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Abstract

We construct solutions to the Kadomtsev-Petviashvili equation (KPI)
from particular polynomials. We obtain rational solutions written as a
second derivative with respect to the variable x of a logarithm of a deter-
minant of order n. So we get with this method an infinite hierarchy of
rational solutions to the KPI equation.
We give explicitly the expressions of these solutions for the first five orders.

PACS numbers :
33Q55, 37K10, 47.10A-, 47.35.Fg, 47.54.Bd

1 Introduction

We consider the Kadomtsev-Petviashvili equation which can be written in the
form

(4ut − 6uux + uxxx)x − 3uyy = 0, (1)

where the subscripts x, y and t denote partial derivatives.
This equation first appeared in 1970, in a paper written by Kadomtsev and
Petviashvili [1]. This equation is considered as a model for surface and internal
water waves or in nonlinear optics. Zakharov [2] used the inverse scattering
method to solve this equation, and obtained several exact solutions to the KPI
equation.
Dubrovin [3] constructed for the first time in 1981 the solutions to the KPI
equation given in terms of Riemann theta functions.
There is a lot of papers which deal with solutions to the KPI equation, in par-
ticular we can cite the works of Krichever [4], Matveev [5], Freeman [6], Boiti
[7], Kodama [8], Ma [9].
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In the following, we consider particular polynomials and we construct rational
solutions to the KPI equation by using the Hirota bilinear method. Then we
obtain rational solutions to the KPI equation as a second derivative with respect
to the variable x of a logarithm of a determinant of order n. That provides an
effective method to construct an infinite hierarchy of rational solutions of order
n. We present rational solutions explicitly for the first simplest orders.

2 Rational solutions to the KPI equation

We consider the particular polynomials pn defined by
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In the previous definition of pn, [x] means the greater integer less or equal to x.
We consider the following determinant

det(pn−i+j(x, t)){1≤i≤n, 1≤j≤n}, (3)

or in other words, it can be written as
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With these polynomials, we construct a type of rational solutions to the KPI
equation. We prove this result by using the Hirota method. This method gives
some rational solutions of the KPI equation.

With these notations and ∂2
x = ∂2

∂x2 , we have the following result

Theorem 2.1 The function vn(x, y, t) defined by

vn(x, y, t) = 2∂2
x(det(pn−i+j(x, t)){1≤i≤n, 1≤j≤n}) (4)

is a rational solution to the (KPI) equation (1)

(4ut − 6uux + uxxx)x − 3uyy = 0. (5)

2



3 Explicit rational solutions to the KPI equa-

tion for the first orders

In this section we will give some explicit examples of rational solutions to the
KPI equation.
We present solutions in the form

v(x, y, t) =
n(x, y, t)

d(x, y, t)
. (6)

The solutions constructed by this method have singularities. As a result, the
module of these solutions becomes infinite for certain values of x and y. The
representation of the modules of these solutions is therefore distorted by these
singularities and does not give an exact picture of the structure of these solu-
tions. However I give some of them.

3.1 Rational solutions of order 1 to the KPI equation

Example 3.1 The function v(x, y, t) defined by

v(x, y, t) = −
2

x2
(7)

is a rational to the KPI equation.

This solution is not interesting since it does not depend on t and y variables.

Figure 1. Solution of order 1 to the KPI equation for t = 0.

3.2 Rational solutions of order 2 to the KP equation

Example 3.2 The function v(x, y, t) defined by

v(x, y, t) =
−8x6 − 96 tx3 + 288 y2x2 − 288 t2

(−x4 + 12 tx− 12 y2)2
(8)

is a rational to the KPI equation.
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Figure 2. Solution of order 2 to the KPI equation, on the left for t = 0; in the
center for t = 0.01; on the right for t = 10.

3.3 Rational solutions of order 3 to the KPI equation

Example 3.3 The function v(x, y, t) defined by

v(x, y, t) =
n(x, y, t)

d(x, y, t)
(9)

with
n(x, y, t) = −18x16+864 tx13+288 y2x12−62208 t2x10+432000 y2tx9−285120 y4x8+
1244160 t3x7−4976640 y2t2x6+6842880 y4tx5−3110400 y6x4−37324800 t4x4+
24883200 y2t3x3−74649600 y4t2x2+37324800 y6tx+149299200 t4y2−9331200 y8

and
d(x, y, t) =

(

x9 − 72 tx6 + 72 y2x5 + 4320 ty2x2 − 2160 y4x+ 8640 t3
)2

is a rational to the KPI equation.

In this case N = 3, the solutions constructed by this method have singularities.
The representation of the modules of these solutions is therefore distorted by
these singularities and does not give an exact picture of the structure of these
solutions.
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Figure 3. Solution of order 3 to the KPI equation t = 0.

3.4 Rational solutions of order 4 to the KPI equation

The full expression of the solution is given in the appendix.

In this case N = 4, there is singularity in x = 0 and y = 0 for any t. The
module of this solution becomes infinite and the representation of its module is
therefore distorted by this singularity and does not give an exact picture of the
structure of this solution.

Figure 4. Solution of order 4 to the KPI equation, on the left for t = 0; in the
center for t = 1; on the right for t = 10.

3.5 Rational solutions of order 5 to the KPI equation

In order not to weigh down the text, we give explicit rational solution in this
case in the appendix.

For N = 5, the solution constructed by this method has singularities and the
module becomes infinite for certain values of x and y. The representation of the
modules of this solutions is therefore distorted by these singularities and does
not give an exact picture of the structure of these solutions.
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Figure 5. Solution of order 5 to KPI for t = 10.

Explicit expressions of rational solutions are not given for n greater than 5. For
example, in the case of order 6, the explicit expression of the rational solution
takes about 3 pages in tiny characters. In this case, the numerator is a poly-
nomial of degree 70 in x, 34 in y, 22 in t; the denominator is a polynomial of
degree 72 in x, 36 in y, and 24 in t. The numerator contains 227 terms, the
denominator 240 terms with big coefficients. In the case of order 10, the nu-
merator is a polynomial of degree 198 in x, 98 in y, 66 in t; the denominator
is a polynomial of degree 200 in x, 98 in y, and 66 in t. We cannot give these
explicit expressions in this paper.

4 Conclusion

In this article, rational solutions to the KPI equation have been explicitly built.
Other approaches to building solutions to the KPI equation have been conducted
and the most significant can be mentioned. In 1990, Hirota and Ohta [10] built
solutions as a particular case of a hierarchy of coupled bilinear equations given
in terms of Pfaffians. In 1993, Oevel [11] used the Darboux transformations to
obtain the solutions of the multi-component KPI hierarchy. No explicit solutions
were given. In the article published in 1996 [12], the same author gave explicit
solutions in terms of wronskians of order 2. In 2014, using iterated Darboux
transformations, in particular, solutions to the KPI equation were constructed
in terms of reduced multi-component wronskian solutions [13]. In the later
study, an explicit solution at order 1 was given. Only one asymptotic study has
been carried out for order higher than 2.
Here, using special polynomials, we have given an approach to find explicit ra-
tional solutions for higher orders and tried to describe the structure of these
rational solutions.
We get polynomials in x, y and t; for the order n, the numerator is of degree
2n2 − 2 in x and the denominator of degree 2n2 in x. The structure in t and y

appears more complicated. It will be relevant to study in details the structure
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of these polynomials.
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Appendix

In thecase of order 4, the function v(x, y, t) defined by

v(x, y, t) =
n(x, y, t)

d(x, y, t)
(10)

with
n(x, y, t) = −32x30+9600 tx27− 5760 y2x26− 1296000 t2x24+3456000 y2tx23−

1958400 y4x22+47692800 t3x21+520473600 y2t2x20−1278720000 y4tx19+513792000 y6x18+
3794688000 t4x18−79750656000 y2t3x17+176110848000 y4t2x16−438939648000 t5x15−

161574912000 y6tx15+48522240000 y8x14+3508531200000 y2t4x14−6026711040000 y4t3x13+
4075868160000 y6t2x12−5957038080000 t6x12−1358622720000 y8tx11−36369285120000 y2t5x11−

174112727040000 y4t4x10+267079680000 y10x10+319798886400000 t7x9+460538265600000 y6t3x9+
94058496000000 y2t6x8 − 493807104000000 y8t2x8 + 221560012800000 y10tx7 +
1881169920000000 y4t5x7 − 37391155200000 y12x6 − 4740548198400000 t8x6 −
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1931334451200000 y6t4x6−2370274099200000 y8t3x5+41084751052800000 y2t7x5−

13168189440000000 y4t6x4+3950456832000000 y10t2x4+31603654656000000 t9x3−

1853300736000000 y12tx3−31603654656000000 y6t5x3+292626432000000 y14x2+
7900913664000000 t4y8x2+94810963968000000 t8y2x2−1755758592000000 t3y10x−
221225582592000000 t7y4x−292626432000000 t2y12+52672757760000000 t6y6−
94810963968000000 t10

and
d(x, y, t) = (x16−240 tx13+240 y2x12+10080 t2x10+14400 y2tx9−7200 y4x8−

172800 t3x7+3628800 y2t2x6− 6048000 y4tx5+2016000 y6x4+18144000 t4x4−

72576000 y2t3x3+36288000 y4t2x2−24192000 y6tx+217728000 t5x+217728000 t4y2+
6048000 y8)2

is a rational to the KPI equation.

In the case of order 5, the function The function v(x, y, t) defined by

v(x, y, t) =
n(x, y, t)

d(x, y, t)
(11)

with
n(x, y, t) = −50x48+45600 tx45−36000 y2x44−17452800 t2x42+29635200 y2tx41−

14011200 y4x40 +3314304000 t3x39 − 2322432000 y2t2x38 − 4705344000 y4tx37 −

348945408000 t4x36+2326464000 y6x36+986743296000 y2t3x35−4358914560000 y4t2x34+
37492761600000 t5x33 + 4709456640000 y6tx33 − 649264896000000 y2t4x32−

1299291840000 y8x32 + 2748249907200000 y4t3x31 − 6455339089920000 t6x30 −

4239181578240000 y6t2x30+2811042662400000 y8tx29+127907013427200000 y2t5x29−

470514040012800000 y4t4x28−639104256000000 y10x28+688325647564800000 y6t3x27+
463344692428800000 t7x27−9977273774899200000 y2t6x26−524488985395200000 y8t2x26+
26735111656243200000 y4t5x25+224656627507200000 y10tx25−41152624128000000 y12x24−

20573979181056000000 y6t4x24 − 26464110317568000000 t8x24+
327856313401344000000 y2t7x23 − 2931238969344000000 y8t3x23−

1603000571461632000000 t6y4x22 + 11454569054208000000 y10t2x22−

4602379751424000000 y12tx21 + 5110753409040384000000 t5y6x21+
2782354152259584000000 t9x21 + 509023678464000000 y14x20−

5616696316428288000000 t8y2x20 − 12134665656336384000000 t4y8x20+
116979663562997760000000 t7y4x19 + 15256084884848640000000 y10t3x19−

452247033981173760000000 t6y6x18 − 189174420186071040000000 t10x18−

9991489566965760000000 y12t2x18 + 706477261240074240000000 t5y8x17+
1147590011649392640000000 t9y2x17 + 3245563651276800000000 y14tx17−

461631423194726400000000 y10t4x16 − 416879638640640000000 y16x16−

5532097441389281280000000 t8y4x16 + 12884673475463086080000000 t7y6x15+
3599145550259159040000000 t11x15 + 42362241004339200000000 y12t3x15+
90437018163609600000000 y14t2x14 − 21574803716702208000000000 t6y8x14+
29836782814416076800000000 t10y2x14+38373789556408320000000000 y10t5x13

+24429144673537228800000000 t9y4x13 − 41643872376422400000000 y16tx13+
5630805592473600000000 y18x12 + 101618997971071795200000000 t12x12−

402027233908595097600000000 t8y6x12−53035323313854873600000000 y12t4x12+
44478907714083225600000000 y14t3x11+847137176634418790400000000 t7y8x11−
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949692755231952076800000000 t11y2x11−21504498226554470400000000 y16t2x10−

1287798361384550400000000000 y10t6x10−2150389118355583795200000000 t10y4x10+
5497713823924224000000000 y18tx9+1189544116034469888000000000 y12t5x9−

2669254785415249920000000000 t13x9+6716844059439661056000000000 t9y6x9−

13286566912139329536000000000 t8y8x8 − 577232851378176000000000 y20x8 +
28237905887813959680000000000 t12y2x8−680581921895350272000000000 y14t4x8+
13393102958399324160000000000 t7y10x7−99464862530210365440000000000 t11y4x7+
294892816692805632000000000 y16t3x7−101983223770251264000000000 y18t2x6−

8581159828668284928000000000 y12t6x6+155772089793075216384000000000 t10y6x6−

56644396288390987776000000000 t14x6+23219394697691136000000000 y20tx5+
4851487645070524416000000000 y14t5x5−48973800957671374848000000000 t9y8x5−

240738684225661698048000000000 t13y2x5−2276411244871680000000000 y22x4+
436633888056347197440000000000 t12y4x4−34419338022459801600000000000 t8y10x4−

2076087055322972160000000000 y16t4x4−283221981441954938880000000000 t15x3+
15297483565537689600000000000 t7y12x3+673817728482017280000000000 y18t3x3−

330425645015614095360000000000 t11y6x3−141610990720977469440000000000 t10y8x2−

163901609630760960000000000 y20t2x2−2622425754092175360000000000 y14t6x2+
1699331888651729633280000000000 t14y2x2+145544629352115732480000000000 y10t9x+
1639016096307609600000000000 y16t5x+27316934938460160000000000 y22tx+
1557720897930752163840000000000 t13y4x−424832972162932408320000000000 t16−
2276411244871680000000000 y24 − 47203663573659156480000000000 t12y6

−50481695766274375680000000000 y12t8−218535479507681280000000000 y18t4

and
d(x, y, t) = (−x25+600 tx22−600 y2x21−100800 t2x19+50400 y2tx18−25200 y4x17+
6955200 t3x16−29030400 y2t2x15+42336000 y4tx14−254016000 t4x13−14112000 y6x13−

3556224000 y2t3x12+17273088000 y4t2x11−39626496000 t5x10−16087680000 y6tx10+
563915520000 y2t4x9+4021920000 y8x9−1112590080000 y4t3x8−365783040000 t6x7+
975421440000 y6t2x7−7681443840000 y2t5x6−533433600000 y8tx6+106686720000 y10x5+
14082647040000 y4t4x5−76814438400000 t7x4+4267468800000 y6t3x4−12802406400000 y8t2x3−

153628876800000 y2t6x3+6401203200000 y10tx2+76814438400000 y4t5x2+460886630400000 t8x−
128024064000000 y6t4x−1066867200000 y12x−921773260800000 y2t7+12802406400000 y8t3)2

is a rational to the KPI equation.
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