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SHRINKING TARGET FOR C 1 WEAKLY CONFORMAL IFS WITH OVERLAPS

In this article, we study the Hausdor dimension of weakly conformal IFS's shrinking targets with possible overlaps, provided the conformality dimension of the systems and the dimension of the attractor are equal. Those results extends the works of Hill-Velani as well as the results obtained in [6] for self-similar IFS's.

For t ∈ (0, +∞], s ≥ 0 and ζ : x → x s , one simply uses the usual notation

, and these measures are called s-dimensional Hausdor outer measure at scale t ∈ (0, +∞] and s-dimensional Hausdor measure respectively. Thus, (4)

For x ∈ supp(µ), the lower and upper local dimensions of µ at x are dened as dim loc (µ, x) = lim inf r→0 + log(µ(B(x, r))) log(r) and dim loc (µ, x) = lim sup r→0 + log(µ(B(x, r))) log(r) .

 dim H (µ) = ess inf µ (dim loc (µ, x)) and dim P (µ) = ess sup µ (dim loc (µ, x))

respectively.

) that

When dim H (µ) = dim P (µ), this common value is simply denoted by dim(µ) and µ is said to be exact dimensional.

Let us recall the notion of attractor and invariant measures for contracting IFS's.

Denition

Denition 2.4. Let m ≥ 2 be an integer. A system S = {f i } m i=1 of m C 1 contraction from a compact set X to X is called an iterated function system (in short,

Introduction

Estimating the Hausdor dimension of points falling innitely many often in sets U n having some algebraic or dynamical meaning is a question which arises naturally in Diophantine approximation as well as in dynamical systems. Given a metric space (X, d), a measurable mapping T : X → X and an ergodic probability measure µ, the usual question consists in estimating, for µ-typical points x, the Hausdor dimension of points falling innitely many often in balls B(T n (x), ϕ(n)), centered in T n (x) and with radius ϕ(n). Such problems have been studied for instance in [START_REF] Seuret | Diophantine approximation by orbits of expanding markov maps[END_REF][START_REF] Fan | A multifractal mass transference principle for Gibbs measures with applications to dynamical diophantine approximation[END_REF][START_REF] Hill | The ergodic theory of shrinking targets[END_REF][START_REF] Seuret | Diophantine approximation by orbits of expanding markov maps[END_REF][START_REF] Baker | Intrinsic diophantine approximation for overlapping iterated function systems[END_REF][START_REF] Allen | On the hausdor measure of shrinking target sets on self-conformal sets[END_REF][START_REF] Persson | On shrinking targets for piecewise expanding interval maps[END_REF][START_REF] Daviaud | An heterogeneous ubiquity theorem, application to self-similar measures with overlaps[END_REF] and are called shrinking targets problems.

Estimating these dimensions often relies on establishing ubiquity theorems (or mass transference principles) for the ergodic probability measure µ. Given a sequence of balls (B n := B(x n , r n )) n∈N , these theorems usually aims at giving lowerbounds for the dimension of sets of points of the form lim sup n→+∞ U n , where U n ⊂ B n (typically, U n = B δ n = B(x n , r δ n )), provided that the sequence of balls (B n ) n∈N satises µ lim sup n→+∞ B n = 1.

Let m ≥ 2 be an integer and S = {f 1 , ..., f m } be a weakly conformal system of m C 1 contracting maps from R d → R d (Denition 2.5) . Denote by K the attractor of S, i.e the unique non empty compact set satisfying K = m i=1 f i (K), Λ = {1, ..., m},

Λ * = k≥0 Λ k and, for k ∈ N, i = (i 1 , ..., i k ) ∈ Λ k , write f i = f i 1 • ... • f i k .
In this article, we prove that if the dimension of K can be computed in the same way than if the open set condition holds for S, (meaning that dim H (K) = dim(S), Denition 2.6), then, for any x ∈ K, for any δ ≥ 1, one has [START_REF] Allen | On the hausdor measure of shrinking target sets on self-conformal sets[END_REF] dim H lim sup

i∈Λ * B(f i (x), |f i (K)| δ ) = dim H (K) δ .
In other words, the dimension of points y for which the orbit of x, f i (x)

i∈Λ * , veries innitely many often d(y, f i (x)) ≤ |f i (K)| δ has dimension dim H (K) δ .

Similar results are established in [START_REF] Allen | On the hausdor measure of shrinking target sets on self-conformal sets[END_REF][START_REF] Hill | The ergodic theory of shrinking targets[END_REF] under the open set condition and some particular cases of overlapping self-similar systems are treated in [START_REF] Baker | Intrinsic diophantine approximation for overlapping iterated function systems[END_REF][START_REF] Daviaud | An heterogeneous ubiquity theorem, application to self-similar measures with overlaps[END_REF] and, as an application of our approach, a complement of some results established in [START_REF] Baker | Intrinsic diophantine approximation for overlapping iterated function systems[END_REF] are also 1

given (see Theorem 2.6). One emphasizes that the condition dim H (K) = dim(S) is much weaker than the open set condition. For instance this condition is satised for self-similar systems in R, as soon as Hochman's exponential separation condition is veried, so in particular if the contraction ratios and the translation parameters are algebraic numbers.

The key tool to establish (1) is Theorem 3.22, which is a ubiquity theorem for weakly conformal measures (without any separation condition) and strongly relies on the technics developed in [START_REF] Daviaud | An heterogeneous ubiquity theorem, application to self-similar measures with overlaps[END_REF].

Definitions and main statements

Let us start with some notations Let d ∈ N. For x ∈ R d , r > 0, B(x, r) stands for the closed ball of (R d ,|| || ∞ ) of center x and radius r. Given a ball B, |B| stands for the diameter of B. For t ≥ 0, δ ∈ R and B = B(x, r), tB stands for B(x, tr), i.e. the ball with same center as B and radius multiplied by t, and the δ-contracted ball B δ is dened by B δ = B(x, r δ ).

Given a set E ⊂ R d , E stands for the interior of the E, E its closure and ∂E = E \ E its boundary. If E is a Borel subset of R d , its Borel σ-algebra is denoted by B(E).

Given a topological space X, the Borel σ-algebra of X is denoted B(X) and the space of probability measure on B(X) is denoted M(X).

The d-dimensional Lebesgue measure on (R d , B(R d )) is denoted by L d . For µ ∈ M(R d ), supp(µ) = {x ∈ [0, 1] : ∀r > 0, µ(B(x, r)) > 0} is the topological support of µ.

Given E ⊂ R d , dim H (E) and dim P (E) denote respectively the Hausdor and the packing dimension of E. The Hausdor measure associated with ζ of a set E is dened by

(3)

H ζ (E) = lim t→0 + H ζ t (E).

IFS).

Let (p i ) i=1,...,m ∈ (0, 1) m be a positive probability vector, i.e. p 1 + • • • + p m = 1.

There exists a unique probability measure µ satisfying [START_REF] Daviaud | An heterogeneous ubiquity theorem, application to self-similar measures with overlaps[END_REF] 

µ = m i=1 p i µ • f -1 i .
The topological support of µ is the attractor of S, that is the unique non-empty compact set K ⊂ X such that K = m i=1 f i (K). Denote by π the canonical projection of {1, ..., m} N , dened by [START_REF] Falconer | Fractal Geometry[END_REF] π((

x n ) k∈N ) = lim k→+∞ f x 1 • f x 2 • ... • f x k (0).
The existence and uniqueness of K and µ are standard results [START_REF] Hutchinson | Fractals and self similarity[END_REF].

We now recall the denition of a weakly conformal map, introduce by Feng in (see [START_REF] Feng | Dimension theory of iterated function systems[END_REF] for example) which we will be particularly interested in this article. Denition 2.5. Let m ≥ 2 be an integer, S = {f i } m i=1 of m C 1 contractions from an open set U to U and K its attractor.

One says that S is weakly conformal if S veries [START_REF] Falconer | Fractal geometry[END_REF] lim k→+∞ sup

(x i ) i∈N ∈{1,...,m} N 1 k log f ′ (x 1 ,...,x k ) (π(σ k (x))) -log ||f ′ (x 1 ,...,x k ) (π(σ k (x)))|| = 0.
In this case, a measure dened by ( 6) is called a weakly conformal measure.

Recall that due to a result by Feng and Hu [START_REF] Feng | Dimension theory of iterated function systems[END_REF] any weakly conformal measure is exact dimensional.

Example 2.1.

If the maps f 1 , ..., f m are ane similarities or conformal maps (i.e verify ||f ′ (x)(y)|| = ||f ′ (x)|| • ||y|| for every x ∈ U, y ∈ R d ) the system S = {f 1 , ..., f m } is weakly conformal. In this case the IFS is called self-similar or self-conformal and the measures satisfying [START_REF] Daviaud | An heterogeneous ubiquity theorem, application to self-similar measures with overlaps[END_REF] are called respectively, self-similar and self-conformal measures. Note that this class of IFS contains for instance every system of holomorphic contracting mappings.

Assume that for any

1 ≤ i ≤ m, f i : R d → R d is dened by f i (x) = A i x+b i , where for any 1 ≤ i ≤ m, b i ∈ R d and A i ∈ GL d (R) has its eigenvalue equal in modulus to 0 < r i < 1 and for any 1 ≤ i, j ≤ m, A i A j = A j A i . Then S = {f 1 , ..., f m } is weakly conformal.
The pressure, as dened below, plays a particular role in the dimension theory of weakly conformal IFS's. It is dened by the following proposition which will be proved in section 3.1. Proposition 2.2. Let m ≥ 2 be an integer, S = {f 1 , ..., f m } be C 1 weakly conformal IFS and K its attractor.

Let us x s ≥ 0 and z ∈ K. The following quantity is well dened and independent of the choice of z :

(9) P z (s) = lim k→+∞ 1 k log i∈Λ k ||f ′ i (z)|| s .
The conformality dimension of S is dened as follows.

Denition 2.6. Let m ≥ 2 be an integer. Let S = {f 1 , ..., f m } be C 1 weakly conformal IFS and K its attractor.

Let us denote by dim(S) the unique solution to P (s) = 0.

One says that dim(S) is the conformality dimension of S.

Remark 2.3. If the mappings f 1 , ..., f m are similarities, the conformality dimension is called the similarity dimension. It is simply the unique real number solution of ( 10)

m i=1 c dim(S) i = 1.
Our main result is the following.

Theorem 2.4. Let m ≥ 2 be an integer. Let S = {f 1 , ..., f m } be a C 1 weakly conformal IFS of an open set U with attractor K. Then, for any x ∈ U, for any δ < 1, lim sup

i∈Λ * B(f i (x 0 ), |f i (K)| δ ) = K.
For any x 0 / ∈ K, for any δ > 1, [START_REF] Feng | Gibbs properties of self-conformal measures and the multifractal formalism[END_REF] lim sup

i∈Λ * B(f i (x 0 ), |f i (K)| δ ) = ∅.
Assume dim H (K) = dim(S). Then, using the notation of Denition 2.6, for any x 0 ∈ K, for any δ ≥ 1 it holds that [START_REF] Hill | The ergodic theory of shrinking targets[END_REF] dim

H Ç lim sup i∈Λ * B(f i (x 0 ), |f i (K)| δ ) å = dim H (K) δ .
Some cases of self-similar shrinking targets with overlaps are studied in [START_REF] Baker | Intrinsic diophantine approximation for overlapping iterated function systems[END_REF]. The following theorem is proved.

Theorem 2.5 ([2]). Let m ≥ 2 and S = {f 1 , ..., f m } be a system of m similarities of contraction ratio 0 < c 1 , ..., c m < 1. Let µ ∈ M(R d ) be the self-similar measure solution to [START_REF] Hochman | On self-similar sets with overlaps and inverse theorems for entropy in R d[END_REF] 

µ(•) = m i=1 c dim(S) i µ(f -1 i (•)).
Let g : N → (0, +∞), be a non increasing mapping. Assume that ( 14)

m i=1 -c dim(S) i log(c dim(S) i ) < -2 log m i=1 c 2 dim(S) i or c 1 = ... = c m . If k∈N i∈Λ k k |f i (K)|g(k) dim(S) = +∞, then µ lim sup i∈Λ * B(f i (x), |f i (K)|g(|i|)) = 1.
Theorem 2.5 can now be completed.

Theorem 2.6. Let g : N → (0, +∞) a non increasing mapping, dene

s g = inf    s ≥ 0 : k≥0 i∈Λ k k (|f i (K)|g(k)) s < +∞    . (15) 
If [START_REF] Hutchinson | Fractals and self similarity[END_REF] is satised and dim(µ) = dim(S), one has

(16)      dim H lim sup i∈Λ * B Å f i (x), |f i (K)|g(|i|) δsg dim(S) ã = dim(S) if 0 < δ ≤ 1 dim H lim sup i∈Λ * B Å f i (x), |f i (K)|g(|i|) δsg dim(S) ã = dim(S) δ if δ ≥ 1.
Remark 2.7. As mentioned in introduction, dim H (µ) = dim(S) holds in many situations. For instance, any self-similar IFS acting on R d with similarity dimension less than d and satisfying Hochman's separation and additional irreducibility conditions [START_REF] Hochman | On self-similar sets with overlaps and inverse theorems for entropy in R d[END_REF] satises this property.

In the next section, Section 3, one proves a ubiquity theorem for self-conformal measures. In Section 4, Theorem 2.4 is established using this ubiquity theorem.

The last section, Section 5 is dedicated to the proof of Theorem 2.6.

Mass transference principle and self-conformal measures

The key geometric notion developed in [START_REF] Daviaud | An heterogeneous ubiquity theorem, application to self-similar measures with overlaps[END_REF] to handle inhomogeneous mass transference principles is the following. 

H µ,s ∞ (A) = inf {H s ∞ (E) : E ⊂ A, µ(E) = µ(A)} .
As in the self-similar case, treated in [START_REF] Daviaud | An heterogeneous ubiquity theorem, application to self-similar measures with overlaps[END_REF], precise estimates of H µ,s ∞ (A) are established when µ is a C 1 self-conformal measure in Theorem 3.16.

We will need the following notion of asymptotically covering sequences of balls, developed in [START_REF] Daviaud | Extraction of optimal subsequences of sequence of balls, and application to optimality estimates of mass transference principles[END_REF] (and also used in [START_REF] Daviaud | An heterogeneous ubiquity theorem, application to self-similar measures with overlaps[END_REF]), to establish the desired ubiquity theorem.

Denition 3.2. Let µ ∈ M(R d ). The sequence B = (B n ) n∈N of closed balls of R d
satisfying |B n | → 0 is said to be µ-asymptotically covering (in short, µ-a.c) when there exists a constant C > 0 such that for every open set Ω ⊂ R d and g ∈ N, there is an integer N Ω ∈ N as well as g ≤ n 1 ≤ ... ≤ n N Ω such that:

(i) ∀ 1 ≤ i ≤ N Ω , B n i ⊂ Ω; (ii) ∀ 1 ≤ i ̸ = j ≤ N Ω , B n i ∩ B n j = ∅; (iii) also, (18) µ N 
Ω i=1 B n i ≥ Cµ(Ω).
The following lemma is proved in [START_REF] Daviaud | Extraction of optimal subsequences of sequence of balls, and application to optimality estimates of mass transference principles[END_REF], the second item will be used to apply our main theorem to self-conformal measures. For more details about this notion, derived from a covering property proved in the KGB-Lemma in [START_REF] Beresnevitch | A mass transference principle and the Dun-Schaeer conjecture for Hausdor measures[END_REF], one refers to [START_REF] Daviaud | Extraction of optimal subsequences of sequence of balls, and application to optimality estimates of mass transference principles[END_REF].

Lemma 3.1. Let µ ∈ M(R d ) and B = (B n := B(x n , r n )) n∈N be a sequence of balls of R d with lim n→+∞ r n = 0.

(

) If B is µ-a.c, then µ(lim sup n→+∞ B n ) = 1. (2) If there exists v < 1 such that µ lim sup n→+∞ (vB n ) = 1, then B is µ-a.c. ( 1 
) If µ is doubling then µ lim sup n→+∞ (vB n ) = 1 ⇔ B is µ-a.c. 3 
One now recall the ubiquity mentioned above.

Theorem 3.2 ([6]). Let µ ∈ M(R d ), B = (B n ) n∈N be a µ-a.c sequence of closed balls of R d such that |B n | → 0 and U = (U n ) n∈N a sequence of open sets such that U n ⊂ B n for all n ∈ N. Let 0 ≤ s < dim H (µ) such that for every n large enough, H µ,s ∞ (U n ) ≥ µ(B n ). Then (19) dim H Å lim sup n→+∞ U n ã ≥ s.
In order to apply Theorem 3.2, precise estimates of essential contents of open sets must be achieved. The next-subsection is dedicated to this problem when the measure is self-conformal and in the last sub-section of Section 3, the desired ubiquity theorem is established.

3.1. Geometric and dimensional properties of C 1 weakly conformal IFS.

In this subsection, we establish some basic properties of C 1 weakly conformal IFS's. We also prove basic dimension properties, which will be useful in the proof of Theorem 2.4 and we prove that weakly conformal IFS's satisfying the asymptotically weak separation condition (Denition 3.3) with no exact overlaps satises the hypothesis of Theorem 2.4.

Let m ≥ 2 be an integer. In this section, one collects some useful geometric results when dealing with C 1 weakly conformal IFS.

In the rest if the article, the following notations will be used:

• Λ(S) = {1, ..., m} and Λ(S) * = k≥0 Λ(S) k . When there is no ambiguity on the system S involved, on will simply write Λ(S) = Λ. • K S denotes the attractor of S (or simply K when the context is clear).

• For i = (i 1 , ..., i k ) ∈ Λ k , the cylinder [i] is dened by [i] = (i 1 , ..., i k , x 1 , x 2 , ...) : (x 1 , x 2 , ...) ∈ Λ N . Moreover, if (α n ) n∈N is a sequence of real numbers, one sets α i = α i 1 × ... × α i k and f i = f i 1 • ... • f i k .
For example, given the probability vector (p 1 , .., p m ),

p i = p i 1 × ... × p i k .
• The set Λ N will always be endowed with the topology generated by the cylinders. The set of probability measures on the Borel sets with respect to this topology will be denoted M(Λ N ).

• The shift operation on Λ N is denoted by σ and dened for any (i 1 , i 2 , ...) ∈ Λ N by (20)

σ((i 1 , i 2 , ...)) = (i 2 , i 3 , ...).

• The canonical projection of Λ N on K will be denoted π Λ (or simply π when there is no ambiguity) and, xing x ∈ K, is dened, for any (i

1 , i 2 , ....) ∈ Λ N , by (21) 
π((i 1 , ...)) = lim

k→+∞ f i 1 • ... • f i k (x).
It is easily veried that π is independent of the choice of x.

Consider S = {f 1 , ..., f m } a C 1 weakly conformal IFS of attractor K and, for every x ∈ K, k ∈ N and i = (i 1 , .., i k ) ∈ Λ k , write c i (x) = ||f ′ i (x)||.
Let us recall the following result established as [START_REF] Feng | Dimension theory of iterated function systems[END_REF]Lemma 5.4]. Lemma 3.3 ([10]). For any c > 1, there exists a constant D(c) such that, for every k ∈ N, for every i ∈ Λ k and every x, y ∈ K,

(22) D(c) -1 c -k ||f ′ i (x)|| • ||x -y|| ≤ ||f i (x) -f i (y)|| ≤ D(c)c k ||f ′ i (x)|| • ||x -y||, (23) 
D(c) -1 c -k ||f ′ i (x)|| ≤ |f i (K)| ≤ D(c)c k ||f ′ i (x)||,
Remark 3.4. Let X ⊂ U be a compact set. Equation ( 22) actually holds for any (x, y) ∈ X 2 ..

Note that, for every k ∈ N, writing χ = ±, one has

c χk ||f ′ i (x)|| = ||f ′ i (x)|| 1+ χk log c log ||f ′ i (x)|| .
Moreover there exists two constants 0

< t 1 ≤ t 2 such that t 1 ≤ k log ||f ′ i (x)|| ≤ t 2 .
Combining this with Lemma 3.3, for any θ > 0, there exists C θ > 0, such that for every k ∈ N, every i ∈ Λ k and every x, y ∈ K,

(24) C -1 θ c i (x) 1+θ ||x -y|| ≤ ||f i (x) -f i (y)|| ≤ C θ c i (x) 1-θ ||x -y||.
In particular, there also exists C θ for every i ∈ Λ * and every x ∈ K, one has (25)

C -1 θ c 1+θ i (x)|K| ≤ |f i (K)| ≤ C θ c 1-θ i (x)|K|.
Let us remark also that (25) also implies that there exists 0

< α ≤ β < 1 as well as C α , C β > 0 such that, for any k ∈ N, (26) 
C α α k ≤ |f i (K)| ≤ C β β k . 3.1.1. Lyapunov exponent of C 1 weakly conformal IFS's. Let m ≥ 2 and let us x a C 1 IFS, S = {f 1 , ..., f m } .
Proposition 3.5 ([10]). For weakly conformal systems, for any x = (x n ) n∈N , the Lyapunov exponent is well dened

(27) λ(x) = -lim n→+∞ log |f x 1 • ... • f xn (K)| n .
Moreover, for any probability vector (p 1 , ..., p m ) ∈ [0, 1] m , denoting ν ∈ M(Λ N ) the measure dened by ν([i]) = p i , then there exists λ ν ≥ 0 such that for ν-almost

any x = (x n ) n∈N , (28) 
λ(x) = λ(y)dν(y) := λ ν .

Remark 3.6. By (26), the Lyapunov exponent are uniformly (with respect to weakly conformal measures) bounded by above and below by some positive constant.

Corollary 3.7. Let ((p (k) 1 , ..., p Theorem 3.8 (Feng-Hu, [START_REF] Feng | Dimension theory of iterated function systems[END_REF]). Let (p 1 , ..., p m ) ∈ [0, 1] m be a probability vector,

(k) m )) k∈N ∈ ([0, 1] m ) N be a sequence of probability vectors such that (p (k) 1 , ..., p (k) m ) → (p 1 , ..., p m ). Denote for k ∈ N ν, ν k ∈ M(Λ N ) the measures dened by, for any cylinder [(i 1 , ...i n )], ν k ([(i 1 , ..., i k )]) = p (k) i 1 • ... • p (k) in and ν([(i 1 , ..., i n )]) = p i 1 • ... • p in . Then ν k → k→+∞ ν weakly, so that lim k→+∞ λ ν k = λ ν .
ν ∈ M(Λ N ) dened by, for any i ∈ Λ * , ν([i]) = p i and µ = ν • π -1 .
There exists h ≥ 0 such that for µ-almost every x ∈ K, there exists µ π -1 ({x}) ∈ M(Λ N ) such that:

µ π -1 ({x}) (π -1 ({x})) = 1.
for µ π -1 ({x}) -almost y = (y 1 , ..., y n , ..),

(29) -log µ π -1 ({x}) ([y 1 , ..., y n ]) n → h. for every Borel set A ⊂ Λ N , (30) 
ν(A) = K µ π -1 ({x}) (A)dµ(x). denoting λ = -1≤i≤m p i log c i , µ is exact-dimensional (Denition 5) and dim(µ) = -h -1≤i≤m p i log p i λ .
Proposition 2.2 is now proved.

Proof. Assume rst that the limit exists in R ∪ {-∞} and let us show that it is independent of the choice of z and that the limit is > -∞. Let c > 1 be a a real number. By (3.3), following the notation involved, for any k ∈ N, one has log

Ñ iΛ k D(c) -s c -sk |f i (K)| s é ≤ log Ñ i∈Λ k ||f ′ i (z)|| s é ≤ log Ñ iΛ k D(c) s c sk |f i (K)| s é . (31) 
Since (31) holds for any c > 1, one gets that (32)

lim k→+∞ 1 k log Ñ i∈Λ k ||f ′ i (z)|| s é -log Ñ iΛ k |f i (K)| s é = 0,
which proves that this quantity does not depend on z. Moreover, there exists b > 0 so that for any k ∈ N, any i ∈ Λ k , any x ∈ K,

||f ′ i (x)|| ≥ b k .
This implies that if P z (s) is well dened, then P z (s) > -∞.

Let us now prove that the limit exists. For k ∈ N, write

g n = log Ñ i∈Λ k |f i (K)| s é . (33) 
Lemma 3.9. For any ε > 0, there exists a constant M ε > 0 such that for any n, m ∈ N, one has (34)

g n+m ≤ M ε + mε + g n + g m . Furthermore, any sequence (g n ) n∈N verifying (34) is such that ( gn n ) n∈N converges in R ∪ {-∞}.
Proof. Let us start by proving the second statement. Let (g n ) n∈N be a sequence satisfying (34). Fix ε > 0 and M ε satisfying (34). For any q ∈ N, b ∈ N, 0 ≤ r < q, one has

g bq+r ≤ bg q + g r + (bq + r)ε + (b + 1)M, ⇒ g bq+r bq + r ≤ bq bq + r • g q q + (b + 1)M + g r bq + r + ε.
Fixing q large enough so that (b+1)M bq ≤ ε, for any large b ∈ N, one has

g bq+r bq + r ≤ (1 + ε) g q q + 2ε.
This implies that lim sup

n→+∞ g n n ≤ (1 + ε) lim inf n→+∞ g n n + ε.
Letting ε → 0 proves the statement.

One now shows that g n satises (34). Let k ∈ N and i ∈ Λ k . Let us begin by the following lemma.

Lemma 3.10. Following the notation of Lemma 3.3, one has, for any j ∈ Λ * ,

1 2 D(c) -2 c -2k |f i (K)| • |f j (K)| ≤ |f ij (K))| ≤ 2D(c) 2 c 2k |f i (K)| • |f j (K)|. (35) 
Proof. Let us start by establishing the lower-bound.

Let x, y ∈ K such that (36)

||f j (x) -f j (y)|| ≤ |f j (K)| ≤ 2||f j (x) -f j (y)||.
By Lemma 3.3, one has

D(c) -1 c -k ||f ′ i (f j (x))|| • ||f j (x) -f j (y)|| ≤ ||f ij (x) -f ij (y)|| ≤ |f ij (K)|, (37) 
and

||f ′ i (f j (x))|| ≥ D(c) -1 c -k |f i (K)|. (38) 
Combining (36), ( 37) and (38), one obtains

1 2 D(c) -2 c -2k |f i (K)| • |f j (K)| ≤ |f ij (K)|.
Let us focus now on the upper-bound. Let x, y ∈ K such that (39)

||f ij (x) -f ij (y)|| ≥ 1 2 |f ij (K)|.
Using again Lemma 3.3, one has

||f ij (x) -f ij (y)|| ≤ D(c)c k ||f ′ i (f j (x))|| • ||f j (x) -f j (y)|| ≤ D(c) 2 c 2k |f i (K)| • |f j (K)|. ( 40 
)
The upper-bound is obtained by combining (39) and (40).

□ By Lemma 3.10, for any c > 1 and any n, n ′ ∈ N, one has log

Ñ i∈Λ n+n ′ |f i (K)| s é = log Ñ i∈Λ n ,j∈Λ n ′ |f ij (K)| s é ≤ log Ñ i∈Λ n ,j∈Λ n ′ 2 s D(c) 2s c 2sn |f i (K)| s |f j (K)| s é = n • 2s log(c) + log(2 s D(c) 2s ) + log Ñ ( i∈Λ n |f i (K)| s ) × ( j∈Λ n ′ |f j (K)| s ) é ≤ 2sn log(c) + log(2 s D(c) 2s ) + g n + g n ′ .
This concludes the proof of Lemma 3.9.

□ Lemma 3.9 together with (32) concludes the proof.

□

Since P z (s) does not depend on z, one writes

P z (s) = P (s) = lim k→+∞ 1 k log Ñ iΛ k |f i (K)| s é 3.1.3. A class of IFS's satisfying dim(S) = dim H (K).
In this section it is proved that weakly conformal IFS's satisfying the asymptotically weak separation condition (AWSC in short) with no exact overlaps satises dim(S) = dim H (K), so that Theorem 2.4 applies for those IFS's.

Let us rst introduce, for all k ∈ N,

Λ (k) = i = (i 1 , ..., i n ) ∈ Λ * : |f i (K)| ≤ 2 -k < |f (i 1 ,...i k-1 ) (K)| . Denition 3.3. Let m ≥ 2 and S = {f 1 , ..., f m } a weakly conformal IFS. For k ∈ N, dene (41) 
t k (S) = max

x∈R d # ¶ f i : i ∈ Λ (k) and f i (K) ∩ B(x, r) ̸ = ∅ © ,
The system S satises the asymptotically weak separation condition (AWSC) [START_REF] Feng | Gibbs properties of self-conformal measures and the multifractal formalism[END_REF] when

log t k k → 0.
Let us recall the notion of dimension regular weakly conformal IFS's, introduced by Barral and Feng in [START_REF] Barral | On multifractal formalism for self-similar measures with overlaps[END_REF] in the case of self-similar IFS's. 

dim(µ) = min ® -1≤i≤m p i log(p i ) λ ν , d
´,

where λ ν is dened by (28).

Remark 3.11. When S is self-similar, calling 0 < c 1 , ..., c m < 1 the contraction ration of the similarities f 1 , ..., f m , for any probability vector (p 1 , ..., p m ), µ and ν as in Denition 3.4, one has

(44) dim(µ) = min ® -1≤i≤m p i log(p i ) λ ν , d ´= min ® 1≤i≤m p i log(p i ) m i=1 p i log(c i ) , d
´.

Proposition 3.12. Assume that S = {f 1 , ..., f m } satises the AWSC without exact overlaps. Then S is dimension regular. Moreover, dim(S) = dim H (K).

Before proving Proposition 3.12, let us start by the following lemma.

Lemma 3.13. Let ε > 0 and s ≥ 0 be a real numbers. There exists k ∈ N, a probability vector (p i ) i∈Λ k such that the weakly conformal measure ν associated with S ′ = {f i } i∈Λ k and (p i ) i∈Λ k veries, for any p ∈ N and i 1 , ..., i p ∈ Λ k ,

(45) e -kpε |f i 1 ...i p (K)| s e pkP (s) ≤ ν([i 1 ...i p ]) ≤ e kpε |f i 1 ...i p (K)| s e pkP (s)
Proof. Fix ε > 0 and c > 1 such that 8s log c ≤ ε. By Lemma 3.9 there exists k ∈ N large enough so that, the constant named

D(c) in Lemma 3.3 veries log D(c) k ≤ log c and (46) | 1 k log i∈Λ k |f i (K)| s -P (s)| ≤ ε 2 .
Writing again g k = log i∈Λ k |f i (K)| s , let us dene the probability vector (p i ) i∈Λ k by setting

p i = |f i (K)| s e g k .
Let ν be the weakly conformal measure associated with S ′ = {f i } i∈Λ k and (p i ) i∈Λ k .

Applying Lemma 35, for any p ∈ N, i 1 , ..., i p ,

D(c) -2p c -2kp ≤ |f i 1 • ... • f i p (K)| p j=1 |f i j (K)| ≤ D(c) 2p c 2kp . ( 47 
) Also D(c) 2sp c 2skp = e pk2s•( log D(c) k +log c) ≤ e ε 2 pk . ( 48 
)
As a consequence, for any p ∈ N and any i 1 , ..., i p ∈ Λ k , one has

ν([i 1 ...i p ]) = p i 1 • ... • p i p = p j=1 |f i j (K)| s e pg k = p j=1 |f i j (K)| s e kp( g k k -P (s)) e pkP (s)
.

Using (46), (47) and (48) concludes the proof.

□

Remark 3.14. The measure ν can be extended over Λ N by the usual arguments.

Moreover, for any i

= (i 1 , ..., i n ) ∈ Λ * , write n 1 = k⌊ n k ⌋ and n 2 = k(⌊ n k ⌋ + 1). Consider j ∈ Λ n 1 such that [i] ⊂ [j] and ℓ = (ℓ 1 , ..., ℓ n 2 -n ) ∈ Λ n 2 -n , one has (49) e -n 2 ε |f (i 1 ,...,in,ℓ 1 ,...,ℓ n 2 -n ) (K)| s e n 2 P (s) ≤ ν([iℓ]) ≤ ν([i]) ≤ ν([j]) ≤ e n 1 ε |f (i 1 ,...,in 1 ) (K)| s e n 1 P (s) .
Since, by Lemma 35, there exists a constant C > 0 such that, uniformly on i, j, iℓ, one has

C -1 ≤ min ® |f j (K)| |f i (K)| , |f i (K)| |f iℓ (K)| ´≤ max ® |f j (K)| |f i (K)| , |f i (K)| |f iℓ (K)| ´≤ C,
there exists a constant γ s,ε , such that, for any i = (i 1 , ..., i n ) ∈ Λ * , one has s) .

(50) γ -1 s,ε e -nε |f i (K)| s e nP (s) ≤ ν([i]) ≤ γ s,ε e nε |f i (K)| s e nP (
Let us now prove Proposition 3.12.

Proof. Call K the attractor of S. Let us show rst that if any system S satisfying the AWSC also veries that, for any weakly-conformal measure µ ∈ M(R d ) associated with a probability vector (p 1 , ..., p m ) and S,

(51) dim(µ) = -1≤i≤m p i log p i λ ν ,
where ν is the measure associated on Λ N , then dim(S) = dim H (K).

Fix ε > 0 consider k ∈ N, S ′ = {f i } i∈Λ k and ν as in Lemma 3.13 applied with s = dim(S). Note that, since S satises the AWSC, so does S ′ . Then, considering the measure µ = ν • π -1 , where π is the canonical projection, one has

dim(S) -ε ≤ dim(µ) = -i∈Λ k p i log p i λ ν ≤ dim(S) + ε.
This proves that dim H (K) ≥ dim(S) -ε. Since it always holds that dim H (K) ≤ dim(S) (see [START_REF] Falconer | Fractal Geometry[END_REF]) and ε is arbitrary, dim H (K) = dim(S).

Let us now prove that, for any system satisfying the AWSC, (51) holds for every weakly conformal measure µ.

Let µ ∈ M(R d ) be a weakly conformal measure associated with S and a probability vector (p 1 , ..., p m ) and ν ∈ M(Λ N ) such that µ = ν • π -1 .

One applies Theorem 3.8 to µ.

Moreover, it comes from from the proof of Theorem 3.8 [START_REF] Feng | Dimension theory of iterated function systems[END_REF], that for any ε > 0, for µ-almost any x ∈ K such that µ π -1 ({x}) exists and satises the two rst items of Theorem 3.8, there exists n 0 large enough so that, for any n ≥ n 0 , there exists i 1 , ..., i Nn such that:

for any 1 ≤ j ≤ N n ,

e -n(λ+ε) ≤ |f i j (K)| ≤ e -n(λ-ε) , one has (53) µ π -1 ({x}) 1≤j≤Nn [i j ] ≥ 1 2 , for any 1 ≤ j ≤ N n , (52) 
e -n(h+ε) ≤ µ π -1 ({x}) ([i j ]) ≤ e -n(h-ε) (54) 
Assume that h > 0 and take 0 < ε < min h 2 , λ 2 .

Combining (53) and (54), one gets (55)

N n ≥ 1 2 e n(h-ε) . Note that # k : e -n(λ+ε) ≤ 2 -k ≤ e -n(λ-ε) ≤ 2nε log 2 . As a consequence, there exists k ∈ [ n(λ-ε) log 2 , n(λ+ε) log 2 ] such that (56) #Λ (k) ∩ [i j ] 1≤j≤Nn ≥ N n 2nε log 2 ≥ 1 2 e nh 2 2nε log 2
.

Since for any

≤ j ≤ N n , [i j ] ∩ π -1 ({x}) ̸ = ∅, one also has f i j (K) ⊂ B(x, e -n(λ-ε) ), so that, writing n ′ = ⌊ n(λ-ε) log 2 ⌋, one has (57) # ¶ i ∈ Λ (n ′ ) : f i (K) ∩ B(x, 2 -n ′ ) © ≥ 1 2 e nh 2 2nε log 2
.

In particular, recalling (42),

log t k k ↛ 0,
and S does not satisfy the AWSC. As a consequence, S satises the AWSC implies h = 0, which, recalling the last item of Theorem 3.8, concludes the proof. □ Remark 3.15. If S is a self-similar system and satises the OSC, then it satises the AWSC and has no exact overlaps, so that Theorem 3.12 holds for S. Let K be the attractor of S and µ be a weakly conformal measure associated with S. Then, For any 0 ≤ s < dim(µ), for any 0 < ε ≤ 1 2 , there exists a constant c = c(d, µ, s, ε) > 0 depending on the dimension d, µ, s and ε only, such that for any ball B = B(x, r) centered on K and r ≤ 1, for any open set Ω, one has

c(d, µ, s, ε)|B| s+ε ≤ H µ,s ∞ ( B) ≤ H µ,s ∞ (B) ≤ |B| s c(d, µ, s, ε)H s+ε ∞ (Ω ∩ K) ≤ H µ,s ∞ (Ω) ≤ H s ∞ (Ω ∩ K). (58) 
For any s > dim(µ), H µ,s ∞ (Ω) = 0.

Remark 3.17.

The system S is not assumed to verify any separation condition.

When the maps are similarities, one still has, for any s > dim(µ), H µ,s ∞ (Ω) = 0 but for s < dim(µ), there exists a constant c(d, µ, s) such that the following more precise estimates holds true [START_REF] Daviaud | An heterogeneous ubiquity theorem, application to self-similar measures with overlaps[END_REF]:

c(d, µ, s)|B| s ≤ H µ,s ∞ ( B) ≤ H µ,s ∞ (B) ≤ |B| s and c(d, µ, s)H s ∞ (Ω ∩ K) ≤ H µ,s ∞ (Ω) ≤ H s ∞ (Ω ∩ K). (59) 
For any s > dim(µ), H µ,s ∞ (Ω) = 0.

Proof. The following modied version of Besicovitch covering lemma will be useful in this section.

Proposition 3.18 ([5]). For any 0 < v ≤ 1, there exists Q d,v ∈ N ⋆ , a constant depending only on the dimension d and v, such that for every E ⊂ [0, 1] d , for every set F = B(x, r (x) ) : x ∈ E, r (x) > 0 , there exists F 1 , ..., F Q d,v nite or countable sub-families of F such that:

• ∀1 ≤ i ≤ Q d,v , ∀L ̸ = L ′ ∈ F i , one has 1 v L ∩ 1 v L ′ = ∅. • E is covered by the families F i , i.e. ( 60 
) E ⊂ 1≤i≤Q d,v L∈F i L.
The case v = 1 corresponds to the standard Besicovich's covering lemma (see [START_REF] Mattila | Geometry of Sets and Measures in Euclidean Spaces: Fractals and Rectiability[END_REF], Chapter 2, pp. 28-34 for instance).

The proof of Proposition 3.18 relies on the following geometric lemma, which will also be used. Lemma 3.19. For any 0 < v ≤ 1 there exists a constant γ v,d > 0 depending only on v and the dimension d only, satisfying the following: if a family of balls B = (B n ) n∈N and a ball B are such that

• ∀ n ≥ 1, |B n | ≥ 1 2 |B|, • ∀ n 1 ̸ = n 2 ≥ 1, vB n 1 ∩ vB n 2 = ∅, then B intersects at most γ v,d balls of B.
Note that, if one must rename the constants, it is possible to take γ v,d = Q d,v for any v ≥ 1, which we will do.

Let us rst prove the above estimates for balls. Proposition 3.20. Let µ be a weakly conformal measure as in Denition 2.4. For any 0 < ε ≤ dim(µ), any 0 ≤ ε ′ ≤ 1 2 such that dim(µ) -ε + ε ′ > 0, there exists a constant χ(d, µ, ε, ε ′ ) > 0 such that for any ball B = B(x, r) with x ∈ K (the attractor of the underlying IFS) and r ≤ 1, one has

χ(d, µ, ε, ε ′ )|B| dim(µ)-ε+ε ′ ≤ H µ,dim(µ)-ε ∞ ( B) ≤ H µ,dim(µ)-ε ∞ (B) ≤ |B| dim(µ)-ε .
In addition, for any s > dim(µ), H µ,s ∞ (B) = 0.

Proof. Note rst that item (5) of Proposition 3.25 implies that for any s > dim(µ), H µ,s ∞ (B) = 0.

Let us consider 0 ≤ s < dim H (µ) and start by few remarks. Set α = dim(µ) and let ε > 0 and ρ > 0 be two real numbers. One denes

E α,ρ,ε µ = x ∈ R d : ∀r ≤ ρ, µ (B (x, r)) ≤ r α-ε .
Since µ is α-exact dimensional, for µ-almost every x, lim r→0 + log µ(B(x,r)) log r

= α.

This implies that, for very ε > 0, µ

Ä ρ>0 E α,ρ,ε µ ä = 1.
Let ε > 0 and 0 < ρ ε ≤ 1 be two real numbers such that µ(E α,ρε,ε µ

) ≥ 1 2 and write E = E α,ρε,ε µ . Write c i = |f i (K)|. Let us x i = (i 1 , ..., i k ) ∈ Λ * .
For any x ∈ K and r > 0, by (24) and (25) applied with θ = ε ′ , one has

f i (B(x, r)) ⊃ B(f i (x 0 ), C ε ′ c i (x 0 ) 1-ε ′ r) ⊃ B Ñ f i (x 0 ), C -2 1-ε ′ ε ′ |K| -1+ε ′ 1-ε ′ c 1+ε ′ 1-ε ′ i r é . Recall that ε ′ ≤ 1 2 . Since 1+ε ′ 1-ε ′ ≤ 1 + 4ε ′ , ( 61 
)
f i (B(x, r)) ⊃ B Å f i (x 0 ), C -2 1-ε ′ ε ′ • |K| 1+ε ′ 1-ε ′ c 1+4ε ′ i r ã . Writing µ i = µ(f -1 i ), (61) yields 
E i := f i (E) = f i (x) ∈ K : ∀ r ≤ ρ ε , µ B(x, r) ≤ r α-ε ⊂ {f i (x), x ∈ K : ∀ r ≤ ρ ε , µ f -1 i Å B Å f i (x 0 ), C -2 1-ε ′ ε ′ • |K| 1+ε ′ 1-ε ′ c 1+4ε ′ i r ãã ≤ Ñ C -2 1-ε ′ ε ′ • |K| 1+ε ′ 1-ε ′ c 1+4ε ′ i r C -2 1-ε ′ ε ′ • |K| 1+ε ′ 1-ε ′ c 1+4ε ′ i é α-ε      = ß y ∈ f i (K) : ∀ r ′ ≤ C -2 1-ε ′ ε ′ • |K| 1+ε ′ 1-ε ′ c 1+4ε ′ i ρ ε , (62) 
µ i B(y, r ′ ) ≤ Ñ r ′ C -2 1-ε ′ ε ′ • |K| 1+ε ′ 1-ε ′ c 1+4ε ′ i é α-ε    .
Notice also that

µ i (E i ) = µ(E) ≥ 1 2 .
Let us emphasize that iterating equation ( 6) gives

µ = i ′ ∈Λ k p i ′ µ i ′ ,
which implies that µ i is absolutely continuous with respect to µ (since all p i 's are strictly positive).

We are now ready to estimate the µ-essential content of a ball B centered in K.

Let us write

(63) γ(S, ε ′ ) = C -2 1-ε ′ ε ′ • |K| 1+ε ′ 1-ε ′ . Let B = B(x, r) with x ∈ K and r ≤ c 0 := min z∈K min 1≤i≤m f ′ i (z) . Since x ∈ K, there exists i = (i 1 , ..., i k ) ∈ Λ * such that • x ∈ f i (K), • |f i (K)| ≤ 1 3 |B|, • |f (i 1 ,...,i k-1 ) (K)| ≥ 1 3 |B|.
By (25), for any y ∈ K one has (64)

|f i (K)| ≥ C -1 ε ′ ||f ′ i (y)|| 1+ε ′ |K|, and ||f i (y)|| = ||f ′ (i 1 ,...,i n-1 ) (f n (x)) • f ′ in (x)|| ≥ ||f ′ (i 1 ,...,i n-1 ) (f n (x))||c 0 ≥ |f (i 1 ,...,i n-1 (K)| 1 1-ε ′ C -1 1-ε ′ ε ′ • |K| -1 1-ε ′ c 0 . (65) 
Combining ( 64) and (65), one obtains

c i = |f i (K)| ≥ C -1-1+ε ′ 1-ε ′ ε ′ |K| -2ε ′ 1-ε ′ c 1+ε ′ 0 |f (i 1 ,...,i n-1 ) (K)| 1+ε ′ 1-ε ′ ≥ C -1-1+ε ′ 1-ε ′ ε ′ |K| -2ε ′ 1-ε ′ c 1+ε ′ 0 r 1+4ε ′ . ( 66 
)
Note that E i ⊂ B. Consider a set A ⊂ B verifying µ(A) = µ(B). One aims at giving a lower-bound of the Hausdor content of A which depends only on B, d, ε, ε ′ and the measure µ.

Consider a sequence of balls

(L n = B(x n , ℓ n )) n≥1 covering A ∩ E i , such that ℓ n < γ(S, ε ′ )ρ ε c 1+4ε ′ i and x n ∈ A ∩ E i .
Since µ i is absolutely continuous with respect to µ, it holds that µ i (A) = 1.

By (62) applied to each ball L n , n ∈ N , one has Å |Ln| γ(S,ε ′ )c 1+4ε ′ i ã α-ε ≥ µ i (L n ), so that, recalling (66), n∈N |L n | α-ε ≥ n∈N Ä γ(S, ε ′ )c 1+4ε ′ i ä α-ε µ i (L n ) ≥ Ä γ(S, ε ′ )c 1+4ε ′ i ä α-ε µ i n∈N L n ≥ Ä γ(S, ε ′ )c 1+4ε ′ i ä α-ε µ i (E i ) ≥ 1 2 Ä γ(S, ε ′ )c 1+4ε ′ i ä α-ε ≥ κ(µ, ε ′ , ε)r (1+4ε ′ ) 2 (α-ε) ≥ κ(µ, ε ′ , ε)r (1+16ε ′ )(α-ε) , (67) 
where κ(µ, ε

′ , ε) = 1 2 γ(S, ε ′ ) α-ε • Å C -1-1+ε ′ 1-ε ′ ε ′ |K| -2ε ′ 1-ε ′ c 1+ε ′ 0 ã (1+4ε ′ )(α-ε) .
This series of inequalities holds for any sequence of balls (L n ) n∈N with radius less than γ(S, ε ′ )ρ ε c 1+4ε ′ i centered in A ∩ E i . One now proves that one can freely remove those constraints on the center and the radius of the balls used to cover

A ∩ E i , up to a multiplicative constant. Consider balls (L n = B(x n , ℓ n )) n≥1 covering A∩E i such that ℓ n < γ(S, ε ′ )ρ ε c 1+4ε ′ i but x n does not necessarily belongs to A ∩ E i .
Let n ∈ N. One constructs recursively a sequence of balls (L n,j ) 1≤j≤Jn such that the following properties hold for any 1 ≤ j ≤ J n :

L n,j is centered on

A ∩ E i ∩ L n ; A ∩ E i ∩ L n ⊂ 1≤j≤Jn L n,j ; for all 1 ≤ j ≤ J n , |L n,j | = |L n |;
the center of L n,j does not belong to any L n,j ′ for 1 ≤ j ′ ̸ = j ≤ J n .

To achieve this, simply consider

y 1 ∈ A ∩ E i ∩ L n and set L 1,n = B(y 1 , ℓ n ). If A ∩ E i ∩ L n ⊈ L 1,n , consider y 2 ∈ A ∩ E i ∩ L n \ L 1,n and set L 2,n = B(y 2 , ℓ n ). If A ∩ E i ∩ L n ⊈ L 1,n ∪ L 2,n , consider y 3 ∈ A ∩ E i ∩ L n \ L 1,n ∪ L 2,
n and set L 3,n = B(y 3 , ℓ n ), and so on... Note that, for any 1 ≤ j ≤ J n , any ball L j,n has radius ℓ n , intersects L n (which also has radius ℓ n ) and, because y j / ∈ 1≤j ′ ̸ =j≤Jn L j ′ ,n , it holds that, for any j ̸ = j ′ ,

1 3 L n,j ∩ 1 3 L n,j ′ = ∅. By Lemma 3.19, this implies that J n ≤ Q d, 1 3 .
Hence, denoting by ( L n ) n∈N the collection of the corresponding balls centered on A ∩ E i associated with all the balls L n , one has by (67) applied to ( L n ) n∈N :

n∈N |L n | α-ε ≥ 1 Q d, 1 3 n∈N | L n | α-ε ≥ κ(µ, ε ′ , ε) Q d, 1 3 r (1+4ε ′ )(α-ε) .
Remark also that any ball of radius smaller that c i can be covered by at most Å

2c -4ε ′ i γ(S,ε ′ )ρε ã d balls of radius γ(S, ε ′ )ρ ε c 1+4ε ′ i . Moreover, by (66), c -4ε ′ i ≤ Å C -1-1+ε ′ 1-ε ′ ε ′ |K| -2ε ′ 1-ε ′ c 1+ε ′ 0 ã -4ε ′ r -4ε ′ •(1+4ε ′ ) . Setting κ(µ, ε, ε ′ , d) = á 2 Å C -1-1+ε ′ 1-ε ′ ε ′ |K| -2ε ′ 1-ε ′ c 1+ε ′ 0 ã -4ε ′ γ(S, ε ′ )ρ ε ë d
, any ball of radius less than c i can be covered by less than κ(µ, ε, ε ′ , d)r -4dε ′ •(1+4ε ′ ) balls of radius less than γ(S, ε ′ )ρ ε c 1+4ε ′ i .

This proves that, for any sequence of balls

L n with | L n | ≤ c i covering A ∩ E i , recalling (67), it holds that n∈N | L n | α-ε ≥ Q -1 d, 1 3 κ(µ, ε, ε ′ , d) -1 r 4dε ′ •(1+4ε ′ ) κ(µ, ε ′ , ε)r (1+16ε ′ )(α-ε) (68) ≥ Q -1 d, 1 3 κ(µ, ε, ε ′ , d) -1 κ(µ, ε ′ , ε)r (1+16ε ′ )(α-ε)+4dε ′ •(1+4ε ′ ) . ( 69 
)
Recalling that |E i | ≤ c i and Denition 4 , since (68) is valid for any covering

( L n ) n∈N of A ∩ E i with |L n | ≤ c i , one has |B| α-ε ≥ H α-ε ∞ (A) ≥ H α-ε ∞ (A ∩ E i ) ≥ Q -1 d, 1 3 κ(µ, ε, ε ′ , d) -1 κ(µ, ε ′ , ε)r (1+16ε ′ )(α-ε)+4dε ′ •(1+4ε ′ ) . ( 70 
)
Taking the inf over all the set A ⊂ B satisfying µ(A) = µ(B), one obtains

|B| α-ε ≥ H µ,s ∞ (B) ≥ Q -1 d, 1 3 κ(µ, ε, ε ′ , d) -1 κ(µ, ε ′ , ε)r (1+16ε ′ )(α-ε)+4dε ′ •(1+4ε ′ ) .
The results stands for balls of diameter less than c 0 .

Set ε ′ 0 = 16ε ′ (α -ε) + 4dε ′ • (1 + 4ε ′ )
and write

χ(d, µ, ε, ε ′ 0 ) = c α-ε+ε ′ 0 0 Q -1 d, 1 3 κ(µ, ε, ε ′ 0 , d) -1 κ(µ, ε ′ 0 , ε).
For any ball of radius less than 1 centered on K, one has

|B| α-ε ≥ H µ,α-ε ∞ (B) ≥ χ(d, µ, ε, ε ′ 0 )r α-ε+ε ′ 0 .

□

The estimates of Theorem 3.16 are now established in the case of general open sets.

Recall that by item (5) of Proposition 3.25, for any s > dim(µ) and any set E,

H µ,s ∞ (E) = 0. Let us x s < dim(µ), ε ′ > 0 and set ε ′ = min ¶ dim(µ)-s 2 , 1 2 © > 0. Since K ∩ Ω ⊂ Ω and µ(K ∩ Ω) = µ(Ω), it holds that H µ,s ∞ (Ω) ≤ H s ∞ (Ω ∩ K).
It remains to show that there exists a constant c(d, µ, s, ε ′ ) such that for any open set Ω, the converse inequality

c(d, µ, s, ε ′ )H s+ε ′ ∞ (Ω ∩ K) ≤ H µ,s ∞ (Ω) holds. Let E ⊂ Ω be a Borel set such that µ(E) = µ(Ω) and (71) 
H s ∞ (E) ≤ 2H µ,s ∞ (Ω). Let {L n } n∈N be a covering of E by balls verifying (72) H s ∞ (L) ≤ n≥0 |L n | s ≤ 2H s ∞ (E).
The covering (L n ) n∈N will be modied into a covering ( L n ) n∈N verifying the following properties:

K ∩ Ω ⊂ n∈N L n , n∈N L n ⊂ n∈N L n n≥0 | L n | s+ε ′ ≤ 8.2 s+ε ′ Q 2 d,1 χ(d, µ, ε, ε ′ ) n≥0 |L n | s ,
where Q d,1 and χ(d, µ, ε, ε ′ ) are the constants arising from Proposition 3.18 applied with v = 1 and Proposition 3.20.

Last item together with (71) and (72) then immediately imply that

χ(d, µ, ε, ε ′ ) 8.2 s+ε ′ Q 2 d,1 H s+ε ′ ∞ (K ∩ Ω) ≤ H µ,s ∞ (Ω). Setting c(d, µ, ε, ε ′ ) = χ(d,µ,ε,ε ′ ) 8.2 s+ε ′ Q 2 d,1
concludes the proof.

Let us start the construction of the sequence

( L n ) n∈N . Let ∆ = (K \ n∈N B n ) ∩ Ω.
For every x ∈ ∆, x 0 < r x ≤ 1 such that B(x, r x ) ⊂ Ω. One of the following alternatives must occur:

(1) for any ball

L n such that L n ∩ B(x, r x ) ̸ = ∅, |L n | ≤ r x , or (2) there exists n x ∈ N such that L nx ∩ B(x, r x ) ̸ = ∅ and |L nx | ≥ r x .
Consider the set S 1 of points of X for which the rst alternative holds. By Lemma 3.18 applied with v = 1, it is possible to extract from the covering of S 1 , {B(x, r

x ), x ∈ S 1 }, Q d,1 families of pairwise disjoint balls, F 1 , ..., F Q d,1 such that S 1 ⊂ 1≤i≤Q d,1 L∈F i L. Now, any ball L n intersecting a ball L ∈ 1≤i≤Q d,1 F i must satisfy |L n | ≤ L.
In particular, since for any 1 ≤ i ≤ Q d,1 , the balls of F i are pairwise disjoint, applying Lemma 3.19 to the ball of F i intersecting L, we get that the ball

L n intersects at most Q d,1 balls of F i , hence at most Q 2 d,1 balls of 1≤i≤Q d,1 F i . Let L ∈ 1≤i≤Q d,1 F i .
One aims at replacing all the balls L n intersecting L by the ball 2L.

For any

1 ≤ i ≤ Q d,1 and any ball L ∈ F i , denote by G L the set of balls L n intersecting L. Since E ⊂ n∈N L n and µ(E) = µ(Ω), one has E ∩ L ⊂ B∈G L B and µ(E ∩ L) = µ(L)
. By Denition 3.1 and Proposition 3.20, this implies that (73)

χ(d, µ, ε, ε ′ )|L| s+ε ′ ≤ H µ,s ∞ (L) ≤ B∈G L H µ,s ∞ (B) ≤ B∈G L |B| s .
Replace the balls of G L by the ball L = 2L (recall that B∈G L B ⊂ 2L). The new sequence of balls so obtained by the previous construction applied to all the balls

L ∈ ≤i≤Q d,1 F i is denoted by ( L k ) 1≤k≤K , where 0 ≤ K ≤ +∞.
It follows from the construction and (73

) that S 1 ⊂ 1≤k≤K L k and (74) 1≤k≤K | L k | 2 s+ε ′ ≤ Q 2 d,1 χ(d, µ, ε, ε ′ ) n≥0 |L n | s .
On the other hand, since for any x ∈ S 2 = ∆ \ S 1 , there exists

n x ∈ N such that L nx ∩ B(x, r x ) ̸ = ∅ and r x ≤ |L nx |, one has S 2 ⊂ n∈N 2L n , so that n∈N L n ∪ K ∩ Ω \ n∈N L n ⊂ 1≤k≤K L k ∪ n∈N 2L n . Putting the elements of ( L k ) 1≤k≤K and (2L n ) n≥0 in a single sequence ( L n ) n≥0 , writing ( L n := 2 L n ) n∈N , by construction, K ∩ Ω ⊂ n∈N L n and due to (74): H s+ε ′ ∞ (K ∩ Ω) ≤ n≥0 | L n | s+ε ′ ≤ 2 s+ε ′ Q 2 d,1 χ(d, µ, ε, ε ′ ) + 1 n≥0 |L n | s ≤ 8.2 s+ε ′ Q 2 d,1 χ(d, µ, ε, ε ′ ) H µ,s ∞ (Ω).
The proof is concluded now by setting

c(d, µ, s, ε ′ ) = χ(d, µ, dim(µ) -s, ε ′ ) Q 2 d,1 4.2 s+ε ′ . □
Remark 3.21. Note that the proof for the case if open sets only relies on the fact that, there exists χ(d, µ, ε, ε ′ ) such that for any x ∈ K, for any ρ > 0, there exists 0 < r x ≤ ρ so that, writing B = B(x, r x ),

(75) χ(d, µ, ε, ε ′ )|B| dim(µ)-ε+ε ′ ≤ H µ,dim(µ)-ε ∞ ( B) ≤ H µ,dim(µ)-ε ∞ (B) ≤ |B| dim(µ)-ε .
In particular, any measure which satises the inequalities given in Proposition 3.20 satises the estimates given by Theorem 3. [START_REF] Mattila | Geometry of Sets and Measures in Euclidean Spaces: Fractals and Rectiability[END_REF] for any open set. Moreover, the proof of Proposition 3.20 only relies on the absolute continuity, for any i ∈ Λ * , of µ(f -1 i ) with respect to the weakly conformal measure µ. In particular Theorem 3.16 actually holds for any measure µ ∈ M(R d ) for which, supp(µ) ⊂ K and for any i ∈ Λ * , µ(f -1 i ) is absolutely continuous with respect to µ (so that it holds for quasi-Bernoulli measures for instance). (2) Suppose that µ(lim sup n→+∞ B n ) = 1. Then, (76) still holds but the existence of the gauge function is not ensured. Furthermore if µ is doubling, then (B n ) n∈N is µ-a.c, so that the conclusion of item (1) holds. Proof. Let µ be a self-conformal measure of support K.

One proves the rst item of Theorem 3.22.

Let (B n ) n∈N be a µ-a.c sequence of balls centered on K satisfying |B n | → 0. Let us x ε > 0.

Let us start with a lemma whose proof can be found in [START_REF] Daviaud | Extraction of optimal subsequences of sequence of balls, and application to optimality estimates of mass transference principles[END_REF]. Lemma 3.24. Let µ ∈ M(R d ). Let B = (B n := B(x n , r n )) n∈N be a µ-a.c sequence of balls of R d Then for every ε > 0, there exists a µ-a.c sub-sequence (B ϕ(n) ) n∈N of B such that for every n ∈ N, µ(B ϕ(n) ) ≤ (r ϕ(n) ) dim H (µ)-ε .

By Lemma 3.24, up to an extraction, one can assume that µ(

B n ) ≤ |B n | dim(µ)-ε 4 .
The following proposition is proved in [START_REF] Daviaud | An heterogeneous ubiquity theorem, application to self-similar measures with overlaps[END_REF].

Proposition 3.25. Let µ ∈ M(R d ), s ≥ 0 and A ⊂ R d be a Borel set. The s-dimensional H µ,s ∞ (•) outer measure satises the following properties:

Let c > 1. By Lemma 3.3 and Remark 3.4 applied with X = i∈Λ * f i (x 0 ) ∪ K, there exists D(c) such that for any y ∈ K and any i = (i 1 , ..., i n ) ∈ Λ * , (78) 

||f i (x 0 ) -f i (y)|| ≤ D(c)c n ||f ′ i (y)
||f ′ i (y)|| ≤ D(c)c n |f i (K)|.
Combining (78) and (79), one gets (80)

||f i (x 0 ) -f i (y)|| ≤ max z∈K d(x, z)D(c) 2 c 2n |f i (K)|.
Recalling that there exists 0 < t 1 < t 2 so that, uniformly on n and i ∈ Λ n ,

t 1 ≤ log ||f i || n ≤ t 2 , taking c = e t 1 ε 4 
and writing κ(S, ε,

x 0 ) = max z∈K d(x, z)D(c) 2 , ( 81 
) ||f i (x 0 ) -f i (y)|| ≤ κ(S, ε, x 0 )|f i (K)| 1-ε 2 .
In particular, for n large enough, for any i ∈ Λ n ,

f i (K) ⊂ B(f i (x 0 ), |f i (K)| 1-ε ).
One concludes that K ⊂ lim sup i∈Λ * B(f i (x 0 ), |f i (K)| 1-ε ). This ends the proof of the case δ < 1.

Let us treat the case δ > 1 and x 0 / ∈ K. We proceed by contradiction. Assume that lim sup i∈Λ * B(

f i (x 0 ), |f i (K)| δ ) ̸ = ∅. Consider x ∈ lim sup i∈Λ * B(f i (x 0 ), |f i (K)| δ )
. By compacity of Λ N , there exists i = (i 1 , ...) ∈ Λ N such that for an innity of integer k ∈ N,

x ∈ B(f i 1 • ... • f i k (x 0 ), |f i (K)| δ ).
Note that this implies that x = lim k→+∞ f i 1 • ... • f i k (x 0 ), so that for any n ∈ N,

x = f i 1 • ... • f in ( lim k→+∞ f i n+1 • ... • f i n+k (x 0 )). Writing z n = lim k→+∞ f i n+1 • ... • f i n+k (x 0 ) ∈ K, one has x = f i 1 • ... • f in (z n ).
It follows that, for any n ∈ N,

d(f i 1 • ... • f in (x 0 ), x) = d(f i 1 • ... • f in (x 0 ), f i 1 • ... • f in (z n )). (82) 
Write i = (i 1 , ..., i n ) and let ε > 0 be small enough so that 1 ≤ 1+ε 1-ε < δ. By (24) and (25) applied with θ = ε,

d(f i (x 0 ), f i (z n )) ≥ C -1 ε ||f ′ i (x)|| 1+ε ||x -z n || ≥ d(x, K) C -1 ε Ä |K| C ε ä-1-ε 1-ε |f i (K)| 1+ε 1-ε
which implies that, for n large enough, (83)

d(f i (x 0 ), x) > |f i (K)| δ .
This is a contradiction. One concludes that lim sup

i∈Λ * B(f i (x 0 ), |f i (K)| δ ) = ∅. □ Remark 4.2.
In the case where S = {f 1 , ..., f m } is a self-similar system, more precise statement can be made. Denote 0 < c 1 , ..., c m < 1 the contracting ratio of f 1 , ..., f m . In the self-similar case, for any z ∈ K and any i ∈ Λ

* d(f i (x 0 ), f i (z)) = c i d(x, z) ≤ c i max y∈K d(y, x).
This implies that, writing C(x 0 , S) = max y∈K d(y, x), f i (K) ⊂ B(f i (x 0 ), C(x 0 , S)c i )

and

K = lim sup i∈Λ * B(f i (x 0 ), C(x 0 , S)c i ).
The following subsections are dedicated to the proof of the case x 0 ∈ K and δ ≥ 1 of Theorem 2.4. The following proposition will be slightly modied so that the measure involved is fully supported on K.

Proposition 4.3 ([10]

). For any ε > 0, there exists n ε ∈ N as well as words i 1 , ..., i nε ∈ Λ * such that:

for any 1

≤ j < j ′ ≤ n ε , f i j (K) ∩ f i j ′ (K) = ∅, writing S ε = ¶ f i 1 , ..., f i nε ©
, there exists a probability vector P ε = (p 1 , ..., p nε ) such that the weakly conformal measure µ ε associated with P ε and S ε satises dim H (µ ε ) ≥ dim H (K) -ε.

Let us remark that, due to the the rst item, the IFS S ε = {T 1 , ..., T nε } satises the strong separation condition, hence the dimension of a weakly conformal measure depends continuously on the choice of the probability vector. Moreover, writing ν ε > 0 the canonical measure on the coding associated with µ ε , then there exists λ νε (see [START_REF] Feng | Dimension theory of iterated function systems[END_REF]), such that for ν ε

-almost (x n ) n∈N , it holds that lim n→+∞ log |T x 1 • ... • T xn (K)| n = -λ νε .
One rst starts by proving the following modied version of Theorem 4.3.

Proposition 4.4. Let ε 0 > 0. There exists an IFS S ε 0 and a weakly conformal measure µ ε 0 (associated with S ε 0 ) such that supp(µ ε 0 ) = K and dim H (µ ε 0 ) ≥ s-ε 0 .

Remark 4.5. Similarly to the proof of [10, Theorem 2.13], Proposition 4.4 provides a measure on Λ N and taking weak limits of ergodic averages of this measure gives an ergodic measure fully supported on K with dimension larger s -ε. 

Proof. Fix ε = ε 0 2 > 0. Consider S ε = ¶ f i 1 , ..., f i nε © , P ε , µ ε as in Theorem 4.3 and 0 < ε ′ < nε 5m • min 1≤i≤m p i . Set ® g j = f j for 1 ≤ i ≤ m g j = f i j for m + 1 ≤ i ≤ n ε , S ε = {g 1 , ...,
® p j = ε ′ for 1 ≤ j ≤ m p j = p j-m -m nε ε ′ .
Let µ ε,ε ′ be the weakly conformal measure associated with S ε and P ε,ε ′ . Applying Theorem Theorem 3.8 to µ ε,ε ′ , let us prove that the corresponding h (see second item of Theorem 3.8) goes to 0 as ε ′ goes to 0.

Set Θ = {1, ..., n ε + m} and Θ * = k>0 Θ k . Let us denote π Θ the canonical projection. One endows Σ Θ = Θ N with metric d Θ dened by, for any

x = (x n ), y = (y n ) ∈ Σ Θ , d Θ (x, y) = e -min{i∈N:x i ̸ =y i } and d Θ (x, x) = 0. Let ν ε,ε ′ ∈ M(Θ N ) be the Bernoulli product verifying ν ε,ε ′ • π -1 Θ = µ ε,ε ′ . By the strong law of large number, for every x = (x n ) n∈N in a set Σ Θ of ν ε,ε ′ -full measure, there exists N x ∈ N such that for any n ≥ N x , any 1 ≤ i ≤ n ε + m, (84) # {1 ≤ j ≤ n : x j = i} n -p i ≤ ε ′ . For n ∈ N, write A n = ¶ x ∈ Σ Θ : N x ≤ n © .
By Theorem 3.8, there exists N such that, using the notation involved,

µ ε,ε ′ Å B N = ß y : dim H (µ π -1 Θ ({y}) ε,ε ′ ) = h and µ π -1 Θ ({y}) ε,ε ′ (A N ) ≥ 1 2 ™ã ≥ 1 2 .
We x such an N .

We need the following lemma.

Lemma 4.6. Consider y ∈ B

N , x = (x n ) n∈N ∈ π -1 Θ ({y}) ∩ A N and N ′ ≥ N. Let I N ′ ((x n ) n∈N ) = {1 ≤ k ≤ N ′ : 1 ≤ x k ≤ m}. Then, for any x = ( x n ) n∈N ∈ π -1 (y) and any 1 ≤ j ≤ N ′ such that j / ∈ I N ′ ((x n ) n∈N ), one has x j = x j .
Proof. We proceed by contradiction. Suppose that the claim is not true and let

j 0 ≥ 1 such for any 1 ≤ i < j 0 , x i = x i and x j 0 ̸ = x j 0 . Write z = lim k→+∞ g x j 0 +1 • g x j 0 +2 • ... • g x j 0 +k (0) and z = lim k→+∞ g x j 0 +1 • g x j 0 +2 • ...g x j 0 +k (0). Then, recalling that x, x ∈ π -1 Θ ({y}), g x 1 • ... • g x j 0 -1 • g x j 0 (z) = g x 0 • ... • g x j 0 -1 • g x j 0 ( z) = y,
which implies that g x j 0 (z) = g x j 0 ( z), yielding to a contradiction since g x j 0 (K) ∩ g x j 0 (K) = ∅. □

Continuing the proof of the proposition, we note also that, by (84), for every

x ∈ Σ Θ and N ′ ≥ N,

# {1 ≤ k ≤ N ′ : x k ∈ {1, ..., m}} ≤ 2mε ′ N ′ . (85) 
Lemma 4.6 together with (85) yields

# ¶ i ∈ Θ N ′ : [i] ∩ A N ∩ π -1 Θ ({y}) © ≤ ⌊2mε ′ N ′ ⌋+1 k=0 Ç N ′ k å m k ≤ (⌊2mε ′ N ′ ⌋ + 2) Ç N ′ ⌊2mε ′ N ′ ⌋ + 1 å m ⌊2mε ′ N ′ ⌋+1 ,
where we used that ε ′ < 1 5m so that 2mε ′ N ′ < N ′ 2 , provided that N was chosen large enough and, for any 0 ≤ k ≤ ⌊2mε ′ N ′ ⌋ + 1, N ′ k ≤ N ′ ⌊2mε ′ N ′ ⌋+1 . Using Sterling formula, there exists a constant C > 0 such that

# ¶ i ∈ Θ N ′ : [i] ∩ A N ∩ π -1 Θ ({y}) © ≤ C(⌊2mε ′ N ′ ⌋ + 2) (N ′ ) ⌊2mε ′ N ′ ⌋+1 • m ⌊2mε ′ N ′ ⌋+1 Ä ⌊2mε ′ N ′ ⌋+1 e ä ⌊2mε ′ N ′ ⌋+1 2π(⌊2mε ′ N ′ ⌋ + 1) ≤ C(⌊2mε ′ N ′ ⌋ + 2) Ç mN ′ 2mε ′ N ′ e å ⌊2mε ′ N ′ ⌋+1 1 2π(⌊2mε ′ N ′ ⌋ + 1) ≤ C(⌊2mε ′ N ′ ⌋ + 2) e 2ε ′ 3mN ′ ε ′ = C(⌊2mε ′ N ′ ⌋ + 2)e 3mN ′ ε ′ log e 2ε ′ ≤ e √ ε ′ N ′ , (86) 
provided that ε ′ was chosen small enough at start and N (so N ′ too) large enough. Since (86) holds for any N ′ ≥ N , one obtains that

dim P (A N ∩ π -1 Θ ({y})) ≤ √ ε ′ .
Recalling the third item of Theorem 3.8, one gets h ≤ √ ε ′ .

By Remark 3.6 and the fourth item of Theorem 3.8, there exists a constant C, depending on the system S such that dim H (µ ε,ε

′ ) ≥ dim H (ν ε,ε ′ ) λν ε,ε ′ -C √ ε ′
, where λ ν ε,ε ′ is dened by Denition 3.5. Also, by Corollary 3.7, for any Bernoulli product ν ∈ M(Θ) associated with a probability vector P ∈ (0, 1) nε+m the Lyapunov exponent depends continuously on the vector P .

Since it is also the case for dim H (ν) and lim ε ′ →0 P ε,ε ′ = {0} m × P ε , for ε ′ small enough, we conclude that Let us rst show that dim H (L(δ)) ≤ dim(S) δ . Let α and C α be as in (26), 0 < t ≤ α 2 . For k ∈ N, set Λ (k) t = i = (i 1 , ..., i ℓ ) : |f i 1 ,...,i ℓ (K)| < t k ≤ |f i 1 ,...,i ℓ -1 (K)| .

dim H (µ ε,ε ′ ) ≥ dim H (ν ε ) λ νε -2ε ≥ s -2ε,
Note that, there exists k 0 ∈ N so that, for any k ≥ k 0 , if i belongs to Λ (k) t , then, for any 1 ≤ j ≤ m, ij / ∈ Λ (k) t . In particular, for any i ̸ = j ∈ Λ Consider ε > 0. Let us recall that, by proposition 3.13 applied with ε ′ = -ε 2 log t and s = dim(S) combined with Remark 3.14, there exists γ ε ′ and a measure ν ε ′ ∈ M(Λ N ) such that for any i = (i 1 , ..., i k ) ∈ Λ * , (88) S) .

γ -1 ε ′ e k ε 2 log t |f i (K)| dim(S) ≤ ν ε ′ ([i]) ≤ γ ϵ ′ e -k ε 2 log t |f i (K)| dim(
For any δ ≥ 1,

i∈∈ k≥k 0 Λ k |f i (K)| δ dim(S)+ε δ = i∈ k≥k 0 Λ (k) t |f i (K)| dim(S)+ε ≤ k≥k 0 i∈Λ (k) t t kε γ ε ′ e -k ε 2 log t ν ε ′ ([i]) ≤ γ ε ′ k≥k 0 t k ε 2 < +∞. ( 89 
)
As a consequence, dim H (lim sup B(f i (x 0 ), |f i (K)| δ )) ≤ dim(S) + ε δ , and letting ε tend to 0 establishes the upper-bound. Now we established the desired lower-bound for dim H (L(δ)).

Let ε > 0 and µ ε be a weakly conformal measure as in Proposition 4.4. For any k ∈ N, the balls {B(f i (x 0 ), |f i (K)|)} i∈Λ k are centered on K = supp(µ) and cover K. This implies that µ ε (lim sup i∈Λ * B(f i (x 0 ), |f i (K)|)) = 1.

Applying Theorem 3.22, one gets

s -ε δ ≤ dim H Ç lim sup i∈Λ * B f i (x 0 ), |f i (K)| δ å .
Letting ε → 0 nishes the proof. ≥ dim(S) δ and this ends the proof.

□

  Let f : R d → R d be a linear map. One sets ||f || = sup x∈B(0,1) ||f (x)||∞ ||x||∞ and f = inf x∈B(0,1) ||f (x)||∞ ||x||∞ . Now we recall some denitions. Denition 2.1. Let ζ : R + → R + . Suppose that ζ is increasing in a neighborhood of 0 and ζ(0) = 0. The Hausdor outer measure at scale t ∈ (0, +∞] associated with the gauge ζ of a set E is dened by n |) : |B n | ≤ t, B n closed ball and E ⊂ n∈N B n .

3. 1 . 2 .

 12 Dimension of weakly-conformal IFS's. Let us recall the following fundamental result.

Denition 3 . 4 (

 34 [START_REF] Barral | On multifractal formalism for self-similar measures with overlaps[END_REF]). One says that S is dimension regular if for any weakly conformal measure µ ∈ M(R d ) associated with the probability vector (p 1 , ..., p m ) ∈ [0, 1] m and S, recalling(3.5) and denoting ν ∈ M(Λ N ) verifying µ = ν • π -1 , one has(43) 

3. 2 .

 2 Essential content for weakly conformal measures. Estimates of essential contents for weakly conformal measures are now established. Theorem 3.16. Let S be a C 1 weakly conformal IFS of R d .

Remark 3 .

 3 23. One emphasizes that, for the purpose of this article, the results are stated for balls but Theorem 3.16 and Theorem 3.2 allows to deal with more general open sets. For instance, given 1 ≤ τ 1 ≤ ... ≤ τ d , if U n is an open rectangle of length-sides n i=1 |B n | τ i , one needs to estimates the (classical) Hausdor content of the union of the cubes C ⊂ U n of length-side |B n | τ d (the smallest side of U n ) for which C ∩ K ̸ = ∅. This is not to hard to achieve as soon as the rectangle has sides in natural directions for the IFS we consider.

4. 1 .

 1 Variational principle and C 1 weakly conformal IFS. A modied version of a proposition of Feng and Hu, used in their proof their variational principal [10, Theorem 2.13] is needed. The following subsection is dedicated to this modication.

which concludes the proof.

  

□ 4 . 2 .

 42 Proof of Theorem 2.4. Let us recall that, by Proposition 2.2 and Denition 2.6, dim(S) veries, for any z ∈ K, P (dim(S)) = lim k→+∞ 1 k log i∈Λ k |f i (K)| dim(S) = 0.

Fix x 0 ∈

 0 K δ ≥ 1 and write L(δ) = lim sup i∈Λ * B(f i (x 0 ), |f i (K)| δ ).

t

  , [i] ∩ [j] = ∅. This implies that, for any ν ∈ M(Λ N ),

  Denition 3.1. Let µ ∈ M(R d ), and s ≥ 0. The s-dimensional µ-essential

	Hausdor content of a set A ⊂ B(R d ) is dened as
	(17)

  3.3. Ubiquity results in the weakly conformal case. Combining Theorem 3.2 with Theorem 3.16 and Lemma 3.1 yield the following result.Theorem 3.22. Let S be a C 1 weakly conformal IFS of a compact X with attractor K and µ be a self-conformal measure associated with S.Let (B n ) n∈N be a sequence of closed balls centered on K with lim n→+∞ |B n | = 0.(1) Suppose that (B n ) n∈N is µ-a.c. Then there exists a gauge function ζ such that lim r→0 + log(ζ(r)) log(r) ≥ dim(µ)

		δ	and H ζ (lim sup n→∞	Bδ n ) > 0. In particular
	(76)	dim H (lim sup n→+∞	Bδ n ) ≥	dim(µ) δ	.

  || • ||x -y||.

	By Lemma 3.3, (23), one has
	(79)

  g m+nε } and denote by P ε,ε ′ = ( p 1 , ..., p m+nε ) the probability vector dened as

  This proves that dim H lim sup i∈Λ * B f i (x), |f i (K))|g(|i| Note that one has, by[START_REF] Seuret | Diophantine approximation by orbits of expanding markov maps[END_REF],

	(|f i (K))|g(k)) δ sg dim(S)	dim(S)+ε δ	≤	k |f i (K))|g(k)	sg	dim(S)+ε dim(S)	< +∞.
	5. Proof of Theorem 2.6 Proof. Let us rst check that dim H lim sup k≥0 i∈Λ k ting ε → 0 concludes this part of the proof. Now we prove that dim H lim sup i∈Λ * B f i (x), (|f i (K))|g(|i|)) δ sg dim(S) k≥0 i∈Λ k sg i∈Λ k≥0 i∈Λ k k |f i (K))|g(k) 1+ε = +∞. ≥ δ dim(S) ) ≤ dim(S)+ε sg δ dim(S) δ .	. Let-

* B(f i (x), (|f i (K))|g(|i|)) δ sg dim(S) ) ≤ dim(S) δ :

Let ε > 0. Recalling

[START_REF] Seuret | Diophantine approximation by orbits of expanding markov maps[END_REF]

, one has Let ε > 0.

By Theorem 2.5, for any ε > 0,

µ lim sup i∈Λ * B(f i (x), (|f i (K))|g(|i|)) sg (1+ε) dim(S) ) = 1.

Using Theorem 3.22, one gets

dim H lim sup i∈Λ * B f i (x), (|f i (K))|g(|i|)) δ sg dim(S) ≥ dim H (µ) (1 + ε)δ . Letting ε → 0, one has dim H lim sup i∈Λ * B f i (x), (|f i (K))|g(|i|)) δ sg dim(S)

(1) If |A| ≤ 1, the mapping s ≥ 0 → H µ,s ∞ (A) is decreasing from H µ,0

(5) For every s > dim H (µ), H µ,s ∞ (A) = 0.

Also, by Theorem 3.16 and item [START_REF] Daviaud | Extraction of optimal subsequences of sequence of balls, and application to optimality estimates of mass transference principles[END_REF] of Proposition 3.25, there exists a constant c(d, µ, dim(µ) -ε 2 , ε 4 ) such that, for any n ∈ N, for any δ > 1

Taking n large enough so that 

δ so that [START_REF] Daviaud | An heterogeneous ubiquity theorem, application to self-similar measures with overlaps[END_REF]Theorem 2.11] holds for self-conformal measures instead of self-similar measure.

Proof of Theorem 2.4

Write s = dim H (K).

The notations of the proof of Theorem 3.16 are adopted in this section.

Let us start by treating the easier cases δ < 1 and x 0 / ∈ K.

Lemma 4.1. For any x 0 ∈ U and any δ < 1, lim sup i∈Λ * B(f i (x 0 ), |f i (K)| δ ) = K.

For any δ > 1, and any x 0 / ∈ K, one has lim sup

Proof. We start by dealing with the case δ < 1. Let x 0 ∈ U. Note rst that lim sup i∈Λ * B(f i (x 0 ), |f i (K)| δ ) ⊂ K. We now prove the converse inclusion.