Journée scientifique Univ. Nantes

Multiuser MIMO as a multiaccess technique for mobile underwater acoustic networks P.-J. Bouvet, A. Pottier and B. Tomasi

3rd June 2022

 MU-MIMC

Results

Conclusion

Outlines

1 Introduction

2 MU-MIMO

8 Results

4 Conclusion

Outlines

1 Introduction

Underwater wireless communications Mobile underwater acoustic networks Multiple access techniques [OAC⁺12]

2 MU-MIMO

8 Results

Pierre-Jean Bouvet

Onclusion

Introduction

Underwater wireless communications

- Subsea to surface communications
 - Submarines
 - Gather data from fixed instruments
 - ...

Conclusion

Introduction

Underwater wireless communications

- Subsea to surface communications
 - Submarines
 - Gather data from fixed instruments

- ...

- Communication between subsea systems
 - AUV coordination
 - Divers

- ...

Introduction

Underwater wireless communications

- Subsea to surface communications
 - Submarines
 - Gather data from fixed instruments
 - ...
- Communication between subsea systems
 - AUV coordination
 - Divers
 - ...
- Many applications
 - Ocean monitoring (climate, pollution, ...)
 - Industry (oil, fisheries, ...)
 - Underwater exploration (marine archeology, natural resources, ..)
 - Search and survey (shipwrecks, mines, ...)

Introduction	
00000	

MU-MIMO

Results

Conclusion

Introduction

Underwater wireless communications

Figure 1 – from [FvTS20]

3rd June 2022 4

MU-MIMO for mobile UAN

Introduction

Underwater wireless communications

Electromagnetic radio

High bandwidth at very low range Non line-of-sight

Large antenna and high power for longer range

Figure 1 - from [FvTS20]

Introduction

Underwater wireless communications

- Electromagnetic radio
 - High bandwidth at very low range
 - Non line-of-sight
 - Large antenna and high power for longer range
- Optical
 - Ultra high bandwidth at low range
 - Ambient light and turbidity affects data rate
 - Line of sight required

Figure 1 - from [FvTS20]

Introduction

Underwater wireless communications

- Electromagnetic radio
 - High bandwidth at very low range
 - Non line-of-sight
 - Large antenna and high power for longer range
- Optical
 - Ultra high bandwidth at low range
 - Ambient light and turbidity affects data rate
 - X Line of sight required
- Acoustics
 - Long range, moderate bandwidth
 - Non line-of-sight
 - Noise / channel dependent
 - X Latency ($\simeq 1500 \text{ m/s}$)

Figure 1 - from [FvTS20]

Open issue

Efficient acoustic spectrum sharing between static and mobile nodes

Pierre-Jean Bouvet

MU-MIMO for mobile UAN

Introduction

Multiple access techniques [OAC⁺12]

- Contention-based protocols (random)
 - ALOHA
 - CSMA and variants
 - o CSMA
 - o FAMA
 - o T-Lohi

Introduction

Multiple access techniques [OAC⁺12]

- Contention-based protocols (random)
 - ALOHA
 - CSMA and variants
 - o CSMA
 - o FAMA
 - o T-Lohi
 - ..
- Contention-free protocols (deterministic)
 - Orthogonal
 - o TDMA [MMZ18]
 - o CDMA
 - o FDMA
 - Non-Orthogonal
 - MU-MIMO [GKH+07, PBF21]

Outlines

Introduction

MU-MIMO Principle (uplink) System model Transmitter Receiver

8 Results

④ Conclusion

MU-MIMO

Results

Conclusion

MU-MIMO

Principle (uplink)

- Simultaneous data transmission within the same spectrum
- Successive Interference Cancellation (SIC) at the receive side

MU-MIMO for mobile UAN

Introd	uction			
00000				

MU-MIMO

Results

Conclusion

MU-MIMO

System model

$$y_n(t) = \sum_{m=1}^{N_u} \int_{-\infty}^{+\infty} h_{mn}(\tau, t) x_m \Big(\Big(1 - \frac{v_{r,m}}{c_w} \Big) t - \tau \Big) e^{-j2\pi f_0 \frac{v_{r,m}}{c_w} t} d\tau + w_n(t)$$

MU-MIMO ○○○●○ Results

Conclusion

MU-MIMO

Transmitter

$$s_m(t) = \Re \left(x_m(t) e^{j2\pi f_0 t} \right)$$
$$= \Re \left(\sum_{m=-\infty}^{+\infty} x_m[k] g_T(t-kT) e^{j2\pi f_0 t} \right)$$

Pierre-Jean Bouvet

Intro	du	cti	on		
00000					

MU-MIMO ○○○○● Results

Conclusion

MU-MIMO

Receiver

Main features

- Multiuser channel equalization based on ordered SIC algorithm
- Differential Doppler compensation

MU-MIMO for mobile UAN

Outlines

Results

Ø MU-MIMO

Results
Model parameters
Simulation
Experiments

MU-MIMC

Results

Conclusion

Results

Model parameters

Notation	Meaning	TDMA	MU-MIMO	
N_u	Number of users	2		
N_r	Number of receive hydrophones	4		
f_0	Center frequency	23 kHz		
В	3 Signal bandwidth		8.4 kHz	
M	Modulation order		4 (QPSK)	
N_p	Number of pilots symbols per frame	253	509	
N_d	Number of data symbols	1030		
g _C	Convolutional code generator	(133, 171) _o		
R_{C}	Convolutional code rate	1/2		
D_b	Maximum data rate	2.41 kbit/s	4.02 kbits/s	
c_w	Wave celerity	1500 m/s		
z_w	Water depth	110 m		
d_{mn}	Transmission range	$\in [97, 224] \text{ m}$		
$v_{r,m}$	Relative speed	$\in [-2, 2] \text{ m/s}$		
TL(d)	Transmission loss	$17 \log_{10}(d) + 4.02 \cdot d/1000 \text{ dB}$		
NL	Noise level	79.6 dB re 1 µPa		
SL	Signal Level	$SNR_{min} + NL + TL(max(d_{mn}))$		

 $D_e = D_b(1 - \text{FER})$

Results

Simulation

MU-MIM(

Results

Conclusion

- <u>Boustrophedon</u> navigation path
- $100 \text{ m} \times 100 \text{ m}$ area for each drone
- $v_1 \simeq v_2 \simeq 2 \text{ m/s}$
- Acoustic comm. channel model [QS13]

Pierre-Jean Bouvet

MU-MIMO for mobile UAN

MU-MIM(

Results

Conclusion

Results

Simulation

- Effective date rate as function of minimum SNR received during mission
- MU-MIMO provides \simeq +70% data rate gain against TDMA
- Better robustness of TDMA at very low SNR

Pierre-Jean Bouvet

MU-MIMO for mobile UAN

MU-MIMC 00000 Results

Conclusion

Results

Experiments

• UWA channels sounded using MLS sequence at $\simeq 300~{\rm m}$ range

Recorded using IROM-LMAIR system in Lanveoc, Bay of Brest, June 2019

MU-MIMC

Results

Conclusion

Results

Experiments

- Multiuser channel replay [VWSOJ17]
- Static scenario
- MU-MIMO provides +67% data rate gain against TDMA

Outlines

2 MU-MIMO

8 Results

4 Conclusion Synthesis

Introduction	MU-MIMO	Results	Conclusion
00000	00000	000000	○●○
Conclusion			ISEN JUICTÉE

Synthesis

- Study of MU-MIMO access technique as an alternative to TDMA
 - Deterministic protocol
 - Better channel capacity exploitation than orthogonal multiple access
 - Effective data rate gain vs TDMA $\simeq 70\%$
 - No complexity added on transmit side
 - Requires (rough) synchronization protocol (as TDMA)
 - X Less robust than TDMA at very low SNR
 - **X** Sensitive to near-far effect (>1000 m)
 - × Requires advanced decoding scheme
- Future works
 - Comparison of SIC algorithms with single user and multiuser channel estimation
 - Asynchronous streams decoding

Do you have any questions?

ISEN Yncréa Ouest

Bibliography I

3rd June 2022

EEE Journal of Oceanic Engineering, 38(4):701-717, October 2013.

MU-MIMO for mobile UAN

Bibliography II

Paul Van Walree, François-Xavier Socheleau, Roald Otnes, and Tron Jenserud.

The Watermark Benchmark for Underwater Acoustic Modulation Schemes. IEEE Journal of Oceanic Engineering, 42(4):1007 – 1018, October 2017.

- Low wave celerity
 - $\simeq 1500 \text{ m/s}$
- Frequency attenuation
- Frequency selectivity
 - Multipaths.
- Noise :
 - Natural
 - Artificial
- Temporal selectivity
 - Motion induced Doppler
 - Scattering effect

Backup ●○○○○

MU-MIMO for mobile UAN

ALL IS DIGITAL!

Backup MU-MIMO decoder

Synchronization protocol

Achievable rates

