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Abstract

The study of optimization algorithms started at the end of World War II and has

since then experienced a constantly growing interest, fueled by needs in

engineering, computational simulation and Machine Learning. In this talk, we

look into the history of the new scientific objects that are the optimizers. The

point-of-view is historical and philosophical rather than mathematical. It is

explained how the conditions for the emergence of the optimizers as new

scientific objects correspond to a state of sufficient knowledge decomposition.

The versatility of optimizers is illustrated through examples. Although they are

just tools, optimizers are a source a fascination because they guide through a

space of representations in a process that resembles learning. But rationality is

bounded and, in that sense, optimization problems are utopias: they are an

over-simplification of decisions which are actually rooted in human relationships;

they often cannot be solved because the computational capacities are limited.

The presentation finishes with some contemporary challenges in optimization.
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The advent of optimization algorithms I

“Intelligence” =

[Bach, 2020]

models + algorithms
+

data + computing
power
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The advent of optimization algorithms II

There are numerous conferences? (and journals) where new
optimization algorithms are presented, whether in

applied mathematics. Ex: SIAM Conf. on Optimization, FGS

(French-German-Swiss) workshops series, PGMO Days, . . .

computer science (including machine learning). Ex: LION (Learning

and Intelligent OptimizatioN conf.), EURO (EURopean Operational research soc.) conf.,

Optimization days, NEURIPS, . . .

or in application fields. Ex: SIAM Conf. on Uncertainty Quantification

(statistics), AIAA/MAO (Multidisciplinary Analysis and Optimization) or WCSMO

(World Congress on Structural and Multidisciplinary Optimization) conferences

(engineering), ECCOMAS (aeronautics), ICASP (civil engineering), . . .

(? : arbitrarily listing some of the meetings I participated to )
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The advent of optimization algorithms III

Some recent algorithms are highly cited, i.e., are seen as key
technological components :

NAG ([Nesterov, 1983], 1983, > 5500 citations),

CMA-ES ([Hansen and Ostermeier, 2001], 2001, > 4100
citations),

ADAGRAD ([Duchi et al., 2011], 2011, > 10400 citations),

RMSprop ([Tieleman et al., 2012], 2012, > 6000 citations),

Adam ([Kingma and Ba, 2014], 2014, > 113000 citations),

. . .
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Optimization algorithms?

What are we talking about?
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The fundamental optimization problem I

(2D continuous example)

Find the lowest point of a func-
tion,

min
x∈S

f (x)

Looks easy on this drawing.
But the function is known pointwise, each evaluation costs computer
time, and S may be complex (high-dimensional, non-continuous, con-
strained . . . )
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The fundamental optimization problem II

x̂?

x ′

(what the random optimizer sees)

Random search

Require: xLB, xUB, tmax

t ← 0, f̂ ? ← +∞
while t < tmax do

x ′ ← U [xLB, xUB] {uniform law}
calculate f (x ′), t ← t + 1

if f (x ′) < f̂ ? then

x̂? ← x ′ , f̂ ? ← f (x ′)
end if

end while
return x̂?, f̂ ?
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Optimization = a quantitative formulation of

decision I
Optimization is a way of mathematically modeling decision.

min
x∈S

f (x)

x vector of decision parameters (variables) :
dimensions, investment, tuning of a
machine / program, . . .

f (x) : decision cost, minus × performance,
. . .

S : set of possible values for x , search space
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Optimization = a quantitative formulation of

decision II

A versatile approach to problem solving.

Examples :
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Optimization example: aircraft global pre-design

(from [Sgueglia et al., 2018])

x = aircraft parameters (here distributed electrical propulsion)
f () = −1× performance metric (aggregation of −1× range, cost,
take-off length, . . . )
At the minimum, the design is “optimal”.
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Optimization example: blade detailed design

x : The blades are described by 4 cross-sections for a total of 20 design
parameters.

f (): 5 constraints about the inlet and outlet relative flow angles, the flow speed

reduction, excessive loading and the Mach number of the blade tips. The

objective function is the polytropic (compressor) efficiency. From

[Roustant et al., 2021].

Favorable application: non-intuitive design and a small gain makes a
large difference.
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Optimization example: composite structure design

x is the orientation of the fibers within the plies of a composite
laminate and the location where the plies are dropped.
f () mechanical performance (stiffness, low mass, strength, stability,
. . . )
Many arrangements of the x ’s have almost equivalent performances,
leading to local optima (from [Irisarri et al., 2014]).
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Optimization example: model identification

(from [Fukushima et al., 2010])

x = dike position, geometry, internal pressure
f () = distance between measures (from RADARSAT-1 satellite) and
model (boundary elements, non trivial computation)
At the minimum, the model best matches measurements and should
correspond to the underground phenomenon.
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Optimization example: wind farm layout

x = position and characteristics of the wind mill, electrical network.
f () = cost aggregated with -1 × average power production.
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Optimization example: image denoising

min
x

f (x) , f (x) =
1

2

Npixels∑
i=1

(yi − xi)
2 + λ

Npixels∑
i=1

∑
j near i

|xi − xj |

λ ≥ 0 regularization constant

target image noisy (observed)

= yi ’s

denoised (optimized)

= x?

(from [Ravikumar and Singh, 2017])
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Optimization example: neural net learning

x = neural network (NN) weights
and biases

f () = an error of the NN predic-
tions w.r.t. data (a loss function)

from techxplore.com/news/

2020-11-neural-network.html, CC0
public domain
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An utopia ? Humans in the loop

Optimization as a mathematical model for decision

min
x∈S

f (x)

Don’t forget the human in the loop !

In [Tsoukiàs, 2008], broader framework (model of the human
rationality) ⇒ decision aiding theory.

Multi-Disciplinary Optimization [Brévault et al., 2020] as an
attempt to model interacting disciplines.

Human systems are complex, not easy to model.

Here, modest and practical goal : optimization as a (fascinating) tool.
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Historical and epistemological hints
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Emergence conditions

Optimization algorithms have become a scientific subject of its own
when the problem to solve has been decomposed into

a real object to optimize,

a space of representations S where x is chosen,

a model of the object valid for each representation, m(x),

a performance measure f (m(x)),

a motion principle (the optimization algorithm).

Ex. in engineering: an object to design, x CAD parameters, m(x) a finite
elements model, f () a compromise between -strength and cost.

Ex. in machine learning: a neural network to learn, x the weights, m(x) the

responses of the network over a certain data base, f () the loss function.
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The decomposition principle

Elements of scientific knowledge appear when a problem is
sufficiently decomposed.

Close to Descartes’ 2nd Rule in Discourse on the Method :
“Divide each difficulty into as many parts as is feasible and
necessary to resolve it” (but applied to a scientific domain).

In the case of optimizers:

A space-time generalized decomposition in the sense of Bernard
Guy [Guy, 2011], where time is related to the motion of the
optimizer.

When applied to machine learning, optimizers are part of a
constructivist system [Sarkar, 2016]: learnings occurs by the
interaction between perception (ideas, = simulated actions) and
action, new experience, in a trial and error process guided by the
optimizer.
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The emergence of optimization algorithms occured after
World War II.
Optimization problems were solved before, but in a
unified manner.

Examples:
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da Vinci’s flying machine

Design for a flying machine, Leonardo da Vinci, 1488.
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Hooke’s arch

Optimization of an arch.
Hooke’s theorem (1675) :
“As hangs the flexible chain,
so but inverted will stand
the rigid arch.”

Robert Hooke holding a chain that forms a catenary

curve. Image by Rita Greer. Licensed under Free Art

License 1.3, via Wikimedia Commons.
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The Brachistochrone curve

Minimize time to go from a point to a lower point with a frictionless
ball under the action of gravity.

Posed and solved by Johann Bernoulli in 1696.
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Millau’s viaduct

Michel Virlogeux, main designer:
“The preliminary design of Millau’s viaduct was first scribbled on a
restaurant tablecloth and it was quite right. Computations then con-
firmed the ideas and fine tuned the details.”

(talk at Maison de la Mécanique,

Courbevoie, France, around 2005.

Millau’s viaduct is currently the tallest

bridge in the world.)
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The first optimization algorithms

They appeared after World War II, thanks to the first computers and
a sufficient scientific maturity (cf. decomposition principle).

The Steepest Descent Algorithm was formulated in its general
form in 1944 by Haskell B. Curry [Curry, 1944] after initial ideas
by Augustin Louis Cauchy in 1847 applied to astronomical
equations solving [Lemaréchal, 2012].

The Simplex Algorithm for solving linear problems was proposed
around 1947 by George B. Dantzig [Dantzig et al., 1955].

The Response Surface Method for approximating f by a
quadratic function throughout S was proposed by George E. P.
Box and Kenneth B. Wilson in 1951 [Box and Wilson, 1951].
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Today’s optimization algorithms I

(the discussion is voluntarily kept as short and non-technical as possible)

Proven rapid (in polynomial time or super-linear) convergence
for convex problems: cf. improved gradient descents such as
BFGS (accounting for curvatures) and NAG [Nesterov, 1983].

Algorithms adapted to stochastic functions (variants of
stochastic gradients such as Adam [Kingma and Ba, 2014]).

Algorithms using stochastic choices (e.g., CMA-ES
[Hansen and Ostermeier, 2001]).

⇒ Recognition of the importance of uncertainties, for which
randomness is both an ingredient and a cure.
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Today’s optimization algorithms II

Algorithms building models of the function (Bayesian
optimization, [Mockus, 1975]) or of their validity domain (DFO,
[Audet and Hare, 2017]).

A lot of specialized versions: with/without constraints, for
multiple objectives, with discrete and/or continuous variables,
depending on the numerical cost of the function and the number
of variables, . . .
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An utopia ? Computational limitations

The fundamental problem, minx∈S f (x), is rarely solved in practice
because the optimizer stops its iterations earlier (computational
limitation).

In machine learning, when
optimizing the loss function
with a stochastic gradient, a
situation in between the red
and the blue convergences
occurs. Yet, “it works”.
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An utopia ? Bounded rationality

(cf. Herbert A. Simon)

what’s the point of accurately solving the problem since the
formulation will always be imperfect?

The model, m() is inaccurate.

Some variables are missing (some dimensions of S).

Other objectives (utilities, f1(), . . . , fN(), N potentially infinite)
exist as well.
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Some current challenges

Optimization algorithms are a recent research domain. Still a lot to
do!

Properly testing and characterizing optimization algorithms is
needed. The relationship between the best optimizer and the
problem is complex. Initial work in
[Hansen et al., 2021, Bosse and Griewank, 2012, Kerschke and Trautmann, 2019].

Handling uncertainties in optimization problems is fundamental.
An active sub-domain. Recent bibliography in [Pelamatti et al., 2022].

The curse of dimensionality (with limited computations). Cf.
e.g. [Binois and Wycoff, 2022].

Less common types of variables : mixed (discrete-continuous,
e.g.,[Cuesta Ramirez et al., 2022]), functional, or graph variables.

Massively parallel, asynchronous, fault tolerant optimizers.
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