimination for proof-nets. This
gave rise to a dynamic semantics which became a major inspiration behind game semantics
[17, 3, 64, 4, 2, 58], distinguishing itself from denotational semantics which usually identify

2Although the expression “Geometry of Interaction” often refers to methods of static execution of λ-terms
by a token machine [28, 7] (inspired by a simplification of Girard’s first GoI [27]), we only refer to Girard’s
original programme [44, 42, 46, 49, 50, 51] in this paper.
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a proof and its reduction by cut-elimination, thus forgetting how they are computationally
related, as explained in Figure 3 [101, Section 1.1].

Around the time of the fourth paper on the GoI [49], Girard concurrently introduced
ludics [48] which instead of proof-nets, starts by forgetting all the inessential parts of sequent
calculus in order to obtain very general and alogical objects called designs. What the latest
works on the GoI and ludics have in common is that they start from alogical computational
objects from which proofs and formulas are defined, and hence, are no more primitive. In
particular, formulas are defined by set of computational objects from which we expect some
shared common characteristics, and connectives are ways to construct new sets from other
sets depending on how their objects interact with each other3. In particular, the (linear)
negation A� is the set of all objects which interact well with the objects of A, which respects
to a binary orthogonality relation ⊥ opposing objects. Orthogonality relations should be
understood as point of view on interaction, deciding what a good interaction is. Formulas
are constructed by interactive typing which is reminiscent of realisability interpretations
[74, 92] and Riba’s reconstruction of simple types from the untyped λ-calculus [91, Section
3].

In some sense, this leads to a sort of semantic-free approach to logic since the meaning
of formulas is no more defined by an external semantics but rather by computational interac-
tion between objects in a model of computation chosen as a ground for logic. The meaning
of objects become their possible uses, which is internal since related to how they are shaped.
This can be illustrated by a comparison between ludics and Schütte’s completeness proof
[95, 16]: in the latter, we either have a proof (in the syntactic world) of a statement or we
can construct a counter-model (in the semantic world) of its negation which refutes it, while
in the former, we have a counter-proof (in the syntactic world) instead. Girard describes
this situation as a monism4, meaning that logic lives in a self-contained homogeneous space
where there is nothing but syntactic interaction. In terms of programming, it is like having
both a program and its environment expressed as interactive entities of the same kind. This
new framework should provide further developments of ideas presented by Curien [22] and
Abramsky [1], which were already present in linear logic.

This idea of semantic-free typing allows us to define formulas which would be more
general than the formulas of usual proof theory in the sense that the space of proofs of the
conjunction A∧B would be larger than in usual proof theory. Unusual computational entities
may constitute a proof of A ∧ B. Hence, formulas become descriptions of computational
behaviours in a chosen computational space.

Sufficient conditions for effective reasoning. This interactive interpretation of logic
starts by choosing a model of computation but not all choices are equal. Several GoI models
were defined using operator algebras [44, 42, 49, 50], term unification algebras [46], graphs
[98, 99] and graphings [101, 103, 100]. Although all these models did define rich models,
that were in particular used to study computational complexity [15, 10, 11, 102, 104], they
had two main drawbacks.

(1) The objects used to interpret even the most basic proofs were most of the time un-
natural and infinite (as in Girard’s initial interpretation using operator algebras [44]).

3This way of typing computational entities is called l’Usage (the use) in Girard’s terminology.
4In opposition to dualism.
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In particular, finite reasoning is no more possible5 because in order to assert that an
object Φ is a proof of A (which is a set), we need to test it (by checking orthogonal-
ity) against all elements of A� which may be infinite (because they represent all the
potential partners of interaction). A solution would be to take inspiration from the
correctness criterion of proof-nets which allows a finite and sufficient checking of logical
correctness. Using term unification [46], a simplification with finite combinatorics has
been suggested but was limited for a satisfying treatment of correctness criteria and
fall into the same problems as for Seiller’s interaction graphs [98, 99] which are less
expressive as they could not naturally express the standard Danos-Regnier correctness
criterion [26]. Therefore, we need to find an appropriate model of computation to start
with.

(2) The obtained models did interpret soundly the fragments of linear logic considered, but
no completeness results exist6.

Recently, Girard published a series of articles [51, 55, 53, 54, 57] sketching the main
lines of a new kind of model called transcendental syntax. This kind of model would have
the qualities of GoI models with more improvements. In particular, unlike previous models,
the transcendental syntax allows for a satisfying treatment of correctness criterion for proof-
nets which leads to completeness results by extending the model of flows [46]. Inspired by
the correctness criterion, the new idea introduced by the transcendental syntax is that in
order to check whether a computational object Φ is a proof of A, we only test it against a
primitive finite set a ⊆ A� which is sufficient to ensure what we wish for 7. In some sense,
it introduces in logic a notion of testing close to the usual program testing of software
engineering. Once the objects are certified, we need to mathematically justify that the
tests ensure a sound use, a property Girard calls adequacy which is similar to the adequacy
property in Krivine realisability.

The main problem is that these articles are too inexact in form to serve satisfactorily
as the basis of a mathematical theory8. The current work is the first step towards a proper
formal account of the model.

1.1. Contributions of the paper. The contributions of this paper are the following:

● In Section 2, we formally describe a model of computation we call “stellar resolution”.
It is based on Robinson’s first-order resolution [93] and extends/corrects the model of
computation vaguely described in Girard’s transcendental syntax. In Section 3.4, we prove
the main properties of the model and state its Turing-completeness (Proposition 3.7). In
particular, while Girard claimed the failure of the Church-Rosser property for stellar
resolution, we show it holds under some conditions (Theorem 3.18). We also relate the
dynamics of our model to the construction of tiling-based computation (cf. Section 2.1).

● In Section 3, we encode few standard models of computation such as logic program and
Turing machines. In Section 3.3, we relate our formalism to tiling-based models: Wang
tiles [110] and the abstract tile assembly model [111, 87], which has applications in DNA

5This fact is the starting point of the philosophical motivation of the transcendental syntax: the search
for the conditions of possibility of (logical) language.

6While this aspect is a failure somehow, it is also a feature as the models are very rich and open other
paths of reflection.

7This way of typing computational entities is called l’Usine (the factory) in Girard’s terminology.
8The formulation is borrowed from Church’s criticism of von Mises’ notion of kollektiv [21].
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(c) More complex tiling.

Figure 5. Tiling with two wang tiles.

computing [97, 113]. In particular, the stellar resolution is seen as a very general model
of computation describing a dynamic exchange of information within a hypergraph-like
structure, thus subsuming automata and tile systems.

● We explain how our model captures the dynamic of cut-elimination for the multiplica-
tive fragment of linear logic (MLL) in Theorem 4.19, and the correctness criterion for
proof-structures in Theorem 4.31. This implicitly relates MLL proofs (hence the linear
simply typed λ-calculus) to the models of computation we encode in Section 3. We also
correct some minor technical mistakes appearing in Girard’s introducing paper on the
transcendental syntax [55].

● In Section 5, we show how MLL formulas can be defined only from the execution of
the stellar resolution and a binary orthogonality relation ⊥ opposing constellations (the
objects of stellar resolution). This reconstruction of types suggests the possibility of
speaking about type systems which could be applied to models such as automata, logic
programs and tiling models as especially fine-grained specifications. Two typing methods
are presented: types as labels in Section 5.1 defining types as set of computational entities
passing some finite tests and types as computational behaviours in Section 5.2 representing
types as sort of potentially infinite ideals. The section ends with a short discussion about
multiplicative units in Section 5.3.

● We prove soundness and completeness of the model w.r.t. both MLL (cf. Theorem 6.12 and
6.14) and MLL+MIX (cf. Theorem 6.7 and 6.11), an extension of MLL with the so-called
MIX rule [37]. A comment about Girard’s adequacy property is given in Section 6.3.

2. Stellar Resolution

The stellar resolution is a new model of computation introduced in this paper as a compu-
tational ground for logic. For pedagogical purposes and for its proximity with these models,
we present our model of computation as a tile system which can simulate logic programs by
evaluating tilings and comment how it differs from other existing models appearing in the
literature of logic programming at the end of Section 3.4.

We recall definitions of terms, unification and resolution in Appendix A which are
essential.

2.1. From tile systems to logic programs. We start with the simple and common Wang
tiles [110] which are very intuitive and present generalisations leading to our model of stellar
resolution.

Wang tiles are square bricks with four sides containing a value (usually an integer or
a colour when presented graphically). We can construct tilings by placing copies of tiles
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t1h1

h2

h3

t2

op(h2)
h4

Figure 6. Tiling of flexible tiles connected by two complementary flexible
arms.

on the plane Z2. Two tiles can be connected along two opposite sides when they hold the
same value. We give three examples of partial tilings in Figure 5. We usually require the
tilings to be maximal (it cannot be extended with further copies of a tile) and connected.
Moreover, the rotation of tiles is usually forbidden (although this condition can be relaxed
in some cases).

A possible generalisation is the model of flexible tiles [68] used as a model for DNA
computing with branched junction molecules [19]. It works with star-like tiles having flexible
arms which contain values from a given set H. An involution9 op ∶ H → H such that
op(h) ≠ h = op(op(h)) defines complementary values called Watson-Crick complementaries.
Two flexible arms can be connected if they have complementary values (cf. Figure 6). Notice
that the model is not limited to planarity, unlike Wang tiles. Surprisingly, this model can
actually encode Wang tiles or other “planar” tiling-based models [69].

It is possible to generalise even more by considering polarised terms with a head symbol
(e.g. +c(X) but not +X) as values for flexible arms such that two terms can be connected
when they are unifiable up to renaming, i.e. they can be made equal by a substitution
from variables to terms (cf. Appendix A). It is more general than flexible tiles because
terms can encode any set and term unification up to renaming potentially involves several
possible partners. For instance, +c(X) can be connected with −c(t) for any term t since

the substitution θ = {X ↦ t} is a solution of the equation X
?
= t (with a renaming of t in

order to avoid variable conflicts).
These flexible tile sets with terms are equivalent to first-order formulas in prenex con-

junctive normal form [93]: flexible arms are first-order atoms P (t),¬P (t), tiles are dis-
junctive clauses {A1, ...,An} with bound variables and tile sets are conjunctions of clauses.
Robinson’s first-order resolution [93] induces a procedure of evaluation of tilings by succes-
sive contraction of links. For instance, the two connected clauses of Figure 7 merge and
produce the new clause [g(f(Y )),−b(f(Y )),+c(Y )] where the solution θ of the equation

a(X) ?
= a(f(Y )) associated to the link is propagated to the neighbours. The evaluation of

a whole set of clauses is defined as follows:

(1) construct all possible connected tilings by connecting clauses along unifiable terms of
opposite polarity (non-determinism can happen);

(2) eliminate the unwanted ones (typically, we need maximal tilings which cannot be ex-
tended);

(3) try to contract all the tilings by using Robinson’s resolution rule:
● if it fails, throw the tiling away;
● it if works, it should give you a new star;

9A function f is an involution (or is involutive) when f(f(x)) = x
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[g(X),+a(X),−b(X)]

[−a(f(Y )),+c(Y )]

θ = {X ↦ f(Y )} ↝ [g(f(Y )),−b(f(Y )),+c(Y )]

Figure 7. Robinson’s first-order resolution seen as a tiling model. The two
terms +a(X) and −a(f(Y )) are dual and then can be connected to form a
tiling.

(4) at the end, you obtain a new constellation with stars coming from all the contracted
tilings.

It corresponds to the computation of all new clauses we can infer from the available
ones. At this point, our flexible tile system with terms is indeed a fancy way to present
first-order resolution.

The model we call stellar resolution is a graph-theoretic variant of the above tile system
where we allow additional features such as unpolarised terms and internal polarised terms. It
is possible because we are not interested anymore in the logical meaning of our constructions.

The difference between logic programming and our approach is that our model is used
with different motivations and with less constraints. In particular, it is alogical so it does
not follow logical rules. More details about the stellar resolution and approaches of logic
programming are detailed at the end of Section 3.4.

2.2. Stars and constellations. We use Girard’s terminology of stars and constellations
[55]. The tiles are called stars and their flexible arms are rays. A tile set is called a constel-
lation. Rays can contain special polarised symbols called colours which are analogous to the
colours of Wang tiles. For instance, if f is a symbol, then +f and −f are two dual colours.
We then expect terms such as +c(f(X)), f(X), Y , +d(X,−e) and +c(f(+f(X), Y )) to be
rays. The point lies in the technical ability to switch colours and play with the potential
connexions of constellations, e.g. turning all colours −c into −d.

Definition 2.1 (Coloured signature). A coloured signature is a tupleC = (V,C,F,ar,op, ⌊⋅⌋)
where V is a countable set of variables, C and F are disjoint countable set of function
symbols such that C is called the set of colours and ar ∶ C ⊎ F →N associates an arity to
function symbols. Colours in C are new function symbols +f,−f constructed by juxtaposing
a polarity in {−,+} and a function symbol f ∈ F , and op is an involution defined by
op(+f) = −f . The underlying symbol ⌊c⌋ of a colour c ∈ C such that c ∈ {+f,−f} is defined
by ⌊+f⌋ = ⌊−f⌋ = f with f .

We assume the existence of a coloured signature C = (V,C,F,ar,op, ⌊⋅⌋) unless we
explicitly use a specific one.

Definition 2.2 (Rays). A ray on a signature C = (V,C,F,ar,op, ⌊⋅⌋) is a term r ∈ Terms(C)
constructed with variables in V and function symbols in C ⊎F (cf. Appendix A).

A ray r is coloured if there is a function symbol f appearing in r such that f ∈ C and
it is uncoloured otherwise.

The underlying term of a ray is defined inductively as follows:

⌊x⌋ = x ⌊c(r1, ..., rn)⌋ = ⌊c⌋(⌊r1⌋, ..., ⌊rn⌋) ⌊f(r1, ..., rn)⌋ = f(⌊r1⌋, ..., ⌊rm⌋)
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Figure 8. Star with prefixed rays seen as either input, output or unpo-
larised. For general stars, internal colours are allowed as well.

with x ∈ V, f ∈ F and c ∈ C.

Notice that the model is more complex that one would expect from the intuitions given
in Section 2.1 because of the possible presence of internal colours. Actually, in this paper,
only rays with colours as prefix will be used, hence rays c(t1, ..., tn) such that c ∈ C and
the terms ti are uncoloured. Such terms looks like atomic first-order formulas P (t),¬P (t)
where P is a predicate. Although not used here, we choose the keep the more general
definition of rays with internal colours in order to anticipate further works and extensions
already described by Girard [54, Section 4.1].

Definition 2.3 (Star, Figure 8). A star φ over a coloured signature C is a finite indexed
family10 of rays, i.e. a finite set of indexes Iφ together with a map φ[⋅] ∶ Iφ → IdRays(C)
which given an index gives the corresponding ray. The set of variables appearing in φ is
defined by vars(φ) ∶= ⋃i∈Iφ vars(φ[i]) (cf. Appendix A). For convenience, stars will be

written as a clause [r1, ..., rn].
The empty star is written [] and is defined by I[] = ∅.

Notation 2.4 (Substitutions extended to stars). A substitution (cf. Appendix A) is a
function replacing variables by terms, within a term. Given a substitution θ, its action
extends to stars by θ[r1, ..., rn] = [θr1, ..., θrn].

A renaming is a substitution replacing variables by other variables. We say that two
stars φ1, φ2 are α-equivalent, written φ1 ≈α φ2, when there exists a renaming α such that
αφ1 = φ2.

Convention 2.5. In this paper, stars will be considered up to α-equivalence. We therefore
define Stars(C) as the set of all stars over a coloured signature C, quotiented by ≈α.

Definition 2.6 (Constellation). A constellation Φ is a countable indexed family of stars,
i.e. a countable (possibly infinite) set IΦ together with a map Φ[⋅] ∶ IΦ → Stars(C). For
convenience, a finite constellation will be written as a sum of stars Φ = φ1 + ... + φn.

We define the set of rays of a constellation Φ by IdRays(Φ) = {(i, j) ∣ i ∈ IΦ, j ∈ IΦ[i]}
(we keep track of the star from which rays come) and ±IdRays(Φ) ∶= {r ∈ IdRays(Φ) ∣
r is coloured} by its restriction to coloured rays.

The empty constellation is written ∅ and is defined by I∅ = ∅.

Constellations are meant to be sort of programs. As in logic programming (e.g. Prolog)
or functional programming (e.g. λ-calculus), variables will be considered bound to their
star (which can be seen as sort of declarations), hence the two x in [+f(x)]+ [−f(x), y] are
unrelated. This is similar to how the two x in the λ-term λx.(λx.M) are different.

10Which should be understood as an array indexed by a given set of indexes (typically, natural numbers).
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1 0

0

1

1
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Figure 9. Example of finite deterministic automata with a mapping from
a word graph to its state graph.

Notation 2.7 (Indexed set membership). We will sometimes write e ∈ E for an indexed
set E (a star or constellation in our case). The intended meaning is that there is an i ∈ IE
such that e = E[i].

Now that all the elementary objects of the stellar resolution are defined, we give a very
standard encoding of natural numbers which will be useful through the paper and illustrate
the model by some example of constellations.

Definition 2.8 (Encoding of natural numbers). We define the function symbol n for a
natural number n ∈N by 0 = 0 and n + 1 = s(n) for a unary symbol s and a constant 0.

Examples 2.9. We give examples of finite and infinite constellations:

● Φc
BH ∶= [−c(X),+c(X)];

● Φ+
N
∶= [+add(0, Y, Y )]+[−add(X,Y,Z),+add(s(X), Y, s(Z))] (logic program for addition);

● Φn+m
N

∶= Φ+
N
+ [−add(n,m,R),R] (query for the computation of n +m);

● ΦN is defined by IΦN
=N and ΦN[i] ∶= [−nat(i),+nat(i + 1)] (infinite chain)

over the signature defined by the variables V = {X,Y,Z,R}, the colours C = {±add,±nat},
and F = {add,nat, s,0}, ar(add) = 3,ar(nat) = ar(s) = 1,ar(0) = 0. The constellation Φn+m

N

corresponds to the following Horn clauses [107] where Add(X,Y,Z) states that X + Y = Z:
Add(0, Y, Y ) and Add(X,Y,Z)⇒ Add(s(X), Y, s(Z)).

Notation 2.10 (Disjoint union of constellations). Let Φ1 and Φ2 be two constellations.
Their disjoint union Φ1⊎Φ2 is a constellation defined by IΦ1⊎Φ2

∶= IΦ1
⊎IΦ2

and the associated
copairing Φ1[⋅] ⊎Φ2[⋅] ∶ IΦ1

⊎ IΦ2
→ Stars(C).

2.3. Evaluation of diagrams and execution of constellations. We are now interested
in the formation of tilings we call diagrams. Unlike tilings with Wang tiles or flexible tiles,
it is possible to evaluate these diagrams by contracting them with Robinson’s resolution
rule [93].

We first define the dependency graph of a constellation which defines the allowed con-
nexions between stars along dual rays. A diagram corresponds to an actual plugging of stars
along dual rays, following those allowed connexions. The edges linking stars will induce an
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equation between terms and the whole diagram will induce a unification problem (cf. Ap-
pendix A). The evaluation of a diagram will correspond to solving its associated unification
problem and producing a new star.

In order to approach this idea more intuitively, we explain a common occurrence of it
in automata theory. A finite deterministic automaton is a machine reading an input word
character by character. It starts from an initial state and moves from a state to another
accordingly to the current character it reads. If it ends on the final state, it accepts the
input word. Otherwise, it rejects the input. An example of automata of final state q2 is
given in Figure 9 (on the top with vertices q0, q1, q2). A word can be represented as a linear
graph (on the bottom of Figure 9 with vertices 1,0,1,0 and 0) and finally, the reading of a
word can be represented as a mapping from characters to states (blue links).

The idea is that the state graph of the automata shows the allowed transitions (where
loop can appear) and the word graph is a tiling of states or a traversal of graph which
follows those allowed transitions (sometimes by unfolding loops).

Our diagrams generalise this idea. The state graph corresponds to a dependency graph
and the word graph corresponds to a diagram. The difference is that a dynamics of term uni-
fication is present in our dependency graphs and diagrams can be any graph, not necessarily
limited to the linear case as for automata. Mathematically, a diagram will be associated
to a graph homomorphism between a graph (representing the tiling) and the dependency
graph, exactly like how word graphs are related to state graphs in automata theory.

Definition 2.11 (Duality between rays). Let op(r) the inverse of a ray r defined by invert-
ing polarities, i.e. op(r) is r where all colours c are replaced by op(c).

Two rays r and r′ are dual w.r.t. a set of colours A ⊆ C, written r ⋈A r
′, when both

have at least one colour c ∈ A and {r ?
= op(r′)} has a solution.

Proposition 2.12. The relation ⋈A is symmetric but not reflexive nor transitive.

Proof. Notice that only symmetric relations are used in the definition (equality and uni-
fication). Hence, it follows that duality is also symmetric. The failure of reflexivity and
transitivity comes from the requirement of opposite colours. A ray cannot be dual to another
ray where two identical polarities face each other.

Example 2.13. We have +c(X)⋈{c}−c(0) and −d(X)⋈{d}+d(f(X)) but not +c(X)⋈Af(Y )
(presence of unpolarised ray), +c(X) ⋈−d(X) (different head symbol), +c(X) ⋈A +c(f(Y ))
(polarities are not opposite) nor +c(f(X)) ⋈A −c(g(Y )) (terms are not α-unifiable) for any
A.

Definition 2.14 (Dependency graph). The dependency graph of a constellation Φ w.r.t.
a set of colours A ⊆ C is the undirected labelled multigraph11 D[Φ;A] ∶= (V,E, ℓ) where
V ∶= IΦ and for each (i, j), (i′ , j′) ∈ ±IdRays(Φ) such that Φ[i][j] ⋈A Φ′[i′][j′], we have
{i, i′} ∈ E and the edge labelling ℓ(i, i′) = (j, j′). We simply write D[Φ] when links for all
colours appearing in Φ are allowed.

Example 2.15. Two examples of dependency graphs for the two constellations Φn+m
N

and
ΦN of Example 2.9 are presented in Figure 10.

11A multigraph is a graph with possibly several edges between two same vertices.
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φ1 φ2 φ3 R
+add(0, Y, Y ) ⋈ −add(X,Y,Z)

−add(X,Y,Z) ⋈ +add(s(X), Y, s(Z))

+add(s(X), Y, s(Z)) ⋈ −add(n,m,R)

(a) Dependency graph of Φn+m

N
.

n1 n2 . . .
−nat(0) ⋈ +nat(1) −nat(1) ⋈ +nat(2)

(b) Dependency graph of ΦN.

Figure 10. Examples of dependency graphs for constellations of Exam-
ple 2.9.

φ1 φ2 φ3 R
add(0, Y, Y ) ?

= add(X,Y,Z) add(s(X), Y, s(Z)) ?
= add(2,2,R)

(a) 0 recursive call.

φ1 φ2

φ2 φ3 R

add(0, Y, Y ) ?
= add(X,Y,Z)

add(s(X), Y, s(Z)) ?
= add(X,Y,Z)

add(s(X), Y, s(Z)) ?
= add(2,2,R)

(b) 1 recursive call.

φ1 φ2

φ2

φ2 φ3 R

add(0, Y, Y ) ?
= add(X,Y,Z)

add(s(X), Y, s(Z)) ?
= add(X,Y,Z)

add(s(X), Y, s(Z)) ?
= add(X,Y,Z)

add(s(X), Y, s(Z)) ?
= add(2,2,R)

(c) 2 recursive calls.

Figure 11. Examples of diagrams for the constellation Φ2+2
N

. The number
of occurrences of φ2 corresponds to the number of recursive calls. They cor-
respond to unfolding of the loop of Figure 10 corresponding to the possibility
of recursive call.

add(0, Y, Y ) add(X,Y,Z) add(s(X), Y, s(Z)) add(2,2,R)

Figure 12. Ray linking graph for the first diagram of Figure 11 correspond-
ing to the case with no recursive call.

Definition 2.16 (Diagram). An A-diagram (or simply diagram when working with all
colours) δ on a set of colours A ⊆ C over a constellation Φ is a graph homomorphism
δ ∶ Gδ →D[Φ;A] from a non-empty finite connected multigraph Gδ.
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D[Φ;A]

H ⊆ Gδ′

Gδ

δ′

δ

ϕ
≃

(a) Saturation expressed with graph ho-
momorphisms.

⊑

(b) We have δ ⊑ δ′ when δ′ is an exten-
sion of δ with further links and possibly
repetitions of stars. Both follow the con-
nexions of a dependency graph D[Φ;A].

Figure 13. Order ⊑ on diagrams representing an idea of saturation.

We define the set of rays of δ by IdRays(δ) ∶= {(δ(x), j) ∣ x ∈ V Gδ , j ∈ Iδ(x)} (we keep
track of the stars from which the rays come) and extend the definition to the set ±IdRays(δ)
of its coloured rays.

The labelling function ℓ of D[Φ;A] is extended to a diagram δ by ℓ(e) ∶= ℓ(δ(e)) for
e ∈ ED[Φ;A].

The ray linking graph RLG(δ) of δ is a graph showing how rays are linked (instead of
stars). It is a graph (V,E) defined with V ∶= IdRays(δ) such that (j, j′) ∈ E when j and j′

are linked in Gδ, i.e. when there is some e ∈ EGδ of label (j, j′).
Finally, we require that a diagram has a ray linking graph which is a simple graph (A

graph without loop on vertices and without multiple edges between two vertices).
The graph Gδ is considered up to renaming of the vertices and edges and for convenience,

we will often have V ⊆N in practice.

Example 2.17. An example of three diagrams for the constellation Φ2+2
N

(which is an
instance of the constellation Φn+m

N
of Example 2.9) is given in Figure 11. An example of

ray linking graph for the first diagram is given in Figure 12.

Notation 2.18 (Free rays and closed diagrams). Given an A-diagram δ of a constellation

Φ, we define its set of free (unconnected) rays free(δ) ⊆ V RLG(δ) by the set of isolated rays
index in RLG(δ). If free(δ) = ∅, we say that δ is closed.

We usually would like diagrams to be impossible to extend by connecting more stars,
which corresponds to a notion of saturation. In terms of tiling it is understood as the
construction of the largest constructible tiling with occurrences of tiles from a given tile set
and in terms of programming, it corresponds to a complete computation to be done.

Definition 2.19 (Saturated diagram). We define a binary relation ⊑ (illustrated in Fig-
ure 13) on A-diagrams over a constellation Φ by: δ ⊑ δ′ if there exists an isomorphism ϕ

from a graph H ⊆ Gδ′ to Gδ such that δ = δ′ ○ ϕ. A maximal A-diagram w.r.t. ⊑ is called
saturated.

Proposition 2.20. The relation ⊑ is a preorder.

Proof. We have δ ⊑ δ by taking the subgraph Gδ ⊆ Gδ . The isomorphism ϕ is the identity
function so we trivially have δ = δ ○ϕ.

Assume we have δ1 ⊑ δ2 and δ2 ⊑ δ3. Hence, we have isomorphisms ϕ1,2 ∶ (H2 ⊆ Gδ2) ≃
Gδ1 and ϕ2,3 ∶ (H3 ⊆ Gδ3) ≃ Gδ2 such that δ1 = δ2 ○ϕ1,2 and δ2 = δ3 ○ϕ2,3. We can construct
an isomorphism ϕ1,2 ○ ϕ2,3 such that δ1 = δ3 ○ ϕ and Gδ3 is indeed an extension of Gδ1

following the connexions of the same dependency graph.
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φ1 φ2

φ′2 φ3 r

add(0, Y1, Y1)
?
= add(X2, Y2,Z2)

add(s(X2), Y2, s(Z2))
?
= add(X ′2, Y

′
2 ,Z

′
2) add(s(X ′2), Y

′
2 , s(Z

′
2))

?
= add(2,2,R)

(a) Correct diagram computing 2 + 2 (1 recursion) with the ray r visible.

φ1,2 φ′2 φ3 R
add(s(0), Y1, s(Y1))

?
= add(X ′2, Y

′
2 ,Z

′
2) add(s(X ′2), Y

′
2 , s(Z

′
2))

?
= add(2,2,R)

(b) Fusion of φ1 and φ2 with θ ∶= {X2 ↦ 0, Y2 ↦ Y1, Z2 ↦ Y1}.

φ1,2,2′ φ3 R
add(2, Y1, s(s(Y1)))

?
= add(2,2,R)

(c) Fusion of φ1,2 and φ′
2
with θ ∶= {X ′

2
↦ s(0), Y ′

2
↦ Y1, Z

′

2
↦ s(Y1)}

φ1,2,2′,3 4

(d) Fusion of the two remaining stars with θ ∶= {R ↦ 4}.

Figure 14. Fusion of the diagram from Figure 11b.

Links in a diagram have an underlying equation. It follows that a whole diagram is
associated to a unification problem (cf. Appendix A). A minor but important technical
problem is that variables appearing in a constellation Φ are meant to be bound to their star.
Hence, before evaluating, we must rename variables so to mark their membership to a star
of Φ. Fortunately, it is possible to define a canonical renaming by using the star indexes IΩ.

Definition 2.21 (Underlying equation and problem). Let δ be an A-diagram of a constel-
lation Φ. We define a canonical family of renamings for variables defined by αv(x) = xv for
v ∈ V Gδ and any variable x.

The underlying equation of a link e = (v, v′) of label (j, j′) in EGδ is defined by eq(e) ∶=
αv⌊Φ[v][j]⌋

?
= αv′⌊Φ′[v′][j′]⌋ and the underlying problem of δ is defined by P(δ) = {eq(e) ∣

e ∈ EGδ}.

In Girard’s original paper [55, Section 2.3], the evaluation of diagrams is defined as an
edge contraction we call fusion. An edge e between two stars φ and φ′ contain equations
which are resolved and then the associated solution is propagated to both φ and φ′. The two
connected rays associated to e are finally destructed in the process. It reminds of chemical
interactions but also of how information is propagated and organised in a network. This
process can fail in presence of errors during the execution of a unification algorithm.

We define this step-by-step procedure of fusion but also an alternative and equivalent
notion of evaluation we call actualisation which evaluates a diagram by solving the whole
unification problem associated. It is similar to how small step evaluation differ to big step
evaluation in the theory of programming languages [6, Section 1.1].

Definition 2.22 (Fusion, Figure 15). Let δ ∶ Gδ → D[Φ;A] be an A-diagram of a constel-
lation Φ. We define the fusion of δ along a link e = (v, v′) in EGδ of label (j, j′) as a new
diagram δ′ ∶ Gδ′ →D[Φ + φ;A] where Gδ′ is Gδ such that:
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s
r

s′
r′r1

⋯

rn

r′1
⋯

r′m

↝ s

θr1
⋯

θrn

θr′1
⋯

θr′m

Figure 15. Illustration of a step of fusion where θ is the principal unifier
of the underlying unification problem of the pair of rays (r, r′). The fusion
of the two stars s and s′ along the rays r and r′ produces a new star s.

(1) we compute θ ∶= solution({eq(e)});
(2) we define φ1 ∶= Φ[δ(v)] and φ2 ∶= Φ[δ(v′)];
(3) we define φ′1 by Iφ′

1
∶= Iφ′

1
/{j} and φ′2 by Iφ′

2
∶= Iφ′

2
/{j′} and φ[i] behaves like φ′[i′];

(4) we define a new star φ ∶= θφ′1 ⊎ θφ
′
2;

(5) v and v′ merge and are replaced by φ, i.e. δ(v′) = δ(v) = φ and some x ∈ V Gδ is linked
with v if and only if it is connected to v′.

We use the notation Gδ ↝e Gδ′ for a step of this procedure resulting in Gδ′ , Gδ ↝
∗
e Gδ′ for

its reflexive transitive closure and Gδ ↝
n
e Gδ′ for the reachability of Gδ′ from Gδ in n ∈ N

steps. We leave the reduced edge e implicit when obvious or not important.

Definition 2.23 (Correct diagrams and their actualisation). An A-diagram δ of a constel-
lation Φ is correct if P(δ) has a solution.

The actualisation of a correct diagram δ is the star ⇓ δ defined by I⇓ δ ∶= free(δ) such
that (⇓ δ)[(i, j)] = (ψ ○ θ)(Φ[i][j]), where ψ = solution(P(δ)) and θ ∶= αv1 ○ ... ○ αvn with
V Gδ = {v1, ..., vn} is the composition of renamings of Definition 2.21.

There are several ways to compute the solution of a unification problem. In this paper
we use the Martelli-Montanari algorithm [80]. We call partial execution of a problem P

an arbitrary sequence of steps of the algorithm applied on P . Further details are given in
Appendix A.

In the following proof, we treat free(δ) as a star made of the free rays of δ for read-
ability.

Lemma 2.24 (Equivalence of diagram reduction). For all diagram δ, there exists δ′ such

that Gδ ↝e Gδ′ if and only if there exists a partial execution from P(δ) to P(δ′) ∪ {X1
?
=

t1, ...,Xk
?
= tk} with {X1, ...,Xk} ∩ ⋃k

j=1 fv(tj) = ∅ and free(δ′) = {X1 ↦ t1, ...,Xk ↦

tk}free(δ). It means that a step of fusion corresponds to some steps of the unification
algorithm (cf. Appendix A).

Proof. We show the two implications.

● (⇒) Assume the fusion succeeds and produces a graph Gδ′ by using the substitution
θ ∶= {X1 ↦ t1, ...,Xk ↦ tk} corresponding to solution({eq(e)}). We now consider the
actualisation of δ which corresponds to solving the equation associated to δ. By confluence
of the unification algorithm (cf. Appendix A), we can focus on e and isolate the result

in order to obtain P(δ′) ∪ {X1
?
= t1, ...,Xk

?
= tk} with {X1

?
= t1, ...,Xk

?
= tk} in solved

form (notice that P(δ′) = P(δ)/{e}). Then we have {X1 ↦ t1, ...,Xk ↦ tk}P(δ′) ∪ {X1
?
=

t1, ...,Xk
?
= tk} by application of the unification algorithm (“replace” rule) on the equations

Xi
?
= ti we previously isolated and “stored”. We obtain the equations corresponding to
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φ1 +⋯+ φn

Constellation Φ

φ1
φ2 φ3⋯

φn

D[Φ]

φ1
φ3⋯

φn

CSatDiags(Φ)

⋮

φ1
φ1 φ1⋯

φ2

ψ1

⋮

ψm

Ex(Φ)

list

dependencies

↝

list

diagrams

↝

evaluate

diagrams

↝

Figure 16. Illustration of the execution of a finite and strongly normalising
constellation. Notice that diagrams can be thought of as sort of runs in the
dependency graph seen as a generalised automaton.

a new diagram δ′′ such that P(δ′′) = {X1 ↦ t1, ...,Xk ↦ tk}P(δ′). After application
of solution({eq(e)}) on P(δ′), the variables X1, ...,Xk are “fixed”, i.e. they appear
nowhere else, which prevents them to be altered during the execution of the algorithm
and hence the substitutions of {X1 ↦ t1, ...,Xk ↦ tk} will appear in the last substitution
applied on the free rays. It shows that we will have free(δ′′) = {X1 ↦ t1, ...,Xk ↦
tk}free(δ) if we consider a notion of partial actualisation. This corresponds to δ′, hence
δ′ = δ′′.

● (⇐) The previous point defines a correspondence between a step of fusion and some steps
of the unification algorithm. By confluence of the unification algorithm, it is always possi-
ble to reorganise the order of resolution of equation so that the first step will correspond
to a step of fusion, without any effect on the result.

Theorem 2.25 (Equivalence between fusion and actualisation). For all diagram δ, we have
Gδ ↝

n G⇓ δ for n = ∣P(δ)∣.

Proof. By induction on n. Assume we have 0 links, hence Gδ does not reduce and has no
edges. The only connected graph with no edge is a single vertex. This indeed corresponds
to G⇓ δ, as expected. For the inductive case, we show that there exists a diagram δ′ such
that Gδ ↝ Gδ′ ↝

n G⇓ δ knowing Gδ′ ↝
n G⇓ δ (by induction hypothesis). The simulation of

fusion (cf. Lemma 2.24) tells us that a step of fusion exactly corresponds to some steps of
the unification algorithm. Consider a full application of the unification algorithm on P(δ).
By the confluence of the algorithm (cf. Appendix A), we can reorganise the computation
of ⇓ δ so that some steps correspond to Gδ ↝ Gδ′ and the remaining ones to Gδ′ ↝

n G⇓ δ.
Hence, we necessarily have a step of fusion Gδ ↝ Gδ′ .

The execution of a constellation Φ (Figure 16) consists in computing all the correct
saturated diagrams of Φ and actualising them. In appearance, it is very similar to the
resolution operator [78, Chapter 3] which is analogous to the consequence operator [29,
Section 2.2] of logic programming. The difference is that we allow cyclic diagrams which
makes our model closer to the construction of tilings in tile systems.

As we later show in Section 3.1, allowing cyclic diagrams still preserves the interpre-
tation of logic programs since cyclic diagrams are often wrong for logic programs: for the
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constellation Φn+m
N

of Example 2.9, a loop can be constructed with

[−add(X,Y,Z),+add(s(X), Y, s(Z))],

leading to the equation X
?
= s(X) which has no solution.

Notation 2.26 (Set of correct saturated diagrams). We write SatDiagsA(Φ) for the set
of all saturated diagrams obtained from D[Φ;A] for a constellation Φ and a set of colours
A ⊆ C. We omit the set of colours and simply write SatDiags(Φ) when A = C.

We write CSatDiagsA(Φ) for the set of all diagrams in SatDiagsA(Φ) which are correct.

Definition 2.27 (Execution and normal form). The execution of a constellation Φ w.r.t. a
set of colours A ⊆ C is defined by ExA(Φ) ∶= ⇓CSatDiagsA(Φ), where ⇓CSatDiagsA(Φ) ∶=
{⇓ δ ∣ δ ∈ CSatDiagsA(Φ)}. We write Ex(Φ) when all colours in Φ participate in the
execution.

We discuss some design choices. Notice that the definition of diagram allows duplication
of a same star, hence this apparently makes no difference whether or not a constellation
is defined as a set or multiset. The purpose of defining constellations as multiset (actually
indexed families) is to allow a quantitative analysis in the normal form. For instance, it
would be possible to count how many times a given star appeared in the normal form.

Saturated diagrams of a constellation Φ, although impossible to extend, may have
free coloured rays which can be connected to the rays of another constellation Φ′ when
computing the interaction Ex(Φ⊎Φ′). This is necessary in order to consider composition in
logic and prove the associativity of execution (cf. Theorem 5.20). However, this definition is
different from Girard’s original definition [55, Section 2.3] which erases stars containing free
coloured rays for technical reasons explicited in our interpretation of MLL (cf. Section 4).
We instead split Girard’s execution by defining more primitive operations which can be
combined to our execution.

We define an operation of concealing which violently mutes the constellation by remov-
ing stars containing polarised rays, thus forbidding any communication with other stars.

Definition 2.28 (Concealing). Let Φ be a constellation. The concealing of Φ is the con-
stellation ☇Φ defined by I☇Φ ∶= {i ∈ IΦ ∣ φ ∶= Φ[i],∀j ∈ Iφ, φ[j] is uncoloured}.

We define an operation of noise filtering of a constellation which removes the empty
stars which are irrelevant since they cannot be connected. However, they still are valuable
for quantitative analyses as we will set in the interpretation of MLL (cf. Section 4).

Definition 2.29 (Noise filtering). Let Φ be a constellation. The noise filtering of Φ is the
constellation ♭Φ ∶= {i ∈ IΦ ∣ Φ[i] ≠ []}.

3. Computational illustrations and properties of execution

We illustrate how several common kinds of computation can be implemented in our model
as certain classes of constellations. It shows that the stellar resolution is a very general and
modular model of computation which expresses computation by transmission of data within
a hypergraph structure. In particular, this generalises various classes of automata and Horn
clauses used in logic programming and various tile systems. Although not explicitly shown
in this paper, the stellar resolution should also represent a computational version of labelled
transition systems which are commonly used in model checking [14, Chapter 2].
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3.1. Logic programs. A natural illustration of the computational power of the stellar
resolution is the encoding of logic programs since the stellar resolution directly generalises
Robinson’s first-order resolution which corresponds to the core of logic programming.

First, it is possible to do programming with predicate calculus [71]. It is then known
that formulas of predicate calculus can be normalised so that formulas are represented only
by conjunction of disjunctions (called clauses) with only universal quantifiers appearing as
prefix [59, Section 3.2]. Formulas are then of the shape ∀x1, ..., xn.(A1

1 ∨ ... ∨ A
1
n) ∧ ... ∧

(Am
1 ∨ ...∨Am

k ) where every Ax
y is an atomic formula. We use those normalised formulas of

predicate calculus with at most one positive (without negation) atom in each clause. Such
normalised formulas called Horn clauses represent sequents Γ ⊢ A for a set of hypotheses
Γ.

A fact is a closed (variable-free) first-order formula. Several facts form a knowledge base.
We have rules which can be used to infer new facts from the available ones and thus expend
the knowledge base. Rules are often represented as implications A1, ...,An ⊢ B called Horn
clauses [61, 107]. A query asks if it is possible to infer a given fact from the knowledge base
and is itself represented as a fact symbolising a goal. A logic program is a multiset of rules
and facts.

The translation is direct. We use the use the polarities to distinguish between hypothesis
and conclusion (or input and output). The translation of a fact is defined by

P (t1, ..., tn)☀ ∶= [+P (t1, ..., tn)].
For a rule, the translation is defined by:

( ∧mi=1 P1(ti1, ..., t
i
n) ⊢ Q(u1, ..., uk))

☀
∶= (

m

⋃
i=1
{−P1(ti1, ..., t

i
n)}) ∪ {+Q(u1, ..., uk)]}.

Finally, for a query, we have:

(?P (t1, ..., tn))☀ ∶= [−P (t1, ..., tn), r1, ..., rm]
with {r1, ..., rm} = ⋃n

i=1 vars(ti) which represent the information we would like to make
visible in the output (see Example 2.9 where [−add(n,m, r), r] is the query). A logic

program P ∶= ⋃n
i=1{Ci} becomes P☀ ∶= ⋃n

i=1{C
☀
i }.

The set of answers for a query q on a program P is defined by a set of substitutions
A

q
P
= {θ1, ..., θk} such that for all θ ∈ Aq

P
, we have θq logically satisfied by P , written

P ⊧ θq. The answers are usually computed by iteratively applying the resolution rule (cf.
Definition A.7 in Appendix A) between q and all possible C ∈ P until either no variables
remain in q or the resolution rule is no more applicable. We refer to definitions of the
SLD-resolution itself derived from Kowalski’s SL-resolution [71, 73] for more details about
the computation of answers.

Theorem 3.1 (Simulation of logic programs). Let P be a logic program with query q and

P☀ and q☀ be their translation. We have ♭Ex(P☀ + q☀) = {θ1φ1, ..., θkφk} if and only if
for all θi, P ⊧ θiq.

Proof. The proof relies on the fact that the execution reproduces the SLD-resolution [71, 73].
The satisfiability of a query is linked to the idea of “proof-search”: it is satisfiable when
proved by facts, themselves proved by other facts and so on until nothing is left unproven.
SLD-resolution tries to satisfy a query by matching it with the available facts and rules.
Stars can actually be seen as first-order disjunctive clauses. Looking for justifications of



MLL FROM A RESOLUTION-BASED TILE SYSTEM 19

facts corresponds to the construction of diagrams and the fact of leaving nothing unproven
corresponds to the saturation of diagrams. In particular, in presence of k possible choices of
rules, k answers are computed independently in parallel and we obtain saturated diagrams
δ1, ..., δk .

The fact of matching a query against available facts and rules can be seen as constructing
a saturated and correct diagram. In the absence of error, we indeed obtain an instantiation
of the variables vars(q) through a substitution θi. This exactly coincides with the actu-
alisation of correct diagrams. By Lemma 2.25 this is equivalent to a full fusion. Having
number of correct diagrams corresponds to the number of answers.

Remark that in the case of diagrams, only the free rays survive in the output, hence we
have to add uncoloured rays corresponding to vars(q) to correctly simulate logic programs.
We could also add rays x ⋅X where x is a constant representing X in order to keep the
name of variable in the output. We would finally obtain a normal form made of stars
φi = ⋃k

i=1{xi ⋅ ri} such that φi corresponds to some θ ∈ Aq
P .

Additionally, we have to ensure that our relaxation to cyclic diagrams do not cause
problems. In logic programming, we usually require that the rays of a star have exactly the
same variables (all variables are bound). Because of this restriction, cycles in dependencies
graphs of logic programs, when reduced to a loop on a single star, either involve equations

of the shape t
?
= t or equations of the type X

?
= f(X). In the former case, if the associated

rule is binary, i.e. of the shape A ⊢ B, we obtain the empty star [] which is irrelevant in
the computation and removed by the operator ♭. If the rule is not binary, e.g. of the shape

A1,A2, ...,An ⊢ B, the equation t
?
= t associated to the loop is erased because it has no effect

on the computation. In the latter case of the ill-behaving equation X
?
= f(X), the whole

diagram is incorrect and ignored in the output.

An example of logic program computing unary addition and its evaluation for the case
of 2 + 2 is illustrated in Figure 11 and 14.

3.2. Non-deterministic Turing machines. Definitions of Turing machines are taken for
Sipser’s introduction to the theory of computation [106, Section 3.1 in Second Edition].

Links between tile systems and automata have already been studied [81, 108] by con-
sidering recognisability on graphs, inducing sort of asynchronous automata. The encoding
of automata in the stellar resolution follows a similar idea: the construction of diagrams
simulates a run on a given word. It is possible to encode directed graphs by translating
edges (e, e′) with binary stars [−g(e),+g(e′)]. It is then possible to encode an automata
transitions by first encoding their state graph then extending the rays so that the fusion
triggers a transmission of information (the remaining characters to be read). The final state
will contain a dummy unpolarised ray accept so that the existence of a visible output in
the normal form will correspond to the acceptation a word.

In this section, we suggest an encoding of non-deterministic Turing machines. We use
the fact that Turing machines can be represented with two stacks in order to represent the
left and right part of a tape. A move of the head will be represented as a manipulation of
stack (push or pop of a symbol).

Definition 3.2 (Encoding of words). If w = c1...cn then w☀ = [+i(c1 ⋅ ... ⋅ cn ⋅ )] with the
binary function symbol ⋅ which is considered right-associative, i.e. a ⋅ b ⋅ c = a ⋅ (b ⋅ c) and a
constant for the empty character.
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Different encodings of words are possible. For instance, in Aubert and Bagnol’s works [8,
Definition 24][9, Definition 10], the characters are encoded with objects called flows (which
can be seen as binary stars) forming a cyclic chain of α-unifiable terms which interact with
the encoding of an automaton. This defines a characterisation of logspace computation
where the input is explored with pointers.

A non-deterministic Turing machine is a tuple M = (Q,Γ, δ, q0, qa, qr) where Q is the
set of states, Γ is the alphabet of the tape, δ ∶ Q×Γ → P(Q×Γ ×{l,r,s}) is the transition
function, q0 is the initial state and finally, qa and qr ≠ qa are respectively the state of
acceptation and rejection. We write Γ for Γ ∪ { }.

A configuration is a triple (l, q, r) where q ∈ Q and l, r are tapes. It represents the
position of the head on the tape and the associated state. We say that a configuration C
leads to C ′ when moving the head in C accordingly to δ leads to C ′. A word w = c1...cn
is accepted by M , written M(w) = 1, when there is a sequence of configurations C1, ...,Cn

such that:

(1) C1 = ( , q0,w);
(2) Ci leads to Ci+1;
(3) Cn = (l, qa, r) for some l and r.

If the last configuration has a state qr instead, we say thatM rejects w, which is written
M(w) = 0. When M loops infinitely on w, we write M(w) =∞. We require that an NTM
necessarily ends on qa or qr when it stops.

For the encoding, we use the facts that Turing machines can be represented with two
stacks in order to represent the left and right part of a tape. A move of the head will be
represented as a manipulation of stack.

We use terms m(L,Q,X,R) where L and R are the left and right part of the tape
relatively to the current position of the head. The variables Q and X respectively represent
the current state and symbol read by the head. We implicitly consider the symbol ● as
left-associative (hence a● b● c = (a● b)● c) and ○ right-associative (hence a○ b○ c = a○ (b○ c))
so that it looks like we are traversing a tape.

Definition 3.3 (Encoding of non-deterministic Turing machines). The encoding of an NTM

M = (Q,Γ, δ, q0, qa, qr) is defined by a constellation M☀ such that:

● q0 is translated into [−i(C ⋅W ),+m( , q0,C,W )] + [−i( ),+m( , q0, , )];
● qa is translated into [−m(L, qa,X,R),accept];
● qr is translated into [−m(L, qr,X,R),reject];
● for each q ∈ Q and c ∈ Γ such that (q′, c′, d) ∈ δ(q, c):
– if d = l (going left) then we have [−m(L ●X,q, c,R),+m(L, q′,X, c′ ○R)];
– if d = r (going right) then we have [−m(L, q, c,X ○R),+m(L ● c′, q′,X,R)];
– if d = s (staying still) then we have [−m(L, q, c,R),+m(L, q′, c′,R)];

● we add two additional “memory allocation stars”:

[−m( ,Q,C,R),+m( ● ,Q,C,R)] + [−m(L,Q,C, ),+m(L,Q,C, ○ )].

The two last stars are used to dynamically allocate space on the tape when necessary
(similarly to malloc() in the C language). Instead of considering Turing machines as word
acceptors, it is also possible to output the content of the tape and hence compute functions
by translating qa into [−m(L, qa,X,R),accept(L,X,R)].

Theorem 3.4 (Simulation of non-deterministic Turing machines). Let M be an NTM such
that qa and qr have no outgoing transitions and w a word. We have:
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M☀ = [−i(C ⋅W ),+m( , q0,C,W )] + [−i( ),+m( , q0, , )]+
[−m(L, q0, ,R),+m(L, qa, ,R)] + [−m(L, q2, ,R),+m(L, qr, ,R)]+

[−m(L, q0,$,C ○R),+m(L ● $, q0,C,R)] + [−m(L, q2,$,C ○R),+m(L ● $, q2,C,R)]+
[−m(L, q0, a,C ○R),+m(L ● $, q2,C,R)] + [−m(L, q2, a,C ○R),+m(L ● a, q2,C,R)]+
[−m(L, q0, b,C ○R),+m(L ● $, q3,C,R)] + [−m(L ●C,q2, b,R),+m(L, q1,C,$ ○R)]+
[−m(L, q1, ,C ○R),+m(L ● , q0,C,R)] + [−m(L, q3, ,R),+m(L, qr, ,R)]+

[−m(L ●C,q1,$,R),+m(L, q1,C,$ ○R)] + [−m(L, q3,$,C ○R),+m(L ● $, q3,C,R)]+
[−m(L ●C,q1, a,R),+m(L, q1,C, a ○R)] + [−m(L ●C,q3, a,R),+m(L, q1,C,$ ○R)]+
[−m(L ●C,q1, b,R),+m(L, q1,C, b ○R)] + [−m(L, q3, b,C ○R),+m(L ● b, q3,C,R)]+

[−m(L, qa,X,R),accept] + [−m(L, qr,X,R),reject]+
[−m( ,Q,C,R),+m( ● ,Q,C,R)] + [−m(L,Q,C, ),+m(L,Q,C, ○ )]

Figure 17. A Turing machine accepting words containing as many sym-
bols a as symbols b where a → b, d from a state q to q′ corresponds to a

transition δ(q, a) = (q′, b, d). When computing Ex(M☀ + a☀), we plug the
input with the correct initial star and obtain [+m( ,q0, a, )]. No star can
be connected, hence we have to connect to the right allocation star and ob-
tain [+m( ,q0, a, ○ )]. We can use the star corresponding to a → $,r and
obtain [+m( ●$,q2, , )]. Since we read , we the use star corresponding to
the transition → ,s and obtain [+m( ● $,qr, , )]. We can only use the
star corresponding to qr and obtain [reject]. If we had a character b next
to a, we would reach [accept].

(1) M(w) = 1 if and only if [accept] ∈ ♭ ☇Ex(M☀ +w☀);
(2) M(w) = 0 if and only if ([accept] /∈ ♭ ☇Ex(M☀ +w☀) and ♭ ☇Ex(M☀ +w☀) ≠ ∅).

Proof. By design, D[M☀ +w☀] is isomorphic to the state graph of M (that is, there is a
link between two rays if and only if the two corresponding states are adjacent) and each
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run is isomorphic to some linear correct saturated diagram (because transitions correspond
to binary stars).

A major difference with finite automata is the possibility of infinite computation. Such
infinite computation made by constantly going from one state to the another (which can
be the same one) corresponds to the existence of a diagram which cannot be saturated and
hence does not appear in the normal form. Since qa and qr have no outgoing edges, it is
impossible to have the non-deterministic choice of either stopping on a terminal state or
continuing. If it was possible, we would obtain a misleading [accept] or [reject] in the
output.

We give arguments showing that the dynamics of Turing machine (the transition func-
tion) is correctly simulated. We show that the fusion of stars correctly simulates the com-
position of transitions. Assume we have a star [+m(l, q, c, r)] representing a configuration
of the Turing machine. We have three cases depending on the direction:

● if we are going left, we have a transition [−m(L ●X,q, c,R),+m(L, q′,X, c′ ○ R)]. The
fusion is successful only when l is of the shape l′ ● k. In this case, by unification we have
l′ = L and X = c which identifies a next symbol on the left. The evaluation produces the
star [+m(L, q′, k, c′ ○ r)] which corresponds to writing c′ after reading c and placing it on
the right part of the tape to read the symbol k on the left. This indeed corresponds to
“going on the left” in the tape;

● if we are going right, the reasoning is similar;
● if we stop the head, we have a transition [−m(L, q, c,R),+m(L, q′, c′,R)] and the fusion
only moves from a state q (when reading a symbol c) to another state q′ (after writing
the symbol c′).

We now check the limit cases when the machine is out of memory (not enough space
on the tape to apply a transition). These cases happen because Turing machines have
potentially infinite tapes but we only manipulate finite extensible tapes. When going on
the left, it happens that the left part of the tape l is not of the shape l′ ● k. The typical
case is when we have l = . In this case, we can arbitrarily use the left allocation star and
freely obtain ● . Remark that it is impossible to allocate too much space because the
allocation stars require that we have a tape equal to . Otherwise, we would have infinitely
many diagrams for all the possible amount of space allocation and no encoding of Turing
machine would be strongly normalising.

Using all the previous arguments, we check the statements (1) and (2) of the simulation
theorem for Turing machines.

● (1) Assume that w ∈ L(M) and there is a non-deterministic run reaching either qa. By
correspondence between runs and diagram for Turing machines, we must have a saturated
and correct linear diagram reaching the ray accept. Since stars are binary and qa is
terminal, this ray can only be reached once in a diagram. Hence, such a diagram actualises

into [accept]. Therefore, we have [accept] ∈ ♭ ☇Ex(M☀+w☀). The converse implication
uses the same argument with the remark that uncomplete runs correspond to diagrams
which are erased by the operator ☇. Notice that we can reject sometimes but what matters
is the existence of at least one non-deterministic run which reach qa.

● (2) We show the two implications for the second statement.
– (⇒) Assume that w /∈ L(M) and that M terminates, meaning that M rejects w. Sim-

ilarly to the proof of statement (1), we reach reject and never accept. We indeed

have [accept] /∈ ♭ ☇Ex(M☀ +w☀) and ♭ ☇Ex(M☀ +w☀) ≠ ∅.
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Figure 18. Illustration of an assembly in an aTAM. Assume we are at
temperature τ = 2. We can connect a new tile to an assembly because the
glue types match and the sum of strengths involved is 1 + 1 ≥ τ .

– (⇐) Assume that [accept] /∈ ♭ ☇Ex(M☀ + w☀) and ♭ ☇Ex(M☀ + w☀) ≠ ∅. The only

possibility is to have n occurrences of [reject] in ♭ ☇Ex(M☀+w☀). By correspondence
between runs and diagram, we have a run reaching a rejecting state, hence w /∈ L(M)
and M terminates on w.

We have to check that cyclic diagrams cause no problems. Since Turing machines
only use binary polarised stars, all cyclic diagrams must be closed. Consider such a
cyclic diagram. If it is incorrect, then it is erased in the normal form. In case it is cor-
rect, it represents a trivially infinite loop during the execution of the machine such as
[−m(L, q, c,R),+m(L, q, c,R)]. This diagram will reduce into the empty star [] which is
erased by the operator ♭. Hence, it has no effect on the statement.

Although we have shown an example of deterministic Turing machine in Figure 17, it
is easy to see how the non-deterministic case works. We can have several choices so that
a same transition can match with several transitions. This will necessarily yield several
diagrams corresponding to different runs. The whole machine accepts the input when at
least one run accepts the word.

Corollary 3.5 (Halting problem). The problem of determining if ♭ ☇Ex(M☀ +w☀) ≠ ∅ is
undecidable.

Proof. By the simulation of non-deterministic Turing machines, a Turing machine M termi-

nates if and only if ♭ ☇Ex(M☀+w☀) ≠ ∅ since an infinite computation is either represented
as the emptiness of the output (in case we only have diagrams impossible to saturate) or as
the production of the empty star (e.g. [−m(L, q, c,R),+m(L, q,x,R)]) which is considered
as a trivial loop. This is a known undecidable problem [30].

3.3. Abstract tile assembly model. The abstract tile assembly [111, 87] (aTAM) is a tile
system used in DNA computing [97] which extends Wang tiles (cf. Section 2.1). We present
the idea without too much formality and refer to Lathrop et al. [77] for more details12.

We define a tile type by ti = (giw, gie, gis, gin) for some i in a finite set of indexes I as
objects intuitively corresponding to squares with each sides associated to a glue type gl(gid)
for a direction d ∈ {w,e,s,n} (for west, east, south and north) and a natural number str(gid)
called its strength. The idea is that we have a global variable τ ∈N called the temperature

12However, we use a variant without seed assembly σ because it is more natural in our case.
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and that a tile can be connected to other ones if the sum of strength involved in the
connexion is at least τ . This phenomenon is known as cooperation.

A tile assembly system (TAS) is a pair T = (T, τ) where T is a set of tile types and
τ ∈N is the temperature of T .

Given a set of tile types T , a T -configuration is a partial function α ∶ Z2 → T pasting tiles
to the plane. It is associated to a (connected) grid graphGα with vertices V Gα ∶= dom(α) and
there is an edge between two vertices representing tiles ti, tj with i ≠ j when gl(gid) = gl(g

j
d′
)

for d = op(d′) where op is the involution defined by op(e) = w and op(n) = s.
We say that α is τ -stable if it is impossible to cut EGα into two parts such that it

breaks bonds of total strength at least τ . In other words, it means that a new tile can be
added to a T -configuration only if the total strength value of its bonding is at least τ .

A T -assembly for τ is a T -configuration which is τ -stable. Given a TAS T = (T, τ),
we write A◻[T ] for the set of all T -assemblies for τ which are connected and maximal
(impossible to extend with more tiles from a given set of tile types). An example is given
in Figure 18.

We suggest an encoding of the aTAM in N2 instead of Z2 which is more natural but
not less powerful since it is known that N2 ≃ Z2 and also because we are able to compute

any computable function. Tile types ti = (giw, gie, gis, gin) are encoded by a star t
☀
i :

[−
●
h(gl(giw)(X),X,Y ),−

●
v(gl(gis)(Y ),X,Y ),

+
○
h(gl(gie)(s(X)), s(X), Y ),+

○
v(gl(gin)(s(U)),X, s(Y ))]

where gl(g)(X) ∶= g(X) ⋅ str(g) for str(g) ∈N. The symbols h (horizontal) and v (vertical)
represent axis of connexion. The key point of the encoding is that because of the dots ●
and ○, the tiles cannot connect directly but has to use an intermediary star checking that
the connexion is possible that we need to define.

The environment constellation for a temperature τ ∈N/{0} is defined by Φτ
env ∶=

[+temp(τ)] +

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

+
●
v(g1(X1) ⋅N1,X1, Y1), −

○
v(g2(X3) ⋅N2,X3, Y3),

+
●
h(g3(X5) ⋅N3,X5, Y5), −

○
h(g4(X7) ⋅N4,X7, Y7),

−
○
v(g1(X2) ⋅N1,X2, Y2), +

●
v(g2(X4) ⋅N2,X4, Y4),

−
○
h(g3(X6) ⋅N3,X6, Y6), +

●
h(g4(X8) ⋅N4,X8, Y8),

−add(N1,N2,R1), −add(N3,N4,R2),
−add(R1,R2,R),−geq(R,T,1),−temp(T )

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

+[−●v(g(X) ⋅ 0,X,Y )] + [+○v(g(X) ⋅ 0,X,Y )] + [−
●
h(g(X) ⋅ 0,X,Y )] + [+

○
h(g(X) ⋅ 0,X,Y )]

+[+○v(g(X) ⋅ 0,X,Y )] + [−●v(g(X) ⋅ 0,X,Y )] + [+
○
h(g(X) ⋅ 0,X,Y )] + [−

●
h(g(X) ⋅ 0,X,Y )]

+[+geq(0,0,1)] + [+geq(s(X), s(Y ),R),−geq(X,Y,R)] + [+geq(s(X),0,0)]+
[+geq(0, s(Y ),0)] + [+add(0, Y, Y )] + [−add(X,Y,Z),+add(s(X), Y, s(Z))]

We define the translation of a set of tile types T as the constellation T☀ ∶= ∑ti∈T t
☀
i .

Theorem 3.6 (Simulation of the aTAM). Let T = (T, τ) be a TAS. We have

CSatDiags(T☀ +Φτ
env) ≃ A◻[T ].
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Proof. It is sufficient to show that the computation of CSatDiags(T☀ +Φτ
env) behaves like

the construction of tilings in aTAM.
Direct connexions between tiles without using Φτ

env is forbidden because of the symbols
○ and ●. Notice that the colours v and h force the connexions to be on the same axis in
order to follow the geometric restriction of tiling in a plane. The tiles are designed so that
a plugging increment a coordinate x or y depending on the position/axis of the side. The
purpose of this feature is to simulate a shifting of tile on a plane so that two tiles cannot
connect on two sides at the same time.

Because of the symbols ○ and ●, we have to use the constellation Φτ
env as an intermediate

for the connexion of two tile sides. We consider a tile ti ∈ dom(α). We start with t
☀
i . Assume

ti can be connected to k other tiles in dom(α). They can only be connected through Φτ
env by

their connectable sides. Their glue type and strength for the connected sides have to match
because of the shared variables for opposite sides in Φτ

env. All other unused sides of the
connector star will be plugged by the unary stars used as fillers. By using principles of logic
programming, the diagram can only be correct and saturated if the sum of connected sides
of ti is greater or equal to τ (note that the filled unused sides add 0 to the sum). The stars
sing symbols add and geq are common logic programs, hence their correctness is assumed.

Since all ti ∈ dom(α) satisfy the above property, the two operations have the same
dynamics. Moreover, each tile corresponds exactly to a star and each of its sides corresponds
to a ray and we have a structural isomorphism between tiles and their translation. It follows
that we have a bijection between the set of non-empty finite assemblies constructible from

T at temperature τ and CSatDiags(T☀ +Φτ
env).

3.4. Properties of constellations and their execution. In this section, few results
of the execution are detailed. Firstly, our model is Turing-complete, which is not too
surprising since it is very close to logic programming which is itself known to be Turing-
complete (especially through Horn clauses [61, 107]) but also able to simulate the aTAM
which is also Turing-complete [111, Section 3.2.5][112, Section 2].

Borrowing terminology from rewriting and the λ-calculus, we define the strong normal-
isation which corresponds to termination of the execution and the confluence asserting that
it is possible to focus on a specific set of colours during the execution with no impact on
the result, i.e. order is irrelevant.

Proposition 3.7 (Turing-completeness). The stellar resolution is Turing-complete.

Proof. Consequence of Theorem 3.4. Although we can encode Turing machines, the stellar
resolution is actually “stronger” but for wrong reasons: the ability to compute infinite
normal forms. In particular, it is possible to construct infinite non-uniform families of
boolean circuits which are known to be theoretically able to decide any language but without
concrete implementation of how such families work (for that reason, we usually require
families to be uniform, i.e. that they can be generated by a Turing machine). This is not a
problem since we are usually interested in finite constellations and finite normal forms.

Definition 3.8 (Strong normalisation). A constellation Φ is strongly normalising w.r.t. a
set of colours A ⊆ C if and only if ExA(Φ) is a finite constellation (or equivalently that
CSatDiagsA(Φ) is finite). We write ∣ExA(Φ)∣ < ∞ (or ∣CSatDiagsA(Φ)∣ < ∞) in this case.
When A = C, we simply say that Φ is strongly normalising and omit to write A.
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The shape of D[Φ;A] for a constellation Φ contains a lot of information about ExA(Φ).
By observing the shape of constellations in Section 3, we observe that only cycles make
iteration possible and that several rays α-unifiable with the same single ray are linked to
a non-determinism creating diagrams in parallel. However, duplication of stars can still
occur without cycle nor non-determinism. Since the relationship between the structure
of D[Φ;A] and the computational behaviour of ExA(Φ) is a bit complex, we suggest few
structural classes of constellations and establish theorems which will be useful to reason
with constellations.

Definition 3.9 (Properties of constellation). A constellation Φ is:

● exact if all equations induced by the edges of D[Φ] are of the shape t
?
= t;

● acyclic when D[Φ] is acyclic and otherwise it is cyclic;
● connected when D[Φ] is connected;
● ambivalent if the ray linking graph RLGΦ (cf. Definition 2.16) has ambivalent links which
are links between several vertices v1, ..., vn (with n > 1) and a same vertex v. Otherwise,
it is monovalent. In case it is ambivalent it is called:
– replicating if we can only construct saturated diagram containing v1, ..., vn, meaning

that any duplications of stars remains in the same diagram;
– branching or non-deterministic otherwise, meaning that duplications occur in “parallel

universes”;
● deterministic when it is either monovalent or replicating.

All the definitions can be naturally parametrised with a set of colours A ⊆ C.

Examples 3.10. We illustrate the properties defined above.

● The constellation Φn+m
N

of Example 2.9 is connected, cyclic and non-deterministic. The
middle star handles recursion but the construction of diagrams can either continue or exit
the loop.

● [+a(X),+a(X)] + [−a(X),−a(X),X] is exact, connected, cyclic and ambivalent.
● [X,−c(X)] + [+c(f(Y ))] + [+c(g(Y ))] is acyclic, connected, and non-deterministic. The
ray −c(X) has two independent choices and leads to the formation of two diagrams.

● [+a(l),+a(r)]+[+b(l),+b(r)]+[−a(X),−b(X)] is connected, cyclic and replicating. Two
choices are possible for the negative rays but all the stars can appear in the same diagram
by duplicating [−a(X),−b(X)] and connecting the l (resp. r) together.

● The disjoint union of two above constellations gives a disconnected constellation.

Lemma 3.11 (Termination of acyclic constellations). If a constellation Φ is acyclic w.r.t.
A ⊆ C then ∣CSatDiagsA(Φ)∣ < ∞.

Proof. Assume D[Φ;A] is acyclic and consider a diagram δ ∶ Dδ → D[Φ;A]. It must be
injective on the vertices, i.e. for v, v′ ∈ Dδ if v ≠ v′ then δ(v) ≠ δ(v′), meaning that v and
v′ do not correspond to dupliations of some star in D[Φ;A]. Hence, the vertices of V Dδ

are uniquely taken from V D[Φ;A] and since stars have finitely many rays which must be
uniquely connected, there are finitely many edges. There are only finitely many graphs we
can construct with finitely many vertices and edges and in particular CSatDiagsA(Φ) is
finite.

Lemma 3.12 (Uniqueness). Let Φ be a constellation and A ⊆ C a set of colours. If Φ is
acyclic, connected and deterministic constellations w.r.t. A then ∣SatDiagsA(Φ)∣ = 1 (and
∣ExA(Φ)∣ ≤ 1).
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ExB(Φ)
⇐Ô

Figure 19. Partial execution acts as a partial diagram contraction, which
is only possible when Φ and Φ′ do not act on a same variable. The “blow-up”
obtained by inverting the execution preserves the connexions between rays.

Proof. Since Φ is acyclic, by Lemma 3.11, we have ∣CSatDiagsA(Φ)∣ <∞ and there is no loop
in D[Φ;A] and since it is connected, it has the shape of a tree. Because D[Φ;A] is a tree,
a saturated diagram for a connected constellation must be maximal and include all vertices
and rays of D[Φ;A]. A deterministic constellation is either monovalent or replicating. If it
is monovalent then there is at most one choice of connexion for a ray. By choosing all these
unique connexions we obtain a unique diagram. If it replicating, there is few duplications
of stars but the whole forms a unique diagram as well (it is only finite duplication and
the only way to duplicate because there is no loop). Hence, we have ∣SatDiagsA(Φ)∣ = 1.
Depending on if this diagram obtained in both cases is correct or not there is at most one
correct saturated diagram. Hence ∣CSatDiagsA(Φ)∣ = 1 and ∣Ex(Φ)∣ ≤ 1.

Lemma 3.13 (Exactness). Let Φ be a constellation which is exact w.r.t. a set of colours
A ⊆ C. We have DiagsA(Φ) = CSatDiagsA(Φ).

Proof. Let Φ be an exact constellation. By the definition of diagram (cf. Definition 2.16),

all equations t
?
= u induced by diagrams are renamings of equations induced by the edges e ∈

V D[Φ;A], i.e. they are of the shape αvt
′ ?= αv′u

′ for v, v′ ∈ V Gδ . Assume t′ = u′. For any renam-
ings α1, α2 we have α1t which is α-unifiable with α2t. We remark that solution(P(δ)) must
always be a renaming. This makes δ correct. Hence, we have DiagsA(Φ) ⊆ CSatDiagsA(Φ).
By definition, we also have CSatDiagsA(Φ) ⊆ DiagsA(Φ).

Lemma 3.14 (Independence of connected components). Let Φ be a constellation. If
D[Φ;A] has n connected component corresponding to the subconstellations Φ1, ...,Φn ⊆ Φ,
then ExA(Φ) = ⋃n

i=1 ExA(Φi).

Proof. Each connected component Gi ⊆ D[Φ;A] constitutes a constellation Φi. When we
execute Φ, we form diagrams following the connexions of D[Φ;A]. Since a diagram has to
be connected and that no edge link the Gi inD[Φ;A], we necessarily have CSatDiagsA(Φ) =
CSatDiagsA(Φ1) ∪ ... ∪ CSatDiagsA(Φn), hence ExA(Φ) = ⋃n

i=1 ExA(Φi).

An important result is the possibility of executing only some colours on some constella-
tions first then the others without any effect on the normal form, that is ExA∪B(ExB(Φ) ⊎
Φ′) = ExA∪B(Φ ⊎Φ′) for some set of colours A and B. However, this is not valid in general
as presented in Figure 20. The problem is that stars from two disjoint constellations can
alter a same variable and a partial execution will erase some potential connexions which
were present. This problem is reminiscent of the idea of mutual exclusion in concurrent
programming [33]: the constellations Φ and Φ′ can modify a same variable x but when
executing Φ and accessing x, we may lose an access to x which is still required by Φ′.
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Φ = [X,+c(X)] + [−c(l ⋅X)] [−c(r ⋅X)] = Φ′

Figure 20. Counter-example for partial pre-execution. We have Ex{c}(Φ) =
[l ⋅X] and Ex{c}(Ex{c}(Φ) ⊎Φ′) = [−c(r ⋅X)] + [l ⋅X], but Ex{c}(Φ ⊎Φ′) =
[l ⋅X] + [r ⋅X] which is different. Notice that both [−c(l ⋅X)] and [−c(r ⋅
X)] needs [X,+c(X)] but when executing Φ, Φ′ cannot be connected to it
anymore.

This property of partial pre-execution is necessary in order to obtain a result of con-
fluence and associativity of execution, hence a model of linear logic. We need to design a
precondition for which these properties are valid and from which it is possible to express
logic.

There are several possible choices. A simple choice is to reason on the accessibility
of variables in a dependency graph. We do not want a variable to be accessible from two
different constellations such that one is pre-executed before the other. For instance, in
Figure 20, the variable X of [X,+c(X)] is accessible both from Φ and Φ′.

Definition 3.15 (Shared variables). Variables are written Xi
j where i is an index of star

and j an index of ray within that star. We write accAΦω
(Xi

j ,Φ) for a constellation Φ ⊆ Φω

and a set of colours A ⊆ C when there is an edge path e1, ..., en in D[Φω;A] from some φ ∈ Φ
to Φω[i] such that ℓ(en) = r ⋈ r′ with r′ ∈ Φω[i] and X ∈ vars(r′).

We define the set of variables shared by two constellations Φ1 and Φ2 w.r.t. a set of
colours A ⊆ C as the set Φ1⋒AΦ2 such that we have Xi

j ∈ Φ1⋒AΦ2 when accAΦ1⊎Φ2
(Xi

j ,Φ1)
and accAΦ1⊎Φ2

(Xi
j ,Φ2). We generalise the notation to the set of variables shared by n

constellations with the associative notation Φ1 ⋒A ⋯⋒A Φn ∶= ⋂1≤i,j≤nΦi ⋒A Φj .

Proposition 3.16 (Commutativity and associativity of shared variables). For any constel-
lations Φ1,Φ2 and Φ3 and a set of colours A ⊆ C, we have Φ1⋒AΦ2 = Φ2⋒A Φ1 and if σ is
any permutation on {1,2,3}, we have Φ1 ⋒A Φ2 ⋒A Φ3 = Φσ(1) ⋒A Φσ(2) ⋒A Φσ(3).

Proof. We obviously have X ∈ Φ1⋒AΦ2 if and only if X ∈ Φ2⋒AΦ1 because in both cases, X
is still accessible from both Φ1 and Φ2. The same reasoning holds for the associativity.

Lemma 3.17 (Partial pre-execution). Let Φ and Φ′ be constellations and A,B ⊆ C be sets
of colours such that Φ⋒A∪B Φ′ = ∅. We have ExA∪B(ExB(Φ) ⊎Φ′) = ExA∪B(Φ ⊎Φ′).

Proof. Assume we have a diagram δA∪Bi ∈ CSatDiagsA∪B(ExB(Φ)⊎Φ
′). It is constructed by

connecting the stars φ′j of Φ
′ with stars φBk of ExB(Φ). These stars φBk of ExB(Φ) come from

diagrams δBk ∈ CSatDiagsB(Φ). We can perform a “blow-up“ (cf. Figure 19) on ExB(Φ)
by replacing the stars φBk by their corresponding diagram δBk . In some sense, we reversed
the execution from ExB(Φ) to CSatDiagsB(Φ). This is only possible because we have
Φ⋒A∪B Φ′ = ∅, meaning that the stars of Φ and of Φ′ cannot interfere by acting on a same
variable in a same star. Hence, the execution of Φ makes diagrams in which variables are
independent of the ones of Φ′. Otherwise, some connexions could disappear (as in Figure 20)
and we would not preserve all connexions allowing this inversion of execution. We obtain
diagrams ϕ(δBk ) corresponding to diagrams δBk extended with stars of Φ′ in exactly the same
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way as how φBk can be connected with Φ′. We have ϕ(δBk ) ∈ CSatDiagsA∪B(Φ⊎Φ′) since it
connects stars of both Φ and Φ′.

It remains to show that ϕ is invertible so that we have an isomorphism between
CSatDiagsA∪B(ExB(Φ) ⊎Φ′) and CSatDiagsA∪B(Φ ⊎Φ′). Assume we have

δA∪B ∈ CSatDiagsA∪B(Φ ⊎Φ′).

We would like to define ϕ−1(δA∪B). By the confluence of fusion (which is a consequence of
the correspondence between fusion and actualisation, cf. Theorem 2.25), we can contract
first the stars coming from Φ using colours in B and we obtain a diagram ϕ−1(δA∪B). We
have ϕ−1(δA∪B) ∈ CSatDiagsA∪B(ExB(Φ) ⊎Φ′).

It is obvious that ϕ(ϕ−1(δ)) = δ and ϕ−1(ϕ(δ)) = δ because ϕ is defined from the
diagrams from which the stars of a normal form come from (star expansion), which is
exactly the reverse operation of contracting stars by fusion.

Theorem 3.18 (Confluence). For any constellation Φ, and A,B ⊆ C two disjoint sets of
colours such that Φ⋒A∪B Φ′ = ∅, we have ExB(ExA(Φ)) = ExA∪B(Φ) = ExA(ExB(Φ)).

Proof. By Lemma 3.17 with Φ′ ∶= ∅ (in this case we trivially have Φ⋒A∪B∅ = ∅ which is the
required precondition) we have ExA∪B(ExB(Φ)) = ExA∪B(Φ). Since ExB(Φ) already uses
all colours in B, we have ExA∪B(ExB(Φ)) = ExA(ExB(Φ)), hence ExA(ExB(Φ)) = ExA∪B(Φ).
Since A ∪B = B ∪A, we also have ExA∪B(Φ) = ExB∪A(Φ). By using again Lemma 3.17, we
finally obtain ExB∪A(Φ) = ExB(ExA(Φ)).

Remark 3.19. In Girard’s first paper on Transcendental Syntax [55, Section 2.4], the
constellation Φ = [+a(X),−a(X),+b(X)] is mentioned as a counter-example for the conflu-
ence of Ex (which only considers tree-shaped diagrams). Here, we have Ex{a}(Ex{b}(Φ)) =
Ex{b}(Ex{a}(Φ)) = ∅ (because no saturated diagram on a nor on b can be constructed). Our
understanding of Girard’s failure comes from his limitation to strongly normalising constel-
lations, so that Ex{a}(Φ) was not defined because of the cyclic dependence between +a(X)
and −a(X).

Also remark that Ex is analogous to the computation of all answers we can infer from
a logic program, meaning that all possible paths of computation are considered, hence
naturally leading to confluence.

Before ending our computational journey, let us stress (again) the fact that there are
several differences between the stellar resolution and approaches in logic programming (al-
though identical objects are used). Our approach is indeed a liberalised variant of first-order
resolution but we are not aware of any similar uses of resolution. We suggest some compar-
isons with other approaches in the literature:

Original first-order resolution: It is almost identical. We add unpolarised rays which
cannot be connected (it can still be simulated in resolution by using special unused
predicates). In resolution, we are usually interested in the reachability of the empty
clause ([] in our case) representing a contradiction. In the stellar resolution, it does not
have any meaning and we use objects as query-free logic programs. Usual resolution
is limited to tree derivations (corresponding to tree-like diagrams) whereas stellar
resolution allows cyclic diagrams in order to interpret tiling-based computation. There
are graph-based models [105, 72, 35] which are very similar to stellar resolution but
they are still different for the reasons mentioned above.



30 B. ENG AND T. SEILLER

Horn clauses and logic programming: By logic programming, we mean that we are
interested in answering a query represented by a first-order atom (such as in Prolog
for instance). In order to answer the query, logic programming use a backward reason-
ing by going up from the unique conclusion to the premises. The stellar resolution is
naturally query-free (although queries can be simulated, there is no such distinguished
objects). In particular, we can have several outputs and we do not distinguish be-
tween input and output. For instance, if we have a star representing an implication
A ⇒ B, then we can connect a star to the output and only the input will survive.
This does not make sense in logic programming because a direction output→inputs is
imposed in the inference.

Stable model semantics: There are several languages based on stable model semantics
such as disjunctive logic programming [83, 79] itself based on a subset of Prolog
called Datalog. The notion of stable model is also the basis of answer set program-
ming (ASP) [38, 36]. In these languages, a primitive handling of logical negation is
used whereas we want our model to be purely computational, without any reference
to logic.

4. Emergence of proofs

In order to reconstruct logic, it is natural to start from linear logic [41] which decomposes
both classical and intuitionistic logic. We choose to work with Girard’s representation of
proofs called “proof-nets”13. We begin by defining the fragment of linear logic we work with.
Useful definitions about hypergraphs are recalled in Appendix B.

4.1. Multiplicative proofs. Multiplicative linear logic (MLL) is a fragment of linear logic
[41] restricted to the tensor ⊗ and par ` connectives which are respectively a sort of con-
junction and disjunction. The set FMLL of MLL formulas is defined by the grammar of
Figure 21a. Linear negation (⋅)� is extended to formulas by involution and De Morgan laws:
X��i =Xi, (A⊗B)� = A� ⊗B�, and (A`B)� = A� `B�.

MLL proofs can be written in the traditional sequent calculus fashion by constructing
trees using the set of rules shown in Figure 21b. These rules use sequents ⊢ Γ stating the
provability of a set of formulas Γ ⊆ FMLL. Instead of the MLL sequent calculus, we choose
to work with Girard’s proof-nets, a “parallel” syntax for proofs akin to Gentzen’s natural
deduction which captures the essence of proofs by forgetting the order of rules. In order
to define proof-nets, we first define proof-structures which are purely computational and
structural objects with no logical meaning. They represent skeletons for proofs. In the
same spirit as Girard’s ludics [48], “only location matters” at this point. The idea is that
when considering the structure of proofs, formulas are nothing more than decorative labels
which can be forgotten. In this syntax, we consider directed hypergraphs constructed with
the hyperedges of Figure 21c.

Definition 4.1 (Proof-structure, Figure 22). A proof-structure is defined by a tuple S =
(V,E,in,out, ℓE)where (V,E,in,out) is a directed hypergraph and ℓE ∶ E → {⊗,`,ax, cut}
is a labelling map on hyperedges. A proof-structure is subject to these additional con-
straints:

13Our definitions differ from the usual definitions of the literature but are more convenient for the results
presented in this paper.
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A,B =Xi ∣X�i ∣ A⊗B ∣ A`B i ∈N (FMLL)

(a) MLL Formulas.

ax
⊢ A,A�

⊢ Γ,A ⊢∆,A�
cut

⊢ Γ,∆

⊢ Γ,A ⊢∆,B
⊗

⊢ Γ,∆,A ⊗B

⊢ Γ,A,B
`

⊢ Γ,A`B

(b) MLL sequent calculus rules.

ax

Axiom

cut

Cut

⊗

Tensor

`

Par

(c) Links/constructors of proof-structures as hyperedges.

ax

cut

ax/cut
↝

⊗ `

cut

⊗/`
↝ cut

cut

(d) Cut-elimination reductions. The ax/cut case is a graph contraction and ⊗/` is a rewiring.

Figure 21. Syntax of Multiplicative Linear Logic (MLL).

▷ the hyperedges satisfy the arities and labelling constraints shown in Figure 21c;
▷ each vertex must be the target of exactly one hyperedge, and the source of at most one

hyperedge;
▷ cut hyperedges must connect either:

– the conclusion of a ` hyperedge with the conclusion of a ⊗ hyperedge, or
– two atoms.

Convention 4.2 (Left and right sources). For practical purposes, the sources of hyperedges
are ordered, and we will talk about the “left” and “right” sources since there are never more
than two; illustrations in Figure 21c implicitly represent the left (resp. right) source on the
left (resp. right).

Notation 4.3 (Axioms and cuts). Let S be a proof-structure. We write Ax(S) (resp.
Cuts(S)) the set of axioms (resp. cut) hyperedges in S. Given e ∈ Ax(S) (e ∈ Cuts(S))), we
write

←
e and

→

e the left and right conclusion (resp. sources) of e respectively.

Notation 4.4 (Conclusions and atoms). The conclusions of S are defined by the set
Concl(S) = {v ∈ V ∣ there is no e ∈ E such that v ∈ in(e)}. Similarly, the atoms of S
are defined by the set Atoms(S) = {v ∈ V ∣ ∃e ∈ Ax(S) such that v ∈ out(e)}. They are
conclusions of axiom hyperedges.
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1 2

`

7

3 64 5

⊗

8

cut

ax ax ax

Figure 22. Example of unlabelled proof-structure with vertices in N.

⊢ Γ ⊢∆
mix

⊢ Γ,∆

ax
⊢X1,X

�
1

ax
⊢X2,X

�
2

mix
⊢X�1 ,X

�
2 ,X1,X2

Figure 23. The MIX rule and a of sequent calculus proof of X1 ⊗X2 ⊸
X1 `X2 using the MIX rule.

The hyperedges of Figure 21c are the elementary bricks for proof-structures. Notice
that the ⊗ and ` hyperedge are structurally identical and that their label is irrelevant. As
a first step, we will consider them identical. It is only later, in Section 4.3, that these two
constructions will be distinguished by the logical meaning we associate to them.

The cut-elimination procedure on proof-structures (corresponding to program execu-
tion) is defined as a graph-rewriting system on proof-structures, defined by the two rewriting
rules in Figure 21d.

There exists a remarkable extension of MLL with a rule called MIX (cf. Figure 23),
initially studied by Fleury and Rétoré [37]. This rule corresponds to the axiom scheme
A⊗B ⊸ A`B and constitutes, together with the other rules of MLL, a new proof system
called MLL+MIX. Beside this new rule, MLL+MIX works with the same formulas as MLL.
In particular, all MLL sequent calculus proofs are MLL+MIX sequent calculus proofs as
well.

We now would like to define the underlying proof-structure of an MLL+MIX sequent
calculus proof. In order to do so, we define a labelling of the vertices of proof-structures by
formulas in order to make proof-structures look like actual proofs. By doing so, we already
give a little bit of meaning to the purely computational proof-structures but which is only
superficial for the moment.

Definition 4.5 (Labelled proof-structure). A labelled proof-structure is a tuple

S = (V,E,in,out, ℓV , ℓE)
where (V,E,in,out, ℓE) is a proof-structure and ℓV ∶ V → FMLL is a function labelling
vertices of V by formulas.

We write ⊢ S ∶ Γ for a set of formula Γ ∶= {ℓV (v) ∣ v ∈ Concl(S)} in order to specify the
formulas associated to the conclusions of S.

In Figure 24, we define a translation J⋅K from MLL+MIX sequent calculus derivations
to labelled proof-structures. Notice that this translation is not surjective, and that some
proof-structures do not represent sequent calculus proofs. This is tackled by the correct-
ness criterion, which characterises those proof-structures that do translate sequent calculus
proofs through topological properties and which are considered “correct”. This is discussed
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ax
⊢ A,A� →J⋅K

A A�

ax

π1
...

⊢ Γ,A

π2
...

⊢∆,A�

cut
⊢ Γ,∆

→J⋅K

Jπ1K Jπ2K

Γ ∆A A�

cut

π
...

⊢ Γ,A,B
`

⊢ Γ,A`B

→J⋅K

JπK

ΓA B

`

A`B

π1
...

⊢ Γ,A

π2
...

⊢∆,B
⊗

⊢ Γ,∆,A⊗B

→J⋅K

Jπ1K Jπ2K

Γ ∆A B

⊗

A⊗B

π1
...
⊢ Γ

π2
...
⊢∆

mix
⊢ Γ,∆

→J⋅K
Jπ1K Jπ2K

Γ ∆

Figure 24. Translation of MLL+MIX sequent calculus proofs into labelled
proof-structures.

in Section 4.3 but for the time being, we give a preliminary definition of proof-net, the
proof-structures coming from sequent calculus proofs.

Also notice that the MIX rule corresponds to allowing disjoint union of proof-structures
as being “correct”. Although not “logical” (i.e. not coming from MLL sequent calculus
which decomposes intuitionistic and classical logic), MLL+MIX proofs keep interesting
computational properties which naturally appear in various models of linear logic such as
coherence spaces [41, Chapter 4].

Definition 4.6 (MLL and MLL+MIX proof-nets). An MLL (resp. MLL+MIX) proof-net
is a proof-structure S such that there exists an MLL (resp. MLL+MIX) sequent calculus
proof π such that S = JπK.

In this paper, we show that both MLL and MLL+MIX can be interpreted in the stellar
resolution.

4.2. Simulation of cut-elimination. Early investigations on the cut-elimination [44], sim-
plified with Seiller’s interaction graphs [98], show that cut-elimination can be considered
much simpler than the standard graph rewriting of Figure 21d. The ⊗/` cut-elimination
rule pushes cuts to the top of the proof-structure (axioms) and the ax/cut rule identifies
some atoms by contraction. It shows that we can see a proof-structure as a connexion
between a permutation of atoms representing axioms and a partial permutation on atoms
representing cuts (cf. Figure 25). The cut-elimination procedure is then seen as a com-
putation of maximal alternating paths between the graph of these two permutations or
equivalently as the complete edge contraction of a bipartite graph.

When considering the computational content of proofs, the connectives ⊗ and` are then
irrelevant since no reference to logic exists at this point and that the ⊗/` cut-elimination is
a simple rewiring. For that reason, the simulation of cut-elimination in the stellar resolution
only deals with the translation of axioms and cuts as binary stars with rays representing
the address of atoms. The interpretation is the same for both MLL and MLL+MIX since
they have the same cut-elimination.
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1 2

`

7

3 64 5

⊗

8

cut

ax ax ax

⊗/`
↝

1 2 3 64 5

cut

cut

ax ax ax

⊗/`
↝ 3 2 65

cut

ax ax
⊗/`
↝

3 6

ax

Figure 25. Cut-elimination for the proof-structure of Figure 22 represented
as the juxtaposition of two partial permutations or graphs on atoms as sug-
gested in the GoI.

In order to encode proof-structures, we fix a basis of representation B with variables V =
{X}, colours C = {+c,−c,+t,−t}, function symbols F = {c, t,l,r,g, ⋅, pA , qA} for A ∈ FMLL

such that c, t, pA and qA are unary, ⋅ is binary and the symbols l,r and g are constants. We
define op(+c) = −c, op(+t) = −t, ⌊±c⌋ = c and ⌊±t⌋ = t for ± ∈ {+,−}.

Similarly to unlabelled proof-structures, constellations are purely locative: only the
locations appearing in a proof-structure S are translated, without regard to labels. We
would like to associate a unique address in Terms(B) to the atoms v ∈ Atoms(S) of a proof-
structure S. The address of v will be a term pv′(t) where t is a path encoded as a sequence
of l (left) and r (right) symbols representing the direction to follow in S to get from the
conclusion v′ ∈ Concl(S) to the atom v.

For convenience, we suggest an inductive definition of proof-structures based on their
underlying hypergraph.

Remark 4.7 (Inductive definition of proof-structures). A proof-structure with only one hy-
peredge is necessarily an axiom with two conclusions, written Axu,v. Then a proof-structure
S with n hyperedges is either built from the union of two proof-structures, with respectively
k and n − k hyperedges (written S1 ⊎ S2), or from a proof-structure with n − 1 hyperedges
extended by either a ⊗, `, or cut hyperedge on two of its conclusions u (left) and v (right).
This is written Tensu,v(S ′), Paru,v(S ′) and Cutu,v(S ′).

We use this inductive definition to define the address of atoms in a proof-structure.

Definition 4.8 (Vertex above another one). A vertex v is above another vertex u, written
in a proof-structure if there exists a directed path (cf. Appendix B) from v to u going
through only ⊗ and ` hyperedges.

Definition 4.9 (Address of an atom). We define the path address pAddrS(v,X) to an atom
v in a proof-structure S w.r.t. the variable X inductively (cf. Remark 4.7):

▷ pAddrS(v,X) =X when S = Axv,∗ or S = Ax∗,v;
▷ pAddrS(v,X) = pAddrSi

(v,X) if S = S1 ⊎ S2 and v ∈ V Si ;
▷ pAddrS(v,X) = l ⋅ pAddrS ′(v,X) if S = Par

v,∗(S ′) or S = Tensv,∗(S ′);
▷ pAddrS(v,X) = r⋅pAddrS ′(v,X) if S = Par

∗,v(S ′) or S = Tens∗,v(S ′) and pAddrS(v,X) =
pAddrS ′(v,X) otherwise.
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⋯ ⋯

`

0

r

⋯ 3 ⋯1 2

⊗
l

p0(r ⋅ l ⋅X)

p3(X)

Figure 26. Addressing of the atoms 1 and 3 in a proof-structure relatively
to the conclusion they come from.

The path address to v is uniquely defined w.r.t. to a conclusion c ∈ Concl(S ′) where S ′ is
S without cuts, i.e. ES ′ = ES/Cuts(S) and the rest of S is defined as in S ′.

The address of v is then defined as the term addrS(v,X) ∶= pc(pAddrS(v,X)).

Example 4.10. Figure 26 illustrates the idea of addressing of atoms. The address of the
atom 1 in Figure 22 is p7(l ⋅X) because it is reachable from the conclusion 7 by going to
the left premise and the address of the atom 3 is p3(X) because it is directly reachable.

Definition 4.11 (Set of addresses). We define Addrx(S) as the set of addresses of the
shape addrS( ,X), i.e. the countable set of all terms of the form pc(f1 ⋅ ... ⋅ fn ⋅X) where c
ranges over conclusions of S and fi ∈ {l,r}.

Notation 4.12 (Unary colour). We will often write +c.t instead of +c(t) for rays having a
unary colour as prefix.

Definition 4.13 (Colour change). Let B = (V,C,F,op, ⌊⋅⌋) and B
′ = (V ′,C ′, F ′,op′, ⌊⋅⌋′) be

two signatures. A colour change from B to B′ is a total injective function µ ∶ C → C ′.
A colour change of a constellation Φ is a constellation µ(Φ) over B′ where the function

µ ∶ colours(Φ)→ C ′ is a colour change such that colours(Φ) is the set of colours in Φ and
µ(Φ) is defined by replacing the colours c by µ(c) in Φ.

Definition 4.14 (Colour shift). A colour shift from a signature B = (V,C,F,op, ⌊⋅⌋) to B
′ =

(V ′,C ′, F ′,op′, ⌊⋅⌋′) is a colour change µ from B to B
′ such that ⌊µ(c)⌋ = op(⌊µ(op(c)))⌋).

Proposition 4.15. Let Φ be a constellation, µ a colour shift and A ⊆ C a set of colours.
We have D[Φ;A] ≃D[µ(Φ);A].

Proof. We show that the matchability is preserved. Let r and r′ two dual rays. By induction
on r. If r is a variable, then even if we change the symbols of r′, x is still α-unifiable with r′.
If r is f(r1, ..., rn), then we must have r′ ∶= f(r′1, ..., r

′
n). If f is a colour for which µ is defined

the two f of r and r′ become µ(f) which preserves the α-unifiability. We conclude with
the induction hypothesis for the rays ri and r

′
i. Conversely, if r and r′ are not matchable,

they must be two terms with a mismatch of function symbol between f and g such that
f ≠ g. In this case, since µ is injective and total, we cannot have µ(f) = µ(g). Hence, the
non α-unifiability is preserved as well.

Definition 4.16 (Full colouration of constellation). The full colouration c.Φ of a constel-
lation Φ is defined by a constellation µ(Φ) where µ is a colour shift such that µ(x) = c.
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Definition 4.17 (Translation of the computational content of proof). The vehicle and the
cuts of a proof-structure S are respectively defined by the following constellations:

Φax
S ∶= ∑

e∈Ax(S)

[addrS(
←

e,X)),addrS(
→

e,X)], Φcut
S ∶= ∑

e∈Cut(S)

[p←
e
(X), p→

e
(X)].

We define the computational content of S as the constellation Φ
comp

S ∶= +c.Φax
S ⊎ −c.Φcut

S .

We now show that the execution Ex(Φcomp

S ), which can be understood as an interaction

between +c.Φax
S and −c.Φcut

S , has the same behaviour as the cut-elimination on S. This
shows that cut-elimination for proof-structures can be simulated in the stellar resolution.

Lemma 4.18 (Simulation of cut-elimination). Let R be a proof-structure such that R↝ S.
We have Ex(Φcomp

R ) = Ex(Φcomp

S ).

Proof. For convenience, we will sometimes use the notations of Definition 4.7. By case
analysis on a reducible cut selected in R.

▸ Assume we have an ax/cut cut on two vertices v1 and v2 with v1 conclusions of an axiom
Axv0,v1 and v0 ≠ v2 such that v2 is conclusion of some e ∈ ERΓ (i.e. v2 ∈ out(e)) where RΓ

is the rest of the proof-structure. Then we have an ax/cut cut-elimination which removes
v1 and v2 then updates the targets out(e) of e with out(e) ∶= out(e){v2 ∶= v0} (v2 and v0
now refer to the same location by replacing v2 by v0 in the targets of e). This produces
a new proof-structure S where the only remaining cuts are the ones of RΓ. We have
Φ
comp

R = Φcomp

RΓ
+ [−c.pv1(X),−c.pv2(X)]. By the definition of vehicle (cf. Definition 4.17)

and addresses (cf. Definition 4.9), we necessarily have a star [ϕ(+c.pv0(t)),+c.pv1(X)] ∈
Φax
RΓ

for some t (with a colouring ϕ depending on whether the ray is related to a cut or not

and t =X if v0 is not source of another hyperedge) and [+c.pv2(X), r] ∈ Φax
RΓ

for some ray

r. By fusion, the cut star will merge these two stars and form φ ∶= [ϕ(+c.pv0(t)), r]. We
finally obtain the constellation Φ

comp

Γ +φ. The translation of S coincides with the previous
constellation obtained by fusion because what what connected to v2 (r) by an axiom is
now connected v0 in φ, hence Φ

comp

S = Φ
comp

Γ + φ. It is indeed a relocation of atom. By
partial pre-execution (cf. Lemma 3.17), we can focus on this step of fusion and preserve
the correct diagrams without adding more diagrams because there is only one choice
of connexion (this subgraph of D[Φcomp

R ] corresponds to a deterministic constellation).

Therefore, Ex(Φcomp

R ) = Ex(Φcomp

RΓ
+ [−c.pv1(X),−c.pv2(X)]) = Ex(Φ

comp

Γ + φ) = Ex(Φcomp

S ).
▸ Assume we have a ⊗/` cut between two vertices: v1 conclusion of a ` hyperedge of inputs
←

v1,
→

v1 and v2 conclusion of a ⊗ hyperedge of inputs
←

v2,
→

v2. We call RΓ the rest of the
hypergraph. We have Φ

comp

R = Φcomp

RΓ
+ [−c.pv1(X),−c.pv2(X)]. By the definition of vehicle

(cf. Definition 4.17) and addresses (cf. Definition 4.9), we necessarily have rays of the
shape +c.pv1(l ⋅ t1),+c.pv1(r ⋅ t2),+c.pv2(l ⋅ t3),+c.pv2(r ⋅ t4) for some t1, t2, t3, t4. Since
the lower part of R is organised as a tree, the path address t1 (resp. t2) is designed to
be equal to t3 (resp. t4) when they have the same position relatively to v1 and v2 or only
α-unifiable when one is a subpath of the other. A cut star between the locations v1 and
v2 uses the same variable for its two rays, hence it forces a connexion between two rays
+c.pv1(t) and +c.pv2(u) where t and u are α-unifiable. There is only one possible such
connexion by duplicating the cut and forming one diagram. Hence, the corresponding sub-
graph of D[Φcomp

R ] corresponds to a deterministic constellation. By partial pre-execution
(cf. Lemma 3.17), we can focus on some steps of fusion while preserving correct diagrams.
By fusion and by duplicating the cut star for each pair of rays +c.pv1(t) and +c.pv2(u)
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where t and u are α-unifiable, we can merge stars of the shape [r,+c.pv1(l ⋅ ti)] and
[r′,+c.pv2(l ⋅ ui)] and produce [r, r′] (same idea for r instead of l). This has exactly

the same effect as relocating the atoms
←

v1,
→

v1,
←

v2 and
→

v2 in order to get rays of the shape
+c.p←

v1
(t1),+c.p→v1(t2),+c.p←v2(t3),+c.p→v2(t4) for the previous path addresses t1, t2, t3 and t4

with the cuts [−c.p←
v1
(X),−c.p←

v2
(X)] and [−c.p→

v1
(X),−c.p→

v2
(X)]. This preserves the α-

unifiability between rays and exactly coincides with Φcomp

S which removes the conclusions
v1 and v2, then relocates their sources which become conclusions. Therefore, the trans-
lation of R and S both have the same execution because of their structural equivalence
which has no impact on the normal form.

Theorem 4.19 (Simulation of reduction for proof-nets). For an MLL+MIX proof-net R
of normal form S, we have Ex(Φcomp

R ) = Φax
S .

Proof. This result is a consequence of Lemma 4.18 by induction of the number of cut-
elimination steps from R to S, as well as the fact that Ex(Φcomp

S ) = Ex(Φax
R ) = Φ

ax
R since S

does not contain cuts.

Example 4.20 (Correct cut-elimination). We have the following reduction S ↝∗ S ′ of
proof-structure:

1 2

`

7

3 64 5

⊗

8

cut

ax ax ax

↝∗

3 6

ax

The proof-structure S is translated into Φ
comp

S =

[+c.p7(l ⋅X),+c.p7(r ⋅X)] + [+c.p3(X),+c.p8(l ⋅X)] + [+c.p8(r ⋅X),+c.p6(X)]+
[−c.p7(X),−c.p8(X)].

The ray −c.p7(X) can match either +c.p7(l ⋅X) or +c.p7(r ⋅X) and the same occurs for
−c.p8(X). In order to satisfy these α-unifications, the cut star must be duplicated and each
occurrence of cut must connect rays with the same address, i.e. the path addresses l ⋅X
together and not l ⋅X with r ⋅X. We obtain the following diagram:

ax1 ax2 ax3

cut1 cut2

+c.p3(X) +c.p6(X)

c.p
7 (l ⋅X

1 ) ?= c.p
7 (X

4 )

c.p7(r ⋅X1) ?= c.p7(X5)

c.p
8
(X5
)
?= c
.p8
(r
⋅X

3
)

c.p
8
(X4
)
?= c
.p8
(l
⋅X

2
)

By case analysis, it is easy to check that it is the only possible diagram. Since the
α-unification is exact (cf. Appendix A), it is simply a graph contraction doing no more
than renamings and we get Ex(Φcomp

S ) = [+c.p3(X),+c.p6(X)] = Ex(Φ
comp

S ′ ).

Example 4.21 (Incorrect cut-elimination). We have the following reduction S ↝∗ S ′ of
proof-structure:
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Structure Axioms Test 1 Test 2

1 2

⊗

5

3 4

`

6

ax
ax

1 2 3 4

ax
ax

1 2

⊗

5

3 4

`L

6

1 2

⊗

5

3 4

`R

6

Figure 27. The axioms and tests of a proof-structure. The combination
of axioms and a test corresponds to a correctness hypergraph representing a
testing of the proof-structure.

1 2

`

5

3 4

⊗

6

cut

ax
ax

↝∗ 1 2 3 4

cut

cut

ax
ax

The proof-structure S is translated into Φcomp

S =

[+c.p5(l ⋅X),+c.p6(l ⋅X)] + [+c.p5(r ⋅X),+c.p6(r ⋅X)] + [−c.p5(X),−c.p6(X)]
with the following dependency graph D[Φcomp

S ]:

ax1 ax2

cut1 cut2

−c.p5(X) ⋈ +c.p5(l ⋅X)
+c.p6(l ⋅X) ⋈ −c.p6(X)

−c.p5(X) ⋈ +c.p5(r ⋅X)
+c.p6(r ⋅X) ⋈ −c.p6(X)

The cycles inD[Φcomp

S
] can be unfolded and yield infinitely many saturated correct diagrams,

all actualising into []. We have Ex(Φcomp

S ) = ∑∞i=1[] = Ex(Φ
comp

S ′ ).

4.3. Simulation of logical correctness. Since proof-structures are more general than
proof-nets (cf. Definition 4.6), we have to check which proof-structures are “logically cor-
rect”. The idea of logical correctness traditionally corresponds to the fact of coming from
a sequent calculus proof (cf. Figure 21b), which is taken as the natural understanding of
what “being an actual proof” means.

A beautiful result of Girard, analysed by many subsequent works [26, 25, 75, 86, 31,
90, 13], is that the proof-structures that are proof-nets can be characterised by a topologi-
cal/combinatorial property called a correctness criterion. While Girard’s original criterion,
called the long-trip criterion [41, Section III.2], is about the set of walks in a proof-structure,
we will here work with Danos and Regnier’s simplified criterion [26, Section 3.2] which is
the most standard and which could not be treated by previous GoI models. Similarly to
how a product has to pass several tests in order to be certified, this criterion defines tests
to pass in order to be logically correct.

We define the correctness hypergraphs associated to a proof-structure S as undirected
copies of S with one source of each `-labelled hyperedge removed. They correspond to a
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testing between the upper part made of axioms, the tested (corresponding to the vehicle
in the stellar resolution14), and the lower part which is the test. This decomposition of
a proof-structure into axioms and tests is illustrated in Figure 27. The Danos-Regnier
criterion states that a proof-structure is an MLL proof-net if and only if all its correctness
hypergraphs are all connected and acyclic (cf. Appendix B).

Since the idea of logical correctness is purely structural as well, our definitions still
deals with unlabelled proof-structures.

Notation 4.22. Given a proof-structure S = (V,E,in,out, ℓE), we write `(S) the subset
P ⊆ E of `-labelled edges, i.e. `(S) = {e ∈ E ∣ ℓE(e) = `}.

Definition 4.23 (Correctness hypergraph). Let S = (V,E,in,out, ℓE) be a proof-structure.
A switching is a map ϕ ∶ `(S) → {`L,`R}. Its associated correctness hypergraph is the
undirected hypergraph with labelled hyperedges Sϕ = (V,E,in′,out, ℓ′E) induced by the
switching ϕ which is defined with

● in′(e) = {u} where u is the left premise of e when e ∈ `(S) and ϕ(e) = `L;
● in′(e) = {u} where u is the right premise of e when e ∈ `(S) and ϕ(e) = `R;
● in′(e) = in(e) ∪ out(e) in all other cases.

The labelling ℓ′E is defined by ℓ′E(e) = ϕ(e) when e ∈ `(S) and ℓ
′
E(e) = ℓE(e) otherwise.

If testing proof-structures is seen as certifying products in a factory, the correctness
criterion also gives them a label/certificate: the sequent they prove. This is represented as
the possibility of labelling a proof-structure so that it corresponds to a proof-net. Hence,
a proof-structure can actually correspond to several sequent calculus proofs depending on
the labelling we choose.

Definition 4.24 (MLL-certification and MLL+MIX-certification). A proof-structure S =
(V,E,in,out, ℓE) is MLL-certifiable (resp. MLL+MIX-certifiable) with ⊢ A1, ...,An when
there exists a vertex-labelling function ℓV such that (V,E,in,out, ℓV , ℓE) is an MLL (resp.
MLL+MIX) proof-net.

When there exists ⊢ A1, ...,An such that S is MLL(+MIX)-certifiable with ⊢ A1, ...,An

then we simply say that S is MLL(+MIX)-certifiable.

Theorem 4.25 (MLL+MIX correctness). A proof-structure S is MLL+MIX-certifiable if
and only if Sϕ is acyclic for all switching ϕ.

Proof. Proven in [37, Theorem 4.7 and 4.8].

Theorem 4.26 (Danos-Regnier correctness). A proof-structure S is MLL-certifiable if and
only if it is MLL+MIX-certifiable and Sϕ is connected for all switching ϕ.

Proof. Proven in [26, Theorem 4].

The previous section handled cut-elimination by means of binary stars translating axiom
and cut hyperedges. We now need to translate tests which contain ` and ⊗ hyperedges.
Binary stars are no longer sufficient for a natural and satisfactory treatment of logical
correctness since we now have to deal with a ternary hyperedge15: the tensor link.

14It also gives meaning to Girard’s terminology of vehicle [55] which can be understood from its abstract
definition, e.g. language as the vehicle of thought, or by its concrete definition, e.g. a car in an industry
which is tested in order to be certified.

15As previous GoI models used binary objects (e.g. edge of a graph), ternary hyperedges could not be
encoded.
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φ1 φ2 φ3 φ4

−t.p5(l ⋅X) −t.p5(r ⋅X) −t.p6(l ⋅X) −t.p6(r ⋅X)

φ⊗ φ∅ φ`R

φc1 φc2

p5(X) p6(X)

+
c.p

1 (g
⋅X
)
⋈
−
c.p

1 (g
⋅X
) −

c.
p 2
(g
⋅X
) ⋈
+
c.
p 2
(g
⋅X
)

+
c.p

3 (g
⋅X
)
⋈
−
c.p

3 (g
⋅X
) −

c.
p 4
(g
⋅X
) ⋈

+
c.
p 4
(g
⋅X
)

+c.p5(g ⋅X) ⋈ −c.p5(g ⋅X) +c.p6(g ⋅X) ⋈ −c.p6(g ⋅X)

Figure 28. Dependency graph of the constellation corresponding to Test 2
in Figure 27.

For minor technical reasons, instead of directly translating hyperedges (which would be
more natural), the vertices are translated16.

For our encoding, we use two colours: c (for computation) and t (for testing). A vehicle
will be coloured with the colour c when we want its execution by connecting it with cuts
and and with t when being subject to an interaction against tests.

Definition 4.27 (MLL test). Let S be a proof-structure and ϕ one of its switchings. The

test associated to Sϕ is the constellation defined by Φ
test(ϕ)
S ∶= ∑v∈V S

ϕ v☀. We define the

translation v☀ of a vertex v conclusion of an hyperedge e as follows:

● if ℓE(e) = ax then v☀ = [−addrS(v,X),+c.pv(g ⋅X)];
● if ℓE(e) = `L and out(e) = {u,w} then v☀ = [−c.pu(g ⋅X),+c.pv(g ⋅X)]+ [−c.pw(g ⋅X)];
● if ℓE(e) = `R and out(e) = {u,w} then v☀ = [−c.pu(g ⋅X)]+ [−c.pw(g ⋅X),+c.pv(g ⋅X)];
● if ℓE(e) = ⊗ and out(e) = {u,w} then v☀ = [−c.pu(g ⋅X),−c.pw(g ⋅X),+c.pv(g ⋅X)];
● if v ∈ Concl(S) then v☀ = [−c.pv(g ⋅X), pv(X)];
● for each cut (hyperedge e such that ℓE(e) = cut), we add a star [−c.p←

e
(X),−c.p→

e
(X)].

The technical purpose of the constant g is to make the terms of the tests distinct from
the ones of the vehicle so that the cuts can be applied to both the vehicle and the tests by
simply changing colours (−c.pv(X) matches both +c.pv(X) and +c.pv(g ⋅X)). This allows
more flexibility in the definitions.

Tests for a proof-structure S are actually designed so that D[+t.Φax
S ⊎Φ

test(ϕ)
S ] is struc-

turally equivalent to Sϕ, as illustrated in Figure 28. We make this idea explicit by the
following lemma and show that it leads to a simulation of logical correctness in the stellar
resolution.

Lemma 4.28 (Structural realisation). Let S be a proof-structure and ϕ one of its switchings.

We have D[+t.Φax
S ⊎Φ

test(ϕ)
S ] ≃ Sϕ.

16Although they could have been added without problem, conclusion hyperedge were omitted for con-
venience in Definition 21c. However, since we will need to translate conclusions as rays, a translation of
hyperedge would lack this information.
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1 2

⊗

3

ax [+t.p3(l ⋅X),+t.p3(r ⋅X)]+
[−t.p3(l ⋅X),+c.p1(g ⋅X)]+[+t.p3(r ⋅X),+c.p2(g ⋅X)]
[−c.p1(g ⋅X),−c.p2(g ⋅X),+c.p3(g ⋅X)]+
[−c.p3(g ⋅X), p3(X)]

Figure 29. Incorrect correctness hypergraph for a proof-structure S and
its translation. Notice that the cycle is turned into a computational cycle (a
loop in a program).

Proof. Remark that a test (cf. Definition 4.27) could alternatively be defined by a translation
of hyperedges instead of vertices. Let v be a vertex of Sϕ. It is target of an hyperedge e

with sources in(e) = {u1, ..., uk} with k ≤ 2. We define e☀ ∶= v☀. By case analysis on e

and by Definition 4.27, there is a correspondence between v,u1, ..., uk and rays of e☀. We
write v∗e for the ray corresponding to v in e. The tests are designed so that two hyperedges
e1, e2 ∈ ESϕ

share a vertex v if and only if v∗e1 is α-unifiable with v∗e2 . Notice that they
both correspond to the same formula seen as input or output depending on the e in v∗e .
These two points of view correspond to matchable rays of opposite colours. In conclusion,

D[+t.Φax
S ⊎ Φ

test(ϕ)
S ] preserves the structure of Sϕ as hypergraph and links vertices in the

same way.

A technical corollary is that the translation of correctness hypergraph is deterministic
and exact (cf. Definition 3.9). It ensures that all diagrams are correct but also that if its de-
pendency graph is connected and acyclic, there is no branching leading to non-deterministic
choices for a ray.

Corollary 4.29. Let S be a proof-structure and ϕ one of its switchings. Then +t.Φax
S ⊎

Φ
test(ϕ)
S is deterministic and exact.

Proof. By Lemma 4.28, D[+t.Φax
S ⊎ Φ

test(ϕ)
S ] ≃ Sϕ. The hypergraph Sϕ has vertices which

are uniquely connected, i.e. for each v ∈ V Sϕ

, there is only one e ∈ ESϕ

such that v ∈
in(e) or v ∈ out(e). Therefore, rays are uniquely connected in D[+t.Φax

S ⊎ Φ
test(ϕ)
S ] and

+t.Φax
S ⊎Φ

test(ϕ)
S is deterministic. A simple analysis on Definition 4.27 shows that it is also

exact.

The idea for MLL correctness is that we would like to have Ex(+t.Φax
S ⊎ Φ

test(ϕ)
S ) =

[pv1(X), ..., pvn(X)] with Concl(S) = {v1, ..., vn}, which would imply that S has an arbores-
cent shape. In his original paper [55, Section 2.3], Girard only considers the case of cut-free
proofs by forbidding cyclic diagrams and the empty star. However, it seems that these defi-
nitions lead to a technical mistakes in case of a cyclic correctness hypergraph. We describe
the problem and explain why it does not occur in our case.

We write ExRT for the execution restricted to tree-shaped diagrams (execution used by
Girard) which applies the operator ☇ and ♭. If we consider the incorrect proof-structure S ′

in Example 4.21, we have ExRT(+t.Φax
S ′ ⊎Φ

test(ϕ)
S ′ ) = ∅ making this incorrect proof-structure

invisible in the normal form. Assume we have a correct proof-structure R. By Lemma 3.14,
the union of R and S ′ is translated into a correct constellation although it should not (be-
cause S ′ is incorrect). This is due to the absence of conclusion caused by cuts. However,
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ax φ2 φ⊗ φ1

axφ2φ⊗φ1

φc1

φc2

p3(X9)

p3(X10)

p3(r ⋅X1)
?
= p3(r ⋅X2) p2(g ⋅X2)

?
= p2(g ⋅X3) p1(g ⋅X3)

?
= p1(g ⋅X4)

p3(l ⋅X3)
?
= p3(l ⋅X5)

p2(r ⋅X6)
?
= p2(r ⋅X5)p2(g ⋅X7)

?
= p2(g ⋅X6)p1(g ⋅X8)

?
= p1(g ⋅X7)

p3(l ⋅X9)
?
= p3(l ⋅X8)

p3(g ⋅X7)
?
= p3(g ⋅X10)

p3(g ⋅X9)
?
= p3(g ⋅X3)

Figure 30. Example of a correct and saturated cyclic diagram for the con-
stellation from Figure 29 actualising into [p3(X9), p3(X10)]. The cycle can
extended infinitely many times by adding copies of three stars of the constel-
lation.

even without cuts, the same phenomena can occur. For instance, if we consider the cor-
rectness hypergraph of Figure 29, infinitely many diagrams can be constructed because of
the loop of dependencies but all the corresponding diagrams have free polarised rays. Such

diagrams are erased by the operator ☇. Therefore, ExRT(+t.Φax
S ⊎Φ

test(ϕ)
S ) = ∅.

A solution is to make incorrect proofs visible in the normal form. Our definition of exe-
cution makes this possible. In case of closed cycles, we can construct closed cyclic diagrams
(which are accepted). Since proof-structures are always translated into exact constellations,
such diagrams will always actualise into the empty star. As for cyclic diagrams with free
rays, in the case of proof-structure, they will yield infinitely many stars by unfolding the
loop infinitely many times. This makes incorrectness visible in the output of execution.

This problem is actually not new and already existed in previous GoI models. For
instance, in Seiller’s works, it was necessary to be able to detect cycles. The problem
has been solved with a notion of wager which is a value associated to proofs indicating
the presence of cycles but we were able to simulate this idea by modifying the notion of
execution instead.

We can now state the Danos-Regnier correctness criterion in the stellar resolution.

Proposition 4.30. If a connected multiplicative correctness hypergraph Sϕ has no conclu-
sion then it is cyclic.

Proof. Since Sϕ has no conclusion, all vertices are source of exactly one hyperedge. By the
definition of proof-structure, all vertices are target of exactly one hyperedge. Hence, all
vertices have a degree at least 2. Therefore, by basic properties of cycles in graph theory,
Sϕ must be cyclic.
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Theorem 4.31 (Stellar correctness criterion). A proof-structure S such that Concl(S) =
{v1, ..., vn} is MLL-certifiable if and only if for all switchings ϕ, we have:

Ex(+t.Φax
S ⊎Φ

test(ϕ)
S ) = [pv1(X), ..., pvn(X)].

Proof. Let ϕ be a switching of S. By Lemma 4.28, we know that D[+t.Φax
S ⊎ Φ

test(ϕ)
S ] is

structurally equivalent to Sϕ.

● (⇒) Assume Sϕ is connected and acyclic and so is D[+t.Φax
S ⊎Φ

test(ϕ)
S ]. By Lemma 3.12

and 3.13, D[+t.Φax
S ⊎Φ

test(ϕ)
S ] has a unique correct diagram. We can construct a diagram δ

by following the links of Sϕ. We have that Gδ is a tree containing all conclusions v1, ..., vn.
Hence ⇓ δ is the star [pv1(X), ..., pvn (X)].

● (⇐) Assume that Ex(+t.Φax
S ⊎Φ

test(ϕ)
S ) = [pv1(X), ..., pvn(X)]. Assume by contradiction

that Sϕ has at least two connected components. Assume that a component has no con-
clusion (because of cuts). Then, by Proposition 4.30, there is a cycle yielding infinitely
many closed diagrams normalising into the empty star []. Hence, all connected compo-
nents must have free rays corresponding to conclusion. By the independence of connected
component (cf. Lemma 3.14), we can independently execute each connected component.
Since they correspond to deterministic and exact subconstellation, the normalisation pro-
duces the constellation φ1 + ... + φk for the k connected component, contradicting the
hypothesis that we normalise into a single star. Therefore, Sϕ must be connected. Now,
assume by contradiction that Sϕ is cyclic. The cycle can either yield a closed diagram
actualising into the empty star [] or pass through a conclusion and produce infinitely
many stars containing conclusion rays. In both case, the normalisation is different from
[pv1(X), ..., pvn(X)], contradicting the hypothesis. Therefore, Sϕ must also be acyclic.
This proves that Sϕ must be a tree for any switching ϕ, i.e. S is MLL-certifiable.

The following corollary finally extends the logical correctness to MLL+MIX and suggest
a more general variant which also captures MLL.

Corollary 4.32. Let S be a proof-structure and Φ ∶= +t.Φax
S ⊎Φ

test(ϕ)
S be the constellation

corresponding to the correctness hypergraph Sϕ for some switching ϕ. We have:

● Sϕ is acyclic ⇔ D[Φ] is acyclic ⇔ ∣ExA(Φ)∣ <∞;
● Sϕ is connected and acyclic ⇔ D[Φ] is a deterministic tree ⇔ ∣Ex(Φ)∣ = 1;
● Sϕ is connected and acyclic ⇔ Φ normalises into the star of its uncoloured rays.

Proof. The first equivalence of each point are direct consequences of Lemma 4.28. It only
remains to show the last equivalences.

● IfD[Φ] is acyclic, then by Lemma 3.11, ∣ExA(Φ)∣ <∞ because Φ is exact and deterministic
(cf. Corollary 4.29). Now assume that ∣ExA(Φ)∣ < ∞. The proof of Theorem 4.31 shows
that the presence of cycles in correctness hypergraphs is linked to the generation of
infinitely many correct saturated diagrams. Hence it cannot be both cyclic and strongly
normalising and has to be acyclic.

● We start from the previous point. IfD[Φ] is also connected, then by Lemma 3.12 and 3.13
and the fact that Φ is deterministic and exact (cf. 4.29), there is exactly a unique correct
saturated diagram, hence a single star in the normal form. Conversely, if Φ normalises
into a single star, its dependency graph must be both connected and acyclic, otherwise
we would end up with either several stars (cf. proof of Theorem 4.31) or infinitely many
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correct saturated diagrams (since cycles are related to non-termination as stated in the
previous point).

● The third case corresponds to an alternative characterisation of correct proof-structures.
Assume Sϕ is connected and acyclic. Then D[Φ] is a deterministic tree by the previous
point. By definition, uncoloured rays are the only free rays in Φ. Since Φ is exact, it must
produce a unique diagram corresponding to the cover tree of D[Φ]. By definition, such a
diagram reduces into the star of its free rays, hence the star of its uncoloured rays. Now,
assume Φ normalises into the star of its uncoloured rays. The reasoning is the same as
for the previous point.

The analysis of the computational and logical content of proofs in the Transcendental
Syntax leads to a decomposition of proof-structures and give a new outlook on what being
a “correct” proof means in proof theory.

Definition 4.33 (Translation of a proof-structure). The translation of a proof-structure S
is defined as the constellation S☀ = (Φax

S ⊎ Φcut
S ,Φformat

S ) where Φformat
S is called format17

and is defined by Φformat
S ∶= {Φtest(ϕ)

S ∣ ϕ is a switching of S}.

As shown in Theorem 4.31, S☀ corresponds to a proof-net if and only if it passes all
the tests Φ ∈ Φformat

S . In particular, any proof-structure can be seen as a program (its set
of axioms) already coming with some implicit constraining tests. This corresponds to a
sort of hidden pre-typing. Proof-nets are programs coming with tests it can passes. Hence
tests corresponds to a certification for programs. This demonstrates what Girard means by
“making the hidden assumptions of logic explicit” (cf. Section 1).

Notice that these tests are entirely definable by MLL formulas (and thus, dependent of
them) because only vertices of the lower part of Sϕ are used in the translation of Defini-
tion 4.27. We obtain a more general meaning of the idea of proof: a proof is a computational
entity passing the tests corresponding to a certain notion of formula/specification yet to be
defined.

5. Emergence of formulas

Generalising the correctness criterion of proof-nets actually gives rise to a notion of type
(or formula). We need to fix a symmetric binary relation between constellations formalising
what we mean by “correctly passing a test”. For instance, Corollary 4.32 suggests three
such relations we call ⊥fin, ⊥

1 and ⊥R but others can be designed depending on what we
want. The intention behind orthogonality relations is that they define linear negations for
linear logic.

Definition 5.1 (Orthogonality). We define binary relations of orthogonality between two
constellations Φ1 and Φ2 w.r.t. a set of colours A ⊆ C:

● Φ1 ⊥
fin
A Φ2 when ∣ExA(Φ1 ⊎Φ2)∣ <∞;

● Φ1 ⊥
1
A Φ2 when ∣ExA(Φ1 ⊎Φ2)∣ = 1;

● Φ1 ⊥
R
A Φ2 when Ex(Φ1⊎Φ2) = {Roots(Φ1⊎Φ2)} where Roots(Φ) is the star of uncoloured

rays in Φ.

17Gabarit in Girard’s original papers. We choose the term “format” because it is less awkward in English
and reminds of file formats in a computer.
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The orthogonal of a set of constellations A is defined by A�A ∶= {Φ ∣ ∀Φ′ ∈A,Φ ⊥A Φ′} for
a relation of orthogonality �.

In order to allow typing for partial evaluations, the orthogonality relation �A has to be
parametrised by a set of colours A but we omit this parameter when considering all colours
in C.

The orthogonal A�A corresponds to the set of all constellations passing the tests of
A. But since test and tested are both constellations and that orthogonality relations are
symmetric, they have interchangeable roles, hence A is also the set of constellations passing
the tests of A�.

The orthogonality ⊥fin will define a fully complete model of MLL+MIX, while ⊥1 and ⊥R

(which captures more directly the correctness criterion for MLL) will define a fully complete
model of MLL. However, those notions of orthogonality share most of the properties needed,
and we therefore use the generic notation ⊥ in the following to state results valid for all of
them.

Lemma 5.2 (Invariance of orthogonality under execution). Let Φ and Φ′ be constellations
such that Φ⋒A∪B Φ′ = ∅. We have Φ ⊥ Φ′ if and only if Ex(Φ) ⊥ Φ′ for ⊥∈ {⊥1,⊥fin,⊥R}.

Proof. These relation are satisfied when P (Ex(Φ⊎Φ′)) is satisfied for some property P . By
the lemma of partial pre-execution (cf. Lemma 3.17), we have Ex(Ex(Φ) ⊎Φ′) = Ex(Φ⊎Φ′).
Hence we have P (Ex(Φ⊎Φ′)) if and only if P (Ex(Ex(Φ)⊎Φ′)), meaning that we have Φ ⊥ Φ′

if and only if Ex(Φ) ⊥ Φ′.

5.1. Types as labels certified by tests (l’Usine). In this section, we construct formulas
by generalising the logical correctness of Section 4.3.

Definition 5.3 (Type label). A type is an object (or label) A associated to a finite set of
constellations Tests(A) called its tests. We say that a constellation Φ is of type A w.r.t. ⊥
if and only if Φ ∈ Tests(A)�.

A type corresponds to a specification for a computational entity (typically a program)
certified by an associated set of tests as we do in software engineering or formal methods.
For instance, in model checking [14], given an automata Φ (or labelled transition system),
we would like to know whether it satisfies a specification S (often written as a formula
of a logic called LTL). It is then possible to check if Φ satisfies S by turning ¬S into an
automaton Φ¬S and verifying if L(Φ) ∩L(Φ¬S) = ∅, by analysing paths of the state graph
of the automaton [63, Section 3.6.3]. This is similar to how we turn a sequent ⊢ Γ into a
set of tests (defined as constellations) allowing us to label/certify a constellation as a proof
of A. Moreover, the Danos-Regnier’s tests can also be considered as proofs of A� as we will
see in Observation 6.15.

The purpose of having finite set of tests is to make type checking computable. However,
this is only happens under some conditions such as the orthogonality relation between
computable. Even under these conditions, it is possible to “trick” tests so to create infinite
loops and make effective type checking impossible. It shows that we need to consider testing
w.r.t. a specific class of objects (for instance the universe of proof-structures) so to prevent
such tricks to happen.

Although similar, typing with finite tests is not quite the type checking with typing rules
which appears in typed λ-calculus. Girard’s Usine is meant to check cut-free proofs only,
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whereas it is possible to verify the type of normalisable terms for a sequent ⊢ (λx.M)N ∶

A without actually doing the normalisation. This is because the transcendental syntax
distinguishes between:

● characterising the shape of our logical objects (cut-free proofs), which corresponds to
Usine and to the logical rules of sequent calculus;

● defining the use of our logical objects (interaction with cuts), which corresponds to Usage
and to the cut rule of sequent calculus.

These notions are often mixed in proof theory: in order to even have the right to write an
elimination rule such as modus ponens, we implicitly assume that we are given an object
which has the shape of a proof of implication A⇒ B and that its interaction with any proof
of A will produce a proof of B. In other words, we assume an adequation between Usine and
Usage or that we have primitive objects (defined by finite tests) which will behave soundly
w.r.t. some use (behaving like functions in the case of modus ponens).

The definition of orthogonality and interactive testing leads to a reformulation of correct-
ness criterion, showing that MLL sequents define type labels by themselves, independently
of a proof-structure. This is based on the fact that the bottom part of proof-structure
corresponds to the syntax tree of a sequent which is already a sort of pre-typing con-
straining atomic cut-elimination. By constructing a syntax hypergraph from a sequent,
Definition 4.27 can be used.

Definition 5.4 (Test of a sequent). Let ⊢ Γ be a sequent of MLL where Γ ⊆ FMLL and all
variables are distinct. We define the syntax tree of an MLL formula A inductively:

● ST (Xi) and ST (X�
i ) are vertex labelled by Xi and X

�
i respectively;

● ST (A⊗B) is an hyperedge labelled by ⊗ linking the conclusion of ST (A) and ST (B) as
sources and having a vertex labelled by A⊗B as target;

● ST (A`B) is an hyperedge labelled by ` linking the conclusion of ST (A) and ST (B)
as sources and having a vertex labelled by A`B as target.

The syntax hypergraph ST (⊢ Γ) of ⊢ Γ is defined as the hypergraph disjoint union of all
ST (Ai) for Ai ∈ Γ. A switching (cf. Definition 4.23) ϕ still applies on ST (⊢ Γ) as for
correction hypergraphs. We write ST (⊢ Γ)ϕ for the switching ϕ applied on the syntax
hypergraph ST (⊢ Γ).

The test associated to the sequent ⊢ Γ and the switching ϕ is defined as the constellation
Test(⊢ Γ)ϕ such that ITest(⊢Γ)ϕ ∶= V ST (⊢Γ)ϕ (it is indexed by vertices of the syntax tree)

and Test(⊢ Γ)ϕ[v] ∶= v☀ where ℓ(v) is not an atomic formula and v☀ is the translation
of Definition 4.27. Notice that we reject the translation of atomic formulas because they
depend upon a proof-structure S. This dependency is actually not necessary.

The set of tests associated to the sequent ⊢ Γ is defined by Tests(⊢ Γ) ∶= {Test(⊢ Γ)ϕ ∣
ϕ is a switching of ST (⊢ Γ)}.

We now defined MLL sequents as type labels in the sense of Definition 5.3. However,
there is a minor technical problem: arbitrary constellations may not match with the tests
we defined because of a difference of function symbols, as illustrated in Figure 31. One
solution is to extended the notion of colour shifts of Definition 4.14 to change rays in order
to force the α-unification

Definition 5.5 (Conjugation). A conjugation µ ∶ IdRays(S) → IdRays(S′) between two
signatures S and S

′ is a function replacing the rays of a constellation such that it preserves
its structure, i.e. D[µ(Φ)] ≃D[Φ].
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1 2 3 4

ax
ax

X1 X2

⊗

X1 ⊗X2

X�
1 X�

2

`R

X�
1 `X�

2

Figure 31. We expect this proof-structure to be able to pass any test of
Tests(⊢ X1 ⊗X2,X

�
1 `X�

2 ). However, since the function symbols used in
tests are not compatible with the ones of the proof-structure, we need a
conversion of function symbols to allow interaction.

Another solution is to use a computational realisation of conjugations by using stars
[−t,+u] where +t is a ray of the vehicle and −u is a ray of a test. This corresponds to a sort
of generalised cut allowing a trivial connexion between two rays. We give a more general
definition of that idea.

Definition 5.6 (Adapter). Let Φ be a constellation. An adapter for Φ is a star [t, u] where
t′ and u′ are rays in Φ which are respectively t and u with opposite polarity.

Conjugations induce adapters. Whenever we have a conjugation µ such that µ(r1) = r2,
we can construct an adapter [r′1, r

′
2] where r

′
i has a polarity opposite to ri. We use adapters

and conjugations indistinctly in this paper.
Notice that the translation of atomic formulas in Definition 5.4 actually corresponds to

adapters between a vehicle and a test, hence tests are indeed independent of vehicles. This
dependency is only artificial and appears when considering proof-structures as an entity
which cannot be decomposed.

Proposition 5.7 (Correspondence between proof-structure tests and sequent tests). Let S
be a cut-free proof-structure. For all switching ϕ of S, there exists an MLL sequent ⊢ Γ and

a constellation of adapters Φ such that Ex(Φtest(ϕ)
S ) = Ex(Test(⊢ Γ)ϕ ⊎Φ).

Proof. The constellation Φ
test(ϕ)
S corresponds to the syntax tree of a formula with exactly

one premise cut for each ` vertex. Hence, it naturally induces a sequent ⊢ ∆ and we

defined Γ ∶= ∆. The constellation Test(⊢ Γ)ϕ structurally corresponds to Φ
test(ϕ)
S without

the upper rays of colour −t which allows connexion with the right vehicle. Apart from that,

they both use the same translation function (⋅)☀ on vertices for correctness hypergraphs.
Assume we have a star for atom [−t.pv(t),+c.qw(x)] related to some star [−c.qw(x), ...] in
Test(⊢ Γ)ϕ. During the execution, they will merge into [−t.pv(t), ...]. However, it is possible
to construct Φ so to reproduce this step with an adapter [−t.pv(t),+c.qA(x)] (by definition,

the star [−c.qA(x), ...] which is isomorphic to [−c.qw(x), ...] must be present in Φ
test(ϕ)
S ).

Moreover, because of the structural equivalence between the two constellations, they only
differ by conjugation. It is then possible to extend Φ so that Test(⊢ Γ)ϕ is turned exactly

into Φ
test(ϕ)
S . It follows that the two constellations must have the same normal form.

Definition 5.8 (Typing). We say that a constellation Φ is of type ⊢ Γ, written ⊢ Φ ∶ Γ

when Φ ∈ (Φtest(ϕ)
⊢Γ

⊎Φµ)� for a set of adapters Φµ and all switchings ϕ of ⊢ Γ.

Proposition 5.9 (Reformulation of logical correctness). A cut-free proof-structure S is
MLL-certifiable if and only if there exists a sequent ⊢ Γ and a constellation of adapters Φ
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such that ⊢ +t.Φax
S ∶ Γ with � ∈ {�1,�R}. The same statement holds for MLL+MIX w.r.t.

⊥fin.

Proof. By Proposition 5.7, there exist some sequent ⊢ Γ such that Φ
test(ϕ)
S is simulated by

Φ ⊎ Test(⊢ Γ)ϕ for some constellation of adapters Φ. By invariance of orthogonality under
execution (cf. Lemma 5.2), this connexion is equivalent to a connexion between +t.Φax

S and

Φ
test(ϕ)
S . The orthogonality +t.Φax

S ∈ Tests(⊢ Γ)� and the same statement for MLL+MIX

(w.r.t. ⊥fin) both hold by a direct consequence of Corollary 4.32.

Now that we have finite tests able to certify computational entities, what remains is
to be able to express the real use of these objects (defined by the set of their potential
partners in interaction), which is usually infinite. Girard’s Usine is then only an effective
approximation of this ideal use.

5.2. Interactive typing (l’Usage). By using an idea of interactive typing which was
already present in ludics [48] and in the Geometry of Interaction [50, 98], it is possible to
define “semantic-free formulas”. Such formulas are defined as set of constellations, not from
a given semantics but from how the constellations interact with each other. We need two
ingredients: a notion of interaction (the execution of constellations) and a symmetric and
binary orthogonality relation which opposes constellations. This relation represents a point
of view on interaction and formalises what it means to “interact correctly”.

This actually extends the previous idea of type but instead of arbitrary tests, a constel-
lation is given a meaning by all its possible interaction with other constellations, relatively
to a specific point of view. Since these potential opponents still define the meaning of a
constellation, we keep the term of “test” (although effective testing is no more possible in
general because a set of tests can be infinite).

The constellations are grouped into arbitrary sets called pre-behaviours, giving rise a
notion of formula corresponding to a computational version of phase semantics [41, Section
II.5].

Definition 5.10 (Pre-behaviour). A pre-behaviour A is a set of constellations.

We now define the notion of behaviour which corresponds to the formulas/types appear-
ing in linear logic. They represent idealised logical notions that we can only approximate if
we wish for an effective type checking.

Definition 5.11 (Behaviour). A pre-behaviour A is a behaviour when there exists a pre-
behaviour B such that A =B�.

More intuitively, a behaviour is a group of computational objects which is entirely
characterised by a (potentially infinite) set of tests: a pre-behaviour A is a behaviour when
there exists a set of tests (constellations) B such that A is exactly the set of constellations
passing all the tests of B. In other words, A is a behaviour if and only if it is testable.

Lemma 5.12 (Invariance of typing under execution). Let Φ be a constellation and A a
behaviour. We have Φ ∈A if and only if Ex(Φ) ∈A.

Proof. If A is a behaviour then A = A��, meaning that A is characterised by some tests
A�. Hence we have to show that Φ ⊥ Φ′ for any Φ′ ∈A� if and only if Ex(Φ) ⊥ Φ′. This is
the consequence of the invariance of orthogonality under execution (cf. Lemma 5.2).
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There is an alternative (more standard) definition of behaviours which is called bi-
orthogonal closure. It states a sort of balance between tests and tested. This is actually
something very important we require in linear logic and which is not true in intuitionistic
logic18: the linear negation is involutive.

Proposition 5.13 (Bi-orthogonal closure). A pre-behaviour A is a behaviour if and only
if A =A��.

Proof. The proof can be found in the literature [67, Proposition 15].

In order to define the tensor of two behaviours (corresponding to an interactive version
of the usual tensor type label), we have to exclude any interaction between them because
we want the tensor to connect two independent proof-structures. Definition 3.15 of set of
variables shared by two constellations makes this possible.

Definition 5.14 (Disjointness of behaviours). Let A and B be two behaviours and a set of
colours C ′ ⊆ C. They are disjoint when for all ΦA ∈A and ΦB ∈B, we have ΦA⋒C′ ΦB = ∅.

When two behaviours A and B are disjoint, for any pair of constellations ΦA ∈A and
ΦB ∈ B, there is no path from one constellation to the other in D[ΦA ⊎ΦB]: for instance, if
we had a path from Φ1 to a variable X in Φ2, this variable is still accessible from Φ2, hence
X is shared by the two constellations.

Definition 5.15 (Pre-tensor). Let A and B be disjoint pre-behaviours. We define their
pre-tensor by A⊙B = {Φ1 ⊎Φ2 ∣ Φ1 ∈A,Φ2 ∈B}.

Definition 5.16 (Tensor). Let A and B be disjoint behaviours. We define their tensor by

A⊗B = (A⊙B)��.

The pre-tensor is the natural definition of the tensor product pairing constellations of
two pre-behaviours. The real tensor product adds a bi-orthogonal closure (⋅)�� in order to
ensure that we get a behaviour (it is not necessarily the case without the closure, depending
on the orthogonality we consider). It is indeed a generalisation of the usual tensor because
depending on the orthogonality relation, its orthogonal can contain way more than what
we expect from proof-structures because of the huge space of objects provided by stellar
resolution. In case A⊙B =A⊗B, we have what we call an internal completeness property.

Proposition 5.17 (Commutativity and associativity of tensor). Given A,B,C pairwise
disjoint behaviours, we have (1) A⊗B =B⊗A and (2) A⊗ (B⊗C) = (A⊗B) ⊗C.

Proof. (1) By the definition of tensor, we have Φ1⊎Φ2 ∈A⊗B when Φ1⊎Φ2 ∈ {Φ1⊎Φ2 ∣ Φ1 ∈
A,Φ2 ∈ B}��. We also have Φ2 ⊎Φ1 ∈ B⊗A. But since Φ1 ⊎Φ2 = Φ2 ⊎Φ1 by commutativity
of multiset disjoint union, we obtain A⊗B =B⊗A. (2) In the same fashion, by using the
associativity of multiset disjoint union, we obtain A⊗ (B⊗C) = (A⊗B)⊗C.

The other connectives are then defined by interactive testing, e.g. the elements of A`B
are the elements passing the tests of A� ⊗B�. This is why we can speak about interactive
types as we did in the introduction of this paper.

Definition 5.18 (Par and linear implication). Let A,B be disjoint behaviours. We define:

A`B = (A� ⊗B�)� and A⊸B =A�
`B.

18In intuitionistic logic, we do not have ¬¬A = A for any formula A.
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Φ1 = [X,+c(X)]
[−c(l ⋅X)] = Φ2

[−c(r ⋅X)] = Φ3

Figure 32. Counter-example of non-associativity. We have Ex{c}(Φ1⊎Φ2) =
[l ⋅X] and Ex{c}(Ex{c}(Φ1 ⊎Φ2)⊎Φ3) = [−c(r ⋅X)]+ [l ⋅X], but Ex{c}(Φ1 ⊎

Ex{c}(Φ2 ⊎Φ3)) = [−c(l ⋅X)] + [r ⋅X] which is different.

Remark 5.19 (Implicit exchange). The commutativity and associativity of ⊗ are preserved
for the `. For instance A`B = (A� ⊗B�)� = (B� ⊗A�)� = B`A. This corresponds to
the fact that the exchange rule is implicit in usual linear logic.

In Figure 32, we show that associativity fails when execution is treated as a binary
operator on constellations. However, this property is fundamental when speaking about
(categorical [82, 94]) models of linear logic. We need a restriction on the interaction between
constellations as in Seiller’s works [98, Proposition 12][99, Theorem 24] where the same
problem exists.

A technical precondition is defined for the associativity, and trefoil property [99, The-
orem 40] is stated as a corollary. In particular, the trefoil property ensures that one can
define a ∗-autonomous category, which characterises denotational models of MLL [96].

Theorem 5.20 (Associativity of execution). Choose a set of colours A ⊆ C. For constella-
tions Φ1,Φ2 and Φ3 such that Φ1 ⋒A Φ2 ⋒A Φ3 = ∅, we have:

ExA(Φ1 ⊎ ExA(Φ2 ⊎Φ3)) = ExA(ExA(Φ1 ⊎Φ2) ⊎Φ3).

Proof. Assume we have Φ1 ⋒A Φ2 ⋒A Φ3 = ∅. Hence, by definition, no variable is shared by
the three constellations. Let P (xij) with x

i
j a variable using the notations of Definition 3.15,

be the set of paths reaching xij in D[Φ1 ⊎ Φ2 ⊎ Φ3;A]. By the previous statement, these

paths traverse at most two constellations in {Φ1,Φ2,Φ3}. By using the reasoning of the
proof of partial pre-execution (cf. Lemma 3.17), the paths P (xij) traversing Φ2 and Φ3 can

be reduced with no effect on other connexions (since no variables are shared). Hence, the
stars of Φ1 can connect to the stars of ExA(Φ2 ⊎ Φ3) in the same way as in Φ2 ⊎ Φ3. It
follows that ExA(Φ1 ⊎ ExA(Φ2 ⊎Φ3)) = ExA(Φ1 ⊎Φ2 ⊎Φ3). By the same reasoning, we also
have ExA(ExA(Φ1 ⊎Φ2) ⊎Φ3) = ExA(Φ1 ⊎Φ2 ⊎Φ3), hence execution is associative.

Theorem 5.21 (Trefoil Property for execution-based orthogonality). Choose a set of colours
A ⊆ C. For constellations Φ1,Φ2,Φ3 and for i, j, k ∈ {1,2,3} such that Φ1 ⋒A Φ2 ⋒A Φ3 = ∅,
we have:

Φ1 ⊥A ExA(Φ2 ⊎Φ3) if and only if ExA(Φ1 ⊎Φ2) ⊥A Φ3.

Proof. Assume that P is a property corresponding to the orthogonality relation � based
on execution, i.e. we have Φ1 ⊥A Φ2 if and only if P (Ex(Φ1 ⊎Φ2)). The statement can be
rewritten as follows: P (ExA(Φ1 ⊎ExA(Φ2 ⊎Φ3))) if and only if P (ExA(ExA(Φ1 ⊎Φ2)⊎Φ3)).
This is a direct consequence of the associativity (cf. Theorem 5.20).

The trefoil property leads to the adjunction19 which has been stated in previous models
of GoI [50, Theorem 3] or in ludics.

19Corresponding to the categorical adjunction in cartesian closed categories.
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⊢

⊢ 1

⊢ Γ

⊢ Γ,�

1

One

�

Bottom

Figure 33. Rules for the units of MLL. Two hyperedges with no input and
a single output are added in the construction of proof-structures.

Corollary 5.22 (Adjunction). Choose a set of colours A ⊆ C. For all constellations Φf ,
Φa and Φb such that Φa ⋒A Φb = ∅, we have:

Φf ⊥A Φa ⊎Φb if and only if ExA(Φf ⊎Φa) ⊥A Φb.

Proof. By symmetry of orthogonality relations and invariance of orthogonality under exe-
cution (cf. Lemma 5.2), we have Φf ⊥A Φa ⊎Φb if and only if Φf ⊥A ExA(Φa ⊎Φb). In order
to conclude with the trefoil property, it remains to show the precondition, i.e. that we have
Φf ⋒A Φa ⋒A Φb = ∅. We assumed Φa ⋒A Φb = ∅, meaning that no variable were shared by
both Φa and Φb. It follows that a variable cannot be shared by Φf ,Φa and Φb at the same
time because otherwise, it would be shared by Φa and Φb as well.

Thanks to the adjunction, it is possible to define a more intuitive linear implication
seeing a constellation Φf as a function interacting with a constellation Φa as argument.

Proposition 5.23 (Alternative linear implication). Let A,B be two disjoint behaviours.
We have A⊸B = {Φf ∣ ∀ Φa ∈A,Φf�Φa and Ex(Φf ⊎Φa) ∈ B}.

Proof. By Definition 5.18, we have A⊸ B = (A⊗B�)�. We have Φf ∈A⊸ B if and only
if for all Φa ∈ A, Φf�Φa and Ex(Φf ⊎ Φa) ∈ B. Since B is a behaviour, by Definition 5.11,
there exists Φb′ ∈ B

� such that Ex(Φf ⊎ Φa)�Φb′ . By the adjunction (cf. Corollary 5.22),
Φf�(Φa ⊎ Φb′), hence Φf ∈ (A ⊗B�)�. The proof only relies on equivalences hence a bi-
inclusion is proved.

5.3. The case of multiplicative units. In this paper, we only mentioned MLL without
units but linear logic is often presented with two formulas 1 and � corresponding to neutral
elements for the ⊗ and ` connectives respectively. New rules and links for MLL units are
presented in Figure 33.

Now, we look for behaviours corresponding to neutral elements for ⊗ and ` respectively.
It is possible to define a pre-behaviour ‚ called a pole [85, Definition 3.5] such that Φ ⊥ Φ′

if and only if Ex(Φ ⊎Φ′) ∈‚ for an execution-based orthogonality ⊥ and ‚ must be closed
under anti-evaluation, i.e. if Φ ∈‚ and Ex(Φ′) = Φ, then Φ′ ∈‚. For instance, if we consider
⊥R, then ‚ is the set of all constellations normalising into a single uncoloured star. The
pole will be useful for a definition of neutral elements.

A natural choice of behaviour for the neutral element of ⊗ w.r.t. ⊥R is the pre-behaviour
{∅} only containing the empty constellation since Φ⊎∅ = Φ for any constellation Φ. Fortu-
nately, it is a behaviour.

Proposition 5.24. The pre-behaviour {∅} is a behaviour.



52 B. ENG AND T. SEILLER

Proof. A constellation of {∅}� must self-normalise into the set of its roots since ∅ has
not effect when in interaction with another constellation. We have {∅}� =‚. Now, a
constellation Φ ∈‚� is a constellation such that when it interacts with a constellation
Φ′ ∈‚�, we have Ex(Φ ⊎Φ′) ∈‚. We can theoretically imagine that Φ has rays linked to Φ
but this is impossible because Φ′ is self-normalising into an element of ‚ by constructing
a saturated diagram which cannot be extended and which must be present in the normal
form. Actually, Φ must be the empty constellation because otherwise we would get more
than the star of roots. Therefore, ‚�= {∅}�� = {∅}.

Definition 5.25 (One). We define the behaviour 1 ∶= {∅} =‚�.

Proposition 5.26. We have A⊗ 1 =A for any behaviour A.

Proof. By definition, we have A⊗1 = {ΦA⊎∅ ∣ ΦA ∈A}�� = {ΦA ∣ ΦA ∈A}�� =A�� =A.

As for bottom, as usual in linear logic, we define it as 1� =‚.

Proposition 5.27. The pre-behaviour 1� = {∅}� =‚ is a behaviour.

Proof. Since it is known that A� = A��� for any behaviour A [67, Corollary 9], it follows
that 1� (and thus {∅}�) is a behaviour.

Definition 5.28 (Bottom). We define the behaviour ‹ ∶= 1�.

Proposition 5.29. We have A`‹ =A for any behaviour A when considering ⊥R.

Proof. We have A`‹ = (A� ⊗‹
�)� = (A� ⊗ {∅}��)� = (A� ⊗ {∅})� =A�� =A (since A is

a behaviour).

Proposition 5.30. We have A� =A⊸ ‹ for any behaviour A when considering ⊥R.

Proof. We have A ⊸ ‹ = A�
` ‹. Since ‹ is a neutral element for `, it follows that

A�
`‹ =A�.

We defined interactive types for units which correspond to idealised neutral elements
(Girard’s Usage). Now, considering a constellation Φ in the wild, are we able to effectively
tell whether it is in 1 (respectively ‹) or not ? (Girard’s Usine).

We consider ⊥R. In order to tell if Φ ∈ ‹, we can use the fact that ‹ = {∅}�. Hence, it
is sufficient to consider the set of tests {∅}. When testing Φ against the empty constellation
∅, if we have Φ ⊥ ∅ then Φ ∈ ‹. As for 1, we just need to be able to tell if Φ = ∅. This can
be done with any constellation of 1� = ‹.

This provides a notion of correct constellations for multiplicative units. However, al-
though they fulfil their role as constellations having the behaviour of neutral elements for
multiplicative connectives, it is not quite the real thing as they do not exactly correspond
to the units of proof-nets. In particular, if we look at the rule for �, the constant � is intro-
duced in a given context Γ to which it is dependent. Hence, it will either be disconnected
when considering a switching in a correct proof-structure. This breaks the connectedness
condition of the Danos-Regnier correctness criterion. The usual hack is usually to consider
links (called “jumps” [47, Section A.2]) between � nodes and either axioms or 1 nodes to
represent the dependency between � and its context. Girard’s idea [56, Section 2.1.1] is to
encode multiplicative units in second order linear logic because of this non-local dependency
but we do not discuss it in this paper.
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6. Conservativity and Adequacy

In this section, we propose two links:

● a proof of conservativity w.r.t. the original model of proof-nets for ⊥fin in order to capture
MLL+MIX provability and for both ⊥R and ⊥1 in order to capture MLL provability. For
that purpose, we state soundness and completeness theorems;

● a link between Usine and Usage (called adequacy by Girard) showing that the correctness
criterion is sufficient to guarantee a sound use of proofs (interaction by cuts).

We interpret formula labels by behaviours where distinct behaviours are associated to
occurrences of variables by a function called basis of interpretation. Following previous
works of Seiller [98, Definition 46], the behaviours corresponding to formula labels are lo-
calised formulas: they are defined using the same grammar as MLL formulas, except that
variables are of the form Xi(t), where t is a term (here representing the path address
described in Definition 4.9) used to distinguish occurrences of atomic formulas. Two be-
haviours Xi(t) and Xi(u) with t ≠ u represent the same atom at different locations and
should correspond to the same behaviour modulo conjugation.

Definition 6.1. A basis of interpretation is a function Ω producing a behaviour Ω(A, i, t)
when given a formula A ∈ FMLL, a natural number i (index of occurrence) and a term
t ∈ Addrx(S) (cf. Definition 4.9). A basis of interpretation has to satisfy the condition
that Ω(A, i, t) + [+t.pA(t),+t.pB(u)] = Ω(B, j,u) when i = j and otherwise Ω(A, i, t) and
Ω(B, j,u) are disjoint, such that A + φ = {Φ + φ ∣ Φ ∈A} for a behaviour A and a star φ.

Definition 6.2 (Interpretation of MLL formulas). Given a basis of interpretation Ω, a
formula C representing the conclusion of a sequent, and an MLL formula occurrence A
identified by a unique unary function symbol pA(x) (cf. Definition 4.9). We define the
interpretation JA, tKΩ along Ω and a term t (encoding the address of A w.r.t. a conclusion
C) inductively:

● JC,Xi, tKΩ = Ω(C, i, t);
● JC,X�

i , tKΩ = Ω(C, i, t)
�;

● JC,A⊗B, tKΩ = JC,A,l ⋅ tKΩ ⊗ JC,B,r ⋅ tKΩ;
● JC,A`B, tKΩ = JC,A,l ⋅ tKΩ ` JC,B,r ⋅ tKΩ.

We write JCK for JC,C,XK and extend the interpretation to sequents with J⊢ C1, ...,CnKΩ ∶=
JC1KΩ ` ...` JCnKΩ.

Remark 6.3. The interpretation of an axiom under an basis of interpretation Ω is defined
by J⊢X1,X

�
1 KΩ = JX1KΩ ` JX�

1 K = Ω(X1,1,X)`Ω(X�
1 ,1,X)

� .

6.1. A complete model of MLL+MIX. We prove soundness and completeness for
MLL+MIX. Theorem 4.31 shows that asking for a strongly normalising union between
vehicle and test corresponds to MLL+MIX correctness. This is the key ingredient in the
proof of completeness. In this section, we consider the orthogonality ⊥fin exclusively.

Instead of the usual soundness property, we prove an extension called full soundness
[98, Theorem 55] which takes cut-elimination into account. In terms of the adequacy used
in realisability interpretations, proving the soundness property corresponds to showing that
Φ ∶ Γ implies J⊢ ΓKΩ for some basis of interpretation Ω, except that for Φ ∶ Γ we only consider
constellations coming from proof-nets.
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Lemma 6.4. Let A,B be MLL formulas, Γ = C1, ...,Cn,∆ = D1, ...,Dm be sets of MLL
formulas and Ω be a basis of interpretation. We have (J⊢ ΓKΩ` JAKΩ)⊗ (J⊢∆KΩ` JBKΩ) ⊆
J⊢ ΓKΩ ` J⊢∆KΩ ` JA⊗BKΩ.

Proof. The idea is to show (JC�
1 ⊗ ...⊗C

�
nKΩ⊸ JAKΩ)⊗ (JD�

1 ⊗ ...⊗D
�
mKΩ⊸ JBKΩ) ⊆ (JC�

1 ⊗

...⊗C�
nKΩ⊗ JD�

1 ⊗ ...⊗D
�
mKΩ)⊸ JA⊗BKΩ which is equivalent to (JCKΩ⊸ JAKΩ)⊗ (JDKΩ ⊸

JBKΩ) ⊆ (JCKΩ ⊗ JDKΩ)⊸ JA⊗BKΩ for C ∶= C�
1 ⊗ ...⊗C

�
n and D ∶=D�

1 ⊗ ...⊗D
�
m. Assume

we have two functions ΦC,A ∈ JCKΩ ⊸ JAKΩ and ΦD,B ∈ JDKΩ ⊸ JBKΩ. We can construct
their disjoint union ΦC,A ⊎ ΦD,B ∈ (JCKΩ ⊸ JAKΩ) ⊗ (JDKΩ ⊸ JBKΩ). If we provide to
ΦC,A ⊎ΦD,B an argument Φ ∈ JCKΩ ⊗ JDKΩ, then since C and D are disjoint, each function
ΦC,A and ΦD,B will take their argument separately and produce Φ′ ∈ JA⊗BKΩ. Therefore,
ΦC,A ⊎ΦD,B ∈ (JCKΩ ⊗ JDKΩ)⊸ JA⊗BKΩ.

Lemma 6.5. If A is a pre-behaviour then A� ≠ ∅.

Proof. Any constellation with only uncoloured rays strongly normalise with any constella-
tion so it is always part of the orthogonal of a pre-behaviour.

Lemma 6.6. If A is a behaviour and Φ ∈A then ∣Ex(Φ)∣ <∞.

Proof. By definition of behaviour, we have A = A��. By Lemma 6.5 there must be some
Φ′ ∈ A� such that Φ ⊎ Φ′ is strongly normalising. Assume Φ is not strongly normalising.
Then, Φ can produce infinitely many saturated correct diagrams. Such diagrams cannot
be extended with stars of Φ′, hence these infinitely many saturated diagrams are preserved
and Φ ⊎ Φ′ cannot be strongly normalising, which is contradictory. Therefore, Φ must be
strongly normalising.

Theorem 6.7 (Full soundness for MLL+MIX). Let ⊢ S ∶ Γ be an MLL+MIX proof-net and
Ω a basis of interpretation. We have Ex(Φax

S ⊎Φcut
S ) ∈ J⊢ ΓKΩ.

Proof. We start with the case of cut-free proofs normalising into themselves. The proof is
done by induction on the proof-net structure of S.

● Assume we have ⊢ S ∶ Xi,X
�
i . We would like to show that Φax

S ∈ JXiKΩ ` JX�
i KΩ =

JXi,Xi,XKΩ` JX�
i ,Xi,XK�

Ω
= Ω(Xi, i,X)`Ω(X�

i , i,X)
� = (Ω(Xi, i,X)� ⊗Ω(X�

i , i,X))
�
.

Let Φ1 ⊎Φ2 ∈ Ω(Xi, i,X)� ⊗Ω(X�
i , i,X) with Φ1 ∈ Ω(Xi, i,X)� and Φ2 ∈ Ω(X�

i , i,X). It
is sufficient to show that ∣Ex(Φ1 ⊎Φ2 ⊎Φ

ax
S )∣ <∞, i.e. that the axiom strongly normalises

with its tests. By Definition 6.1 since we have Φax
S = [+t.pXi

(X),+t.pX�i (X)], we have

Φax
S ⊎Φ2 ∈ Ω(Xi, i,X) which is orthogonal to Φ1. It follows that ∣Ex(Φ1 ⊎Φ2 ⊎Φax

S )∣ <∞.
● Assume we have ⊢ S ∶ Γ,∆,A ⊗ B coming from ⊢ S1 ∶ Γ,A and ⊢ S2 ∶ ∆,B. We have
to show Φax

S ∈ J⊢ ΓKΩ ` J⊢ ∆KΩ ` JA ⊗ BKΩ. By induction hypothesis, we have Φax
S1
∈

J⊢ Γ,AKΩ = J⊢ ΓKΩ ` JAKΩ and Φax
S2
∈ J⊢ ∆,BKΩ = J⊢ ∆KΩ ` JBKΩ. By a conjugation

µ such that Φax
S1

and Φax
S2

are made distinct, we can relocale the atoms and obtain a
constellation Φµ ∈ (J⊢ ΓKΩ` JAKΩ)⊗ (J⊢∆KΩ` JBKΩ) such that Φµ = µ(Φax

S1
)⊎Φax

S2
. Now,

by the definition of tensor for proof-structures, we have a preservation of axioms and Φax
S

equivalent to Φµ up to conjugation (and this conjugation could be chosen for µ). By
Lemma 6.4, we have (J⊢ ΓKΩ ` JAKΩ)⊗ (J⊢ ∆KΩ ` JBKΩ) ⊆ J⊢ ΓKΩ ` J⊢ ∆KΩ ` JA⊗BKΩ,
hence Φax

S ∈ J⊢ ΓKΩ ` J⊢∆KΩ ` JA⊗BKΩ.
● Assume we have ⊢ S ∶ Γ,A`B coming from ⊢ S ′ ∶ Γ,A,B. We would like to show that
Φax
S ∈ J⊢ ΓKΩ ` JAKΩ ` JBKΩ. This directly follows from the induction hypothesis and the

fact that we have J⊢ Γ,A,BKΩ = J⊢ ΓKΩ ` JAKΩ ` JBKΩ by definition.
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● Assume we have ⊢ S ∶ Γ,∆ coming from ⊢ S1 ∶ Γ and ⊢ S2 ∶ ∆ (by using the MIX rule).
We have to show Φax

S ∈ J⊢ ΓKΩ ` J⊢ ∆KΩ knowing that the induction hypothesis states
that Φax

S1
∈ J⊢ ΓKΩ and Φax

S2
∈ J⊢ ∆KΩ. Since the MIX rule only places two proofs next

to each other, we have Φax
S = Φax

S1
⊎ Φax

S2
by definition. By definition of tensor, we have

Φax
S ∈ J⊢ ΓKΩ ⊗ J⊢ ∆KΩ. It remains to show that A⊗B ⊆ A`B in general, which would

imply Φax
S ∈ J⊢ ΓKΩ ` J⊢∆KΩ. We have A`B ⊆ (A� ⊗B�)�, hence we have to show that

A⊗B ⊆ (A�⊗B�)�. Let Φ1 ⊎Φ2 ∈A⊗B and Φ′
1 ⊎Φ

′
2 ∈A

�⊗B�. We know that Φ1 ⊥ Φ
′
1

and Φ2 ⊥ Φ
′
2. We have Φ1⊎Φ2 ⊥ Φ

′
1⊎Φ

′
2, i.e. that Φ1⊎Φ2⊎Φ

′
1⊎Φ

′
2 is strongly normalising.

In particular, we cannot have a crossed infinite interaction between Φ1 and Φ′
2 or between

Φ2 and Φ′
1 because otherwise one constellation would have to not be strongly normalising

(because a strongly normalising constellation produces finitely many saturated diagrams
which cannot be extended so to make an infinite execution) but this would contradict
Lemma 6.6.

If the proof has cuts, then by Theorem 4.19, we can execute its translation (a constella-
tion) so that the normal form corresponds to the normal form of the proof. This proof is
necessarily cut-free, hence the case of cut-free proofs also applies to this case.

Lemma 6.8. Let Ω be a basis of interpretation and ⊢ Γ an MLL sequent. Then, we have

Tests(⊢ Γ) ⊆ J⊢ ΓK�
fin

Ω
.

Proof. Assume we have Test(⊢ Γ)ϕ ∈ Tests(⊢ Γ) for a switching ϕ of ⊢ Γ. The proof is
done by induction on ⊢ Γ.

● If Γ = {A1, ...,An} where the Ai are formulas Xi or X
�
i , then there is a single switching

ϕ. Because typing is invariant under execution, we can consider a simplification of tests
by fusion Ex(Test(⊢ Γ)ϕ) = ∑n

i=1[−t.pAi
(ti), pAi

(X)] where ti is the expected encoding of
the address of the atom Ai. We would like to show that Test(⊢ Γ)ϕ ∈ J⊢ A1, ...,AnK�

Ω
=

JA1,A1, t1K
�
Ω
⊗ ... ⊗ JAn,An, tnK�

Ω
. We show that [−t.pAi

(ti), pAi
(X)] ∈ JAi,Ai, tiK

�
Ω
. Let

Φi ∈ JAi,Ai, tiKΩ. Because JAi,Ai, tiKΩ is a behaviour, we can use Lemma 6.6 and infer that
∣Ex(Φi)∣ <∞. Adding [−t.pAi

(ti), pAi
(X)] to a strongly normalising constellation cannot

cause divergence, hence we must have [−t.pAi
(ti), pAi

(X)] ⊥ Φi and [−t.pAi
(ti), pAi

(X)] ∈
JAi,Ai, tiK

�
Ω
. Now, since Test(⊢ Γ)ϕ is made of a disjoint union of constellations of

JAi,Ai, tiK
�
Ω
, it follows that Test(⊢ Γ)ϕ ∈ J⊢ A1, ...,AnK�

Ω
.

● If ⊢ Γ is ⊢ ∆,A ` B, then a switching ϕ of ⊢ ∆,A ` B is a switching ϕ̄ of ⊢ ∆,A,B
extended with a left or right selection of premise between A and B, both linked by a `

connective. By the induction hypothesis, we have Test(⊢ ∆,A,B)ϕ̄ ∈ J⊢ ∆,A,BKΩ = J⊢
∆KΩ` JAKΩ` JBKΩ and we would like to show that Test(⊢ ∆,A`B)ϕ ∈ J⊢∆,A`BKΩ =
J⊢ ∆KΩ ` JA`BKΩ = J⊢ ∆KΩ ` JA`B,A,l ⋅XK ` JA`B,B,r ⋅XKΩ. The constellation
Test(⊢ ∆,A,B)ϕ̄ uses terms pA(t) and pB(u) but when we add a ` link between A and B,
these terms are relocated relatively to the conclusion A`B and we obtain pA`B(l ⋅t) and
pA`B(r⋅u). Since they only differ by a conjugation, the two tests will react in the same way
with respects to strong normalisation, i.e. Test(⊢ ∆,A,B)ϕ̄ ∈ (J⊢ ∆K�

Ω
⊗ JAK�

Ω
⊗ JBK�

Ω
)�

implies Test(⊢ ∆,A`B)ϕ ∈ (J⊢∆K�
Ω
⊗ JA`BK�

Ω
)�.

● If ⊢ Γ is ⊢ ∆,A ⊗ B, a switching of ⊢ Γ is a switching of ⊢ ∆,A,B extended to the
additional ⊗ connective linking A and B, and Test(⊢ ∆,A ⊗ B)ϕ can be defined from
Test(⊢ ∆,A,B)ϕ by removing the uncoloured rays pA(x) and pB(x), and adding new
stars [−c.pA(g ⋅X),−c.pB(g ⋅X),+c.pA⊗B(g ⋅X)] + [−c.pA⊗B(g ⋅X), pA⊗B(X)]. One can
show that J⊢ ∆,A ⊗ BKΩ is generated (in the sense of bi-orthogonal closure) by a pre-
behaviour E, i.e. that J⊢ ∆,A ⊗ BKΩ = E�� for some E, similarly to how A ⊗ B is
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generated by a bi-orthogonal closure on the pre-tensor A ⊙B (cf. Definition 5.15). In
this pre-behaviour E, the rays coming from A are disjoint from the rays coming from B

(because of the requirement of exclusion of interaction). By using the induction hypothesis

Tests(⊢ ∆,A,B) ⊆ J⊢ ∆,A,BK�
fin

Ω , this shows the result since this implies that Test(⊢
∆,A ⊗B)ϕ ∈ E�fin and Test(⊢ ∆,A⊗B)ϕ ∈ E��� = J⊢ ∆,A⊗BK�Ω since it is known that
X� =X��� in general for any pre-behaviour X [67, Corollary 9].

Definition 6.9 (Proof-like constellation). The syntax tree ST (⊢ Γ) of a sequent induces a
set of rays by Definition 4.9 by computing the address of each atom in ST (⊢ Γ). We note
this set ♯Γ. A constellation Φ is proof-like w.r.t. an MLL sequent ⊢ Γ if it is made of binary
stars only and IdRays(Φ) = ♯Γ, i.e. it is a binary linking of atoms in Γ.

Example 6.10. A constellation which is proof-like w.r.t. ⊢X�
1 `X�

2 ,X1 ⊗X2 is

[+c.pX�
1
`X�

2
(l ⋅X),+c.pX1⊗X2

(l ⋅X)] + [+c.pX�
1
`X�

2
(r ⋅X),+c.pX1⊗X2

(r ⋅X)].

However, even the wrong linking

[+c.pX�
1
`X�

2
(l ⋅X),+c.pX�

1
`X�

2
(r ⋅X)] + [+c.pX1⊗X2

(l ⋅X),+c.pX1⊗X2
(r ⋅X)]

is proof-like as well.

Theorem 6.11 (Completeness for MLL+MIX). If a constellation Φ ∈ J⊢ ΓKΩ is proof-like
w.r.t. ⊢ Γ, then there exists an MLL+MIX proof-net ⊢ S ∶ Γ such that Φ = Φax

S .

Proof. A proof-like constellation Φ ∈ J⊢ ΓKΩ can always be considered as the interpretation of
a proof-structure with only axioms; we can then construct a proof-structure S by considering
the union of the latter with ST (⊢ Γ) by placing the axioms on the right places in ST (⊢ Γ)
(at this point, the linking can still be wrong). Since Φ ∈ J⊢ ΓKΩ we can use Lemma 6.8

and infer that for all switchings ϕ of ⊢ Γ (equivalently, of S), Test(⊢ Γ)ϕ = Φ
test(ϕ)
S ⊥ Φ,

excluding “wrong linking”. By Corollary 4.32, it follows that S is acyclic, i.e. satisfies the
correctness criterion for MLL+MIX. Therefore, S must be a proof-net of vehicle Φ.

6.2. A complete model of MLL. The soundness property actually holds for MLL with
the same arguments as for MLL+MIX whether we use ⊥1 or ⊥R as orthogonality relation.
In this section, we only mean ⊥1 or ⊥R whenever ⊥ is written.

Theorem 6.12 (Full soundness for MLL). Let ⊢ S ∶ Γ be an MLL proof-net and Ω a basis
of interpretation. We have Ex(Φax

S ⊎Φcut
S ) ∈ J⊢ ΓKΩ.

Proof. The idea of the proof is exactly the same as for Theorem 6.7. The only difference
is in the axiom case. We need to show that Ex(Φ1 ⊎ Φ2 ⊎ Φax

S ) = Roots(Φ1 ⊎ Φ2 ⊎ Φax
S )

(respectively, ∣Ex(Φ1 ⊎Φ2 ⊎Φ
ax
S )∣ = 1). However, the properties of the basis of interpretation

ensures that Φ2⊎Φ
ax
S will be orthogonal to Φ1. Hence Ex(Φ1⊎Φ2⊎Φ

ax
S ) = Roots(Φ1⊎Φ2⊎Φ

ax
S )

(respectively, ∣Ex(Φ1 ⊎Φ2 ⊎Φax
S )∣ = 1).

The proof of Lemma 6.8 which is essential for the completeness property does not
hold anymore because of a minor technical problem. This is because a general sequent ⊢
A1, ...,An for Ai being atomic formulas is used for the base case. This is valid for MLL+MIX
proof-nets since we only require acyclicity when testing with the switchings. However, this
is not a correct base case for MLL proof-nets which are more demanding by requiring
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Φ

(proof)

Φ′

(proof)

cuts

(a) Cut-elimination.

Φ (vehicle)

Φ′ (test)

adapters

(b) Testing.

Figure 34. Cut-elimination seen as testing. The difference is only the point
of view.

connectedness. We need to start from a single axiom and therefore, induction could be
done on the MLL sequent calculus instead by considering provable formulas in MLL. This
would be sufficient to get a completeness result. However, instead of restricting to correct
formulas, which would identify J⊢ ΓKΩ and a subset of Tests(⊢ Γ)� corresponding to proof-
structures, it is sufficient to identify J⊢ ΓKΩ and Tests(⊢ Γ)� directly. We would then have
to prove Tests(⊢ Γ) ⊆ Tests(⊢ Γ)�� which is always true in general [67, Proposition 7]. We
do so by considering a notion of strict interpretation.

Definition 6.13 (Strict interpretations). We define the two strict interpretations for a
given basis of interpretation Ω and an MLL sequent ⊢ Γ:

⟪⊢ Γ⟫1Ω = Tests(⊢ Γ)
�1 and ⟪⊢ Γ⟫RΩ = Tests(⊢ Γ)

�R .

Theorem 6.14 (Completeness for MLL). If a constellation Φ ∈ ⟪⊢ Γ⟫RΩ (respectively Φ ∈ ⟪⊢
Γ⟫1Ω) is proof-like w.r.t. a provable sequent ⊢ Γ of MLL, then there exists an MLL proof-net
⊢ S ∶ Γ such that Φ = Φax

S .

Proof. The proof begins like the proof of completeness for MLL+MIX (cf. Theorem 6.11)
and reach the construction of a proof-structure with axioms translated into Φ. Now, Φ ∈
⟪⊢ Γ⟫RΩ (respectively Φ ∈ ⟪⊢ Γ⟫1Ω) implies that, in particular, Φ passes the Danos-Regnier
correctness test for MLL (by Corollary 4.32). Therefore, the proof-structure we constructed
must be correct.

Observation 6.15. Notice that if we have a constellation Φ ∈ ⟪⊢ Γ⟫XΩ for some Ω, MLL
sequent ⊢ Γ and X ∈ {1,R}, its Danos-Regnier tests Φ1, ...,Φn are constellations of (⟪⊢
Γ⟫XΩ )

�. This formalises the intuition in proof-nets that tests are sort of proofs of the dual.

6.3. Adequacy. Girard’s adequacy property [55, Section 4.4] is a way to relate type la-
bels/formulas of Section 5.1 and behaviours of Section 5.2. In realisability interpretations
[92, 84], this relation usually take the form of an adequacy lemma showing that type la-
bels guarantee membership in some behaviour. The idea is that type labels have the same
role as program specification and what we usually want is that passing some tests for a
specification ensures that the program has the expected behaviour.

This adequacy actually corresponds to a cut-elimination theorem. This is because
connecting two constellations with cuts can be seen as making two constellations interact
with adapters, i.e. as testing a constellation against another constellation (cf. Figure 34).

It follows that the cut-elimination theorem (the fact we can eliminates all occurrences
of cuts) states all possible interactions between our objects are sound. This is not always
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the case in general: a cut on an axiom with proof-structures is ill-behaving. But if our
objects have the correct shaope (passes the right tests) then all interaction must be sound.

Adequacy is therefore a direct consequence of full soundness (cf. Theorem 6.12) since:

● we are able to simulate cut-elimination for proof-structures (cf. Theorem 4.18);
● we can simulate proof-nets with constellations and the cut-elimination is known to hold
for proof-nets.

7. Perspectives and Future works

Alternative definitions of execution. In the simulation of Turing machines Section 3.2,
we simulate runs by generating all the linear saturated and correct diagrams, which is an
implicit reference to actual infinite. However, this is not a natural way to compute. It is
actually possible to follow the usual computation of automata by traversing a dependency

graph D[M☀ + w☀] itself, seen as the state graph of a Turing machine reading an input
word w. We then have to handle a unification problem when during the traversal. In case
of error, the run is cancelled. In case of non-deterministic choice, we have parallel runs and
only runs without unification errors survive. Although we do not explore this idea in this
paper, any constellation seems to define a sort of generalised non-deterministic hypergraph
automata with hyperedge transitions and graph-like runs where the fusion of stars triggers
a propagation of information. This generalises various classes of automata (pushdown,
alternating, Turing machines etc) and provide a machine-like execution of constellations.
This would also generalise token machines of the geometry of interaction similarly to some
existing works of the literature [24].

Categorical model of constellations. To ensure that we indeed have a model of MLL,
it is possible to show that behaviours as categorical objects (providing we choose an or-
thogonality relation capturing MLL provability) and linear implications as arrows define a
∗-autonomous category by following Seiller’s categorical model of interaction graphs [98, Sec-
tion 3]. In particular, re-addressing of constellations has to be correctly treated in order to
make composition of arrows possible. The associativity of execution (Theorem 5.20) is essen-
tial for the associativity of the composition and the property of adjunction (Corollary 5.22)
ensures a monoidal closure. As for categorical interpretations of GoI with monoidal traced
categories [58, 2], the execution of constellation should define a trace.

Extensions of other fragments of linear logic. We defined a model for both MLL and
MLL+MIX but our (re)construction can be extended to other fragments of linear logic. In
the first paper of Transcendental Syntax [55, Section 5], a reconstruction of intuitionistic
exponentials for linear logic is sketched with a new correctness criterion.

The transcendental syntax also claims great improvements going beyond linear logic
by suggesting in particular a new computational interpretation for second order logic and
predicate calculus [54, Section 5] (which is seen as part of second order logic) but also
Peano arithmetic [57, Section 5]. Second order logic uses more powerful constellations using
internal colours within rays (e.g. +c(+d(x))) which adds a more complex combinatorics to
constellations. This defines two classes of constellations: the ones of this paper, called
objective, containing no internal colours and the ones with internal colours, called subjective.
These two classes of constellations will allow for the definition of a non-empty behaviour 0
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[54, Section 4.3] from which we can establish non-classical notions of truth [57, Section 3]
but also state coherence, i.e. that 0 has no correct constellations.

Applications to implicit computational complexity. Several authors [11, 9, 15] used
flows (which can be seen as binary stars) for an implicit complexity analysis using encodings
of automata. Since the stellar resolution is designed to be an extension of this model, we
can expect to capture other complexity classes. It would then be possible to extend Seiller’s
idea of computational complexity [102] where the concepts of orthogonality and test are
central.

Moreover, a reconstruction of predicate calculus may provide a new understanding to
descriptive complexity [66] results, such as Immerman-Vardi theorem [109, 65] where predi-
cate calculus is essential in the definition of complexity classes such as P and NP. The idea is
that if a complexity class C is captured by a logic, then in our framework, formulas would
correspond to set of programs bounded by a certain complexity and correctness criteria
could also be used to check the complexity of a program (constellation). Formulas would
then represent specification certifying complexity for a constellation seen as a program.

Formulas as specification for a computational behaviour. In model checking, the
representation of a system (usually an automata or a transition system) is verified automat-
ically in order to check if it satisfies a formula (typically in the temporal logic LTL [88]).
Since the stellar resolution can provide natural encoding of state machines or labelled tran-
sition systems, and that it is possible to design logics and formulas with the transcendental
syntax (by using both interactive typing and tests of type labels), we can imagine extensions
of model checking to other models of computation or to other (existing or designed) logics
capturing more fine-grained properties. The correctness criterion of linear logic can itself be
seen as a way to certify a computational object as a proof of some formula A corresponding
to a specification. Since the λ-calculus can be nicely encoded with proof-nets, higher order
model checking for λ-calculus may be investigated as well.

Towards a “Logic of Interaction?”. Inspired by computation and linear logic, authors
such as Curien [22] and Abramsky [2, Section 5] exposed a paradigm of interaction where the
notion of interaction would be central in logic before anything else. Similarly to how complex
behaviours arise from a system of interacting agents as in biology or more generally, the
theory of complex systems (see chemical reaction networks for instance [70]), can a notion
of logic emerge from any system of interactions?

Our stellar resolution is indeed an instance of a system of interacting agents (stars) from
which emerge complex concepts (proofs and formulas). But even beyond logic, constellations
are able to represent automata and other models of computation as interacting agents
transmitting information in a graph-like structure and, by interactive typing, it is possible
to design formulas describing their computational behaviour. Logic then appears as a way
to describe computation or put constraint on it. This opens the materialistic idea of a “logic
of things” analysing computational interactions.
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[68] Nataša Jonoska and Gregory L McColm. A computational model for self-assembling flexible tiles. In

International Conference on Unconventional Computation, pages 142–156. Springer, 2005.
[69] Nataša Jonoska and Gregory L McColm. Flexible versus rigid tile assembly. In International Conference

on Unconventional Computation, pages 139–151. Springer, 2006.
[70] Jürgen Jost and Raffaella Mulas. Hypergraph laplace operators for chemical reaction networks. Ad-

vances in mathematics, 351:870–896, 2019.
[71] Robert Kowalski. Predicate logic as programming language. In IFIP congress, volume 74, pages 569–

544, 1974.
[72] Robert Kowalski. A proof procedure using connection graphs. Journal of the ACM (JACM), 22(4):572–

595, 1975.
[73] Robert Kowalski and Donald Kuehner. Linear resolution with selection function. Artificial Intelligence,

2(3-4):227–260, 1971.
[74] JL Krivine, PL Curien, H Herbelin, and PA Melliès. Interactive models of computation and program

behavior. 2009.
[75] Yves Lafont. From proof nets to interaction nets. London Mathematical Society Lecture Note Series,

pages 225–248, 1995.
[76] J-L Lassez, Michael J Maher, and Kim Marriott. Unification revisited. In Foundations of logic and

functional programming, pages 67–113. Springer, 1988.
[77] James I Lathrop, Jack H Lutz, and Scott M Summers. Strict self-assembly of discrete sierpinski

triangles. Theoretical Computer Science, 410(4-5):384–405, 2009.
[78] Alexander Leitsch. The resolution calculus. Springer Science & Business Media, 2012.
[79] Jorge Lobo, Arcot Rajasekar, and Jack Minker. Semantics of horn and disjunctive logic programs.

Theoretical Computer Science, 86(1):93–106, 1991.
[80] Alberto Martelli and Ugo Montanari. An efficient unification algorithm. ACM Transactions on Pro-

gramming Languages and Systems (TOPLAS), 4(2):258–282, 1982.
[81] Antoni Mazurkiewicz. Basic notions of trace theory. In Workshop/School/Symposium of the REX

Project (Research and Education in Concurrent Systems), pages 285–363. Springer, 1988.
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[107] Sten-Åke Tärnlund. Horn clause computability. BIT Numerical Mathematics, 17(2):215–226, 1977.
[108] Wolfgang Thomas. On logics, tilings, and automata. In International Colloquium on Automata, Lan-

guages, and Programming, pages 441–454. Springer, 1991.
[109] Moshe Y Vardi. The complexity of relational query languages. In Proceedings of the fourteenth annual

ACM symposium on Theory of computing, pages 137–146, 1982.
[110] Hao Wang. Proving theorems by pattern recognition —II. Bell system technical journal, 40(1):1–41,

1961.
[111] Erik Winfree. Algorithmic self-assembly of DNA. PhD thesis, Citeseer, 1998.
[112] Damien Woods. Intrinsic universality and the computational power of self-assembly. Philosoph-

ical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences,
373(2046):20140214, 2015.

[113] Damien Woods, David Doty, Cameron Myhrvold, Joy Hui, Felix Zhou, Peng Yin, and Erik Winfree. Di-
verse and robust molecular algorithms using reprogrammable dna self-assembly. Nature, 567(7748):366–
372, 2019. doi:10.1038/s41586-019-1014-9.

Appendix A. Term unification and first-order resolution

We recall elementary definitions of term unification [60] and first-order resolution [93]. We
refer the reader to the article of Lassez et al. [76] for more details which are often omitted
in the literature or Baader et al. [12] for a broader view.

We will use uppercase letters such asX,Y,Z for variables and lowercase letters a, b, c, f, g
and h for function symbols.
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▷ A signature S = (V,F,ar) consists of a countable set V of variables, a countable set F
of function symbols whose arities are given by ar ∶ F → N. We set a signature for this
section.

▷ The set of terms Terms(S) is inductively defined by the following grammar:

t, u ∶∶= X ∣ f(t1, . . . , tn) X ∈ V, f ∈ F,ar(f) = n (Terms)

▷ A substitution is a function θ ∶ V → Terms(S). Substitutions are extended from variables
to terms by θ(f(u1, ..., uk)) = f(θ(u1), ..., θ(uk)). The substitution θt is often written
θ(t) or explictly as a set of associations {X1 ↦ t1, ...,Xn ↦ tn} (often written {x ∶= t}
when there is only one association).

From two substitutions θ1, θ2, we can construct their composition θ1 ○ θ2 such that
(θ1 ○ θ2)t = θ1(θ2t). The composition is associative [76, Corollary 6].

▷ A renaming is a substitution α such that α(X) ∈ V for all X ∈ V .

▷ An equation is an unordered pair t
?
= u of terms in Terms(S).

▷ A unification problem or simply problem is a set of equations P = {t1
?
= u1, ..., tn

?
= un}.

▷ A solution for a problem P is a substitution θ such that for all t
?
= u ∈ P , θt = θu. In this

case, we say that the terms t and u are unifiable and that θ is a unifier for them.

▷ Two terms t and u are α-unifiable if there exists a renaming α such that {αt ?
= u} has a

solution which is called α-unifier. An α-unification between two terms is exact when it
is a renaming.

▷ Two terms t, u are equivalent up to renaming, written t ≈α u, if there exists an exact
α-unifier between them.

These definitions define a preorder on terms. A term t is lesser than another term u

when it is more specialised or less general. In terms of substitutions, it means that t can be
obtained by instantiating the variables of u with other terms.

Definition A.1 (Order on terms). We define the following partial order: given t, u two
terms, t ⪯ u if and only if there exists a substitution θ such that t = θu. We consider the
order up to renaming, i.e. t = u when t ≈α u.

Proposition A.2. The relation ⪯ defines a preorder.

Proof. Let t be a term. If θ is the identity substitution, we have t = θt. Let t1, t2, t3 be
terms. Assume t1 = θat2 and t2 = θbt3. We can compose the two substitutions and obtain
θa ○ θb. We have (θa ○ θb)t3 = θa(θbt3) = θat2 = t1.

Our definition of α-unification comes from a simplification of Aubert and Bagnol’s
definition of matching [8, Definition 6] itself appearing in Girard’s definitions [52, Section
1.1.2]. However, since matching already exists with a different definition in the literature
we chose a different name. We show that our simplification is equivalent to Aubert and
Bagnol’s definition definition.

Proposition A.3. Two terms t1 and t2 are α-unifiable if and only if there exists two renam-
ings α1 and α2 such that α1t1 and α2t2 are unifiable and that vars(α1t1)∩ vars(α2t2) = ∅.

Proof. (⇒) Assume that t1 and t2 are α-unifiable. Hence, there exists α such that θαt1 = θt2
for some substitution θ. For α1 ∶= α and α2 ∶= ∅, the empty renaming which is indeed disjoint
from α, we have θα1t1 = θα2t2. (⇐) Now assume that there exists two renamings α1 and
α2 such that α1t1 and α2t2 are unifiable and that vars(α1t1) ∩ vars(α2t2) = ∅. We have
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θα1t1 = θα2t2 for some θ. We can define the substitution ψ ∶= θ ○ α2 and the renaming
α ∶= α−12 ○ α1 such that ψαt1 = ψt2 since we have θα1t1 = θα2t2. This shows that t1 and t2
are α-unifiable.

The problem of deciding if a solution to a given problem P exists is known to be
decidable in the literature. Moreover, there exists a maximal solution solution(P ) w.r.t.
the preorder ⪯, which is unique up to renaming. Several algorithms were designed to
compute the unique solution when it exists, such that the Martelli-Montanari unification
algorithm [80].

Definition A.4 (Solved form). A unification problem P = {X1
?
= t1, ...,Xn

?
= tn} with

X1, ...,Xn ∈ V is in solved form if no variable X1, ...,X2 appears on the right of an equation,

i.e. {X1, ...,Xn} ∩ ⋃n
j=1 fv(tj) = ∅. Its underlying substitution is defined by

→

P ∶= {X1 ↦

t1, ...,Xn ↦ tn}.

Definition A.5 (Martelli-Montanari unification algorithm). We define a non-deterministic
algorithm with inference rules read from top to bottom:

P ∪ {t ?
= t}

clear
P

P (in solved form)
success

P (not in solved form)
fail

�

P ∪ {f(t1, ..., tn)
?
= f(u1, ..., un)}

open

P ∪ {t1
?
= u1, ..., tn

?
= un}

P ∪ {t ?
=X} with t /∈ vars(t)

orient

P ∪ {X ?
= t}

P ∪ {X ?
= t} with X ∈ vars(P ) and X /∈ vars(t)

replace

{X ↦ t}P ∪ {X ?
= t}

where vars(P ) and vars(t) are the sets of variables occurring in P and t. A sequence
constructed by these rules and ending with a success or fail rule when no other rule can be
applied is called an execution of the unification algorithm. The last step of the sequence
is written solution(P ) for a problem P . If we can apply more rules, it is called a partial
execution.

Theorem A.6 (Confluence of the unification algorithm). Any solvable problem P has a
unique solution modulo ≈α.

Proof. Proven in [76, Theorem 3.17].

We complete the section with the resolution rule for first-order logic for which the
unification is central.

Definition A.7 (Resolution rule). Let C,D be two set of first-order atoms and P a predi-
cate of arity n. The resolution rule is defined by the following inference rule:

C ∪ {P (t1, ..., tn)} D ∪ {¬P (u1, ..., un)}
Res

θ(C ∪D)

where θ ∶= solution(P(⋃n
k=1{ti

?
= ui})).



66 B. ENG AND T. SEILLER

Appendix B. Hypergraph theory

Hypergraphs are graphs with edges potentially linking several vertices and thus generalise
graphs. We use a definition of directed hypergraphs with several targets (we usually consider
a single target in the literature [18]).

Definition B.1 (Directed hypergraph). An directed hypergraph is defined by a tuple H =
(V,E,in,out) where:
● V and E are respectively the set of vertices and hyperedges;
● in ∶ E → P (V ) defines the sources of a hyperedge;
● out ∶ E → P (V ) defines the targets of a hyperdge

where P (V ) is the powerset of V . The hypergraph is undirected when we forget out and
in defines the vertices connected by an hyperedge.

Definition B.2 (Disjoint union of hypergraphs). The disjoint union of two hypergraphs
H = (V,E,in,out) and H ′ = (V ′,E′,in′,out′) is defined by H ⊎H ′ ∶= (V ⊎ V ′,E ⊎E′,in ⊎

in′,out′ ⊎ out′) where ⊎ is the disjoint union of sets and f ⊎ f ′ for two functions f and f ′

is the function corresponds to the disjoint union of the function graph of f and f ′.

Definition B.3 ((Multi)Graph homomorphism). A (multi)graph homomorphism is a func-
tion between graphs f ∶ G → G′ preserving the structure of graph, i.e. for all (u, v) ∈ EG,

we have (f(u), f(v)) ∈ EG′ .

Definition B.4 ((Multi)Graph isomorphism). A (multi)graph homomorphism f is an iso-
morphism if it is a bijection and that its inverse f−1 is also a (multi)graph homomorphism.

Definition B.5 (Path). A (directed) path is an ordered alternated sequence of vertices and
hyperedges v1e1...vn, en, vn+1 for vi ∈ V and ei ∈ E.

For an undirected graph, the path has an unordered sequence.

Definition B.6 (Accessibility relation). The notion of path defines an accessibility relation
on vertices for a hypergraph H. For two vertices x and y, we have x ≡Hacc y when there is a
path from x to y and, if the edges are oriented/directed, from y to x as well.

Definition B.7 (Connected components and connectedness). The set of connected compo-
nents of a hypergraph is the set of equivalence classes defined by the equivalence relation
induced by the accessibility of vertices with paths. A hypergraph is connected when it has
a unique connected component.

Definition B.8 (Cycles and acyclicity). A cycle is a path v1e1...vn, en, vn+1 such that
v1 = vn+1. A hypergraph is acyclic when it has no cycle.

Notation B.9. For a (multi)graph or hypergraph G of vertices V and (hyper)edges E, we
write V G for V and EG for E.
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